1
|
Ramasamy S, Haque MM, Gangoda M, Stuehr DJ. Tetrahydrobiopterin redox cycling in nitric oxide synthase: evidence supports a through-heme electron delivery. FEBS J 2016; 283:4491-4501. [PMID: 27760279 PMCID: PMC5387691 DOI: 10.1111/febs.13933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
The nitric oxide synthases (NOS) catalyze a two-step oxidation of l-arginine (Arg) to generate NO. In the first step, O2 activation involves one electron being provided to the heme by an enzyme-bound 6R-tetrahydro-l-biopterin cofactor (H4 B), and the H4 B radical must be reduced back to H4 B in order for NOS to continue catalysis. Although an NADPH-derived electron is used to reduce the H4 B radical, how this occurs is unknown. We hypothesized that the NOS flavoprotein domain might reduce the H4 B radical by utilizing the NOS heme porphyrin as a conduit to deliver the electron. This model predicts that factors influencing NOS heme reduction should also influence the extent and rate of H4 B radical reduction in kind. To test this, we utilized single catalytic turnover and stop-freeze methods, along with electron paramagnetic resonance spectroscopy, to measure the rate and extent of reduction of the 5-methyl-H4 B radical formed in neuronal NOS (nNOS) during Arg hydroxylation. We used several nNOS variants that supported either a slower or faster than normal rate of ferric heme reduction. We found that the rates and extents of nNOS heme reduction correlated well with the rates and extents of 5-methyl-H4 B radical reduction among the various nNOS enzymes. This supports a model where the heme porphyrin transfers an electron from the NOS flavoprotein to the H4 B radical formed during catalysis, revealing that the heme plays a dual role in catalyzing O2 activation or electron transfer at distinct points in the reaction cycle.
Collapse
Affiliation(s)
- Somasundaram Ramasamy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Mahinda Gangoda
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
2
|
Wehling-Henricks M, Tidball JG. Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane. PLoS One 2011; 6:e25071. [PMID: 22003386 PMCID: PMC3189177 DOI: 10.1371/journal.pone.0025071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/26/2011] [Indexed: 02/03/2023] Open
Abstract
Survival of dystrophin/utrophin double-knockout (dko) mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS) transgene. Dko mice expressing the transgene (nNOS TG+/dko) experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide)-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span.
Collapse
Affiliation(s)
- Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
- Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Wehling-Henricks M, Jordan MC, Gotoh T, Grody WW, Roos KP, Tidball JG. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One 2010; 5:e10763. [PMID: 20505827 PMCID: PMC2874011 DOI: 10.1371/journal.pone.0010763] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/30/2010] [Indexed: 11/19/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD. Methodology We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial effects of short-term treatments. Conclusions/Significance Our findings demonstrate that arginine metabolism by arginase promotes fibrosis of muscle in muscular dystrophy and contributes to kyphosis. Our findings also show that long-term, dietary supplementation with arginine exacerbates fibrosis of dystrophic heart and muscles. Thus, commonly-practiced dietary supplementation with arginine by DMD patients has potential risk for increasing pathology when performed for long periods, despite reports of benefits acquired with short-term supplementation.
Collapse
Affiliation(s)
- Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maria C. Jordan
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tomomi Gotoh
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Wayne W. Grody
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kenneth P. Roos
- Cardiovascular Research Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular, Cellular and Integrative Physiology Program, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
|
5
|
Beranova P, Schott C, Chalupsky K, Kleschyov AL, Stoclet JC, Muller B. Role of the adventitia in the cyclic GMP-mediated relaxant effect of N-hydroxy-L-arginine in rat aorta. J Vasc Res 2005; 42:331-6. [PMID: 15976507 DOI: 10.1159/000086489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 04/23/2005] [Indexed: 11/19/2022] Open
Abstract
N(omega)-hydroxy-L-arginine (L-NOHA), the stable intermediate of the nitric oxide synthase (NOS)-catalyzed reaction, can induce NO/cyclic GMP-dependent relaxation in the rat aorta, in an endothelium- and NOS-independent manner. In this study, the role of the adventitia in the endothelium-independent effect of L-NOHA was investigated. Despite a decrease in norepinephrine (NE)-induced precontraction, adventitia removal in the rat aorta did not markedly alter the relaxant effect of forskolin, S-nitroso-N-acetylpenicillamine or glyceryl trinitrate. In contrast, both inhibition of NE-induced contraction and relaxation of NE-precontracted rings produced by L-NOHA were diminished in the absence of adventitia. Moreover, exposure to L-NOHA significantly enhanced the cyclic GMP level in the media of the aorta with, but not without adventitia. These findings demonstrate the role of the adventitia in the L-NOHA-induced decrease in tone and increase in cyclic GMP in the endothelium-denuded rat aorta. They suggest that NO or an NO-related compound formed from L-NOHA in the adventitia may produce paracrine effects.
Collapse
Affiliation(s)
- Petra Beranova
- Pharmacologie et Physico-Chimie, UMR CNRS 7034, Université Louis Pasteur de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
6
|
Stoclet JC, Troncy E, Muller B, Brua C, Kleschyov AL. Molecular mechanisms underlying the role of nitric oxide in the cardiovascular system. Expert Opin Investig Drugs 2005; 7:1769-79. [PMID: 15991928 DOI: 10.1517/13543784.7.11.1769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the cardiovascular system, nitric oxide (NO) is involved in the short and long-term regulation of haemodynamics, and in a number of their pathological alterations. Investigation into the biochemistry of NO-synthase isoforms has confirmed that they also all produce superoxide anion (O(*)). The free radical NO can interact with many targets on which novel information has been recently obtained. The major results of these interactions are not only the well known activation of guanylyl cyclase, but also the formation of potentially cytotoxic peroxynitrite (ONOO(-)), and the formation of S-nitrosothiols and non-haem iron-dinitrosyl dithiolate complexes. Tissue O(2), O(*), low molecular weight thiols and transition metals (especially FeII) play a pivotal role in directing NO towards targets responsible for biological effects, or storage or release from these stores. In addition, circulating forms of NO have been proposed with S-nitrosation of blood proteins. All these mechanisms provide potential pharmacological targets for future therapeutic strategies.
Collapse
Affiliation(s)
- J C Stoclet
- Laboratoire de Pharmacologie et Physiologie Cellulaires, Université Louis Pasteur de Strasbourg and CNRS (ERS 653), Faculty of Pharmacy, BP 24, 74 route du Rhin, F-67401 Illkirch, France.
| | | | | | | | | |
Collapse
|
7
|
Hunter RP. Nitric oxide, inducible nitric oxide synthase and inflammation in veterinary medicine. Anim Health Res Rev 2003. [PMID: 12665111 DOI: 10.1079/ahrr200246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inflammation is a process consisting of a complex of cytological and chemical reactions which occur in and around affected blood vessels and adjacent tissues in response to an injury caused by a physical, chemical or biological insult. Much work has been performed in the past several years investigating inducible nitric oxide synthase (NOS, EC 1.14.13.39) and nitric oxide in inflammation. This has resulted in a rapid increase in knowledge about iNOS and nitric oxide. Nitric oxide formation from inducible NOS is regulated by numerous inflammatory mediators, often with contradictory effects, depending upon the type and duration of the inflammatory insult. Equine medicine appears to have benefited the most from the increased interest in this small, inflammatory mediator. Most of the information on nitric oxide in traditional veterinary species has been produced using models or naturally occurring inflammatory diseases of this species.
Collapse
Affiliation(s)
- Robert P Hunter
- Department of Anatomy and Physiology, Kansas State University, College of Veterinary Medicine, 129 Coles Hall, Manhattan, Kansas 66506-5802, USA.
| |
Collapse
|
8
|
Stoclet JC, Muller B, György K, Andriantsiothaina R, Kleschyov AL. The inducible nitric oxide synthase in vascular and cardiac tissue. Eur J Pharmacol 1999; 375:139-55. [PMID: 10443572 DOI: 10.1016/s0014-2999(99)00221-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Expression of the inducible form of nitric oxide synthase (iNOS) has been reported in a variety of cardiovascular diseases. The resulting high output nitric oxide (NO) formation, besides the level of iNOS expression, depends also on the expression of the metabolic pathways providing the enzyme with substrate and cofactor. NO may trigger short and long term effects which are either beneficial or deleterious, depending on the molecular targets with which it interacts. These interactions are governed by local factors (like the redox state). In the cardiovascular system, the major targets involve not only guanylyl cyclase, but also other haem proteins, protein thiols, iron-non-haem complexes, and superoxide anion (forming peroxynitrite). The latter has several intracellular targets and may be cytotoxic, despite the existence of endogenous defence mechanisms. These interactions may either trigger NO effects or represent releasable NO stores, able to buffer NO and prolong its effects in blood vessels and in the heart. Besides selectively inhibiting iNOS, a number of other therapeutic strategies are conceivable to alleviate deleterious effects of excessive NO formation, including peroxynitrite (ONOO-) scavenging and inhibition of metabolic pathways triggered by ONOO-. When available, these approaches might have the advantage to preserve beneficial effects of iNOS induction. Counteracting vascular hyper-responsiveness to endogenous vasoconstrictor agonists in septic shock, or inducing cardiac protection against ischaemia-reperfusion injury are examples of such beneficial effects of iNOS induction.
Collapse
Affiliation(s)
- J C Stoclet
- Laboratoire de Pharmacologie et Physico-chimie des Interactions Cellulaires et Moléculaires (UMR CNRS), Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | | | | | | |
Collapse
|
9
|
Southan GJ, Srinivasan A. Nitrogen oxides and hydroxyguanidines: formation of donors of nitric and nitrous oxides and possible relevance to nitrous oxide formation by nitric oxide synthase. Nitric Oxide 1998; 2:270-86. [PMID: 9851368 DOI: 10.1006/niox.1998.0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The involvement of nitric oxide in numerous biological functions has led to the intense study of nitric oxide (NO) generation by the nitric oxide synthases (NOS) responsible. In addition to NO, nitric oxide synthases produce N(G)-hydroxy-L-arginine, superoxide anion and, indirectly, NOx species such as peroxynitrite and, possibly, nitrous oxide (N2O). Consequently, the interactions of N(G)-hydroxy-L-arginine with NO and other oxides of nitrogen (NOx) are of considerable interest. N(G)-Hydroxy-L-arginine and other monosubstituted hydroxyguanidines react with aqueous aerobic NO, peroxynitrite, and various NOx and nitrosating agents to form compounds that subsequently release NO and N2O. Spectrometric data indicate that the nitrosation product of N(G)-hydroxy-L-arginine is of the same N-nitroso-N-hydroxy/diazeniumdiolate (formerly "NONOate") structure as previously found for the nitrosation products of other model hydroxyguanidines. These decompose in aqueous solution in a pH-dependent manner to yield mainly NO and ureas at low pH, N2O and cyanamides at basic pH, and what appear to be primary nitrosamines/ nitrosoimines. Studies on purified iNOS using a mass spectrometer with a gas-permeable membrane inlet identified both NO and N2O (or 15NO and 15N15NO with 15N-labeled L-arginine as substrate) as products of NOS activity. These experiments suggest that much more NO than N2O is produced under the conditions studied and that N2O formation can be rationalized via the reaction of NOx species with N(G)-hydroxy-L-arginine.
Collapse
Affiliation(s)
- G J Southan
- Inotek Corporation, Cincinnati, Ohio 45219, USA
| | | |
Collapse
|
10
|
Abstract
Hydroxyguanidines (OHGs), including the endogenously formed NG-hydroxy-L-arginine (OH-arg), can react with nitric oxide (NO) and nitrogen oxides (NOx) in vitro. Therefore, we have tested OHGs and related compounds for their ability to scavenge peroxynitrite and to protect against peroxynitrite-induced oxidative processes in cells. Hydroxyguanidine, NG-hydroxy-L-arginine and other N-substituted OHGs, dose-dependently inhibited the in vitro oxidation of dihydrorhodamine (DHR) by peroxynitrite (PN), with similar or better efficacy than glutathione or cysteine. Amidoximes, aminoguanidines and O-substituted OHGs were less effective, and guanidines were without effect. In contrast to their effects on DHR oxidation, OHGs exerted only minimal inhibitory effects on the hydroxylation of benzoate by PN, suggesting that OHGs do not react with the activated isomer of peroxynitrous acid. Selected compounds were tested for protection against PN-induced suppression of mitochondrial respiration and protein oxidation in cultured J774 murine macrophages. Aminoguanidines afforded some protection against the effects of PN, but substituted-phenyl OHGs were considerably more effective. Analysis of the products of the reaction of 4-methoxybenzyl-OHG with PN showed rapid formation of nitrosated derivatives, as well as 4-methoxybenzylcyanamide and a small amount of 4-methoxybenzylurea. Nitric oxide and nitrous oxide were also evolved, but indirectly, arising from the decomposition of one of the nitrosation products. The current results demonstrate that hydroxyguanidines react with PN to protect cells against PN-mediated injury and may be more effective than the endogenous antioxidants cysteine and glutathione.
Collapse
Affiliation(s)
- G J Southan
- Intramural Research Support Program, SAIC-Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, MD, USA.
| | | | | |
Collapse
|
11
|
Liu Z, Wildhirt SM, Weismüller S, Schulze C, Conrad N, Reichart B. Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions. Atherosclerosis 1998; 140:1-14. [PMID: 9733210 DOI: 10.1016/s0021-9150(98)00106-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Extensive research has been carried out in recent years to discover the potential risk factors contributing to cardiac allograft atherogenesis. Injury to endothelial cells has been regarded as an important early mechanism in the development of transplant atherosclerosis; it leads to the manifestation of epicardial and microvascular endothelial dysfunction and development of intimal hyperplasia. Moreover, continuous minor endothelial cell damage contributes to endothelial dysfunction which reflects one of the first measurable steps in the cascade of atherogenesis without macroscopic evidence of vascular lesions. The discovery of two important vasoactive substances nitric oxide (NO) and endothelin (ET) has brought new insights but also new unsolved questions regarding the mechanisms leading to atherosclerosis. To date it is known that both substances play a major role in both prevention and development of atherosclerosis. NO appears to be protective in low concentrations by inhibiting leukocyte and platelet activation/adherence and smooth muscle cell proliferation. Impaired endothelial NO production, as one cause of endothelial dysfunction may occur in early stages of atherosclerosis before macroscopic lesions are evident. In addition, increased endothelin release also results in endothelial dysfunction by inducing vasoconstriction; it promotes vascular lesion formation due to endothelial- and vascular smooth muscle cell proliferation. Direct and indirect manipulation of both the NO and ET signal transduction systems may provide novel preventive and therapeutic approaches for limiting transplant atherogenesis and to treat native atherosclerosis. This review summarizes important experimental and clinical evidence which points to nitric oxide and endothelin as potential therapeutic targets in the process of cardiac allograft vasculopathy.
Collapse
Affiliation(s)
- Z Liu
- Department of Cardiac Surgery, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Lovren F, Triggle CR. Involvement of nitrosothiols, nitric oxide and voltage-gated K+ channels in photorelaxation of vascular smooth muscle. Eur J Pharmacol 1998; 347:215-21. [PMID: 9653885 DOI: 10.1016/s0014-2999(98)00095-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of nitrosothiol depleting compounds (p-hydroxymercuribenzoate, iodacetamide and ethacrynic acid), a guanylyl cyclase inhibitor (1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) and nitric oxide (NO) scavenger agents (xanthine/xanthine oxidase and 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; carboxy-PTIO) on light-induced photorelaxation in rat thoracic aorta were investigated. Photorelaxation responses were decreased in the presence of nitrosothiol depleting compounds suggesting S-nitrosothiols as the tissue source of the NO, whereas reduction in photorelaxation by the guanylyl cyclase inhibitor and NO scavenger agents indicates involvement of both NO and cGMP in photorelaxation. In addition the sensitivity of photorelaxation to the voltage-gated potassium channel (KV) inhibitor, 4-aminopyridine, indicates that photorelaxation is mediated via a NO/cGMP-dependent, and, perhaps, direct light, activation of KV channels.
Collapse
Affiliation(s)
- F Lovren
- Department of Pharmacology and Therapeutics and Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
13
|
Nishio E, Watanabe Y. No induced apoptosis accompanying the change of oncoprotein expression and the activation of CPP32 protease. Life Sci 1998; 62:239-45. [PMID: 9488102 DOI: 10.1016/s0024-3205(97)01092-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously we have shown that nitric oxide (NO) donors induced apoptosis in vascular smooth muscle cells (VSMCs). However, the mechanisms by which NO induced apoptosis in VSMCs are entirely unknown. In the present study, we intended to identify the mechanism by which NO donors induce apoptosis in VSMCs. First, we evaluated the expression of c-Myc, P53, and Bcl-2 proteins in VSMCs treated by NO donors. c-Myc and P53 protein expression increased after VSMCs were incubated with NO donors for 6 hr and reached a maximum level at 24 hr, while Bcl-2 protein decreased after 12 hr incubation. Next we investigated to see whether the CPP32 protease activation was involved in NO donors-induced apoptosis. In VSMCs treated by NO donors, the increase of CPP32 protease activity was observed and specific inhibition of CPP32 activity significantly prevented apoptosis induced by NO donors in a dose-dependent manner. These results suggest that NO donors induced apoptosis through proto-oncoprotein expression and CPP32-like protease activation.
Collapse
Affiliation(s)
- E Nishio
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | |
Collapse
|
14
|
Meyer J, Richter N, Hecker M. High-performance liquid chromatographic determination of nitric oxide synthase-related arginine derivatives in vitro and in vivo. Anal Biochem 1997; 247:11-6. [PMID: 9126364 DOI: 10.1006/abio.1997.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper we present a sensitive and reproducible method for the extraction and quantification of the nitric oxide (NO) synthase (NOS)-related basic amino acids L-hydroxyarginine (L-NHA), L-arginine (L-Arg), L-monomethylarginine (L-NMA), and L-dimethylarginine (L-NDA) in human serum samples by high-performance liquid chromatography (HPLC) analysis. We demonstrate that the serum level of L-NHA can be used as a sensitive and highly specific index of a systemic increase in NOS activity in vivo whose serum concentration, unlike that of the NO degradation products nitrite and/or nitrate, is not influenced by dietary intake. First, we measured L-NHA formation by a recombinant NOS preparation and by lipopolysaccharide-stimulated alveolar macrophages to demonstrate that this amino acid is produced by NOS in vitro. HPLC determination of L-NHA in human serum, however, proved to be difficult due to the presence of amino acids interfering with its detection. Therefore, we developed a clean-up procedure for the extraction of basic amino acids from these serum samples by using a cation-exchange cartridge. The isolated amino acids were subjected to precolumn derivatization with o-pthaldialdehyde and analyzed using a short reversed-phase column which allowed the baseline separation of L-NHA, L-Arg, L-NMA, and L-NDA within 16 min. By using this technique, the average concentrations of L-NHA, L-Arg, L-NMA, and L-NDA in the serum of healthy human subjects were determined to be 9.1, 96.1, 0.1, and 0.4 microM, respectively.
Collapse
Affiliation(s)
- J Meyer
- Center of Physiology, J. W. Goethe University Clinic Frankfurt/M, Germany
| | | | | |
Collapse
|
15
|
Kröncke KD, Fehsel K, Kolb-Bachofen V. Nitric oxide: cytotoxicity versus cytoprotection--how, why, when, and where? Nitric Oxide 1997; 1:107-20. [PMID: 9701050 DOI: 10.1006/niox.1997.0118] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) has been found to play an important role as a signal molecule in many parts of the organism as well as a cytotoxic effector molecule of the nonspecific immune response. It appears paradoxical that NO on one side acts as a physiological intercellular messenger and on the other side may display cytotoxic activity in vivo. To make things even more complicated, cytoprotective properties of NO are also described. We here review the current understanding of cytotoxic versus cytoprotective effects of NO in mammalian cells and try to highlight the janus-faced properties of this important small molecule.
Collapse
Affiliation(s)
- K D Kröncke
- Research Group Immunobiology in the Biomedical Research Centre, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | |
Collapse
|
16
|
Muller B, Kleschyov AL, Stoclet JC. Evidence for N-acetylcysteine-sensitive nitric oxide storage as dinitrosyl-iron complexes in lipopolysaccharide-treated rat aorta. Br J Pharmacol 1996; 119:1281-5. [PMID: 8937735 PMCID: PMC1915899 DOI: 10.1111/j.1476-5381.1996.tb16034.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The aim of this study was to assess whether or not vasoactive nitric oxide (NO) stores exist within vascular tissue after lipopolysaccharide (LPS)-treatment. 2. Rat thoracic aortic rings (for contraction experiments) or whole thoracic aortae (for electron paramagnetic resonance (e.p.r.) spectroscopy) were incubated for 18 h at 37 degrees C in the absence (control) or in the presence of LPS (10 micrograms ml-1), with or without L-arginine (L-Arg, 1 mM), the substrate of NO synthase (NOS) or N omega-nitro-L-arginine methyl ester (L-NAME, 1 mM), an inhibitor of NOS. 3. Incubation of rat aortic rings with LPS and L-Arg resulted in a significant decrease of the maximum contractile response to noradrenaline (NA, 3 microM). Addition of L-NAME (3 mM) enhanced contraction towards control values. After precontraction with NA and L-NAME, addition of N-acetyl-L-cysteine (NAC, 0.1 to 10 mM) evoked a concentration-dependent relaxation in rings incubated with LPS and L-Arg, but not in control rings, rings incubated with LPS in the absence of L-Arg or rings incubated with LPS in the presence of L-Arg and L-NAME. Removal of the endothelium did not significantly modify the relaxation induced by NAC. Methylene blue (3 microM), an inhibitor of the activation of guanylyl cyclase by NO, completely abolished the relaxing effect of NAC. 4. The presence of protein-bound dinitrosyl non-haem iron complexes (DNIC) was detected by e.p.r. spectroscopy in aortae incubated with LPS and L-Arg, but not in control aortae. Furthermore in LPS-treated aortae, addition of NAC (20 mM) gave rise to the appearance of an e.p.r. signal characteristic of low molecular weight DNIC. 5. These results provide evidence that, within vascular tissue, NO generated from L-Arg by LPS-induced NOS activity can be stored as protein-bound DNIC in non-endothelial cells. Upon addition of NAC, low molecular weight DNIC are released from these storage sites and induce vascular relaxation probably through guanylyl cyclase activation.
Collapse
Affiliation(s)
- B Muller
- Université Louis Pasteur de Strasbourg, Faculté de Pharmacie, CNRS URA 600, Illkirch, France
| | | | | |
Collapse
|