1
|
Fahmy HM, Abdel-Rahman FM, El-Sayed AA, El-Sherif AA. Study of novel bidentate heterocyclic amine-based metal complexes and their biological activities: cytotoxicity and antimicrobial activity evaluation. BMC Chem 2023; 17:78. [PMID: 37454081 PMCID: PMC10349454 DOI: 10.1186/s13065-023-00996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Metallic antitumor drugs with heterocyclic ligands, such as novel AMI (amino methyl imidazole) complexes [Pd(AMI)Cl2](1), [Cu(AMI)L1](2), and [Cu(AMI)L2·2H2O](3) where L1 = oxalate and L2 = malonate, were synthesized and characterized. Assessments included elemental analyses, mass spectrometry, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, and thermal analysis. The cytotoxicity of AMI complexes compared to cisplatin was assessed using MTT (3-[4,5-dimethylthiazol-2-yl] 2,5diphenyl tetrazolium bromide) assay with breast (MCF-7) and cervical (HeLa) cancer cell lines. After treating these cells with the AMI complexes' IC50 values for 48 h, malondialdehyde levels and catalase activity were used to assess oxidative stress, antioxidant activity was evaluated with DPPH radical scavenging method, comet assays assessed DNA damage, and DNA fragmentation was evaluated using the gel electrophoresis. In vitro, antimicrobial activity was assessed using a disc diffusion method. The anticancer activity results showed that IC50 (half-maximal inhibitory concentration) values of complex one, two, and three against MCF-7 and HeLa cancer cells are 0.156 ± 0.0006, 0.125 ± 0.001, 0.277 ± 0.002 μM respectively for MCF-7 cells and 0.222 ± 0.0005, 0.126 ± 0.0009, 0.152 ± 0.001 μM respectively for HeLa cells. Complex two demonstrated strong anticancer activity against MCF-7 and Hela cells. The study of oxidative stress parameters revealed that Malondialdehyde levels increased in cancer cell lines treated with complexes compared to untreated cells. Catalase activity decreased in cells treated with palladium chelate. The DPPH radical scavenging assay results identified that complex one was a more potent antioxidant in MCF-7 and Hela cells than other complexes with SC50 values of 227.5 ± 0.28 and 361 ± 1.2 μL/mL, respectively. The comet assay results showed that complex two caused significant DNA damage in MCF-7 and HeLa cancer cells treated. Antimicrobial assays identified complex three as the most effective. Copper complexes give better antifungal activity against A. flavus than the palladium complex. We conclude that complex two is the most active in both cell types and might be assessed as a clinically useful drug for breast cancer treatment. The significance of the current study is the synthesis of antitumor drugs containing heterocyclic ligands, such as novel AMI complexes, and the study of their biological activities.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Lippert B, Sanz Miguel PJ. Beyond sole models for the first steps of Pt-DNA interactions: Fundamental properties of mono(nucleobase) adducts of PtII coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Zhang J, Zeng W, Wu K, Ye J, Cheng Y, Cheng Y, Zou T, Peng N, Wu X, Zhao Y, Wang F. Unexpected Thymine Oxidation and Collision-Induced Thymine-Pt-guanine Cross-Linking on 5'-TpG and 5'-GpT by a Photoactivatable Diazido Pt(IV) Anticancer Complex. Inorg Chem 2020; 59:8468-8480. [PMID: 32450042 DOI: 10.1021/acs.inorgchem.0c00894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photochemical products of dinucleotides 5'-TpG/5'-GpT with a photoactivatable anticancer Pt(IV) complex (trans,trans,trans-[Pt(N3)2(OH)2(py)2], py = pyridine; 1) were characterized by electrospray ionization mass spectrometry. The primary MS showed the main products were monoplatinated and diplatinated adducts for both the dinucleotides accompanied by the formation of minor triplatinated dinucleotides, indicating that T-N3 and G-N1 may be platination sites additional to the well-known G-N7 site. Surprisingly, a series of minor platinated adducts with oxidation of guanine and/or thymine were observed. Although guanine is more sensitive to oxidation than thymine, thymine can compete with guanine for complex 1-induced oxidation, of which the oxidation adducts were identified as cis- and trans-diastereomers of 5,6-dihydroxy-5,6-dihydrothymidine (cis,trans-ThdGly), 5-formyl-2'-deoxyuridine (5-FormdUrd), and 5-(hydroxymethyl)-2'-deoxyuridine (5-HMdUrd), respectively. While for guanine, apart from 8-hydroxyguanine (8-OH-G) and N-formylamidoiminohydantoin (RedSp), other guanine oxidized adducts such as spiroiminodihydantoin (Sp), dehydroguanidinohydantoin (DGh), and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) were also identified. MS/MS analysis showed that unique fragments with a Pt moiety [Pt(N3)(py)] cross-linking the G and T bases were formed during the fragmentation of monoplatinated dinucleotides. Such binding mode to and oxidative damages on DNA bases imposed by the diazido Pt(IV) complex are apparently distinct from those of cisplatin, perhaps accounting for its unique mechanism of action.
Collapse
Affiliation(s)
- Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenjuan Zeng
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Juan Ye
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiyu Cheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yang Cheng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Zou
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Basic Medical College, Shandong University of Chinese Traditional Medicine, Jinan 250355, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Kishimoto T, Yoshikawa Y, Yoshikawa K, Komeda S. Different Effects of Cisplatin and Transplatin on the Higher-Order Structure of DNA and Gene Expression. Int J Mol Sci 2019; 21:E34. [PMID: 31861648 PMCID: PMC6981875 DOI: 10.3390/ijms21010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of cisplatin as an anticancer agent, its trans-isomer, transplatin, is clinically ineffective. Although both isomers target nuclear DNA, there is a large difference in the magnitude of their biological effects. Here, we compared their effects on gene expression in an in vitro luciferase assay and quantified their effects on the higher-order structure of DNA using fluorescence microscopy (FM) and atomic force microscopy (AFM). The inhibitory effect of cisplatin on gene expression was about 7 times that of transplatin. Analysis of the fluctuation autocorrelation function of the intrachain Brownian motion of individual DNA molecules showed that cisplatin increases the spring and damping constants of DNA by one order of magnitude and these visco-elastic characteristics tend to increase gradually over several hours. Transplatin had a weaker effect, which tended to decrease with time. These results agree with a stronger inhibitory effect of cisplatin on gene expression. We discussed the characteristic effects of the two compounds on the higher-order DNA structure and gene expression in terms of the differences in their binding to DNA.
Collapse
Affiliation(s)
- Toshifumi Kishimoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Seiji Komeda
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
| |
Collapse
|
5
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Pandey M, Patel SS. Helicase and polymerase move together close to the fork junction and copy DNA in one-nucleotide steps. Cell Rep 2014; 6:1129-1138. [PMID: 24630996 DOI: 10.1016/j.celrep.2014.02.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 02/16/2014] [Indexed: 01/25/2023] Open
Abstract
By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC) dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.
Collapse
Affiliation(s)
- Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Abstract
Metals have been considered for millennia to have medicinal values. With the advent of modern medicine, many metal-based drugs have proven to be highly effective in the clinic. Many different metal ions have shown activity against a range of diseases. The unique electronic structure of transition metals offers great versatility, not always seen in organic drugs, in terms of the ability to tune the properties of a given molecule. This review gives a brief overview of the most established therapeutic metals, and their more common applications, such as platinum-based anticancer drugs. New developments within the field of metallodrugs and novel strategies being employed to improve methods of delivery, are also discussed.
Collapse
|
8
|
Wu K, Luo Q, Hu W, Li X, Wang F, Xiong S, Sadler PJ. Mechanism of interstrand migration of organoruthenium anticancer complexes within a DNA duplex. Metallomics 2012; 4:139-48. [PMID: 22262368 DOI: 10.1039/c2mt00162d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organometallic ruthenium(ii) anticancer complexes [(η(6)-arene)Ru(en)Cl][PF(6)] (e.g. arene = biphenyl (bip, 1), indane (ind, 2); en = ethylenediamine) bind to N7 of guanine (G) in DNA selectively. The fragment {(η(6)-bip)Ru(en)}(2+) (1') bound to N7 of one guanine residue at a 14-mer duplex DNA migrates readily to other guanine residues in both the same strand and the complementary strand when the strands are hybridized at elevated temperature. In this work, by applying HPLC coupled to mass spectrometry, the mechanism of such intra- and interstrand migration was investigated using a 15-mer duplex, in which one strand 5'-CTCTCTTG(8)TCTTCTC-3' (I) contained a single guanine (G(8)). The results show that the interstrand migration of complexes 1 and 2 within the duplex involves an SN1 pathway, firstly solvent-assisted dissociation of the initially G(8)-bound adducts I-G(8)-1' and I-G(8)-2' (2' = {(η(6)-ind)Ru(en)}(2+)) as the rate-controlling step, and secondly the coordination of the dissociated 1' and 2' to guanine bases (G(21) for 1', either G(21) or G(18) for 2') on strand II. The high temperature used to anneal the single strands was found to increase the migration rate. The formation of the duplex acts as a key driving force to promote the dissociation of G(8)-bound 1' and 2' due to the competition of cytosine in II with the en-NH(2) groups in 1' and 2' for H-bonding with C6O of guanine. Complex 2 (t(1/2) = 18 h) containing a mono-ringed arene ligand dissociates more readily from the initially binding site G(8) than complex 1 (t(1/2) = 23 h). The extended biphenyl arene ligand which is intercalated into DNA stabilizes the adduct I-G(8)-1'. These results provide new insight into this unusual metal migration, and are of significance for the design and development of more active organometallic ruthenium anticancer complexes.
Collapse
Affiliation(s)
- Kui Wu
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Chapman EG, Hostetter AA, Osborn MF, Miller AL, DeRose VJ. Binding of kinetically inert metal ions to RNA: the case of platinum(II). Met Ions Life Sci 2011; 9:347-77. [PMID: 22010278 PMCID: PMC4080900 DOI: 10.1039/9781849732512-00347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter several aspects of Pt(II) are highlighted that focus on the properties of Pt(II)-RNA adducts and the possibility that they influence RNA-based processes in cells. Cellular distribution of Pt(II) complexes results in significant platination of RNA, and localization studies find Pt(II) in the nucleus, nucleolus, and a distribution of other sites in cells. Treatment with Pt(II) compounds disrupts RNA-based processes including enzymatic processing, splicing, and translation, and this disruption may be indicative of structural changes to RNA or RNA-protein complexes. Several RNA-Pt(II) adducts have been characterized in vitro by biochemical and other methods. Evidence for Pt(II) binding in non-helical regions and for Pt(II) cross-linking of internal loops has been found. Although platinated sites have been identified, there currently exists very little in the way of detailed structural characterization of RNA-Pt(II) adducts. Some insight into the details of Pt(II) coordination to RNA, especially RNA helices, can be gained from DNA model systems. Many RNA structures, however, contain complex tertiary folds and common, purine-rich structural elements that present suitable Pt(II) nucleophiles in unique arrangements which may hold the potential for novel types of platinum-RNA adducts. Future research aimed at structural characterization of platinum-RNA adducts may provide further insights into platinum-nucleic acid binding motifs, and perhaps provide a rationale for the observed inhibition by Pt(II) complexes of splicing, translation, and enzymatic processing.
Collapse
Affiliation(s)
- Erich G. Chapman
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | | | - Maire F. Osborn
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | - Amanda L. Miller
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | | |
Collapse
|
10
|
Sanchez-Cano C, Huxley M, Ducani C, Hamad AE, Browning MJ, Navarro-Ranninger C, Quiroga AG, Rodger A, Hannon MJ. Conjugation of testosterone modifies the interaction of mono-functional cationic platinum(ii) complexes with DNA, causing significant alterations to the DNA helix. Dalton Trans 2010; 39:11365-74. [DOI: 10.1039/c0dt00839g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Yoshimura Y, Ohtake T, Okada H, Fujimoto K. A new approach for reversible RNA photocrosslinking reaction: application to sequence-specific RNA selection. Chembiochem 2009; 10:1473-6. [PMID: 19437470 DOI: 10.1002/cbic.200900057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshinaga Yoshimura
- School of Materials Science (Japan) Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | | | |
Collapse
|
12
|
Kozelka J. Molecular origin of the sequence-dependent kinetics of reactions between cisplatin derivatives and DNA. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Zhou L. Theoretical Analysis on the Transition State of the Anticancer Drug trans-[PtCl2(isopropylamine)2] and Its cis Isomer Binding to DNA Purine Bases. J Phys Chem B 2009; 113:2110-27. [DOI: 10.1021/jp806661g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lixin Zhou
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
14
|
Kasparkova J, Marini V, Bursova V, Brabec V. Biophysical studies on the stability of DNA intrastrand cross-links of transplatin. Biophys J 2008; 95:4361-71. [PMID: 18676645 PMCID: PMC2567932 DOI: 10.1529/biophysj.108.138909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022] Open
Abstract
Clinically ineffective transplatin [trans-diamminedichloridoplatinum(II)] is used in the studies of the structure-pharmacological activity relationship of platinum compounds. In addition, a number of transplatin analogs exhibit promising toxic effects in several tumor cell lines including those resistant to conventional antitumor cisplatin. Moreover, transplatin-modified oligonucleotides have been shown to be effective modulators of gene expression. Owing to these facts and because DNA is also considered the major pharmacological target of platinum complexes, interactions between transplatin and DNA are of great interest. We examined, using biophysical and biochemical methods, the stability of 1,3-GNG intrastrand cross-links (CLs) formed by transplatin in short synthetic oligodeoxyribonucleotide duplexes and natural double-helical DNA. We have found that transplatin forms in double-helical DNA 1,3-GNG intrastrand CLs, but their stability depends on the sequence context. In some sequences the 1,3-GNG intrastrand CLs formed by transplatin in double-helical DNA readily rearrange into interstrand CLs. On the other hand, in a number of other sequences these intrastrand CLs are relatively stable. We show that the stability of 1,3-GNG intrastrand CLs of transplatin correlates with the extent of conformational distortion and thermodynamic destabilization induced in double-helical DNA by this adduct.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Lippert B. Coordinative Bond Formation Between Metal Ions and Nucleic Acid Bases. NUCLEIC ACID–METAL ION INTERACTIONS 2008. [DOI: 10.1039/9781847558763-00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bernhard Lippert
- Fakultät für Chemie, Technische Universität Dortmund Otto-Hahn-Strasse 6 D-44227 Dortmund Germany
| |
Collapse
|
16
|
Montero EI, Pérez JM, Schwartz A, Fuertes MA, Malinge JM, Alonso C, Leng M, Navarro-Ranninger C. Apoptosis induction and DNA interstrand cross-link formation by cytotoxic trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2) : cross-linking between d(G) and complementary d(C) within oligonucleotide duplexes. Chembiochem 2007; 3:61-7. [PMID: 17590955 DOI: 10.1002/1439-7633(20020104)3:1<61::aid-cbic61>3.0.co;2-i] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have investigated the cytotoxic activity, the induction of apoptosis, and the interstrand cross-linking efficiency in the A2780cisR ovarian tumor cell line, after replacement of the two NH3 nonleaving groups in trans-[PtCl2(NH3)2] (trans-DDP) by dimethylamine and isopropylamine. The data show that trans-[PtCl2(NH(CH)2)(NHCH(CH3)2)] is able to circumvent resistance to cis-[PtCl2(NH3)2] (cis-DDP, cisplatin) in A2780cisR cells. In fact, trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] shows a cytotoxic potency higher than that of cis-DDP and trans-DDP, with the mean IC50 values being 11, 58, and 300 microM, respectively. In addition, at equitoxic doses (concentrations of the platinum drugs equal to their IC50 values) and after 24 hours of drug treatment, the level of induction of apoptosis by trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] is twice that produced by cis-DDP. Under the same experimental conditions, trans-DDP does not induce significant levels of apoptosis in A2780cisR cells. After 24 hours of incubation of A2780cisR cells at concentrations equal to the IC0o value of the platinum drugs, the level of DNA interstrand cross-links (ICLs) induced by trans-[PtCI2(NH(CH)2)(NHCH(CH3)] is two and three times higher, respectively, than those induced by cis-DDP and trans-DDP. We also found that trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] formed DNA ICLs between guanine and complementary cytosine. We propose that, in A2780cisR cells, the induction of apoptosis by trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] is related to its greater ability (relative to cis-DDP and trans-DDP) to form DNA ICLs.
Collapse
Affiliation(s)
- Eva I Montero
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Añorbe MG, Welzel T, Lippert B. Migration of acis-(NH3)2PtIIMoiety along Two Adenine Nucleobases, from N1 to N6, is Markedly Facilitated by Additional PtIIEntities Coordinated to N7. Inorg Chem 2007; 46:8222-7. [PMID: 17824698 DOI: 10.1021/ic7008754] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenine acidification as a consequence of simultaneous PtII binding to N1 and N7 facilitates deprotonation of the exocyclic N(6)H2 group and permits PtII migration from N1 to N6 under mild conditions. Starting from the trinuclear complex cis-[(NH3)2Pt(N1-9-MeA-N7)2{Pt(NH3)3)}2]6+ (3), stepwise migration of cis-(NH3)2PtII takes place in the alkaline aqueous solution to give initially cis-[(NH3)2Pt(N1-9-MeA-N7)(N6-9-MeA--N7){Pt(NH3)3}2]5+ (4) and eventually cis-[(NH3)2Pt(N6-9-MeA--N7)2{Pt(NH3)3}2]4+ (5) (with 9-MeA = neutral 9-methyladenine, 9-MeA- = 9-methyl-adenine monoanion, deprotonated at N6). The migration process has been studied by 1H NMR spectroscopy, and relevant acid-base equilibria have been determined. 5 has been crystallized as its nitrate salt and has been characterized by X-ray crystallography. The precursor of 3, [(NH3)3Pt (9-MeA-N7)]Cl2.2H2O (2) has likewise been studied by X-ray analysis.
Collapse
|
18
|
Algueró B, Pedroso E, Marchán V, Grandas A. Incorporation of two modified nucleosides allows selective platination of an oligonucleotide making it suitable for duplex cross-linking. J Biol Inorg Chem 2007; 12:901-11. [PMID: 17534671 DOI: 10.1007/s00775-007-0243-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
Platinated oligonucleotides are promising tools for the control of gene expression, since they may target and cross-link nucleic acid chains. Here we describe a method for the preparation of platinated oligonucleotides that has proved able to selectively cross-link complementary sequences, making use of 5-methylcytidine analogs with thioether or imidazole groups attached to the 4-position. These nucleoside analogs were derivatized as phosphoramidites and introduced in oligonucleotide chains using standard phosphite triester chemistry. Different oligonucleotide sequences containing either one or two analogs appending from the 5'-end were synthesized and used in preliminary platination studies. The reaction of transplatin with oligonucleotides containing the thioether-modified nucleobase was fast, but generally afforded unstable adducts and complex reaction mixtures. The imidazole-containing oligonucleotides reacted with transplatin much more slowly, in particular at slightly basic pH, and it was found that the imidazole-modified cytosine was less reactive than the natural nucleobases. In contrast, transplatin selectively reacted with the thioether and imidazole groups of oligonucleotides containing the two cytosine analogs in neighboring positions, even in the presence of the four nucleobases and particularly three guanines, affording platinated oligonucleotides suitable for cross-linking.
Collapse
Affiliation(s)
- Berta Algueró
- Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
19
|
Algueró B, López de la Osa J, González C, Pedroso E, Marchán V, Grandas A. Selective platination of modified oligonucleotides and duplex cross-links. Angew Chem Int Ed Engl 2007; 45:8194-7. [PMID: 17109455 DOI: 10.1002/anie.200603128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Berta Algueró
- Departament de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Algueró B, López de la Osa J, González C, Pedroso E, Marchán V, Grandas A. Selective Platination of Modified Oligonucleotides and Duplex Cross-Links. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200603128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Chang GR, Zhou LX, Chen D. How can the Cross-Link Adducts Formed by NovelTrans Platinum Drug be Influenced by Hydrogen Bond. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Sanz Miguel PJ, Lax P, Lippert B. (Dien)MII (M=Pd, Pt) and (NH3)3PtII complexes of 1-methylcytosine: Linkage and rotational isomerism, metal-promoted deamination, and pathways to dinuclear species. J Inorg Biochem 2006; 100:980-91. [PMID: 16624413 DOI: 10.1016/j.jinorgbio.2006.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Despite their structural similarity, [Pt(dien)(1-MeC-N3)](2+) (1), [Pd(dien)(1-MeC-N3)](2+) (2), and [Pt(NH(3))(3)(1-MeC-N3)](2+) (3) (with dien=diethylenetriamine and 1-MeC=neutral 1-methylcytosine) behave in part markedly different at strongly alkaline pH (12-13) and at room temperature. While 1 and 2, yet not 3 show linkage isomerization from N3 to N4, deamination of the cytosine nucleobase to 1-methyluracilate occurs with 1 and 3, yet not with 2. Pathways leading to N3,N4-diplatinated 1-MeC(-) complexes (1-MeC(-)=1-methylcytosine, deprotonated at exocyclic amino group N4) have been studied at high pH by starting from 1 and 3, respectively, and adding (dien)Pt(II). It appears that initial migration of the metal entity from N3 to N4, followed by binding of the second metal to the available N3 site, is favored over sequential coordination to N3 and then N4. X-ray crystal data of 1-3 density functional theory (DFT) calculations, and NMR ((1)H, (195)Pt) data are presented.
Collapse
Affiliation(s)
- Pablo J Sanz Miguel
- Anorganische Chemie III, Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | | | | |
Collapse
|
23
|
Affiliation(s)
| | - Tracey McGregor Mason
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Paul S. Miller
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| |
Collapse
|
24
|
Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 2005; 8:131-46. [PMID: 15894512 DOI: 10.1016/j.drup.2005.04.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The importance of platinum drugs in cancer chemotherapy is underscored by the clinical success of cisplatin [cis-diamminedichloroplatinum(II)] and its analogues and by clinical trials of other, less toxic platinum complexes that are active against resistant tumors. The antitumor effect of platinum complexes is believed to result from their ability to form various types of adducts with DNA. Nevertheless, drug resistance can occur by several ways: increased drug efflux, drug inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. This review focuses on mechanisms of resistance and sensitivity of tumors to conventional cisplatin associated with DNA modifications. We also discuss molecular mechanisms underlying resistance and sensitivity of tumors to the new platinum compounds synthesized with the goal to overcome resistance of tumors to established platinum drugs. Importantly, a number of new platinum compounds were designed to test the hypothesis that there is a correlation between the extent of resistance of tumors to these agents and their ability to induce a certain kind of damage or conformational change in DNA. Hence, information on DNA-binding modes, as well as recognition and repair of DNA damage is discussed, since this information may be exploited for improved structure-activity relationships.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | |
Collapse
|
25
|
Marini V, Christofis P, Novakova O, Kasparkova J, Farrell N, Brabec V. Conformation, protein recognition and repair of DNA interstrand and intrastrand cross-links of antitumor trans-[PtCl2(NH3)(thiazole)]. Nucleic Acids Res 2005; 33:5819-28. [PMID: 16237123 PMCID: PMC1258167 DOI: 10.1093/nar/gki884] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/02/2005] [Accepted: 09/20/2005] [Indexed: 11/21/2022] Open
Abstract
Replacement of one ammine in clinically ineffective trans-[PtCl2(NH3)2] (transplatin) by a planar N-heterocycle, thiazole, results in significantly enhanced cytotoxicity. Unlike 'classical' cisplatin {cis-[PtCl2(NH3)2]} or transplatin, modification of DNA by this prototypical cytotoxic transplatinum complex trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) leads to monofunctional and bifunctional intra or interstrand adducts in roughly equal proportions. DNA fragments containing site-specific bifunctional DNA adducts of trans-PtTz were prepared. The structural distortions induced in DNA by these adducts and their consequences for high-mobility group protein recognition, DNA polymerization and nucleotide excision repair were assessed in cell-free media by biochemical methods. Whereas monofunctional adducts of trans-PtTz behave similar to the major intrastrand adduct of cisplatin [J. Kasparkova, O. Novakova, N. Farrell and V. Brabec (2003) Biochemistry, 42, 792-800], bifunctional cross-links behave distinctly differently. The results suggest that the multiple DNA lesions available to trans-planaramine complexes may all contribute substantially to their cytotoxicity so that the overall drug cytotoxicity could be the sum of the contributions of each of these adducts. However, acquisition of drug resistance could be a relatively rare event, since it would have to entail resistance to or tolerance of multiple, structurally dissimilar DNA lesions.
Collapse
Affiliation(s)
- Victoria Marini
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Petros Christofis
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Olga Novakova
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-61265 Brno, Czech Republic
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Nicholas Farrell
- Department of Chemistry, Virginia Commonwealth UniversityRichmond, VA 23284-2006, USA
| | - Viktor Brabec
- To whom correspondence should be addressed. Tel: +42 5 41517148; Fax: +42 5 41240499;
| |
Collapse
|
26
|
Gu J, Wang J, Leszczynski J. H−Bonding Patterns in the Platinated Guanine−Cytosine Base Pair and Guanine−Cytosine−Guanine−Cytosine Base Tetrad: an Electron Density Deformation Analysis and AIM Study. J Am Chem Soc 2004; 126:12651-60. [PMID: 15453799 DOI: 10.1021/ja0492337] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The atoms in molecule theory (AIM) and electronic structure analysis are applied together to investigate H-bonding patterns in metalated nucleobase complexes. The influence of Pt on the intra GC base pair H-bonding has been found to reduce intra base pair H-bonding of N4(C)...O6(G) in the platinated GC pair and GCGC tetrad. The relaxation of geometry constrains in metalated nucleobases is found to be decisively important in the formation of novel molecular architectures from nucleobases and metal entities. The incorporation of the platinum in the GCGC tetrad benefits the formation of the unique CH...N (H5(C)...N1(G)) hydrogen bond pattern in the tetrad by offering improved geometric constraints rather than through changing the electronic properties around the H5(C) and N1(G) sites. Platination at the N7 of guanine reduces the deprotonation energy considerably.
Collapse
Affiliation(s)
- Jiande Gu
- Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, PR China.
| | | | | |
Collapse
|
27
|
Hotze ACG, van der Geer EPL, Caspers SE, Kooijman H, Spek AL, Haasnoot JG, Reedijk J. Coordination of 9-Ethylguanine to the Mixed-Ligand Compound α-[Ru(azpy)(bpy)Cl2] (azpy = 2-Phenylazopyridine and bpy = 2,2‘-Bipyridine). An Unprecedented Ligand Positional Shift, Correlated to the Cytotoxicity of This Type of [RuL2Cl2] (with L = azpy or bpy) Complex. Inorg Chem 2004; 43:4935-43. [PMID: 15285670 DOI: 10.1021/ic035390f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striking difference in cytotoxic activity between the inactive cis-[Ru(bpy)(2)Cl(2)] and the recently reported highly cytotoxic alpha-[Ru(azpy)(2)Cl(2)] (alpha indicating the isomer in which the coordinating Cl atoms, pyridine nitrogens, and azo nitrogens are in mutual cis, trans, cis orientation) encouraged the synthesis of the mixed-ligand compound cis-[Ru(azpy)(bpy)Cl(2)]. The synthesis and characterization of the only occurring isomer, i.e., alpha-[Ru(azpy)(bpy)Cl(2)], 1 (alpha denoting the isomer in which the Cl ligands are cis related to each other and the pyridine ring of azpy is trans to the pyridine ring of bpy), are described. The solid-state structure of 1 has been determined by X-ray structure analysis. The IC(50) values obtained for several human tumor cell lines have indicated that compound 1 shows mostly a low to moderate cytotoxicity. The binding of the DNA model base 9-ethylguanine (9-EtGua) to the hydrolyzed species of 1 has been studied and compared to DNA model base binding studies of cis-[Ru(bpy)(2)Cl(2)] and alpha-[Ru(azpy)(2)Cl(2)]. The completely hydrolyzed species of 1, i.e., alpha-[Ru(azpy)(bpy)(H(2)O)(2)](2+), has been reacted with 9-EtGua in water at room temperature for 24 h. This resulted in the monofunctional binding of only one 9-EtGua, coordinated via the N7 atom. The product has been isolated as alpha-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2), 2, and characterized by 2D NOESY NMR spectroscopy. The NOE data show that the 9-EtGua coordinates (under these conditions) at the position trans to the azo nitrogen atom. Surprisingly, time-dependent (1)H NMR data of the 9-EtGua adduct 2 in acetone-d(6) show an unprecedented positional shift of the 9-EtGua from the position trans to the azo nitrogen to the position trans to the bpy nitrogen atom, resulting in the adduct alpha'-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2) (alpha' indicating 9-EtGua is trans to the bpy nitrogen). This positional isomerization of 9-EtGua is correlated to the cytotoxicity of 1 in comparison to both the cytotoxicity and 9-EtGua coordination of cis-[Ru(bpy)(2)Cl(2)], alpha-[Ru(azpy)(2)Cl(2)], and beta-[Ru(azpy)(2)Cl(2)]. This positional isomerization process is unprecedented in model base metal chemistry and could be of considerable biological significance.
Collapse
Affiliation(s)
- Anna C G Hotze
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Prokop R, Kasparkova J, Novakova O, Marini V, Pizarro AM, Navarro-Ranninger C, Brabec V. DNA interactions of new antitumor platinum complexes with trans geometry activated by a 2-metylbutylamine or sec-butylamine ligand. Biochem Pharmacol 2004; 67:1097-109. [PMID: 15006546 DOI: 10.1016/j.bcp.2003.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 11/03/2003] [Indexed: 11/26/2022]
Abstract
The global modification of mammalian and plasmid DNAs by novel platinum compounds, trans-[PtCl(2)(NH(3))(Am)], where Am=2 -methylbutylamine or sec-butylamine was investigated in cell-free media using various biochemical and biophysical methods. These modifications were analyzed in the context of the activity of these new compounds in several tumor cell lines including those resistant to antitumor cis-diamminedichloroplatinum(II) (cisplatin). The results showed that the replacement of one amine group by 2-methylbutylamine or sec-butylamine ligand in clinically ineffective trans-diamminedichloroplatinum(II) (transplatin) resulted in a radical enhancement of its activity in tumor cell lines so that they are more cytotoxic than cisplatin and exhibited significant antitumor activity including activity in cisplatin-resistant tumor cells. Importantly, this replacement also markedly altered DNA binding mode of transplatin and reduced the efficiency of repair systems to remove the adducts of the new analogues from DNA. The results support the view that one strategy to activate trans geometry in bifunctional platinum(II) compounds including circumvention of resistance to cisplatin may consist in a chemical modification of the ineffective transplatin which results in an increased efficiency to form DNA interstrand cross-links.
Collapse
Affiliation(s)
- Radim Prokop
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kasparkova J, Novakova O, Marini V, Najajreh Y, Gibson D, Perez JM, Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a piperidine ligand. Mechanistic studies on antitumor action. J Biol Chem 2003; 278:47516-25. [PMID: 12970368 DOI: 10.1074/jbc.m304720200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A paradigm for the structure-pharmacological activity relationship of bifunctional platinum antitumor drugs is that the trans isomer of antitumor cisplatin (transplatin) is clinically ineffective. To this end, however, several new complexes of the trans structure have been identified that exhibit cytotoxicity in tumor cells that is even better than that of the analogous cis isomers. We reported recently (Kasparkova, J., Marini, V., Najajreh, Y., Gibson, D., and Brabec, V. (2003) Biochemistry 42, 6321-6332) that the replacement of one ammine ligand by the heterocyclic ligand, such as piperidine, piperazine, or 4-picoline in the molecule of transplatin resulted in a radical enhancement of its cytotoxicity. We examined oligodeoxyribonucleotide duplexes bearing a site-specific cross-link of the transplatin analogue containing the piperidine ligand by biochemical methods. The results indicate that in contrast to transplatin, trans-(PtCl2(NH3)(piperidine)) forms stable 1,3-intrastrand cross-links in double-helical DNA that distort DNA and are not readily removed from DNA by nucleotide excision repair system. Hence, the intrastrand cross-links of trans-(PtCl2(NH3)(piperidine)) could persist for a sufficiently long time, potentiating its toxicity toward tumor cells. trans-(PtCl2(NH3)(piperidine)) also forms in DNA minor interstrand cross-links that are similar to those of transplatin so that these adducts appear less likely candidates for genotoxic lesion responsible for antitumor effects of trans-(PtCl2(NH3)(piperidine)). Hence, the role of structurally unique intrastrand cross-links in the anti-tumor effects of transplatin analogues in which one ammine group is replaced by a heterocyclic ligand may predominate.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
30
|
Perrier S, Seela F, Schwartz A, Leng M, Chottard JC. The Human Telomeric Sequence (T2AG3)n is Efficiently Cross-Linked by AN1 Binding to the Platinum of a trans-Pt(NH3)2 Chelate of an Antisense Oligo-2′-O-Methylribonucleotide. Eur J Inorg Chem 2003. [DOI: 10.1002/ejic.200390216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Kasparkova J, Zehnulova J, Farrell N, Brabec V. DNA interstrand cross-links of the novel antitumor trinuclear platinum complex BBR3464. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair. J Biol Chem 2002; 277:48076-86. [PMID: 12226099 DOI: 10.1074/jbc.m208016200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The novel phase II antitumor polynuclear platinum drug BBR3464 ([(trans-PtCl(NH(3))(2))(2)(mu-trans-Pt(NH(3))(2)(NH(2)(CH(2))(6)NH(2))(2))](NO(3))(4)) forms intra- and interstrand cross-links (CLs) on DNA (which is the pharmacological target of platinum drugs). We examined first in our recent work how various intrastrand CLs of BBR3464 affect the conformation of DNA and its recognition by cellular components (Zehnulova, J., Kasparkova, J., Farrell, N., and Brabec, V. (2001) J. Biol. Chem. 276, 22191-22199). In the present work, we have extended the studies on the DNA interstrand CLs of this drug. The results have revealed that the interstrand CLs are preferentially formed between guanine residues separated by 2 base pairs in both the 3' --> 3' and 5' --> 5' directions. The major 1,4-interstrand CLs distort DNA, inducing a directional bending of the helix axis and local unwinding of the duplex. Although such distortions represent a potential structural motif for recognition by high mobility group proteins, these proteins do not recognize 1,4-interstrand CLs of BBR3464. On the other hand, in contrast to intrastrand adducts of BBR3464, 1,4-interstrand CLs are not removed from DNA by nucleotide excision repair. It has been suggested that interstrand CLs of BBR3464 could persist considerably longer in cells compared with intrastrand adducts, which would potentiate the toxicity of the interstrand lesions to tumors sensitive to this polynuclear drug.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
32
|
Escaffre M, Chottard JC, Bombard S. Rearrangement of a 1,3-trans-[Pt(NH3)2[(GXG)-N7G,N7G]] intrastrand cross-link into interstrand cross-links within RNA duplexes. Nucleic Acids Res 2002; 30:5222-8. [PMID: 12466547 PMCID: PMC137981 DOI: 10.1093/nar/gkf672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cross-linking reaction described previously in the DNA and 2'-O-methyl RNA series is extended to RNA duplexes. A 17mer single-stranded RNA containing the 1,3-trans-[Pt(NH3)2[(GAG)-N7G,N7G]] intrastrand chelate, named G*AG* (* indicating a platinated base) gives, upon pairing with the complementary RNA strand, the G*AG/CUC* interstrand cross-link. The rate of the reaction in 200 mM NaClO4 is similar to that observed for DNA-RNA duplexes. It depends on the added Na+ or Mg2+ cation and on its concentration. RNA duplexes containing GA/GA or AG/AG tandem mismatches in the rearrangement triplet core were also studied. The major interstrand cross-links, G*AG/CGA* and G*AG/AGC*, are accompanied by a minor one involving the central G of the CGA or AGC complementary sequence G*AG/CG*A and G*AG/AG*C. In 200 mM NaClO4, the G*A/GA tandem mismatch does not modify the rate of the cross-linking rearrangement whereas the AG*/AG mismatch slows it down by a factor of four. Our results reflect the predominance of the local structure of the rearrangement core over the nucleophility of the cross-linking base. They also show that the reaction could be used to trap tertiary structures of naturally occurring RNAs, including those with the commonly encountered GA/GA mismatch.
Collapse
Affiliation(s)
- Marine Escaffre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris cedex 06, France
| | | | | |
Collapse
|
33
|
Erxleben A, Metzger S, Britten JF, Lock CJ, Albinati A, Lippert B. Model of the most abundant DNA interstrand cross-link of Transplatin: X-ray structures of two modifications and H bonding behavior in the solid state and in solution of trans-[Pt(NH3)2(1-MeC-N3)(9-EtGH-N7)](ClO4)2·nH2O (1-MeC=1-methylcytosine; 9-EtGH=9-ethylguanine). Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00955-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Escaffre M, Favre A, Chottard JC, Bombard S. Determination of platinated purines in oligoribonucleotides by limited digestion with ribonucleases T1 and U2. Anal Biochem 2002; 310:42-9. [PMID: 12413471 DOI: 10.1016/s0003-2697(02)00279-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Platinum complexes which are known to react preferentially with guanine (G) and adenine (A) bases of oligonucleotides can be used as tools to analyze their tertiary structures and eventually to cross-link them. However, this requires efficient methods to allow the identification and quantification of the corresponding adducts which have so far been developed only for oligodeoxyribonucleotides. Maxam-Gilbert type digestions cannot be used for RNAs and HPLC techniques would require too large amounts of expensive material for separation and further characterization. We report a method to determine platination sites on oligoribonucleotides based on the cleavage activity of ribonucleases T1 and U2. To test the method, these enzymes were first used under conditions of limited digestion on 5-mer oligoribonucleotides platinated at a single defined purine. The phosphodiester bond on the 3' side of platinated G or A appeared fully resistant to cleavage by ribonuclease T1 or U2, respectively. An inhibitory effect was also observed due to neighboring platinated purines, which decreases with their distance (-2, -1, +1, +2) from the cleavage site and with the enzyme concentration. The method allowed the identification and quantification of the platination sites of a 17-mer oligoribonucleotide, based on the analysis of the mixture of monoplatinated adducts.
Collapse
Affiliation(s)
- Marine Escaffre
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
35
|
Sharma SK, McLaughlin LW. Cross-linking of a DNA conjugate tethering a cis-bifunctional platinated complex to a target DNA duplex. J Am Chem Soc 2002; 124:9658-9. [PMID: 12175195 DOI: 10.1021/ja020500n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tethering an ethylene diamine linker to the 5' terminus of an oligothymidine sequence provides a ligand for complexation with K2PtCl4. Post-synthetic reaction of the platinum reagent with the diamino oligothymidine generates the diamino dichloro platinum-DNA conjugate that can be used for DNA duplex targeting by oligodeoxyncleotide-mediated triplex formation. Cross-linking between the third strand and the duplex occurs exclusively with the duplex target strand directly involved in triplex formation. No examples of cross-linking to the complementary target strand or cases of cross-linking to both target strands are observed. Most efficient cross-linking occurs when the dinucleotide d(GpG) is present in the target strand and no cross-linking occurs with the corresponding 7-deazaG dinucleotide target. Cross-linking is also observed when dC or dA residues are present in the target strand, or even with a single dG residue, but it is not observed in any cases to dT residues. Triplex formation provides the ability to target specific sequences of double-stranded DNA; conjugates of the type described here offer the potential of delivering a platinum complex to a specific DNA site.
Collapse
Affiliation(s)
- Sunil K Sharma
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167, USA
| | | |
Collapse
|
36
|
Brabec V, Neplechova K, Kasparkova J, Farrell N. Steric control of DNA interstrand cross-link sites of trans platinum complexes: specificity can be dictated by planar nonleaving groups. J Biol Inorg Chem 2000; 5:364-8. [PMID: 10907747 DOI: 10.1007/pl00010665] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent findings that novel trans-dichloroplatinum(II) complexes exhibit antitumor activity violate the classical structure-activity relationships of platinum(II) complexes. These novel "nonclassical" trans platinum complexes also comprise those containing planar aromatic amines. Initial studies have shown that these compounds form a considerable amount of DNA interstrand cross-links (up to approximately 30%) with a rate markedly higher than clinically ineffective transplatin. The present work has shown, using Maxam-Gilbert footprinting, that trans-[PtCl2(NH3)(quinoline)] and trans-[PtCl2(NH3)(thiazole)], representatives of the group of new antitumor trans-dichloroplatinum complexes containing planar amines, preferentially form DNA interstrand cross-links between guanine residues at the 5'-GC-3' sites. Thus, DNA interstrand cross-linking by trans-[PtCl2(NH3)(quinoline)] and trans-[PtCl2(NH3)(thiazole)] is formally equivalent to that by antitumor cisplatin, but different from clinically ineffective transplatin which preferentially forms these adducts between complementary guanine and cytosine residues. This result shows for the first time that simple chemical modification of the structure of an inactive compound alters its DNA binding site into a DNA adduct of an active drug.
Collapse
Affiliation(s)
- V Brabec
- Academy of Sciences of the Czech Republic, Brno.
| | | | | | | |
Collapse
|
37
|
Kasparkova J, Farrell N, Brabec V. Sequence specificity, conformation, and recognition by HMG1 protein of major DNA interstrand cross-links of antitumor dinuclear platinum complexes. J Biol Chem 2000; 275:15789-98. [PMID: 10747955 DOI: 10.1074/jbc.m000777200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions of high mobility group (HMG) domain proteins with DNA modified by cisplatin plays a role in mechanisms underlying its antitumor activity. A structural motif recognized by HMG domain proteins on cisplatin-modified DNA is a stable, directional bend of the helix axis. In the present work, bending induced in DNA by major adducts of a novel class of antitumor compounds, represented by the formula [¿trans-PtCl(NH(3))(2)¿H(2)N(CH(2))(2-6)NH(2)]Cl(2), was investigated. The oligodeoxyribonucleotide duplexes containing various site-specific interstrand cross-links of these bifunctional dinuclear platinum drugs were purified and characterized by Maxam-Gilbert footprinting, chemical probing, and phasing assay. It was demonstrated that the cross-links of the dinuclear compounds bent the helix much less than those of cisplatin. Gel retardation assay revealed very weak recognition of DNA adducts of dinuclear complexes by HMG1 protein. Hence, the mediation of antitumor properties of dinuclear platinum complexes by HMG domain proteins is unlikely so that polynuclear platinum compounds may represent a novel class of platinum anticancer drugs acting by a different mechanism than cisplatin and its analogues. A further understanding of how polynuclear platinum compounds modify DNA and how these modifications are processed in cells should provide a rational basis for the design of new platinum drugs rather than searching for cisplatin analogues.
Collapse
Affiliation(s)
- J Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | | | | |
Collapse
|
38
|
|
39
|
Paquet F, Boudvillain M, Lancelot G, Leng M. NMR solution structure of a DNA dodecamer containing a transplatin interstrand GN7-CN3 cross-link. Nucleic Acids Res 1999; 27:4261-8. [PMID: 10518619 PMCID: PMC148702 DOI: 10.1093/nar/27.21.4261] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA duplex d(CTCTCG*AGTCTC).d(GAGAC-TC*GAGAG) containing a single trans- diammine-dichloroplatinum(II) interstrand cross-link (where G* and C* represent the platinated bases) has been studied by two-dimensional NMR. All the exchangeable and non-exchangeable proton resonance lines were assigned (except H5'/H5") and the NOE intensities were transformed into distances via the RELAZ program. By combining the NOESY and COSY data (330 constraints) and NMR-constrained molecular mechanics using JUMNA, a solution structure of the cross-linked duplex has been determined. The duplex is distorted over two base pairs on each side of the interstrand cross-link and exhibits a slight bending of its axis ( approximately 20 degrees ) towards the minor groove. The platinated guanine G* adopts a syn conformation. The rotation results in a Hoogsteen-type pairing between the complementary G(6)* and C(19)* residues which is mediated by the platinum moiety and is stabilized by a hydrogen bond between O6(G(6)*) and N4H(C(19)*). The rise between the cross-linked residues and the adjacent residues is increased owing to the interaction between these adjacent residues and the ammine groups of the platinum moiety. These results are discussed in relation to the slow rate of closure of the monofunctional adducts into interstrand cross-links.
Collapse
Affiliation(s)
- F Paquet
- Centre de Biophysique Moléculaire, CNRS-UPR 4301, Rue Charles Sadron, F-45071 Orleans Cédex 2, France.
| | | | | | | |
Collapse
|
40
|
|
41
|
Sigel RKO, Sabat M, Freisinger E, Mower A, Lippert B. Metal-Modified Base Pairs Involving Different Donor Sites of Purine Nucleobases: trans-[a2Pt(7,9-DimeG-N1)(9-EtGH-N7)]2+andtrans-[a2Pt(7,9-DimeG-N1)(9-EtG-N7)]+(a = NH3or CH3NH2; 9-EtGH = 9-Ethylguanine; 7,9-DimeG = 7,9-Dimethylguanine). Possible Relevance to Metalated DNA Triplex Structures. Inorg Chem 1999. [DOI: 10.1021/ic981005o] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Mikola M, Klika KD, Hakala A, Arpalahti J. Substitution Reactions of Platinum(II)-Nucleobase Complexes by Associative Mechanism Involving Pseudorotation of the Five-Coordinate Intermediate. Inorg Chem 1999; 38:571-578. [PMID: 11673964 DOI: 10.1021/ic9810945] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Substitution reactions of N7-platinated guanosine and adenosine complexes {[Pt(dien)(Guo-N7)](2+) (1), [Pt(dien)(Ado-N7)](2+) (2), dien = diethylenetriamine} by thiourea (tu) and I(-) have been studied in aqueous solution in the pH range 1.4-8.3 at different temperatures. Reactions of both complexes with I(-) follow the usual associative two-path mechanism throughout the pH range studied, as do reactions with thiourea under neutral conditions (pH 6.5). With both nucleophiles (Y), the observed rate constant linearly increases with increasing [Y] up to 1000-fold excess of Y. Plots of k(1,obs) vs [Y] were employed to calculate the rate parameters k(S) for the solvent path and k(Y) for the nucleophile-dependent path by the equation k(1,obs) = k(S) + k(Y)[Y] at different temperatures. The following activation parameters were obtained at 298.2 K for the reaction of thiourea with 1, DeltaH() = (72 +/- 1) kJ mol(-)(1) and DeltaS() = (-79 +/- 4) J K(-)(1) mol(-)(1), and with 2, DeltaH() = (72.8 +/- 0.3) kJ mol(-)(1) and DeltaS() = (-86 +/- 1) J K(-)(1) mol(-)(1). The corresponding data for I(-) with 1 are DeltaH() = (83 +/- 3) kJ mol(-)(1) and DeltaS() = (-49 +/- 8) J K(-)(1) mol(-)(1), and with 2, DeltaH() = (78 +/- 3) kJ mol(-)(1) and DeltaS() = (-67 +/- 10) J K(-)(1) mol(-)(1). Activation parameters for the solvent path are DeltaH() = (85 +/- 1) kJ mol(-)(1) and DeltaS() = (-105 +/- 2) J K(-)(1) mol(-)(1) for 1, and DeltaH() = (87 +/- 7) kJ mol(-)(1) and DeltaS() = (-98 +/- 22) J K(-)(1) mol(-)(1) for 2, on the basis of the data found for reactions with thiourea. Rate parameters for the formation and solvolytic decomposition gave log K values of 7.5 +/- 0.1 and 6.1 +/- 0.2 for the equilibrium constants of 1 and 2, respectively, in aqueous 0.1 M NaClO(4) solution at 298.2 K. Ring opening of the tridentate dien group in acidic solution provides a competing route for the overall substitution by thiourea. All experimental data found are consistent with an associative mechanism involving pseudorotation of the five-coordinate intermediate formed by the attack of thiourea, including activation parameters (298.2 K) DeltaH() = (69.2 +/- 0.3) kJ mol(-)(1) and DeltaS() = (-81 +/- 1) J K(-)(1) mol(-)(1) for 1, and DeltaH() = (70.9 +/- 0.7) kJ mol(-)(1) and DeltaS() = (-79 +/- 2) J K(-)(1) mol(-)(1) for 2. According to kinetic analysis, about 60% of 1 and 70% of 2 yield free nucleoside via the ring-opening step, whereas the remainder give free nucleoside by direct replacement with thiourea. The ratio of these routes is practically independent of thiourea concentration and temperature. The (1)H, (13)C, and (195)Pt NMR spectroscopic data for the isolated ring-opened species 3(1) and 3(2) (from 1 and 2, respectively) are consistent with a four-coordinate species [Pt(dienH)(L-N7)(tu)](3+), in which the dien group acts a bidentate ligand and one of the dien amino groups is trapped by protonation. Although both 3(1) and 3(2) are stable in cold acidic solution, they decompose predominantly back to the starting material when the pH of the solution is increased. According to HPLC analysis, the former gives 1 and guanosine in a 12:1 ratio, and the latter yields 2 and adenosine in a 10:1 ratio. The ability of the dien-NH(2) group to displace coordinated thiourea from Pt(II) contradicts the trans effect S > N and exemplifies the nucleophilic power of the NH(2) group of a partially chelated amine.
Collapse
Affiliation(s)
- Marjaana Mikola
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | |
Collapse
|
43
|
Lippert B. Impact of Cisplatin on the recent development of Pt coordination chemistry: a case study. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(98)00192-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
|
45
|
Lando DY, Fridman AS, Krot VI, Akhrem AA. Melting of cross-linked DNA. III. Calculation of differential melting curves. J Biomol Struct Dyn 1998; 16:59-67. [PMID: 9745895 DOI: 10.1080/07391102.1998.10508227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In our previous papers I and II (D. Y. Lando et al, J. Biomol. Struct. Dynam. (1997) v. 15, N1, p. 129-140, p. 141-150), two methods were developed for calculation of melting curves of cross-linked DNA. One of them is based on Poland's and another on the Fixman-Freire approach. In the present communication, III, a new theoretical method is developed for computation of differential melting curves of DNAs cross-linked by anticancer drugs and their inactive analogs. As Poland's approach, the method allows study of the influence of the loop entropy factor, delta(n), on melting behavior (n is the length of a loop in base pairs). However the method is much faster and requires computer time that inherent for the most rapid Fixman-Freire calculation approach. In contrast to the computation procedures described before in communications I and II, the method is suitable for computation of differential melting curves in the case of long DNA chains, arbitrary loop entropy factors of melted regions and arbitrary degree of cross-linking including very low values that occur in vivo after administration of antitumor drugs. The method is also appropriate for DNAs without cross-links. The results of calculation demonstrate that even very low degree of cross-linking alters the DNA differential melting curve. Cross-linking also markedly strengthens the influence of particular function delta(n) upon melting behavior.
Collapse
Affiliation(s)
- D Y Lando
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Minsk.
| | | | | | | |
Collapse
|
46
|
Lando DY, Fridman AS, Kabak AG, Akhrem AA. Melting of cross-linked DNA: II. Influence of interstrand linking on DNA stability. J Biomol Struct Dyn 1997; 15:141-50. [PMID: 9283987 DOI: 10.1080/07391102.1997.10508953] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the previous paper (D.Y. Lando, J. Biomol. Struct. Dynam, 15, 129-140 (1997)) the melting of cross-linked DNA with N base pairs and omega interstrand cross-links has been considered theoretically. In the present study on the basis of these results, two simple schemes are developed for the computation of melting curves of cross-linked DNA. The investigation of influence of interstrand linking on DNA stability has been carried out by computer simulation. It is shown that the relative concentration of cross-links, CCT = omega/N, their distribution along a DNA molecule, and particular values of the entropy factors of small loops formed by cross-links in melted regions strongly affect the DNA melting temperature, Tm. On the contrary, for DNA without cross-links, a ten-fold increase or decrease in the entropy factors of small loops does not cause the Tm variation. The comparison of the results of calculation with experimental data suggests that the majority of types of cross-link neither maintain ordered parallel orientation of bases in melted regions nor increase considerably the thermostability of cross-linked base pairs. Four different ways of influence of interstrand cross-linking on the DNA double helix stability are considered. It is shown that cross-linking significantly enhances the influence of single strand stiffness in melted regions on DNA melting behavior.
Collapse
Affiliation(s)
- D Y Lando
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, Minsk, Belarus.
| | | | | | | |
Collapse
|
47
|
Abstract
Covalent and strong coordination binding to DNA of a large number of antitumour drugs and other compounds leads to interstrand cross-link formation. To investigate cross-link influence on double helix stability, two methods are developed for the calculation of melting curves. The first method is based on Poland's approach. It requires computer time proportional to u.N, where u is the average distance (in base pairs) between neighboring cross-links and N is the number of base pairs in the DNA chain. The method is more suitable when u is not large, and small loops formed by interstrand cross-links in melted regions strongly affect DNA melting. The computer time for the second method, based on the Fixman-Freire approach, does not depend on the number of cross-links and is proportional to I.N (I is the number of exponential functions used for a decomposition of the loop entropy factor). It is more appropriate when N and u are large, and therefore particular values of the entropy factors of small loops do not influence DNA melting behavior.
Collapse
Affiliation(s)
- D Y Lando
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, Minsk, Belarus.
| |
Collapse
|
48
|
Prévost C, Boudvillain M, Beudaert P, Leng M, Lavery R, Vovelle F. Distortions of the DNA double helix induced by 1,3-trans-diamminedichloroplatinum(II)-intrastrand cross-link: an internal coordinate molecular modeling study. J Biomol Struct Dyn 1997; 14:703-14. [PMID: 9195339 DOI: 10.1080/07391102.1997.10508173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A trans-diamminedichloroplatinum(II) (trans-DDP) intrastrand adduct within the sequence d(TCTG*TG*TC).d(GACACAGA) (where G* represents a platinated guanine) is modeled on the basis of qualitative experimental data concerning global unwinding and curvature as well as information on base pairing. Modeling is performed using the internal coordinate JUMNA program, specific to nucleic acids, and modified to include the possibility of covalently bound ligands. Calibration of the energy functions representing the Pt-N7 bond with guanine is described. The platinum atom and the platinum-nitrogen bonds are parameterized for use in the Hückel Del Re method to calculate monopoles at each atom. These monopoles are consistent with the Flex force field included in Jumna. By developing an appropriate minimization protocol we are able to generate stable, distorted three-dimensional structures compatible with the experimental data and including an unusually high global unwinding. No a priori geometric assumptions are made in generating these structures.
Collapse
Affiliation(s)
- C Prévost
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France.
| | | | | | | | | | | |
Collapse
|
49
|
Pérez C, Leng M, Malinge JM. Rearrangement of interstrand cross-links into intrastrand cross-links in cis-diamminedichloroplatinum(II)-modified DNA. Nucleic Acids Res 1997; 25:896-903. [PMID: 9016644 PMCID: PMC146515 DOI: 10.1093/nar/25.4.896] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924].
Collapse
Affiliation(s)
- C Pérez
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | |
Collapse
|
50
|
Colombier C, Lippert B, Leng M. Interstrand cross-linking reaction in triplexes containing a monofunctional transplatin-adduct. Nucleic Acids Res 1996; 24:4519-24. [PMID: 8948644 PMCID: PMC146263 DOI: 10.1093/nar/24.22.4519] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Our aim was to determine whether a single transplatin monofunctional adduct, either trans-[Pt(NH3)2(dC)Cl]+ or trans-[Pt(NH3)2(dG)Cl]+ within a homopyrimidine oligonucleotide, could further react and form an interstrand cross-link once the platinated oligonucleotide was bound to the complementary duplex. The single monofunctional adduct was located at either the 5' end or in the middle of the platinated oligonucleotide. In all the triplexes, specific interstrand cross-links were formed between the platinated Hoogsteen strand and the complementary purine-rich strand. No interstrand cross-links were detected between the platinated oligonucleotides and non-complementary DNA. The yield and the rate of the cross-linking reaction depend upon the nature and location of the monofunctional adducts. Half-lives of the monofunctional adducts within the triplexes were in the range 2-6 h. The potential use of the platinated oligonucleotides to modulate gene expression is discussed.
Collapse
Affiliation(s)
- C Colombier
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | |
Collapse
|