1
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhou L, Wu F, Jin W, Yan B, Chen X, He Y, Yang W, Du W, Zhang Q, Guo Y, Yuan Q, Dong X, Yu W, Zhang J, Xiao L, Tong P, Shan L, Efferth T. Theabrownin Inhibits Cell Cycle Progression and Tumor Growth of Lung Carcinoma through c-myc-Related Mechanism. Front Pharmacol 2017; 8:75. [PMID: 28289384 PMCID: PMC5326752 DOI: 10.3389/fphar.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural products for lung cancer therapy and new development of anti-cancer agent.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Wangdong Jin
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Bo Yan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Xin Chen
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Yingfei He
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Weiji Yang
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Wenlin Du
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Yonghua Guo
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Yuan
- The Second Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhou, China
| | | | - Wenhua Yu
- Hangzhou First People’s HospitalHangzhou, China
| | | | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Letian Shan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of MainzMainz, Germany
| |
Collapse
|
3
|
Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 2016; 36:652-666. [PMID: 27452523 DOI: 10.1038/onc.2016.233] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Papillary thyroid carcinoma (PTC), the most frequent thyroid cancer, is characterized by low proliferation but no apoptosis, presenting frequent lymph-node metastasis. Papillary thyroid carcinoma overexpress transforming growth factor-beta (TGF-β). In human cells, TGF-β has two opposing actions: antitumoral through pro-apoptotic and cytostatic activities, and pro-tumoral promoting growth and metastasis. The switch converting TGF-β from a tumor-suppressor to tumor-promoter has not been identified. In the current study, we have quantified a parallel upregulation of TGF-β and nuclear p27, a CDK2 inhibitor, in samples from PTC. We established primary cultures from follicular epithelium in human homeostatic conditions (h7H medium). TGF-β-dependent cytostasis occurred in normal and cancer cells through p15/CDKN2B induction. However, TGF-β induced apoptosis in normal and benign but not in carcinoma cultures. In normal thyroid cells, TGF-β/SMAD repressed the p27/CDKN1B gene, activating CDK2-dependent SMAD3 phosphorylation to induce p50 NFκB-dependent BAX upregulation and apoptosis. In thyroid cancer cells, oncogene activation prevented TGF-β/SMAD-dependent p27 repression, and CDK2/SMAD3 phosphorylation, leading to p65 NFκB upregulation which repressed BAX, induced cyclin D1 and promoted TGF-β-dependent growth. In PTC samples from patients, upregulation of TGF-β, p27, p65 and cyclin D1 mRNA were significantly correlated, while the expression of the isoform BAX-β, exclusively transcribed in apoptotic cells, was negatively correlated. Additionally, combined ERK and p65 NFκB inhibitors reduced p27 expression and potentiated apoptosis in thyroid cancer cells while not affecting survival in normal thyroid cells. Our results therefore suggest that the oncoprotein p27 reorganizes the effects of TGF-β in thyroid cancer, explaining the slow proliferation but lack of apoptosis and metastatic behavior of PTC.
Collapse
|
4
|
WANG JIN, YIN HAILIN, PANANDIKAR ASHWINI, GANDHI VARSHA, SEN SUBRATA. Elevated cyclin A associated kinase activity promotes sensitivity of metastatic human cancer cells to DNA antimetabolite drug. Int J Oncol 2015; 47:782-90. [PMID: 26058363 PMCID: PMC4501665 DOI: 10.3892/ijo.2015.3037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 11/16/2022] Open
Abstract
Drug resistance is a major obstacle in successful systemic therapy of metastatic cancer. We analyzed the involvement of cell cycle regulatory proteins in eliciting response to N (phosphonoacetyl)-L-aspartate (PALA), an inhibitor of de novo pyrimidine synthesis, in two metastatic variants of human cancer cell line MDA-MB-435 isolated from lung (L-2) and brain (Br-1) in nude mouse, respectively. L-2 and Br-l cells markedly differed in their sensitivity to PALA. While both cell types displayed an initial S phase delay/arrest, Br-l cells proliferated but most L-2 cells underwent apoptosis. There was distinct elevation in cyclin A, and phosphorylated Rb proteins concomitant with decreased expression of bcl-2 protein in the PALA treated L-2 cells undergoing apoptosis. Markedly elevated cyclin A associated and cdk2 kinase activities together with increased E2F1-DNA binding were detected in these L-2 cells. Induced ectopic cyclin A expression sensitized Br-l cells to PALA by activating an apoptotic pathway. Our findings demonstrate that elevated expression of cyclin A and associated kinase can activate an apoptotic pathway in cells exposed to DNA antimetabolites. Abrogation of this pathway can lead to resistance against these drugs in metastatic variants of human carcinoma cells.
Collapse
Affiliation(s)
- JIN WANG
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - HAILIN YIN
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - ASHWINI PANANDIKAR
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - VARSHA GANDHI
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - SUBRATA SEN
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Program in Human and Molecular Genetics, University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Bretones G, Delgado MD, León J. Myc and cell cycle control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:506-16. [PMID: 24704206 DOI: 10.1016/j.bbagrm.2014.03.013] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/12/2022]
Abstract
Soon after the discovery of the Myc gene (c-Myc), it became clear that Myc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in many models. Also, the downregulation or inactivation of Myc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role of Myc on cell cycle control. Several parallel mechanisms account for Myc-mediated stimulation of the cell cycle. First, most of the critical positive cell cycle regulators are encoded by genes induced by Myc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
6
|
Palanisamy AP, Cheng G, Sutter AG, Evans ZP, Polito CC, Jin L, Liu J, Schmidt MG, Chavin KD. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death. Metab Syndr Relat Disord 2013; 12:132-42. [PMID: 24320727 DOI: 10.1089/met.2013.0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that regulates energy metabolism and reactive oxygen species (ROS) production. We generated mouse carboxy- and amino-terminal green fluorescent protein (GFP)-tagged UCP2 constructs to investigate the effect of UCP2 expression on cell proliferation and viability. UCP2-transfected Hepa 1-6 cells did not show reduced cellular adenosine triphosphate (ATP) but showed increased levels of glutathione. Flow cytometry analysis indicated that transfected cells were less proliferative than nontransfected controls, with most cells blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could not be reversed by providing exogenous ATP or oxidant supply, and was not affected by the chemical uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). However, this effect of UCP2 was augmented by treatment with genistein, a tyrosine kinase inhibitor, which by itself did not affect cell proliferation on control hepatocytes. Western blotting analysis revealed decreased expression levels of CDK6 but not CDK2 and D-type cyclins. Examination of cell viability in UCP2-transfected cells with Trypan Blue and Annexin-V staining revealed that UCP2 transfection led to significantly increased cell death. However, characteristics of apoptosis were absent in UCP2-transfected Hepa 1-6 cells, including lack of oligonucleosomal fragmentation (laddering) of chromosomal DNA, release of cytochrome c from mitochondria, and cleavage of caspase-3. In conclusion, our results indicate that UCP2 induces cell cycle arrest at G1 phase and causes nonapoptotic cell death, suggesting that UCP2 may act as a powerful influence on hepatic regeneration and cell death in the steatotic liver.
Collapse
Affiliation(s)
- Arun P Palanisamy
- 1 Department of Transplant Surgery, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:123-45. [PMID: 23602834 DOI: 10.1016/j.bbcan.2013.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Cancer is a class of diseases characterized by uncontrolled cell growth. The development of cancer takes place in a multi-step process during which cells acquire a series of mutations that eventually lead to unrestrained cell growth and division, inhibition of cell differentiation, and evasion of cell death. Dysregulation of oncoapoptotic genes, growth factors, receptors and their downstream signaling pathway components represent a central driving force in tumor development. The detailed studies of signal transduction pathways for mechanisms of cell growth and apoptosis have significantly advanced our understanding of human cancers, subsequently leading to more effective treatments. Oral squamous cell carcinoma represents a classic example of multi-stage carcinogenesis. It gradually evolves through transitional precursor lesions from normal epithelium to a full-blown metastatic phenotype. Genetic alterations in many genes encoding crucial proteins, which regulate cell proliferation, differentiation, survival and apoptosis, have been implicated in oral cancer. As like other solid tumors, in oral cancer these genes include the ones coding for cell cycle regulators or oncoproteins (e.g. Ras, Myc, cyclins, CDKs, and CKIs), tumor suppressors (e.g. p53 and pRb), pro-survival proteins (e.g. telomerase, growth factors or their receptors), anti-apoptotic proteins (e.g. Bcl2 family, IAPs, and NF-kB), pro-apoptotic proteins (e.g. Bax and BH-3 family, Fas, TNF-R, and caspases), and the genes encoding key transcription factors or elements for signal transduction leading to cell growth and apoptosis. Here we discuss the current knowledge of oncoapoptotic regulation in human cancers with special reference to oral cancers.
Collapse
|
8
|
Furusawa Y, Tabuchi Y, Takasaki I, Wada S, Ohtsuka K, Kondo T. Gene networks involved in apoptosis induced by hyperthermia in human lymphoma U937 cells. Cell Biol Int 2013; 33:1253-62. [DOI: 10.1016/j.cellbi.2009.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/22/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
|
9
|
Ko E, Kim Y, Cho EY, Han J, Shim YM, Park J, Kim DH. Synergistic Effect of Bcl-2 and Cyclin A2 on Adverse Recurrence-Free Survival in Stage I Non-small Cell Lung Cancer. Ann Surg Oncol 2012; 20:1005-12. [DOI: 10.1245/s10434-012-2727-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Indexed: 11/18/2022]
|
10
|
Xu K, Zhang TT, Wang L, Zhang CF, Zhang L, Ma LX, Xin Y, Ren CH, Zhang ZQ, Yan Q, Martineau D, Zhang ZY. Walleye dermal sarcoma virus: expression of a full-length clone or the rv-cyclin (orf a) gene is cytopathic to the host and human tumor cells. Mol Biol Rep 2012; 40:1451-61. [PMID: 23100064 DOI: 10.1007/s11033-012-2188-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/09/2012] [Indexed: 12/22/2022]
Abstract
Walleye dermal sarcoma virus (WDSV) is etiologically associated with a skin tumor, walleye dermal sarcoma (WDS), which develops in the fall and regresses in the spring. WDSV genome contains, in addition to gag, pol and env, three open reading frames (orfs) designated orf a (rv-cyclin), orf b and orf c. Unintegrated linear WDSV provirus DNA isolated from infected tumor cells was used to construct a full-length WDSV provirus clone pWDSV, while orf a was cloned into pSVK3 to construct the expression vector porfA. Stable co-transfection of a walleye cell line (W12) with pWDSV and pcDNA3 generated fewer and smaller G418-resistant colonies compared to the control. By Northern blot analysis, several small transcripts (2.8, 1.8, 1.2, and 0.8 kb) were detected using a WDSV LTR-specific probe. By RT-PCR and Southern blot analysis, three cDNAs (2.4, 1.6 and 0.8 kb) were identified, including both orf a and orf b messenger. Furthermore stable co-transfection of both a human lung adenocarcinoma cell line (SPC-A-1) and a cervical cancer cell line (HeLa) with pcDNA3 and ether porfA or pWDSV also generated fewer and smaller G418-resistant colonies. We conclude that expression of the full-length WDSV clone or the orf a gene inhibits the host fish and human tumor cell growth, and Orf A protein maybe a potential factor which contributes to the seasonal tumor development and regression. This is the first fish provirus clone that has been expressed in cell culture system, which will provide a new in vitro model for tumor research and oncotherapy study.
Collapse
Affiliation(s)
- Kun Xu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaan'xi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bouquet C, Melchers F. Pim1 and Myc reversibly transform murine precursor B lymphocytes but not mature B lymphocytes. Eur J Immunol 2011; 42:522-32. [DOI: 10.1002/eji.201141987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 11/02/2011] [Indexed: 11/12/2022]
|
12
|
Hodeify R, Tarcsafalvi A, Megyesi J, Safirstein RL, Price PM. Cdk2-dependent phosphorylation of p21 regulates the role of Cdk2 in cisplatin cytotoxicity. Am J Physiol Renal Physiol 2011; 300:F1171-9. [PMID: 21325496 DOI: 10.1152/ajprenal.00507.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cisplatin cytotoxicity is dependent on cyclin-dependent kinase 2 (Cdk2) activity in vivo and in vitro. We found that an 18-kDa protein identified by mass spectrometry as p21(WAF1/Cip1) was phosphorylated by Cdk2 starting 12 h after cisplatin exposure. The analysis showed it was phosphorylated at serine 78, a site not previously identified. The adenoviral transduction of p21 before cisplatin exposure protects from cytotoxicity by inhibiting Cdk2. Although cisplatin causes induction of endogenous p21, the protection is inefficient. We hypothesized that phosphorylation of p21 at serine 78 could affect its role as a Cdk inhibitor, and thereby lessen its ability to protect from cisplatin cytotoxicity. To investigate the effect of serine 78 phosphorylation on p21 activity, we replaced serine 78 with aspartic acid, creating the phosphomimic p21(S78D). Mutant p21(S78D) was an inefficient inhibitor of Cdk2 and was inefficient at protecting TKPTS cells from cisplatin-induced cell death. We conclude that phosphorylation of p21 by Cdk2 limits the effectiveness of p21 to inhibit Cdk2, which is the mechanism for continued cisplatin cytotoxicity even after the induction of a protective protein.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, 72205, USA
| | | | | | | | | |
Collapse
|
13
|
Zhan H, Spitsbergen J, Qing W, Wu YL, Paul TA, Casey JW, Gong Z. Transgenic expression of walleye dermal sarcoma virus rv-cyclin gene in zebrafish and its suppressive effect on liver tumor development after carcinogen treatment. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:640-9. [PMID: 20052603 PMCID: PMC4154541 DOI: 10.1007/s10126-009-9251-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/23/2009] [Indexed: 05/14/2023]
Abstract
A retrovirus homologue gene of cellular cyclin D₁, walleye dermal sarcoma virus rv-cyclin gene (orf A or rv-cyclin), was expressed in the livers of zebrafish under the control of liver fatty acid-binding protein (lfabp) promoter. To prevent possible fatality caused by overexpression of the oncogene, the GAL4/upstream activation sequence (GAL4/UAS) system was used to maintain the transgenic lines. Thus, both GAL4-activator [Tg(lfabp:GAL4)] and UAS-effector [Tg(UAS:rvcyclin)] lines were generated, and the rv-cyclin gene was activated in the liver after crossing these two lines. Since no obvious neoplasia phenotypes were observed in the double-transgenic line, cancer susceptibility of the transgenic fish expressing rv-cyclin was tested by carcinogen treatment. Unexpectedly, transgenic fish expressing rv-cyclin gene (rvcyclin+) were more resistant to the carcinogen than siblings not expressing this gene (rvcyclin-). Lower incidences of multiple and malignant liver tumors were observed in rvcyclin+ than in rvcyclin- fish, and the liver tumors in the rvcyclin+ group appeared later and were less malignant. These results suggest that expression of rv-cyclin protects the fish liver from carcinogen damage and delays onset of malignancy. These findings indicate that transgenic fish models are powerful systems for investigating mechanisms of inhibition and regression of liver tumors.
Collapse
MESH Headings
- Adenoma, Liver Cell/genetics
- Adenoma, Liver Cell/metabolism
- Adenoma, Liver Cell/pathology
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Epsilonretrovirus/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genes, Viral
- Liver/metabolism
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Huiqing Zhan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jan Spitsbergen
- Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Wei Qing
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Lian Wu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Thomas A. Paul
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - James W. Casey
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
- Corresponding author. Dr. Zhiyuan Gong, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Tel.: +65 65162860, Fax: +65 67792486,
| |
Collapse
|
14
|
Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107:163-224. [PMID: 20399964 DOI: 10.1016/s0065-230x(10)07006-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MYC proteins (c-MYC, MYCN, and MYCL) regulate processes involved in many if not all aspects of cell fate. Therefore, it is not surprising that the MYC genes are deregulated in several human neoplasias as a result from genetic and epigenetic alterations. The near "omnipotency" together with the many levels of regulation makes MYC an attractive target for tumor intervention therapy. Here, we summarize some of the current understanding of MYC function and provide an overview of different cancer forms with MYC deregulation. We also describe available treatments and highlight novel approaches in the pursuit for MYC-targeting therapies. These efforts, at different stages of development, constitute a promising platform for novel, more specific treatments with fewer side effects. If successful a MYC-targeting therapy has the potential for tailored treatment of a large number of different tumors.
Collapse
Affiliation(s)
- Ami Albihn
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Ng SH, Maas SA, Petkov PM, Mills KD, Paigen K. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15. Genes Chromosomes Cancer 2009; 48:925-30. [PMID: 19603522 DOI: 10.1002/gcc.20693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage.
Collapse
Affiliation(s)
- Siemon H Ng
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
16
|
Wang X, Song Y, Ren J, Qu X. Knocking-down cyclin A(2) by siRNA suppresses apoptosis and switches differentiation pathways in K562 cells upon administration with doxorubicin. PLoS One 2009; 4:e6665. [PMID: 19684852 PMCID: PMC2721982 DOI: 10.1371/journal.pone.0006665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022] Open
Abstract
Cyclin A2 is critical for the initiation of DNA replication, transcription and cell cycle regulation. Cumulative evidences indicate that the deregulation of cyclin A2 is tightly linked to the chromosomal instability, neoplastic transformation and tumor proliferation. Here we report that treatment of chronic myelogenous leukaemia K562 cells with doxorubicin results in an accumulation of cyclin A2 and follows by induction of apoptotic cell death. To investigate the potential preclinical relevance, K562 cells were transiently transfected with the siRNA targeting cyclin A2 by functionalized single wall carbon nanotubes. Knocking down the expression of cyclin A2 in K562 cells suppressed doxorubicin-induced growth arrest and cell apoptosis. Upon administration with doxorubicin, K562 cells with reduced cyclin A2 showed a significant decrease in erythroid differentiation, and a small fraction of cells were differentiated along megakaryocytic and monocyte-macrophage pathways. The results demonstrate the pro-apoptotic role of cyclin A2 and suggest that cyclin A2 is a key regulator of cell differentiation. To the best of our knowledge, this is the first report that knocking down expression of one gene switches differentiation pathways of human myeloid leukemia K562 cells.
Collapse
Affiliation(s)
- Xiaohui Wang
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Yujun Song
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jinsong Ren
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaogang Qu
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
17
|
Canine invasive transitional cell carcinoma cell lines: In vitro tools to complement a relevant animal model of invasive urinary bladder cancer. Urol Oncol 2009; 27:284-92. [DOI: 10.1016/j.urolonc.2008.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/18/2022]
|
18
|
Maddika S, Panigrahi S, Wiechec E, Wesselborg S, Fischer U, Schulze-Osthoff K, Los M. Unscheduled Akt-triggered activation of cyclin-dependent kinase 2 as a key effector mechanism of apoptin's anticancer toxicity. Mol Cell Biol 2009; 29:1235-48. [PMID: 19103742 PMCID: PMC2643822 DOI: 10.1128/mcb.00668-08] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/15/2008] [Accepted: 12/10/2008] [Indexed: 01/20/2023] Open
Abstract
Apoptin, a protein from the chicken anemia virus, has attracted attention because it specifically kills tumor cells while leaving normal cells unharmed. The reason for this tumor selectivity is unclear and depends on subcellular localization, as apoptin resides in the cytoplasm of normal cells but in the nuclei of transformed cells. It was shown that nuclear localization and tumor-specific killing crucially require apoptin's phosphorylation by an as yet unknown kinase. Here we elucidate the pathway of apoptin-induced apoptosis and show that it essentially depends on abnormal phosphatidylinositol 3-kinase (PI3-kinase)/Akt activation, resulting in the activation of the cyclin-dependent kinase CDK2. Inhibitors as well as dominant-negative mutants of PI3-kinase and Akt not only inhibited CDK2 activation but also protected cells from apoptin-induced cell death. Akt activated CDK2 by direct phosphorylation as well as by the phosphorylation-induced degradation of the inhibitor p27(Kip1). Importantly, we also identified CDK2 as the principal kinase that phosphorylates apoptin and is crucially required for apoptin-induced cell death. Immortalized CDK2-deficient fibroblasts and CDK2 knockdown cells were markedly protected against apoptin. Thus, our results not only decipher the pathway of apoptin-induced cell death but also provide mechanistic insights for the selective killing of tumor cells.
Collapse
Affiliation(s)
- Subbareddy Maddika
- Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Skirrow RC, Veldhoen N, Domanski D, Helbing CC. Roscovitine inhibits thyroid hormone-induced tail regression of the frog tadpole and reveals a role for cyclin C/Cdk8 in the establishment of the metamorphic gene expression program. Dev Dyn 2008; 237:3787-97. [DOI: 10.1002/dvdy.21800] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
20
|
Song WJ, Schreiber WE, Zhong E, Liu FF, Kornfeld BD, Wondisford FE, Hussain MA. Exendin-4 stimulation of cyclin A2 in beta-cell proliferation. Diabetes 2008; 57:2371-81. [PMID: 18544709 PMCID: PMC2518488 DOI: 10.2337/db07-1541] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Beta-cell proliferation is an important mechanism underlying beta-cell mass adaptation to metabolic demands. We have examined effects, in particular those mediated through intracellular cAMP signaling, of the incretin hormone analog exendin-4 on cell cycle regulation in beta-cells. RESEARCH DESIGN AND METHODS Changes in islet protein levels of cyclins and of two critical cell cycle regulators cyclin kinase inhibitor p27 and S-phase kinase-associated protein 2 (Skp2) were assessed in mice treated with exendin-4 and in a mouse model with specific upregulation of nuclear cAMP signaling exhibiting increased beta-cell proliferation (CBP-S436A mouse). Because cyclin A2 was stimulated by cAMP, we assessed the role of cylcin A2 in cell cycle progression in Min6 and isolated islet beta-cells. RESULTS Mice treated with exendin-4 showed increased beta-cell proliferation, elevated islet protein levels of cyclin A2 with unchanged D-type cyclins, elevated PDX-1 and Skp2 levels, and reduced p27 levels. Exendin-4 stimulated cyclin A2 promoter activity via the cAMP-cAMP response element binding protein pathway. CBP-S436A islets exhibited elevated cyclin A2, reduced p27, and no changes in D-type cyclins, PDX-1, or Skp2. In cultured islets, exendin-4 increased cyclin A2 and Skp2 and reduced p27. Cyclin A2 overexpression in primary islets increased proliferation and reduced p27. In Min6 cells, cyclin A2 knockdown prevented exendin-4-stimulated proliferation. PDX-1 knockdown reduced exendin-4-stimulated cAMP synthesis and cyclin A2 transcription. CONCLUSIONS Cyclin A2 is required for beta-cell proliferation, exendin-4 stimulates cyclin A2 expression via the cAMP pathway, and exendin-4 stimulation of cAMP requires PDX-1.
Collapse
Affiliation(s)
- Woo-Jin Song
- Metabolism Division, Departments of Pediatrics and Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Dhawan D, Jeffreys AB, Zheng R, Stewart JC, Knapp DW. Cyclooxygenase-2 dependent and independent antitumor effects induced by celecoxib in urinary bladder cancer cells. Mol Cancer Ther 2008; 7:897-904. [PMID: 18413803 DOI: 10.1158/1535-7163.mct-07-0313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transitional cell carcinoma of the urinary bladder is the second most common genitourinary malignancy in people in the United States. Cyclooxygenase-2 (COX-2) is overexpressed in bladder cancer. COX-2 inhibitors have had antitumor activity against bladder cancer, but the mechanisms of action are unclear. Clinically relevant concentrations of COX-2 inhibitors fail to inhibit proliferation in standard in vitro assays. In pilot experiments, different culture conditions [standard monolayer, modified monolayer, soft agar, collagen, and poly(2-hydroxyethyl methacrylate)-coated plates] were assessed to determine conditions suitable for the study of COX inhibitor growth-inhibitory effects. This was followed by studies of the effects of clinically relevant concentrations of a selective COX-2 inhibitor (celecoxib) on urinary bladder cancer cell lines (HT1376, TCCSUP, and UMUC3). Celecoxib (<or=5 micromol/L) inhibited proliferation of COX-2-expressing HT1376 cells in soft agar and modified monolayer cell culture conditions in a COX-2-dependent manner. COX-2 expression, however, did not always correlate with response to celecoxib. TCCSUP cells that express COX-2 were minimally affected by celecoxib, and UMUC3 cells that lack COX-2 expression were modestly inhibited by the drug. When UMUC3(Cox-2/Tet) cells overexpressing COX-2 under the control of tetracycline-inducible promoter were treated with celecoxib in modified monolayer cell culture, growth inhibition was found to be associated with changes in the expression of pRb. Not surprisingly, the proliferation of all cell lines was inhibited by excessively high concentrations of celecoxib. In conclusion, the modified culture conditions allowed detection of COX-2-dependent and COX-2-independent growth-inhibitory activity of celecoxib in urinary bladder cancer cells.
Collapse
Affiliation(s)
- Deepika Dhawan
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907-2026, USA
| | | | | | | | | |
Collapse
|
22
|
Johnson SAS, Dubeau L, Johnson DL. Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J Biol Chem 2008; 283:19184-91. [PMID: 18456653 DOI: 10.1074/jbc.m802872200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RNA polymerase (pol) III transcription, responsible for the synthesis of various stable RNAs, including 5 S rRNAs and tRNAs, is regulated by oncogenic proteins and tumor suppressors. Although it is well established that RNA pol III-dependent transcription is deregulated in transformed cells and malignant tumors, it has not been determined whether this represents a cause or consequence of these processes. We show that Rat1a fibroblasts undergoing oncogenic transformation by the TATA-binding protein or c-Myc display enhanced RNA pol III transcription. Decreased expression of the RNA pol III-specific transcription factor Brf1 prevented this increase in RNA pol III transcription. Although the overall proliferation rates of these cells remained unchanged, the ability of cells to grow in an anchorage-independent manner and form tumors in mice was markedly reduced. Although overexpression of Brf1 modestly stimulated RNA pol III transcription, expression of a phosphomimic, Brf1-T145D, more significantly induced transcription. However, these increases in transcription were not sufficient to promote cellular transformation. Together, these results demonstrate that enhanced RNA pol III transcription is essential for anchorage-independent growth and tumorigenesis and that these events can be uncoupled from effects on anchorage-dependent proliferation.
Collapse
Affiliation(s)
- Sandra A S Johnson
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
23
|
Skirrow RC, Helbing CC. Decreased cyclin-dependent kinase activity promotes thyroid hormone-dependent tail regression in Rana catesbeiana. Cell Tissue Res 2007; 328:281-9. [PMID: 17225171 DOI: 10.1007/s00441-006-0362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 11/13/2006] [Indexed: 11/26/2022]
Abstract
The thyroid hormone (TH), 3,5,3'-triiodothyronine (T(3)), is an important regulator of diverse cellular processes including cell proliferation, differentiation, and apoptosis, with increasing evidence that the modulation of the phosphoproteome is an important factor in the TH-mediated response. However, little is understood regarding the mechanisms whereby phosphorylation may contribute to T(3)-mediated cellular outcomes during development. The cyclin-dependent kinases (Cdks) and mitogen-activated protein kinases (MAPK/ERK) have been implicated in TH signaling in mammalian cells. In this study, we have investigated, in frogs, the possible role that these kinases may have in the promotion of tail regression during tadpole metamorphosis, an important postembryonic process that is completely TH-dependent. Cdk2 steady state levels and activity increase in the tail concurrent with progression through the growth phase of metamorphosis, followed by a precipitous decrease coinciding with tail regression. Cyclin-A-associated kinase activity also follows a similar trend except that its associated kinase activity is maintained longer before a decrease in activity. Protein steady state levels of ERK1 and ERK2 remain relatively constant, and their kinase activities do not decrease until much later during tail regression. Tail tips cultured in serum-free medium in the presence of T(3) undergo regression, which is accelerated by coincubation with a specific Cdk2 inhibitor. Coincubation with PD098059, a MAPK inhibitor, has no effect. Thus, T(3)-dependent tail regression does not require MAPKs, but a decrease in Cdk2 activity promotes tail regression.
Collapse
Affiliation(s)
- Rachel C Skirrow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
24
|
Havens CG, Ho A, Yoshioka N, Dowdy SF. Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol 2006; 26:4701-11. [PMID: 16738333 PMCID: PMC1489138 DOI: 10.1128/mcb.00303-06] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proliferating cells have a higher metabolic rate than quiescent cells. To investigate the role of metabolism in cell cycle progression, we examined cell size, mitochondrial mass, and reactive oxygen species (ROS) levels in highly synchronized cell populations progressing from early G1 to S phase. We found that ROS steadily increased, compared to cell size and mitochondrial mass, through the cell cycle. Since ROS has been shown to influence cell proliferation and transformation, we hypothesized that ROS could contribute to cell cycle progression. Antioxidant treatment of cells induced a late-G1-phase cell cycle arrest characterized by continued cellular growth, active cyclin D-Cdk4/6 and active cyclin E-Cdk2 kinases, and inactive hyperphosphorylated pRb. However, antioxidant-treated cells failed to accumulate cyclin A protein, a requisite step for initiation of DNA synthesis. Further examination revealed that cyclin A continued to be ubiquitinated by the anaphase promoting complex (APC) and to be degraded by the proteasome. This antioxidant arrest could be rescued by overexpression of Emi1, an APC inhibitor. These observations reveal an intrinsic late-G1-phase checkpoint, after transition across the growth factor-dependent G1 restriction point, that links increased steady-state levels of endogenous ROS and cell cycle progression through continued activity of APC in association with Cdh1.
Collapse
Affiliation(s)
- Courtney G Havens
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California-San Diego, School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0686, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Melanoma is the most lethal of human skin cancers and its incidence is increasing worldwide [L.K. Dennis (1999). Arch. Dermatol. 135, 275; C. Garbe et al. (2000). Cancer 89, 1269]. Melanomas often metastasize early during the course of the disease and are then highly intractable to current therapeutic regimens [M.F. Demierre and G. Merlino (2004). Curr. Oncol. Rep. 6, 406]. Consequently, understanding the factors that maintain melanocyte homeostasis and prevent their neoplastic transformation into melanoma is of utmost interest from the perspective of therapeutic interdiction. This review will focus on the role of the pocket proteins (PPs), Rb1 (retinoblastoma protein), retinoblastoma-like 1 (Rbl1 also known as p107) and retinoblastoma-like 2 (Rbl2 also known as p130), in melanocyte homeostasis, with particular emphasis on their functions in the cell cycle and the DNA damage repair response. The potential mechanisms of PP deregulation in melanoma and the possibility of PP-independent pathways to melanoma development will also be considered. Finally, the role of the PP family in ultraviolet radiation (UVR)-induced melanoma and the precise contribution that each PP family member makes to melanocyte homeostasis will be discussed in the context of a number of genetically engineered mouse models.
Collapse
Affiliation(s)
- Ian D Tonks
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
26
|
Bao GC, Wang JG, Jong A. Increased p21 expression and complex formation with cyclin E/CDK2 in retinoid-induced pre-B lymphoma cell apoptosis. FEBS Lett 2006; 580:3687-93. [PMID: 16765349 DOI: 10.1016/j.febslet.2006.05.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/21/2006] [Indexed: 10/24/2022]
Abstract
Cip/Kip family protein p21, a cyclin-dependent kinase (CDK) inhibitor, is directly transactivated by retinoic acid receptor alpha (RARalpha) upon retinoic acid (RA):RARalpha binding. Yet the role of p21 upregulation by RA in lymphoma cells remains unknown. Here, we show that, in human pre-B lymphoma Nalm6 cells, RA-induced proliferation inhibition results from massive cell death characterized by apoptosis. Upregulated p21 by RA accompanies caspase-3 activation and precedes the occurrence of apoptosis. p21 induction leads to increased p21 complex formation with cyclin E/CDK2, which occurs when cyclin E and CDK2 levels remain constant. CDK2 can alternatively promote apoptosis, but the mechanisms remain unknown. Data presented here suggest a novel RA-signaling, by which RA-induced p21 induction and complex formation with cyclin E/CDK2 diverts CDK2 function from normally driving proliferation to alternatively promoting apoptosis.
Collapse
Affiliation(s)
- George C Bao
- Division of Hematology/Oncology, Childrens Hospital Los Angeles Saban Research Institute, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
27
|
Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis 2005; 185:219-26. [PMID: 16288760 DOI: 10.1016/j.atherosclerosis.2005.10.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/29/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
Oxidized LDL (OxLDL) is a proatherogenic lipoprotein, accumulating in the vascular wall and contributing to the pathogenesis of vascular dysfunction early in the development of atherosclerosis. Enhanced serum levels of OxLDL, as well as antibodies against its epitopes, are predictive for endothelial dysfunction and coronary heart disease. While enhanced oxidative stress is one factor triggering formation of OxLDL, OxLDL itself has been identified as a potent stimulus for vascular oxygen radical formation, causing a vicious circle. OxLDL-induced O(2)(-) formation, largely through activation of NADPH oxidase, but also through uncoupling of endothelial NO-synthase and through direct O(2)(-) release, leads to endothelial dysfunction. Furthermore, OxLDL-induced O(2)(-) formation has a strong impact on tissue remodeling, resulting in either cell growth - proliferation or hyperplasia - or apoptotic cell death. The effect of OxLDL on cell cycle regulation is mediated by activation of the small GTPase RhoA and consequent regulation of p27(KIP1), a key enzyme of the cell cycle. In addition, OxLDL-induced activation of RhoA sensitizes the contractile apparatus of the vessel wall, enhancing the contractile tonus and favoring vasospasm. Thus, through a variety of mechanisms, OxLDL importantly contributes to vascular dysfunction and remodeling.
Collapse
Affiliation(s)
- Jan Galle
- Department of Medicine, Division of Nephrology, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | |
Collapse
|
28
|
Chen WS, Chang HY, Chang JT, Liu JM, Li CP, Chen LL, Chang HL, Chen CC, Huang TS. Novel rapid tissue lysis method to evaluate cancer proteins: Correlation between elevated Bcl-X L expression and colorectal cancer cell proliferation. World J Gastroenterol 2005; 11:5162-8. [PMID: 16127746 PMCID: PMC4320389 DOI: 10.3748/wjg.v11.i33.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: We optimized a rapid and efficient tissue lysis method using the MagNA Lyser (Roche, Germany). Using this novel method combined with immunoblot analysis, we investigated the correlation between abnormal Bcl-XL expression and clinicopathological characteristics in colorectal cancer.
METHODS: Tissue samples from Sprague-Dawley rats were tested to determine optimal lysis conditions for use with MagNA Lyser. We next used the new method to extract tissue proteins from the tumor tissue of a colorectal cancer patient. The availability of extractable tissue proteins for proteomic study was demonstrated by two-dimensional (2D) gel electrophoresis and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. In addition, we prepared tissue lysates from paired tumor tissues and adjacent nontumor tissues of 50 colorectal carcinoma patients. Ensuing immunoblot analyses were performed to detect the level of Bcl-XL expression.
RESULTS: The optimal sample sizes processed were found to be around 200 mg, with oscillation frequency of 6 500 r/min for 80 s. Test of the first human tissue lysate confirmed that the MagNA Lyser method was adequate for protein extraction and subsequent identification by current proteomic protocols. The method was also applicable to immunoblot analysis. Thirty of 50 (60%) colorectal patients exhibited higher level of Bcl-XL expression in their tumor tissues. Raised level of Bcl-XL expression correlated with patients’ gender and tumor cell proliferation index (P = 0.037 and P<0.001, respectively), but was independent of clinicopathological characteristics and overall survival.
CONCLUSION: We report a novel tissue lysis method applicable to proteomic and immunoblot analyses, which can facilitate the discovery and detection of cancer protein alterations.
Collapse
Affiliation(s)
- Wei-Shone Chen
- National Cancer Research Center, NHRI, No. 161, Min-Chuan East Road Sec. 6, Taipei 114, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aleem E, Kiyokawa H, Kaldis P. Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 2005; 7:831-6. [PMID: 16007079 DOI: 10.1038/ncb1284] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/20/2005] [Indexed: 11/09/2022]
Abstract
The cyclin-dependent kinase inhibitor p27(Kip1) is known as a negative regulator of cell-cycle progression and as a tumour suppressor. Cdk2 is the main target of p27 (refs 2, 3) and therefore we hypothesized that loss of Cdk2 activity should modify the p27(-/-) mouse phenotype. Here, we show that although p27(-/-) Cdk2(-/-) mice developed ovary tumours and tumours in the anterior lobe of the pituitary, we failed to detect any functional complementation in p27(-/-) Cdk2(-/-) double-knockout mice, indicating a parallel pathway regulated by p27. We observed elevated levels of S phase and mitosis in tissues of p27(-/-) Cdk2(-/-) mice concomitantly with elevated Cdc2 activity in p27(-/-) Cdk2(-/-) extracts. p27 binds to Cdc2, cyclin B1, cyclin A2, or suc1 complexes in wild-type and Cdk2(-/-) extracts. In addition, cyclin E binds to and activates Cdc2. Our in vivo results provide strong evidence that Cdc2 may compensate the loss of Cdk2 function.
Collapse
Affiliation(s)
- Eiman Aleem
- Mouse Cancer Genetics Program, National Cancer Institute, NCI-Frederick, Bldg 560/22-56, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
30
|
Sheehan KM, DeLott LB, West RA, Bonnema JD, DeHeer DH. Hyaluronic acid of high molecular weight inhibits proliferation and induces cell death in U937 macrophage cells. Life Sci 2004; 75:3087-102. [PMID: 15488890 DOI: 10.1016/j.lfs.2004.02.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 02/17/2004] [Indexed: 11/28/2022]
Abstract
Hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix, has regulatory influences on cells and cellular activities. To explore the effects of a high concentration (1 mg/mL) of high molecular weight HA (500-730 kD) on U937 macrophage growth dynamics, three factors that influence overall cellular growth, namely proliferation, apoptosis, and cell death, were examined. Cells were cultured with HA and were analyzed by flow cytometry every 24 hours during a 168-hour period for proliferation and the presence of apoptotic and dead cells. These analyses demonstrated that HA inhibits U937 macrophage proliferation in a time-dependent manner. Through the first 72 hours, cells exhibited slowed proliferation. However, no evidence of cell division arrest or reduced cell viability was observed. Thereafter, HA continued to diminish proliferation, but induced apoptosis. This data is consistent with regulatory influences secondary to HA binding to CD44 and/or RHAMM cell surface receptors, both of which were shown to be expressed on U937 macrophages. This study demonstrates that a high concentration of high molecular weight HA greatly inhibits macrophage population growth by the dual actions of impeding cell proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Kyle M Sheehan
- Calvin College, Department of Biology, 3201 Burton Street, SE, Grand Rapids, MI 49546, USA
| | | | | | | | | |
Collapse
|
31
|
Miliani de Marval PL, Macias E, Rounbehler R, Sicinski P, Kiyokawa H, Johnson DG, Conti CJ, Rodriguez-Puebla ML. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol Cell Biol 2004; 24:7538-47. [PMID: 15314163 PMCID: PMC506988 DOI: 10.1128/mcb.24.17.7538-7547.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proto-oncogene c-myc encodes a transcription factor that is implicated in the regulation of cellular proliferation, differentiation, and apoptosis and that has also been found to be deregulated in several forms of human and experimental tumors. We have shown that forced expression of c-myc in epithelial tissues of transgenic mice (K5-Myc) resulted in keratinocyte hyperproliferation and the development of spontaneous tumors in the skin and oral cavity. Although a number of genes involved in cancer development are regulated by c-myc, the actual mechanisms leading to Myc-induced neoplasia are not known. Among the genes regulated by Myc is the cyclin-dependent kinase 4 (CDK4) gene. Interestingly, previous studies from our laboratory showed that the overexpression of CDK4 led to keratinocyte hyperproliferation, although no spontaneous tumor development was observed. Thus, we tested the hypothesis that CDK4 may be one of the critical downstream genes involved in Myc carcinogenesis. Our results showed that CDK4 inhibition in K5-Myc transgenic mice resulted in the complete inhibition of tumor development, suggesting that CDK4 is a critical mediator of tumor formation induced by deregulated Myc. Furthermore, a lack of CDK4 expression resulted in marked decreases in epidermal thickness and keratinocyte proliferation compared to the results obtained for K5-Myc littermates. Biochemical analysis of the K5-Myc epidermis showed that CDK4 mediates the proliferative activities of Myc by sequestering p21Cip1 and p27Kip1 and thereby indirectly activating CDK2 kinase activity. These results show that CDK4 mediates the proliferative and oncogenic activities of Myc in vivo through a mechanism that involves the sequestration of specific CDK inhibitors.
Collapse
Affiliation(s)
- Paula L Miliani de Marval
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tokumaru Y, Yamashita K, Osada M, Nomoto S, Sun DI, Xiao Y, Hoque MO, Westra WH, Califano JA, Sidransky D. Inverse Correlation between Cyclin A1 Hypermethylation and p53 Mutation in Head and Neck Cancer Identified by Reversal of Epigenetic Silencing. Cancer Res 2004; 64:5982-7. [PMID: 15342377 DOI: 10.1158/0008-5472.can-04-0993] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant promoter hypermethylation of tumor suppressor genes is proposed to be a common feature of primary cancer cells. We recently developed a pharmacological unmasking microarray approach to screen unknown tumor suppressor gene candidates epigenetically silenced in human cancers. In this study, we applied this method to identify such genes in head and neck squamous cell carcinoma (HNSCC). We identified 12 novel methylated genes in HNSCC cell lines, including PGP9.5, cyclin A1, G0S2, bone-morphogenetic protein 2A, MT1G, and neuromedin U, which showed frequent promoter hypermethylation in primary HNSCC (60%, 45%, 35%, 25%, 25%, and 20%, respectively). Moreover, we discovered that cyclin A1 methylation was inversely related to p53 mutational status in primary tumors (P = 0.015), and forced expression of cyclin A1 resulted in robust induction of wild-type p53 in HNSCC cell lines. Pharmacological unmasking followed by microarray analysis is a powerful tool to identify key methylated tumor suppressor genes and relevant pathways.
Collapse
Affiliation(s)
- Yutaka Tokumaru
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Balmanno K, Millar T, McMahon M, Cook SJ. DeltaRaf-1:ER* bypasses the cyclic AMP block of extracellular signal-regulated kinase 1 and 2 activation but not CDK2 activation or cell cycle reentry. Mol Cell Biol 2003; 23:9303-17. [PMID: 14645540 PMCID: PMC309715 DOI: 10.1128/mcb.23.24.9303-9317.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 09/11/2003] [Indexed: 01/21/2023] Open
Abstract
Elevation of cellular cyclic AMP (cAMP) levels inhibits cell cycle reentry in a variety of cell types. While cAMP can prevent the activation of Raf-1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2) by growth factors, we now show that activation of ERK1/2 by DeltaRaf-1:ER is insensitive to cAMP. Despite this, DeltaRaf-1:ER-stimulated DNA synthesis is still inhibited by cAMP, indicating a cAMP-sensitive step downstream of ERK1/2. Although cyclin D1 expression has been proposed as an alternative target for cAMP, we found that cAMP could inhibit DeltaRaf-1:ER-induced cyclin D1 expression only in Rat-1 cells, not in CCl39 or NIH 3T3 cells. DeltaRaf-1:ER-stimulated activation of CDK2 was strongly inhibited by cAMP in all three cell lines, but cAMP had no effect on the induction of p21(CIP1). cAMP blocked the fetal bovine serum (FBS)-induced degradation of p27(KIP1); however, loss of p27(KIP1) in response to DeltaRaf-1:ER was less sensitive in CCl39 and Rat-1 cells and was completely independent of cAMP in NIH 3T3 cells. The most consistent effect of cAMP was to block both FBS- and DeltaRaf-1:ER-induced expression of Cdc25A and cyclin A, two important activators of CDK2. When CDK2 activity was bypassed by activation of the ER-E2F1 fusion protein, cAMP no longer inhibited expression of Cdc25A or cyclin A but still inhibited DNA synthesis. These studies reveal multiple points of cAMP sensitivity during cell cycle reentry. Inhibition of Raf-1 and ERK1/2 activation may operate early in G(1), but when this early block is bypassed by DeltaRaf-1:ER, cells still fail to enter S phase due to inhibition of CDK2 or targets downstream of E2F1.
Collapse
Affiliation(s)
- Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Hall, Cambridge CB2 4AT, England, UK
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Donald Holzschu
- Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA.
| | | | | |
Collapse
|
35
|
Nakamaki T, Hamano Y, Hisatake JI, Yokoyama A, Kawakami KI, Tomoyasu S, Honma Y, Koeffler P. Elevated levels of cyclin A1 and A (A2) mRNA in acute myeloid leukaemia are associated with increased survival. Br J Haematol 2003; 123:72-80. [PMID: 14510945 DOI: 10.1046/j.1365-2141.2003.04569.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin A (A2) and cyclin A1 are members of the G2 cyclins, which are involved in the control of G2/M and G1/S transitions as well as mitosis. Human cyclin A1 was cloned as an A-type cyclin that is highly expressed in acute myeloid leukaemia (AML). The clinical significance of these cyclins in myeloid leukaemia remains to be clarified. We investigated the relative levels of these transcripts in 80 patients with de novo AML. Correlations with clinical parameters showed that the initial white blood cell count and serum lactate dehydrogenase levels were inversely associated with cyclin A (A2) mRNA levels (r = -0.276, P = 0.019) and cyclin A1 mRNA levels (r = -0.241, P = 0.042) respectively. They were independently associated with increased overall survival [P = 0.035 for cyclin A (A2) and P = 0.016 for cyclin A1]. Multivariate analysis using Cox's proportional hazard model showed that elevated cyclin A1 mRNA levels contributed significantly to the better prognosis of patients with AML. Furthermore, the analysis of survival probability showed that the group with high levels of both cyclin A (A2) and A1 survived significantly longer than the group with low expression of both these cyclins (P = 0.002). These data indicate that high expression levels of both cyclin A (A2) and A1 are associated with good prognosis in AML patients.
Collapse
Affiliation(s)
- Tsuyoshi Nakamaki
- Department of Haematology, Showa University School of Medicine, Tokyo Department of Chemotherapy, Saitama Cancer Centre Research Institute, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Iocca HA, Isom HC. Tumor necrosis factor-alpha acts as a complete mitogen for primary rat hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:465-76. [PMID: 12875968 PMCID: PMC1868193 DOI: 10.1016/s0002-9440(10)63676-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cytokine tumor necrosis factor (TNF)-alpha has previously been shown to prime hepatocytes to a state of replicative competence, but has not been shown to act as a complete mitogen for these cells. In the present study we have altered our previously described long-term dimethyl sulfoxide culture system to exclude all known hepatocyte mitogens from the culture media and enable us to directly examine the effects of TNF-alpha on primary rat hepatocytes. We have shown that cells maintained under these culture conditions retain the biochemical and morphological features of well-differentiated hepatocytes. Treatment with TNF-alpha induced DNA synthesis relative to control, to a level not significantly different from that induced by the known hepatocyte mitogen, epidermal growth factor (EGF). Maximal DNA synthesis was induced by treatment with 250 U/ml TNF-alpha for 24 hours. Mitotic figures were observed in cultures treated with TNF-alpha or EGF but not in untreated controls. Treatment of cultures with TNF-alpha, but not EGF, induced activation of both nuclear factor-kappaB p50 homodimers and p50/p65 heterodimers. DNA synthesis induced by TNF-alpha was inhibited by treatment with transforming growth factor-beta. Based on the results of our studies, we conclude that TNF-alpha acts as a complete mitogen for rat hepatocytes.
Collapse
Affiliation(s)
- Heather A Iocca
- Department of Microbiology, Milton S. Hershey Medical Center, The Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
37
|
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17:1263-93. [PMID: 12835716 DOI: 10.1038/sj.leu.2402945] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) cascade couples signals from cell surface receptors to transcription factors, which regulate gene expression. Depending upon the stimulus and cell type, this pathway can transmit signals, which result in the prevention or induction of apoptosis or cell cycle progression. Thus, it is an appropriate pathway to target for therapeutic intervention. This pathway becomes more complex daily, as there are multiple members of the kinase and transcription factor families, which can be activated or inactivated by protein phosphorylation. The diversity of signals transduced by this pathway is increased, as different family members heterodimerize to transmit different signals. Furthermore, additional signal transduction pathways interact with the Raf/MEK/ERK pathway to regulate positively or negatively its activity, or to alter the phosphorylation status of downstream targets. Abnormal activation of this pathway occurs in leukemia because of mutations at Ras as well as genes in other pathways (eg PI3K, PTEN, Akt), which serve to regulate its activity. Dysregulation of this pathway can result in autocrine transformation of hematopoietic cells since cytokine genes such as interleukin-3 and granulocyte/macrophage colony-stimulating factor contain the transacting binding sites for the transcription factors regulated by this pathway. Inhibitors of Ras, Raf, MEK and some downstream targets have been developed and many are currently in clinical trials. This review will summarize our current understanding of the Ras/Raf/MEK/ERK signal transduction pathway and the downstream transcription factors. The prospects of targeting this pathway for therapeutic intervention in leukemia and other cancers will be evaluated.
Collapse
Affiliation(s)
- F Chang
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Apoptosis and proliferation are intimately coupled. Some cell cycle regulators can influence both cell division and programmed cell death. The linkage of cell cycle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-2, NF-kappa B, CDK, cyclins and CKI. This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression. These proteins can influence apoptosis or proliferation but different variables, including cell type, cellular environment and genetic background, make it difficult to predict the outcome of cell proliferation, cell cycle arrest or cell death. These important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.
Collapse
Affiliation(s)
- Katrien Vermeulen
- Faculty of Medicine, Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Zwi N. Berneman
- Faculty of Medicine, Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Dirk R. Van Bockstaele
- Faculty of Medicine, Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
39
|
Johnson SAS, Dubeau L, Kawalek M, Dervan A, Schönthal AH, Dang CV, Johnson DL. Increased expression of TATA-binding protein, the central transcription factor, can contribute to oncogenesis. Mol Cell Biol 2003; 23:3043-51. [PMID: 12697807 PMCID: PMC153209 DOI: 10.1128/mcb.23.9.3043-3051.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the central role of TATA-binding protein (TBP) in transcription, changes in cellular TBP concentration produce selective effects on gene expression. Moreover, TBP is up-regulated by oncogenic signaling pathways. These findings suggest that TBP could be a nexus in pathways that regulate cell proliferation and that genetic lesions that result in cellular transformation may produce their effects at least in part through TBP. We provide evidence consistent with this hypothesis, demonstrating that increases in TBP expression contribute to cellular transformation. A Ras-mediated increase in TBP expression is required for full Ras transforming activity. TBP overexpression induces cells to grow in an anchorage-independent manner and to form tumors in athymic mice. These effects on cellular transformation require changes in RNA polymerase II-dependent transcription and on the selective recruitment of TBP to promoters via its DNA binding activity. TBP expression is elevated in human colon carcinomas relative to normal colon epithelium. Both Ras-dependent and Ras-independent mechanisms mediate increases in TBP expression in colon carcinoma cell lines. We conclude that TBP may be a critical component in dysregulated signaling that occurs downstream of genetic lesions that cause tumors.
Collapse
Affiliation(s)
- Sandra A S Johnson
- Department of Biochemistry and Molecular Biology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Otsuki Y, Tanaka M, Kamo T, Kitanaka C, Kuchino Y, Sugimura H. Guanine nucleotide exchange factor, Tiam1, directly binds to c-Myc and interferes with c-Myc-mediated apoptosis in rat-1 fibroblasts. J Biol Chem 2003; 278:5132-40. [PMID: 12446731 DOI: 10.1074/jbc.m206733200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor c-Myc is important for the control of cell growth, cell cycle progression, neoplasia, and apoptotic cell death. Recently, c-Myc-binding proteins, which bind either to the N-terminal domain or the C-terminal domain of c-Myc, have been proposed as the key molecules to realize the mechanisms of these multiple c-Myc functions. We report in the present study on another protein, Tiam1, which is a specific guanine nucleotide exchange factor of Rac1 and which binds to c-Myc and modulates several of its biological functions. We were able to detect the direct binding and in vivo association between c-Myc and Tiam1. The necessary role in this interaction of the Myc box II of c-Myc was revealed in the cell extracts. The additional discovery of the intranuclear localization of Tiam1 in Rat1 cells and in neuronal cells of the mouse brain suggests this interaction may occur in the nucleus. Overexpression of Tiam1 repressed the luciferase activity of c-Myc and also inhibited the c-Myc apoptotic activity through this protein-protein interaction. Taken together, we concluded that Tiam1 is another c-Myc regulator, working in the nuclei to control c-Myc-related apoptosis.
Collapse
Affiliation(s)
- Yoshiro Otsuki
- First Department of Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Chiu CC, Kang YL, Yang TH, Huang CH, Fang K. Ectopic expression of herpes simplex virus-thymidine kinase gene in human non-small cell lung cancer cells conferred caspase-activated apoptosis sensitized by ganciclovir. Int J Cancer 2002; 102:328-33. [PMID: 12402300 DOI: 10.1002/ijc.10701] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human non-small cell lung cancer (NSCLC) cells were transfected with recombinant prodrug herpes simplex virus type I thymidine kinase (HSV-tk) cDNA, and the selected clones underwent apoptosis in response to induction by antiviral ganciclovir (GCV). The efficiency of GCV-induced growth inhibition and the extent of the bystander effect were associated with the expression level of HSV-TK in stable transfectants. Development in the HSV-tk/GCV system toward cell death was initiated with cell-cycle accumulation at S and G(2)/M phases, immediately followed by the appearance of sub-G(0)/G(1) cells after drug exposure. To investigate the regulation of cell-cycle modulators during drug treatment, we analyzed release of the apoptosis initiator cytochrome c and activation of the downstream effectors caspase-9, caspase-3 and poly(ADP-ribose)polymerase 16 hr after GCV sensitization, followed by transient escalation of tumor-suppressor p53 and cell-cycle modulators cyclin A and B(1) before committing to programmed cell death. Furthermore, tumor regression was proportional to the degree of ectopic expression of the transferred HSV-tk gene. Our results demonstrate that the HSV-tk/GCV system effectively inhibits the proliferation of NSCLC cells in vitro and in vivo through potent induction of apoptosis, thus providing a rationale for further development.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/pathology
- Caspases/metabolism
- Cell Cycle
- Cytochrome c Group/metabolism
- DNA, Neoplasm/analysis
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Flow Cytometry
- Ganciclovir/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, p53/genetics
- Genetic Vectors
- Glioma
- Herpesvirus 1, Human/enzymology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Plasmids
- RNA, Messenger/metabolism
- Retroviridae/genetics
- Thymidine Kinase/genetics
- Transfection
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biology, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
42
|
Biroccio A, Benassi B, Filomeni G, Amodei S, Marchini S, Chiorino G, Rotilio G, Zupi G, Ciriolo MR. Glutathione influences c-Myc-induced apoptosis in M14 human melanoma cells. J Biol Chem 2002; 277:43763-70. [PMID: 12226097 DOI: 10.1074/jbc.m207684200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The objective of this article is to dissect the mechanisms by which the down-regulation of c-Myc induces programmed cell death in melanoma cells. In stable and doxycycline-inducible M14 melanoma cells, down-regulation of c-Myc induced apoptosis subsequent to a decrease in the intracellular reduced glutathione content and a concomitant accumulation of its oxidized form. This redox alteration was associated with a decrease of the enzyme activities of gamma-glutamyl-cysteine synthetase and NADPH-dependent GSSG reductase, as well as a consequent glutathione release in the extracellular medium. Cytochrome c was released into the cytosol at very early stages of apoptosis induction, long before detectable production of reactive oxygen species and activation of caspase-9 and -3. Macroarray analysis revealed that down-regulation of c-Myc produced striking changes in gene expression in the section related to metabolism, where the expression of gamma-glutamyl-cysteine synthetase and GSSG reductase was found to be significantly reduced. The addition of N-acetyl-l-cysteine or glutathione ethyl ester inhibited the apoptotic process, thus confirming the key role of glutathione in programmed cell death induced by c-Myc.
Collapse
Affiliation(s)
- Annamaria Biroccio
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Via delle Messi d'Oro, 00158 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li JQ, Miki H, Wu F, Saoo K, Nishioka M, Ohmori M, Imaida K. Cyclin A correlates with carcinogenesis and metastasis, and p27(kip1) correlates with lymphatic invasion, in colorectal neoplasms. Hum Pathol 2002; 33:1006-15. [PMID: 12395374 DOI: 10.1053/hupa.2002.125774] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclin A binds to CDK2 and plays critical roles when cells proliferate; staining for Ki67 can monitor the proliferation. The cyclin A expression pattern remains unclear in colorectal carcinogenesis and remote metastasis, however, and no one has reported on the association of its expression with key clinicopathologic factors in primary cancer. p27(kip1) protein-an extremely important inhibitor of CDK2-seems unchanged as colorectal cancers metastasize to the lymph nodes, a result contrary to that seen in gastric and prostatic cancers. To clarify the role of cyclin A in multistage colorectal neoplasms, cyclin A, CDK2, and Ki67 were immunohistochemically stained in 22 normal mucosa, 9 hyperplastic polyps, 61 adenomas, 197 primary carcinomas, 21 lymph node metastases, and 10 hepatic metastases. To clarify the alteration of p27(kip1) during lymphatic invasion, p27(kip1) was also stained in 21 primary cancers and paired lymph node foci. Situated in nuclei, cyclin A expression gradually increased from mild through moderate to severe dysplasia in adenomas and from normal tissue through hyperplasia to adenoma to early carcinoma. Expression was significantly decreased in the hepatic metastases and in the primary cancers showing venous invasion, deep infiltration, lymph node metastasis, mucinous type, advanced stage, or short postoperative survival time. Elevated cyclin A not only was linked with elevated CDK2 in primary cancers, but also was associated with increased Ki67 in both adenomas and primary carcinomas. Lymph node metastases lost more p27(kip1) than primary foci and hepatic lesions. Thus, dysregulation of cyclin A and its control mechanisms may contribute to colorectal carcinogenesis; abatement of overexpression of cyclin A is associated with hepatic metastasis and cancerous invasion. Loss of p27(kip1) may promote lymph node metastasis.
Collapse
Affiliation(s)
- Jia-Qing Li
- First Department of Pathology, Kagawa Medical University, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Alexandre S, Rast C, Nguyen-Ba G, Vasseur P. ZnCl(2) prevents c-myc repression and apoptosis in serum-deprived Syrian hamster embryo cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 11:191-196. [PMID: 21782602 DOI: 10.1016/s1382-6689(01)00117-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 10/04/2001] [Accepted: 11/02/2001] [Indexed: 05/31/2023]
Abstract
In order to understand the c-myc implication in the apoptotic process better, we investigated the influence of ZnCl(2) on its expression in normal and transformed Syrian hamster embryo (SHE) cells in relation to apoptosis induced by serum withdrawal. Normal primary SHE cells exposed to a serum-free medium undergo rapid apoptosis characterised by a dramatic down-regulation of c-myc transcription. In these normal cells treated with ZnCl(2), c-myc expression is maintained in serum-starved conditions while apoptosis is inhibited. The results shed light on the involvement of c-myc expression in the survival of normal cells in the absence of growth factors. The regulation of c-myc expression appears to be influenced by zinc treatment as an inhibitor of apoptosis, but mechanisms sustaining the level of c-myc transcription remain to be demonstrated. The hypothesis that maintenance of c-myc expression allows cells to escape apoptosis is in accordance with results in transformed SHE cells that underwent low apoptosis and poor down-regulation of c-myc in serum-deprived conditions.
Collapse
Affiliation(s)
- S Alexandre
- EBSE-Centre des Sciences de l'Environnement, Faculté des Sciences, Université de Metz, Campus Bridoux, rue Delestraint, 57070 Metz, France
| | | | | | | |
Collapse
|
45
|
Small GW, Chou TY, Dang CV, Orlowski RZ. Evidence for involvement of calpain in c-Myc proteolysis in vivo. Arch Biochem Biophys 2002; 400:151-61. [PMID: 12054425 DOI: 10.1016/s0003-9861(02)00005-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Precise control of the level of c-Myc protein is important to normal cellular homeostasis, and this is accomplished in part by degradation through the ubiquitin-proteasome pathway. The calpains are a family of calcium-dependent proteases that play important roles in proteolysis of some proteins, and their possible participation in degradation of intracellular c-Myc was therefore investigated. Activation of calpain with the cell-permeable calcium ionophore A23187 in Rat1a-myc or ts85 cells in culture induced rapid cleavage of c-Myc. This degradation was both calpain- and calcium-dependent since it was inhibited by preincubation with either the calpain-inhibitory peptide calpeptin or the calcium-chelating agent EGTA. A23187-induced c-Myc cleavage occurred in a time-dependent manner comparable to that of FAK, a known calpain substrate, and while calpeptin was able to significantly protect c-Myc from degradation, inhibitors of the proteasome or caspase proteases could not. Exposure of Rat1a-myc or ts85 cells in culture to calpeptin, or to the thiol-protease inhibitor E64d, resulted in the accumulation of c-Myc protein without an impact on ubiquitin-protein conjugates. Using an in vitro assay, calpain-mediated degradation occurred rapidly with wild-type c-Myc as the substrate, but was significantly prolonged in some c-Myc mutants with increased transforming activity derived from lymphoma patients. Those mutants with a prolonged half-life in vitro were also more resistant to A23187-induced cleavage in intact cells. These studies support a role for calpain in the control of c-Myc levels in vivo, and suggest that mutations impacting on sensitivity to calpain may contribute to c-Myc-mediated tumorigenesis.
Collapse
Affiliation(s)
- George W Small
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
46
|
Yu Q, He M, Lee NH, Liu ET. Identification of Myc-mediated death response pathways by microarray analysis. J Biol Chem 2002; 277:13059-66. [PMID: 11821411 DOI: 10.1074/jbc.m111403200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand the mechanisms of Myc-mediated apoptosis induced by DNA damage, we have characterized the death kinetics of three Rat-1 fibroblast cell lines that either overexpress Myc or lack Myc and their parental wild-type cells following exposure to the DNA-damaging agent VP-16, and we monitored the changes in gene expression using microarray. We have identified three groups of genes whose expressions are distinctly regulated during this process. One cluster (Cluster A) revealed a VP-16-dependent but Myc-independent induction of a set of genes that is not linked to the apoptotic response. Two other gene clusters, however, were associated with VP-16-induced apoptosis. Cluster B, which includes p53-responsive genes, was associated with the temporal onset of apoptosis but accounted for only the basal apoptosis. However, Cluster C, which includes c-jun, was highly regulated by Myc and appeared to be critical to mounting the maximal apoptotic response in Myc-expressing cells. Furthermore, the Myc level dropped sharply following VP-16 exposure, which varied inversely with the induction of Cluster C genes, suggesting Myc normally represses their transcription. Thus, we have proposed that removal of Myc-mediated repression of apoptotic signals, combined with Myc-associated acceleration of the p53 responsive pathway, results in complete and rapid cell death following DNA damage.
Collapse
Affiliation(s)
- Qiang Yu
- Advanced Technology Center, Center for Cancer Research, NCI/National Institutes of Health, Gaithersburg, MD 20877, USA
| | | | | | | |
Collapse
|
47
|
Hiromura K, Pippin JW, Blonski MJ, Roberts JM, Shankland SJ. The subcellular localization of cyclin dependent kinase 2 determines the fate of mesangial cells: role in apoptosis and proliferation. Oncogene 2002; 21:1750-8. [PMID: 11896606 DOI: 10.1038/sj.onc.1205238] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 11/30/2001] [Accepted: 12/06/2001] [Indexed: 01/01/2023]
Abstract
Apoptosis is closely linked to proliferation. In this study we showed that inducing apoptosis in mouse mesangial cells with ultraviolet (UV) irradiation was associated with increased cyclin A-cyclin dependent kinase (CDK) 2 activity. Inhibiting CDK2 activity with Roscovitine or dominant negative mutant reduced apoptosis. Because apoptosis typically begins in the cytoplasm, we tested the hypothesis that the subcellular localization of CDK2 determines the proliferative or apoptotic fate of the cell. Our results showed that cyclin A-CDK2 was nuclear in proliferating cells. However, inducing apoptosis in proliferating cells with UV irradiation was associated with a decrease in nuclear cyclin A and CDK2 protein levels. This coincided with an increase in protein and kinase activity for cyclin A-CDK2 in the cytoplasm. Translocation of cyclin A-CDK2 also occurred in p53-/- mesangial cells. Finally, we showed that caspase-3 activity was significantly reduced by inhibiting CDK2 activity with Roscovitine. In summary, our results show that apoptosis is associated with an increase in cytoplasmic cyclin A-CDK2 activity, which is p53 independent and upstream of caspase-3. We propose that the subcellular localization of CDK2 determines the proliferative or apoptotic fate of the cell.
Collapse
Affiliation(s)
- K Hiromura
- Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, WA 98195-6521, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND Overexpression of c-myc is postulated to play a role in the pathogenesis of polycystic kidney disease (PKD). c-myc expression is increased in all rodent models of PKD that have been examined as well as in human ADPKD. To determine whether overexpression of renal c-myc contributes to renal cyst formation, C57BL/6J-cpk litters (an animal model of ARPKD) were treated with an antisense oligomer (ASO) to c-myc mRNA. METHODS Injections of 30 microg of a c-myc ASO were given to C57BL/6J-cpk litters on postnatal days 7-20. Control mice received either sham injections or injections of an equal amount of a scrambled ASO. At 20 days, kidney weight, body weight, serum urea nitrogen (SUN), hematocrit, and renal concentration of ASO were determined. In kidney, c-Myc and PCNA protein were assessed by immunoblotting and steady state levels of renal RNA for c-myc, EGF, SGP-2, and histone H4 were assessed by northern blot hybridization. c-Myc and PCNA proteins were localized by immunohistochemistry. RESULTS Cystic mice treated with the c-myc ASO had a decreased relative kidney weight, improved renal function, and a reduced amount of cystic change compared with sham and scrambled ASO controls. The abnormal expression of several PKD related proteins and mRNAs were partially reversed by c-myc antisense treatment. c-myc staining appeared to be reduced in the noncystic tubules. Treatment with the c-myc ASO did not cause a reduction in hematocrit or total body weight indicating that the beneficial effects were not due to a generalized inhibition of cell proliferation in rapidly growing tissue. CONCLUSIONS c-Myc appears to play a role in the cystogenesis of cpk-induced murine PKD and antisense targeting the overexpression of c-myc partially ameliorated the renal changes.
Collapse
Affiliation(s)
- Justin L Ricker
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160-7400, USA
| | | | | | | |
Collapse
|
49
|
Miethe J, Schwartz C, Wottrich K, Wenning D, Klempnauer KH. Crosstalk between Myc and activating transcription factor 2 (ATF2): Myc prolongs the half-life and induces phosphorylation of ATF2. Oncogene 2001; 20:8116-24. [PMID: 11781825 DOI: 10.1038/sj.onc.1204966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Revised: 09/05/2001] [Accepted: 09/13/2001] [Indexed: 01/07/2023]
Abstract
Myc is a key regulator of cell growth, differentiation and apoptosis, and affects cell fate decisions by activating as well as by inhibiting the expression of cellular genes. Myc is a member of the basic region-helix-loop-helix-leucine zipper (b-HLH-Zip) class of transcription factors, which heterodimerizes with the Max protein and recognizes a consensus Myc binding motif. Stimulation of gene expression by Myc is thought to be mediated by direct binding of Myc-Max heterodimers to specific target genes. So far, only a few genes have been identified as direct binding targets of Myc, raising the possibility that Myc affects gene expression also by indirect mechanisms. In this work we present evidence that v-Myc encoded by the avian retrovirus MC29 stimulates activating transcription factor 2 (ATF2)-dependent transcription. Analysis of the effect of Myc on ATF2 shows that v-Myc prolongs the half-life of ATF2 and induces the phosphorylation of N-terminal sites of ATF2 (Thr-69 and Thr-71) which have previously been identified as the target sites of stress-activated protein kinases and implicated in the regulation of ATF2 activity. Taken together, our results suggest that v-Myc can affect gene expression indirectly by modulating the activity of ATF2.
Collapse
Affiliation(s)
- J Miethe
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
50
|
Masselink H, Vastenhouw N, Bernards R. B-myb rescues ras-induced premature senescence, which requires its transactivation domain. Cancer Lett 2001; 171:87-101. [PMID: 11485831 DOI: 10.1016/s0304-3835(01)00631-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
B-myb, a ubiquitously expressed member of the myb gene family, is highly regulated throughout the cell cycle and appears to be required for cell cycle progression. In contrast to its relatives A-myb, c-myb, and v-myb, no transforming activity of B-myb has been reported thus far. We report here that B-myb can rescue senescence induced by an activated ras oncogene in rodent cells in vitro. We show that transformation by B-Myb involves its ability to activate transcription. Similar to other oncogenic transcription factors, such as c-Myc and E2F, we show that B-Myb also has repression activity. We demonstrate that the C-terminus of B-Myb can function as a repressor of transcription, that B-Myb interacts with the repressor molecules BS69 and N-CoR and that the repression function, like the transactivation domain, contributes to B-myb transformation.
Collapse
Affiliation(s)
- H Masselink
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|