1
|
Heller V, Wang L, Schneider E, Gerstner M, Bajer L, Decker R, Boenig H, Lausen J. ID3 promotes erythroid differentiation and is repressed by a TAL1-PRMT6 complex. J Biol Chem 2025; 301:108119. [PMID: 39716491 PMCID: PMC11847539 DOI: 10.1016/j.jbc.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Erythropoiesis is controlled by transcription factors that recruit epigenetic cofactors to establish and maintain erythrocyte-specific gene expression patterns while repressing alternative lineage commitment. The transcription factor TAL1 (T-cell acute lymphocytic leukemia 1) is critical for establishing erythroid gene expression. It acts as an activator or repressor of genes, depending on associated epigenetic cofactors. Understanding the epigenetic function of TAL1 during erythropoiesis is key to improving in vitro erythroid differentiation and understanding pathological erythropoiesis. Therefore, the regulatory mechanisms that control the function of TAL1 during erythropoiesis are under intense investigation. Here, we show that TAL1 interacts with protein-arginine-methyltransferase-6 (PRMT6) on the ID3 (inhibitor-of-DNA-binding-3) gene in K562 and hCD34+ cells. The ID protein family is a critical transcriptional regulator of hematopoietic cell differentiation. We show that TAL1 and PRMT6 are present at the ID3 promoter, and that TAL1 is involved in the recruitment of PRMT6. Here, PRMT6 epigenetically regulates ID3 expression by mediating dimethylation of histone 3 at arginine 2. Thus, TAL1-PRMT6 epigenetically represses ID3 expression in progenitors, which is relieved upon erythroid differentiation, leading to increased expression. Overexpression of ID3 in primary hCD34+ cells enhances erythropoiesis. Our results show that a TAL1-PRMT6 complex regulates genes important for erythropoiesis, such as ID3. Manipulation of ID3 expression may be a way to promote in vitro differentiation of hCD34+ cells into erythrocytes.
Collapse
Affiliation(s)
- Vivien Heller
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Lei Wang
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Edith Schneider
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Mirjam Gerstner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Luana Bajer
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Robin Decker
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Halvard Boenig
- Institute for Transfusion Medicine and Immunohematology and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Joern Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Galera P, Dilip D, Derkach A, Chan A, Zhang Y, Persuad S, Mishera T, Liu Y, Famulare C, Gao Q, Mata DA, Arcila M, Geyer MB, Stein E, Dogan A, Levine RL, Roshal M, Glass J, Xiao W. Acute myeloid leukemia with mixed phenotype is characterized by RUNX1 mutations, stemness features and limited lineage plasticity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.11.01.23297696. [PMID: 37961275 PMCID: PMC10635245 DOI: 10.1101/2023.11.01.23297696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mixed phenotype (MP) in acute leukemias poses unique classification and management dilemmas and can be seen in entities other than de novo mixed phenotype acute leukemia (MPAL). Although WHO classification empirically recommends excluding AML with myelodysplasia related changes (AML-MRC) and therapy related AML (t-AML) with mixed phenotype (referred to as "AML-MP") from MPAL, there is lack of studies investigating the clinical, genetic, and biologic features of AML-MP. We report the first cohort of AML-MP integrating their clinical, immunophenotypic, genomic and transcriptomic features with comparison to MPAL and AML without MP. Patients with AML-MP share similar clinical and genetic features to its AML counterpart but differs from MPAL. AML-MP harbors more frequent RUNX1 mutations than AML without MP and MPAL. RUNX1 mutations or complex karyotypes did not impact the survival of MPAL patients. Unsupervised hierarchal clustering based on immunophenotype identified biologically distinct clusters with phenotype/genotype correlation and outcome differences. Furthermore, transcriptomic analysis showed an enrichment for stemness signature in AML-MP and AML without MP as compared to MPAL. Lastly, MPAL but not AML-MP often switched to lymphoid only immunophenotype after treatment. Expression of transcription factors critical for lymphoid differentiation were upregulated only in MPAL, but not in AML-MP. Our study for the first time demonstrates that AML- MP clinically and biologically resembles its AML counterpart without MP and differs from MPAL, supporting the recommendation to exclude these patients from the diagnosis of MPAL. Future studies are needed to elucidate the molecular mechanism of mixed phenotype in AML. Key points AML-MP clinically and biologically differs from MPAL but resembles AML. AML-MP shows RUNX1 mutations, stemness and limited lineage plasticity.
Collapse
|
3
|
Palis J. Erythropoiesis in the mammalian embryo. Exp Hematol 2024; 136:104283. [PMID: 39048071 DOI: 10.1016/j.exphem.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Red blood cells (RBCs) comprise a critical component of the cardiovascular network, which constitutes the first functional organ system of the developing mammalian embryo. Examination of circulating blood cells in mammalian embryos revealed two distinct types of erythroid cells: large, nucleated "primitive" erythroblasts followed by smaller, enucleated "definitive" erythrocytes. This review describes the current understanding of primitive and definitive erythropoiesis gleaned from studies of mouse and human embryos and induced pluripotent stem cells (iPSCs). Primitive erythropoiesis in the mouse embryo comprises a transient wave of committed primitive erythroid progenitors (primitive erythroid colony-forming cells, EryP-CFC) in the early yolk sac that generates a robust cohort of precursors that mature in the bloodstream and enucleate. In contrast, definitive erythropoiesis has two distinct developmental origins. The first comprises a transient wave of definitive erythroid progenitors (burst-forming units erythroid, BFU-E) that emerge in the yolk sac and seed the fetal liver where they terminally mature to provide the first definitive RBCs. The second comprises hematopoietic stem cell (HSC)-derived BFU-E that terminally mature at sites colonized by HSCs particularly the fetal liver and subsequently the bone marrow. Primitive and definitive erythropoiesis are derived from endothelial identity precursors with distinct developmental origins. Although they share prototypical transcriptional regulation, primitive and definitive erythropoiesis are also characterized by distinct lineage-specific factors. The exquisitely timed, sequential production of primitive and definitive erythroid cells is necessary for the survival and growth of the mammalian embryo.
Collapse
Affiliation(s)
- James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
4
|
Rossmann MP, Palis J. Developmental regulation of primitive erythropoiesis. Curr Opin Hematol 2024; 31:71-81. [PMID: 38415349 DOI: 10.1097/moh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation. RECENT FINDINGS Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery. SUMMARY The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.
Collapse
Affiliation(s)
- Marlies P Rossmann
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
7
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
8
|
Cho S, Aakash P, Lee S, Yoon YS. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol 2023; 180:22-32. [PMID: 37080451 PMCID: PMC10330356 DOI: 10.1016/j.yjmcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Parthasarathy Aakash
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Sharma A, Mistriel-Zerbib S, Najar RA, Engal E, Bentata M, Taqatqa N, Dahan S, Cohen K, Jaffe-Herman S, Geminder O, Baker M, Nevo Y, Plaschkes I, Kay G, Drier Y, Berger M, Salton M. Isoforms of the TAL1 transcription factor have different roles in hematopoiesis and cell growth. PLoS Biol 2023; 21:e3002175. [PMID: 37379322 DOI: 10.1371/journal.pbio.3002175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.
Collapse
Affiliation(s)
- Aveksha Sharma
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Mistriel-Zerbib
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rauf Ahmad Najar
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden Engal
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mercedes Bentata
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadeen Taqatqa
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Dahan
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klil Cohen
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Jaffe-Herman
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ophir Geminder
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mai Baker
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yotam Drier
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Berger
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Salton
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Kim YW, Kang J, Kim A. Hematopoietic/erythroid enhancers activate nearby target genes by extending histone H3K27ac and transcribing intergenic RNA. FASEB J 2023; 37:e22870. [PMID: 36929052 DOI: 10.1096/fj.202201891r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Enhancers activate gene transcription remotely, which requires tissue specific transcription factors binding to them. GATA1 and TAL1 are hematopoietic/erythroid-specific factors and often bind together to enhancers, activating target genes. Interestingly, we found that some hematopoietic/erythroid genes are transcribed in a GATA1-dependent but TAL1-independnet manner. They appear to have enhancers within a relatively short distance. In this study, we paired highly transcribed hematopoietic/erythroid genes with the nearest GATA1/TAL1-binding enhancers and analyzed these putative enhancer-gene pairs depending on distance between them. Enhancers located at various distances from genes in the pairs, which was not related to transcription level of the genes. However, genes with enhancers at short distances away tended to be transcriptionally unaffected by TAL1 depletion. Histone H3K27ac extended from the enhancers to target genes. The H3K27ac extension was maintained without TAL1, even though it disappeared owing to the loss of GATA1. Intergenic RNA was highly transcribed from the enhancers to nearby target genes, independent of TAL1. Taken together, TAL1-independent transcription of hematopoietic/erythroid genes appears to be promoted by enhancers present in a short distance. These enhancers are likely to activate nearby target genes by tracking the intervening regions.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
- Department of Biomedical Laboratory Science, College of Healthcare Medical Science and Engineering, Inje University, Gimhae, South Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Chuang CK, Chen SF, Su YH, Chen WH, Lin WM, Wang IC, Shyue SK. The Role of SCL Isoforms in Embryonic Hematopoiesis. Int J Mol Sci 2023; 24:ijms24076427. [PMID: 37047400 PMCID: PMC10094407 DOI: 10.3390/ijms24076427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Three waves of hematopoiesis occur in the mouse embryo. The primitive hematopoiesis appears as blood islands in the extra embryonic yolk sac at E7.5. The extra embryonic pro-definitive hematopoiesis launches in late E8 and the embryonic definitive one turns on at E10.5 indicated by the emergence of hemogenic endothelial cells on the inner wall of the extra embryonic arteries and the embryonic aorta. To study the roles of SCL protein isoforms in murine hematopoiesis, the SCL-large (SCL-L) isoform was selectively destroyed with the remaining SCL-small (SCL-S) isoform intact. It was demonstrated that SCL-S was specifically expressed in the hemogenic endothelial cells (HECs) and SCL-L was only detected in the dispersed cells after budding from HECs. The SCLΔ/Δ homozygous mutant embryos only survived to E10.5 with normal extra embryonic vessels and red blood cells. In wild-type mouse embryos, a layer of neatly aligned CD34+ and CD43+ cells appeared on the endothelial wall of the aorta of the E10.5 fetus. However, the cells at the same site expressed CD31 rather than CD34 and/or CD43 in the E10.5 SCLΔ/Δ embryo, indicating that only the endothelial lineage was developed. These results reveal that the SCL-S is sufficient to sustain the primitive hematopoiesis and SCL-L is necessary to launch the definitive hematopoiesis.
Collapse
|
12
|
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023; 15:713. [PMID: 36992422 PMCID: PMC10054523 DOI: 10.3390/v15030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the β-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent β-hemoglobinopathies: sickle cell disease and β-thalassemia, both affecting functional β-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for β-thalassemia (Zynteglo™). This review illuminates the β-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the β-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eva Eugenie Rose Segura
- Molecular Biology Interdepartmental Doctoral Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Paul George Ayoub
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevyn Lopez Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Donald Barry Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Kamimoto K, Stringa B, Hoffmann CM, Jindal K, Solnica-Krezel L, Morris SA. Dissecting cell identity via network inference and in silico gene perturbation. Nature 2023; 614:742-751. [PMID: 36755098 PMCID: PMC9946838 DOI: 10.1038/s41586-022-05688-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023]
Abstract
Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks1. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms-mouse and human haematopoiesis, and zebrafish embryogenesis-and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of noto, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.
Collapse
Affiliation(s)
- Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Blerta Stringa
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Christy M Hoffmann
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA.
| |
Collapse
|
14
|
In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis. Nat Commun 2023; 14:41. [PMID: 36596806 PMCID: PMC9810727 DOI: 10.1038/s41467-022-35744-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
During embryogenesis, haematopoietic and endothelial lineages emerge closely in time and space. It is thought that the first blood and endothelium derive from a common clonal ancestor, the haemangioblast. However, investigation of candidate haemangioblasts in vitro revealed the capacity for mesenchymal differentiation, a feature more compatible with an earlier mesodermal precursor. To date, no evidence for an in vivo haemangioblast has been discovered. Using single cell RNA-Sequencing and in vivo cellular barcoding, we have unravelled the ancestral relationships that give rise to the haematopoietic lineages of the yolk sac, the endothelium, and the mesenchyme. We show that the mesodermal derivatives of the yolk sac are produced by three distinct precursors with dual-lineage outcomes: the haemangioblast, the mesenchymoangioblast, and a previously undescribed cell type: the haematomesoblast. Between E5.5 and E7.5, this trio of precursors seeds haematopoietic, endothelial, and mesenchymal trajectories.
Collapse
|
15
|
Wang X, Liu S, Yu J. Multi-lineage Differentiation from Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:159-175. [PMID: 38228964 DOI: 10.1007/978-981-99-7471-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The hematopoietic stem cells (HSCs) have the ability to differentiate and give rise to all mature blood cells. Commitment to differentiation progressively limits the self-renewal potential of the original HSCs by regulating the level of lineage-specific gene expression. In this review, we will summarize the current understanding of the molecular mechanisms underlying HSC differentiation toward erythroid, myeloid, and lymphocyte lineages. Moreover, we will decipher how the single-cell technologies advance the lineage-biased HSC subpopulations and their differentiation potential.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| | - Siqi Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / Peking Union Medical College, Beijing, China.
- The Institute of Blood Transfusion, Chinese Academy of Medical Sciences / Peking Union Medical College, Chengdu, China.
| |
Collapse
|
16
|
Li L, Chen M, Liu W, Tai P, Liu X, Liu JX. Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB J 2022; 36:e22596. [PMID: 36208295 DOI: 10.1096/fj.202200829r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Cox17 is required in the assembly of mitochondrial intermembrane space (IMS) and Cu metallization of cytochrome C oxidase (CcO) in mitochondria as well as Cu homeostasis in cells. Cox deficiency is associated with hematopoietic diseases such as tubulopathy and leukodystrophy, but whether and how cox17 functions in hematopoiesis are still unknown. Here, we report the effects of zebrafish cox17 deficiency on primitive erythropoiesis, mitochondrial metabolism, and hypoxia tolerance. Cox17-/- larvae were sensitive to hypoxia stress, with reduced primitive erythropoiesis. Meanwhile, cox17-/- mutants showed a significant reduction in the expression of pivotal transcriptional regulators in erythropoiesis, such as scl, lmo2, and gata1a at 14 h post fertilization (hpf), with expression remaining downregulated for scl but upregulated for lmo2 and gata1a at 24 hpf. Mechanistically, cox17-/- mutants showed impaired mitochondrial metabolism, coupled with a significant decrease in the mitochondrial membrane potential, ATP and SAM content, and the ratio of SAM and SAH. Additionally, disrupting mitochondrial metabolism in wild type (WT) larvae treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could mimic the primitive erythropoiesis defects observed in cox17-/- mutants. Moreover, cox17-/- mutants exhibited significantly downregulated WNT signaling and upregulated ER stress, with a significant reduction of beta-Catenin in gata1a+ cells and of binding enrichment in both scl and lmo2 promoters of the WNT transcriptional factor TCF4. This is the first report on the novel linkage of cox17 deficiency with defective primitive erythropoiesis and reduced hypoxia tolerance. This study has shed light on the potential mechanism by which Cox deficiency, especially cox17 deficiency, induces Cu homeostasis imbalance, leading to hematopoietic diseases.
Collapse
Affiliation(s)
- LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengZhi Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science; Guangzhou Medical University, Guangzhou, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Serina Secanechia YN, Bergiers I, Rogon M, Arnold C, Descostes N, Le S, López-Anguita N, Ganter K, Kapsali C, Bouilleau L, Gut A, Uzuotaite A, Aliyeva A, Zaugg JB, Lancrin C. Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition. Sci Rep 2022; 12:16974. [PMID: 36217016 PMCID: PMC9550822 DOI: 10.1038/s41598-022-20906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.
Collapse
Affiliation(s)
- Yasmin Natalia Serina Secanechia
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Isabelle Bergiers
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419619.20000 0004 0623 0341Present Address: Therapeutics Discovery, Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Matt Rogon
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Centre for Biomolecular Network Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Arnold
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicolas Descostes
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, Bioinformatics Services, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Stephanie Le
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Natalia López-Anguita
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419538.20000 0000 9071 0620Present Address: Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Kerstin Ganter
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Chrysi Kapsali
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Lea Bouilleau
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Aaron Gut
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Auguste Uzuotaite
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Ayshan Aliyeva
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christophe Lancrin
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
18
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Differential Etv2 threshold requirement for endothelial and erythropoietic development. Cell Rep 2022; 39:110881. [PMID: 35649376 PMCID: PMC9203129 DOI: 10.1016/j.celrep.2022.110881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.
Collapse
|
20
|
Metikala S, Warkala M, Casie Chetty S, Chestnut B, Rufin Florat D, Plender E, Nester O, Koenig AL, Astrof S, Sumanas S. Integration of vascular progenitors into functional blood vessels represents a distinct mechanism of vascular growth. Dev Cell 2022; 57:767-782.e6. [PMID: 35276066 PMCID: PMC9365108 DOI: 10.1016/j.devcel.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
During embryogenesis, the initial vascular network forms by the process of vasculogenesis, or the specification of vascular progenitors de novo. In contrast, the majority of later-forming vessels arise by angiogenesis from the already established vasculature. Here, we show that new vascular progenitors in zebrafish embryos emerge from a distinct site along the yolk extension, or secondary vascular field (SVF), incorporate into the posterior cardinal vein, and contribute to subintestinal vasculature even after blood circulation has been initiated. We further demonstrate that SVF cells participate in vascular recovery after chemical ablation of vascular endothelial cells. Inducible inhibition of the function of vascular progenitor marker etv2/etsrp prevented SVF cell differentiation and resulted in the defective formation of subintestinal vasculature. Similar late-forming etv2+ progenitors were also observed in mouse embryos, suggesting that SVF cells are evolutionarily conserved. Our results characterize a distinct mechanism by which new vascular progenitors incorporate into established vasculature.
Collapse
Affiliation(s)
- Sanjeeva Metikala
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Michael Warkala
- Department of Cell Biology and Molecular Medicine, Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Diandra Rufin Florat
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Elizabeth Plender
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Olivia Nester
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
Bircher C, Bieri J, Assaraf R, Leisi R, Ros C. A Conserved Receptor-Binding Domain in the VP1u of Primate Erythroparvoviruses Determines the Marked Tropism for Erythroid Cells. Viruses 2022; 14:v14020420. [PMID: 35216013 PMCID: PMC8879732 DOI: 10.3390/v14020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
Parvovirus B19 (B19V) is a human pathogen with a marked tropism for erythroid progenitor cells (EPCs). The N-terminal of the VP1 unique region (VP1u) contains a receptor-binding domain (RBD), which mediates virus uptake through interaction with an as-yet-unknown receptor (VP1uR). Considering the central role of VP1uR in the virus tropism, we sought to investigate its expression profile in multiple cell types. To this end, we established a PP7 bacteriophage-VP1u bioconjugate, sharing the size and VP1u composition of native B19V capsids. The suitability of the PP7-VP1u construct as a specific and sensitive VP1uR expression marker was validated in competition assays with B19V and recombinant VP1u. VP1uR expression was exclusively detected in erythroid cells and cells reprogrammed towards the erythroid lineage. Sequence alignment and in silico protein structure prediction of the N-terminal of VP1u (N-VP1u) from B19V and other primate erythroparvoviruses (simian, rhesus, and pig-tailed) revealed a similar structure characterized by a fold of three or four α-helices. Functional studies with simian parvovirus confirmed the presence of a conserved RBD in the N-VP1u, mediating virus internalization into human erythroid cells. In summary, this study confirms the exclusive association of VP1uR expression with cells of the erythroid lineage. The presence of an analogous RBD in the VP1u from non-human primate erythroparvoviruses emphasizes their parallel evolutionary trait and zoonotic potential.
Collapse
Affiliation(s)
- Cornelia Bircher
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (C.B.); (J.B.); (R.A.); (R.L.)
| | - Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (C.B.); (J.B.); (R.A.); (R.L.)
| | - Ruben Assaraf
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (C.B.); (J.B.); (R.A.); (R.L.)
| | - Remo Leisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (C.B.); (J.B.); (R.A.); (R.L.)
- CSL Behring AG, 3000 Bern, Switzerland
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (C.B.); (J.B.); (R.A.); (R.L.)
- Correspondence:
| |
Collapse
|
22
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
23
|
Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J 2021; 11:152. [PMID: 34521810 PMCID: PMC8440507 DOI: 10.1038/s41408-021-00547-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Even though genetic perturbations and mutations are important for the development of myeloid malignancies, the effects of an inflammatory microenvironment are a critical modulator of carcinogenesis. Activation of the innate immune system through various ligands and signaling pathways is an important driver of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The DAMPs, or alarmins, which activate the inflammasome pathway via the TLR4/NLR signaling cascade causes the lytic cell death of hematopoietic stem and progenitor cells (HSPCs), ineffective hematopoiesis, and β-catenin-induced proliferation of cancer cells, leading to the development of MDS/AML phenotype. It is also associated with other myeloid malignancies and involved in the pathogenesis of associated cytopenias. Ongoing research suggests the interplay of inflammasome mediators with immune modulators and transcription factors to have a significant role in the development of myeloid diseases, and possibly therapy resistance. This review discusses the role and importance of inflammasomes and immune pathways in myeloid malignancies, particularly MDS/AML, to better understand the disease pathophysiology and decipher the scope of therapeutic interventions.
Collapse
Affiliation(s)
- Samarpana Chakraborty
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lauren C Shapiro
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bianca Rivera-Pena
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aditi Shastri
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
24
|
A Positive Regulatory Feedback Loop between EKLF/KLF1 and TAL1/SCL Sustaining the Erythropoiesis. Int J Mol Sci 2021; 22:ijms22158024. [PMID: 34360789 PMCID: PMC8347936 DOI: 10.3390/ijms22158024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf−/−) mouse embryos, we identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.
Collapse
|
25
|
de Sousa BR, de Oliveira VC, Pinheiro AO, Ambrósio CE. Characterization of hematopoietic stem cells from the canine yolk sac. Anim Reprod 2021; 18:e20210012. [PMID: 34306214 PMCID: PMC8291774 DOI: 10.1590/1984-3143-ar2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The characterization of hematopoietic stem cells (HSC) from the canine yolk sac (cYS) can contribute to future gene therapies because it is possible to obtain information about the beginning of the development of the circulatory system through the characterization. The cYS is a likely source of HSC, which is a source of blood cell development in mammals. Studies in this field have been conducted for decades; however, interest in cellular therapy is currently at its peak with greater visibility, and these cells are a promising therapeutic tool for the treatment of diseases related to animals and humans. The aim of this study was to isolate and characterize HSC from the cYS embryos at 30 to 45 days of gestational age. Our results showed that the cYS was macroscopically located in the ventral region with a central portion and extremities. The cells in culture presented a circular morphology and cell clusters. The average cell viability was 22.55% dead cells out of 6.5 × 104 total cells. The cells were also able to form colonies on methylcellulose. Flow cytometry analysis revealed the expression of CD34, CD117, and CD45. Our results suggest that the cYS can be used as a source of hematopoietic cells, and this study is very important to understand the mechanism and development of the hematopoietic system in dogs.
Collapse
Affiliation(s)
- Bárbara Rossi de Sousa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Alessandra Oliveira Pinheiro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
26
|
Ma Y, Liu S, Gao J, Chen C, Zhang X, Yuan H, Chen Z, Yin X, Sun C, Mao Y, Zhou F, Shao Y, Liu Q, Xu J, Cheng L, Yu D, Li P, Yi P, He J, Geng G, Guo Q, Si Y, Zhao H, Li H, Banes GL, Liu H, Nakamura Y, Kurita R, Huang Y, Wang X, Wang F, Fang G, Engel JD, Shi L, Zhang YE, Yu J. Genome-wide analysis of pseudogenes reveals HBBP1's human-specific essentiality in erythropoiesis and implication in β-thalassemia. Dev Cell 2021; 56:478-493.e11. [PMID: 33476555 DOI: 10.1016/j.devcel.2020.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023]
Abstract
The human genome harbors 14,000 duplicated or retroposed pseudogenes. Given their functionality as regulatory RNAs and low conservation, we hypothesized that pseudogenes could shape human-specific phenotypes. To test this, we performed co-expression analyses and found that pseudogene exhibited tissue-specific expression, especially in the bone marrow. By incorporating genetic data, we identified a bone-marrow-specific duplicated pseudogene, HBBP1 (η-globin), which has been implicated in β-thalassemia. Extensive functional assays demonstrated that HBBP1 is essential for erythropoiesis by binding the RNA-binding protein (RBP), HNRNPA1, to upregulate TAL1, a key regulator of erythropoiesis. The HBBP1/TAL1 interaction contributes to a milder symptom in β-thalassemia patients. Comparative studies further indicated that the HBBP1/TAL1 interaction is human-specific. Genome-wide analyses showed that duplicated pseudogenes are often bound by RBPs and less commonly bound by microRNAs compared with retropseudogenes. Taken together, we not only demonstrate that pseudogenes can drive human evolution but also provide insights on their functional landscapes.
Collapse
Affiliation(s)
- Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology & Medical Molecular Imaging, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hao Yuan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyang Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaolin Yin
- 923rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guangxi 530021, China
| | - Chenguang Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yanan Mao
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanqi Zhou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yi Shao
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- Shantou University Medical College, Shantou 515041, China
| | - Jiayue Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Li Cheng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Li
- 923rd Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guangxi 530021, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jiahuan He
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Guangfeng Geng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Haipeng Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Graham L Banes
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Wisconsin National Primate Research Center, University of Wisconsin Madison, 1220 Capitol Court, Madison, WI 53715, USA
| | - He Liu
- Beijing Key Laboratory of Captive Wildlife Technology, Beijing Zoo, Beijing 100044, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo 105-8521, Japan
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Gang Fang
- NYU Shanghai, 1555 Century Avenue, Shanghai 20012, China; Department of Biology, 1009 Silver Center, New York University, New York, NY 10003, USA; School of Computer Science and Software Engineering, East China Normal University, Shanghai 200062, China
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China; Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
27
|
Rahul E, Goel H, Chopra A, Ranjan A, Gupta AK, Meena JP, Bakhshi S, Misra A, Hussain S, Viswanathan GK, Rath GK, Tanwar P. An updated account on molecular heterogeneity of acute leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:22-43. [PMID: 33796387 PMCID: PMC8010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The progress in the field of personalized therapy has been the backbone for the improved mortality and morbidity figure in cancer especially with reference to acute leukemia. The same has been supported by evolving research and development in the field of genomics. The newer discoveries of mutations and the account of already discovered mutations have been playing a pivotal role to refine management strategy. Here, in this review, we are giving an account of relevant mutations and their potential role in the pathogenesis of acute leukemia. The article discusses the old and newly discovered mutations in acute myeloid/lymphoblastic leukemia. The various pathways and cross-talks between the mutations have been briefly described to develop insight towards their contributory and consequent role in the neoplastic process. The article is to sensitize the students, clinicians, and researchers towards the recent updates and development in genomics of acute leukemia.
Collapse
Affiliation(s)
- Ekta Rahul
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | | | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention & Research I-7Sector-39, Noida 201301, India
| | | | - Goura Kishor Rath
- Department of Radiotherapy, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
28
|
Meyer A, Herkt S, Kunze-Schumacher H, Kohrs N, Ringleb J, Schneider L, Kuvardina ON, Oellerich T, Häupl B, Krueger A, Seifried E, Bonig H, Lausen J. The transcription factor TAL1 and miR-17-92 create a regulatory loop in hematopoiesis. Sci Rep 2020; 10:21438. [PMID: 33293632 PMCID: PMC7722897 DOI: 10.1038/s41598-020-78629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.
Collapse
Affiliation(s)
- Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Nicole Kohrs
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Julia Ringleb
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596, Frankfurt am Main, Germany
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany.,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, 98195, USA
| | - Joern Lausen
- Institute for Transfusion Medicine and Immunohematology, and German Red Cross Blood Service BaWüHe, Goethe University, Sandhofstraße 1, 60528, Frankfurt, Germany. .,Department of Eukaryotic Genetics, Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
29
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
30
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
31
|
Li Y, Liao Z, Luo H, Benyoucef A, Kang Y, Lai Q, Dovat S, Miller B, Chepelev I, Li Y, Zhao K, Brand M, Huang S. Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis. Nucleic Acids Res 2020; 48:3119-3133. [PMID: 32086528 PMCID: PMC7102946 DOI: 10.1093/nar/gkaa098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Aberrant activation of the TAL1 is associated with up to 60% of T-ALL cases and is involved in CTCF-mediated genome organization within the TAL1 locus, suggesting that CTCF boundary plays a pathogenic role in T-ALL. Here, we show that -31-Kb CTCF binding site (-31CBS) serves as chromatin boundary that defines topologically associating domain (TAD) and enhancer/promoter interaction required for TAL1 activation. Deleted or inverted -31CBS impairs TAL1 expression in a context-dependent manner. Deletion of -31CBS reduces chromatin accessibility and blocks long-range interaction between the +51 erythroid enhancer and TAL1 promoter-1 leading to inhibition of TAL1 expression in erythroid cells, but not T-ALL cells. However, in TAL1-expressing T-ALL cells, the leukemia-prone TAL1 promoter-IV specifically interacts with the +19 stem cell enhancer located 19 Kb downstream of TAL1 and this interaction is disrupted by the -31CBS inversion in T-ALL cells. Inversion of -31CBS in Jurkat cells alters chromatin accessibility, histone modifications and CTCF-mediated TAD leading to inhibition of TAL1 expression and TAL1-driven leukemogenesis. Thus, our data reveal that -31CBS acts as critical regulator to define +19-enhancer and the leukemic prone promoter IV interaction for TAL1 activation in T-ALL. Manipulation of CTCF boundary can alter TAL1 TAD and oncogenic transcription networks in leukemogenesis.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ziwei Liao
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA.,Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, 510632, China
| | - Huacheng Luo
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Aissa Benyoucef
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Yuanyuan Kang
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Qian Lai
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Barbara Miller
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Iouri Chepelev
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yangqiu Li
- Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, 510632, China
| | - Keji Zhao
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20814, USA
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Suming Huang
- Department of Pediatrics and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
32
|
Rybtsov SA, Lagarkova MA. Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. BIOCHEMISTRY (MOSCOW) 2019; 84:190-204. [PMID: 31221058 DOI: 10.1134/s0006297919030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSCs) were the first stem cells discovered in humans. A. A. Maximov proposed an idea of blood stem cells that was confirmed later by McCulloch and Till experimentally. HSCs were the first type of stem cells to be used in clinics and ever since are being continually used. Indeed, a single HSC transplanted intravenously is capable of giving rise to all types of blood cells. In recent decades, human and animal HSC origin, development, hierarchy, and gene signature have been extensively investigated. Due to the constant need for donor blood and HSCs suitable for therapeutic transplants, the experimental possibility of obtaining HSCs in vitro by directed differentiation of pluripotent stem cells (PSCs) has been considered in recent years. However, despite all efforts, it is not yet possible to reproduce in vitro the ontogenesis of HSCs and obtain cells capable of long-term maintenance of hematopoiesis. The study of hematopoiesis in embryonic development facilitates the establishment and improvement of protocols for deriving blood cells from PCSs and allows a better understanding of the pathogenesis of various types of proliferative blood diseases, anemia, and immunodeficiency. This review focuses on the development of hematopoiesis in mammalian ontogenesis.
Collapse
Affiliation(s)
- S A Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4U, United Kingdom.
| | - M A Lagarkova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, 119435, Russia.
| |
Collapse
|
33
|
Shared roles for Scl and Lyl1 in murine platelet production and function. Blood 2019; 134:826-835. [PMID: 31300405 DOI: 10.1182/blood.2019896175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
The stem cell leukemia (Scl or Tal1) protein forms part of a multimeric transcription factor complex required for normal megakaryopoiesis. However, unlike other members of this complex such as Gata1, Fli1, and Runx1, mutations of Scl have not been observed as a cause of inherited thrombocytopenia. We postulated that functional redundancy with its closely related family member, lymphoblastic leukemia 1 (Lyl1) might explain this observation. To determine whether Lyl1 can substitute for Scl in megakaryopoiesis, we examined the platelet phenotype of mice lacking 1 or both factors in megakaryocytes. Conditional Scl knockout (KO) mice crossed with transgenic mice expressing Cre recombinase under the control of the mouse platelet factor 4 (Pf4) promoter generated megakaryocytes with markedly reduced but not absent Scl These Pf4Sclc-KO mice had mild thrombocytopenia and subtle defects in platelet aggregation. However, Pf4Sclc-KO mice generated on an Lyl1-null background (double knockout [DKO] mice) had severe macrothrombocytopenia, abnormal megakaryocyte morphology, defective pro-platelet formation, and markedly impaired platelet aggregation. DKO megakaryocytes, but not single-knockout megakaryocytes, had reduced expression of Gata1, Fli1, Nfe2, and many other genes that cause inherited thrombocytopenia. These gene expression changes were significantly associated with shared Scl and Lyl1 E-box binding sites that were also enriched for Gata1, Ets, and Runx1 motifs. Thus, Scl and Lyl1 share functional roles in platelet production by regulating expression of partner proteins including Gata1. We propose that this functional redundancy provides one explanation for the absence of Scl and Lyl1 mutations in inherited thrombocytopenia.
Collapse
|
34
|
Abstract
Hematopoiesis is the process by which mature blood and immune cells are produced from hematopoietic stem and progenitor cells (HSCs and HSPCs). The last several decades of research have shed light on the origin of HSCs, as well as the heterogeneous pools of fetal progenitors that contribute to lifelong hematopoiesis. The overarching concept that hematopoiesis occurs in dynamic, overlapping waves throughout development, with each wave contributing to both continuous and developmentally limited cell types, has been solidified over the years. However, recent advances in our ability to track the production of hematopoietic cells in vivo have challenged several long-held dogmas on the origin and persistence of distinct hematopoietic cell types. In this review, we highlight emerging concepts in hematopoietic development and identify unanswered questions.
Collapse
Affiliation(s)
- Taylor Cool
- Institute for the Biology of Stem Cells, Program in Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
35
|
Integrative view on how erythropoietin signaling controls transcription patterns in erythroid cells. Curr Opin Hematol 2019; 25:189-195. [PMID: 29389768 DOI: 10.1097/moh.0000000000000415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Erythropoietin (EPO) is necessary and sufficient to trigger dynamic transcriptional patterns that drive the differentiation of erythroid precursor cells into mature, enucleated red cells. Because the molecular cloning and Food and Drug Administration approval for the therapeutic use of EPO over 30 years ago, a detailed understanding of how EPO works has advanced substantially. Yet, the precise epigenetic and transcriptional mechanisms by which EPO signaling controls erythroid expression patterns remains poorly understood. This review focuses on the current state of erythroid biology in regards to EPO signaling from human genetics and functional genomics perspectives. RECENT FINDINGS The goal of this review is to provide an integrative view of the gene regulatory underpinnings for erythroid expression patterns that are dynamically shaped during erythroid differentiation. Here, we highlight vignettes connecting recent insights into a genome-wide association study linking an EPO mutation to anemia, a study linking EPO-signaling to signal transducer and activator of transcription 5 (STAT5) chromatin occupancy and enhancers, and studies that examine the molecular mechanisms driving topological chromatin organization in erythroid cells. SUMMARY The genetic, epigenetic, and gene regulatory mechanisms underlying how hormone signal transduction influences erythroid gene expression remains only partly understood. A detailed understanding of these molecular pathways and how they intersect with one another will provide the basis for novel strategies to treat anemia and potentially other hematological diseases. As new regulators and signal transducers of EPO-signaling continue to emerge, new clinically relevant targets may be identified that improve the specificity and effectiveness of EPO therapy.
Collapse
|
36
|
Wang M, Wang H, Wen Y, Chen X, Liu X, Gao J, Su P, Xu Y, Zhou W, Shi L, Zhou J. MEIS2 regulates endothelial to hematopoietic transition of human embryonic stem cells by targeting TAL1. Stem Cell Res Ther 2018; 9:340. [PMID: 30526668 PMCID: PMC6286587 DOI: 10.1186/s13287-018-1074-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Background Despite considerable progress in the development of methods for hematopoietic differentiation, efficient generation of transplantable hematopoietic stem cells (HSCs) and other genuine functional blood cells from human embryonic stem cells (hESCs) is still unsuccessful. Therefore, a better understanding of the molecular mechanism underlying hematopoietic differentiation of hESCs is highly demanded. Methods In this study, by using whole-genome gene profiling, we identified Myeloid Ectopic Viral Integration Site 2 homolog (MEIS2) as a potential regulator of hESC early hematopoietic differentiation. We deleted MEIS2 gene in hESCs using the CRISPR/CAS9 technology and induced them to hematopoietic differentiation, megakaryocytic differentiation. Results In this study, we found that MEIS2 deletion impairs early hematopoietic differentiation from hESCs. Furthermore, MEIS2 deletion suppresses hemogenic endothelial specification and endothelial to hematopoietic transition (EHT), leading to the impairment of hematopoietic differentiation. Mechanistically, TAL1 acts as a downstream gene mediating the function of MEIS2 during early hematopoiesis. Interestingly, unlike MEIS1, MEIS2 deletion exerts minimal effects on megakaryocytic differentiation and platelet generation from hESCs. Conclusions Our findings advance the understanding of human hematopoietic development and may provide new insights for large-scale generation of functional blood cells for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-1074-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
37
|
Chiu SK, Saw J, Huang Y, Sonderegger SE, Wong NC, Powell DR, Beck D, Pimanda JE, Tremblay CS, Curtis DJ. A novel role for Lyl1 in primitive erythropoiesis. Development 2018; 145:dev.162990. [PMID: 30185409 DOI: 10.1242/dev.162990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023]
Abstract
Stem cell leukemia (Scl or Tal1) and lymphoblastic leukemia 1 (Lyl1) encode highly related members of the basic helix-loop-helix family of transcription factors that are co-expressed in the erythroid lineage. Previous studies have suggested that Scl is essential for primitive erythropoiesis. However, analysis of single-cell RNA-seq data of early embryos showed that primitive erythroid cells express both Scl and Lyl1 Therefore, to determine whether Lyl1 can function in primitive erythropoiesis, we crossed conditional Scl knockout mice with mice expressing a Cre recombinase under the control of the Epo receptor, active in erythroid progenitors. Embryos with 20% expression of Scl from E9.5 survived to adulthood. However, mice with reduced expression of Scl and absence of Lyl1 (double knockout; DKO) died at E10.5 because of progressive loss of erythropoiesis. Gene expression profiling of DKO yolk sacs revealed loss of Gata1 and many of the known target genes of the SCL-GATA1 complex. ChIP-seq analyses in a human erythroleukemia cell line showed that LYL1 exclusively bound a small subset of SCL targets including GATA1. Together, these data show for the first time that Lyl1 can maintain primitive erythropoiesis.
Collapse
Affiliation(s)
- Sung K Chiu
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Jesslyn Saw
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Yizhou Huang
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Centre for Health Technologies, School of Biomedical Engineering and the School of Software, University of Technology, Sydney, NSW 2007, Australia
| | - Stefan E Sonderegger
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Nicholas C Wong
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia
| | - Dominic Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Centre for Health Technologies, School of Biomedical Engineering and the School of Software, University of Technology, Sydney, NSW 2007, Australia
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, NSW 2031, Australia.,Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cedric S Tremblay
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia .,Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| |
Collapse
|
38
|
Gould KA, Bresnick EH. Sequence determinants of DNA binding by the hematopoietic helix-loop-helix transcription factor TAL1: importance of sequences flanking the E-box core. Gene Expr 2018; 7:87-101. [PMID: 9699481 PMCID: PMC6190197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
TAL1 is a helix-loop-helix transcription factor that is essential for hematopoiesis. In vitro DNA binding site selection experiments have previously identified the preferred binding site for TAL1 heterodimers as AACAGATGGT. TAL1 homodimers do not bind DNA with significant affinity. A subset of other E-box sequences is also bound by TAL1 heterodimers. Here, we present an analysis of TAL1 heterodimer DNA binding specificity, using E-boxes derived from genomic clones, which were isolated by immunoadsorption of K562 erythroleukemia cell chromatin with a TAL1 antibody. We show that TAL1 heterodimer binding to a CAGATG E-box is strongly modulated by nucleotides flanking the E-box. A 10 base pair element consisting of the CAGATG E-box and two flanking nucleotides in both the 5' and 3' direction is sufficient for high-affinity binding. Certain mutations of nucleotides in either the 5' (-1 and -2) or 3' (+1 and +2) direction strongly inhibit binding. The importance of flanking nucleotides also exists in the context of nonpreferred E-boxes recognized by TAL1 heterodimers. Although there are no known target genes for TAL1, the regulatory regions of several genes involved in hematopoiesis contain the preferred E-box CAGATG. However, based on our results, the E-boxes in these potential target genes contain flanking sequences that would be expected to significantly reduce TAL1 heterodimer binding in vitro. Thus, additional stabilizing forces, such as protein-protein interactions between TAL1 heterodimers and accessory factors, may be required to confer high-affinity TAL1 heterodimer binding to such sequences.
Collapse
Affiliation(s)
- Karen A. Gould
- University of Wisconsin Medical School Department of Pharmacology, 1300 University Avenue, Madison, WI53706
| | - Emery H. Bresnick
- Address correspondence to Emery H. Bresnick. Tel: (608) 265-6446; Fax: (608) 262-1257; E-mail:
| |
Collapse
|
39
|
Lister JA, Baron MH. Induction of basic helix-loop-helix protein-containing complexes during erythroid differentiation. Gene Expr 2018; 7:25-38. [PMID: 9572395 PMCID: PMC6151944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The involvement of basic helix-loop-helix (bHLH) transcription factors in erythroid differentiation and development has been established by forced expression of the proteins TAL1 and Id1 in cultured cell lines and by targeted disruption of the mouse TAL1 gene. To better understand the mechanism by which bHLH proteins regulate erythropoiesis, we have investigated HLH protein-DNA interactions in mouse erythroleukemia (MEL) cells before and during chemically induced differentiation. Three bHLH (E-box) binding activities were found to be induced in nuclei from differentiating MEL cells. Using specific antisera, we have demonstrated that these complexes are dimers of TAL1 and ubiquitous E proteins. Similar complexes were detected in nuclear extracts from a human erythroid cell line, K562, and from mouse fetal liver. All three bHLH complexes were disrupted in vitro by Id1, a dominant-negative HLH protein that we and others have previously shown to antagonize MEL cell differentiation. During differentiation of an Id1-overexpressing MEL cell line, induction of a complex containing TAL1 and E2A was not only blocked but reduced below the levels seen in undifferentiating cells. These observations are consistent with the idea that TAL1 and Id1 have opposing effects on erythroid differentiation and that the level of TAL1/E2A heterodimer and/or another E protein-containing complex may influence the decision of a cell to terminally differentiate.
Collapse
Affiliation(s)
- James A. Lister
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
| | - Margaret H. Baron
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138
- Address correspondence to Margaret H. Baron at her present address: The Mount Sinai School of Medicine, Box 1079, Research Building East, Rm 11-70B, 1425 Madison Avenue, New York, NY 10029. Tel: (212) 824-7420; Fax: (212) 996-1029; E-mail:
| |
Collapse
|
40
|
Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol 2018; 109:5-17. [PMID: 30145780 DOI: 10.1007/s12185-018-2518-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
TAL1/SCL is a prime example of an oncogenic transcription factor that is abnormally expressed in acute leukemia due to the replacement of regulator elements. This gene has also been recognized as an essential regulator of hematopoiesis. TAL1 expression is strictly regulated in a lineage- and stage-specific manner. Such precise control is crucial for the switching of the transcriptional program. The misexpression of TAL1 in immature thymocytes leads to a widespread series of orchestrated downstream events that affect several different cellular machineries, resulting in a lethal consequence, namely T-cell acute lymphoblastic leukemia (T-ALL). In this article, we will discuss the transcriptional regulatory network and downstream target genes, including protein-coding genes and non-coding RNAs, controlled by TAL1 in normal hematopoiesis and T-cell leukemogenesis.
Collapse
Affiliation(s)
- Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, #12-01, Singapore, 117599, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
41
|
|
42
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Vagapova ER, Spirin PV, Lebedev TD, Prassolov VS. The Role of TAL1 in Hematopoiesis and Leukemogenesis. Acta Naturae 2018; 10:15-23. [PMID: 29713515 PMCID: PMC5916730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TAL1 (SCL/TAL1, T-cell acute leukemia protein 1) is a transcription factor that is involved in the process of hematopoiesis and leukemogenesis. It participates in blood cell formation, forms mesoderm in early embryogenesis, and regulates hematopoiesis in adult organisms. TAL1 is essential in maintaining the multipotency of hematopoietic stem cells (HSC) and keeping them in quiescence (stage G0). TAL1 forms complexes with various transcription factors, regulating hematopoiesis (E2A/HEB, GATA1-3, LMO1-2, Ldb1, ETO2, RUNX1, ERG, FLI1). In these complexes, TAL1 regulates normal myeloid differentiation, controls the proliferation of erythroid progenitors, and determines the choice of the direction of HSC differentiation. The transcription factors TAL1, E2A, GATA1 (or GATA2), LMO2, and Ldb1 are the major components of the SCL complex. In addition to normal hematopoiesis, this complex may also be involved in the process of blood cell malignant transformation. Upregulation of C-KIT expression is one of the main roles played by the SCL complex. Today, TAL1 and its partners are considered promising therapeutic targets in the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- E. R. Vagapova
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - P. V. Spirin
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - T. D. Lebedev
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - V. S. Prassolov
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| |
Collapse
|
44
|
Ramírez C, Mendoza L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2017; 34:1174-1182. [DOI: 10.1093/bioinformatics/btx736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carlos Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| |
Collapse
|
45
|
Stanulovic VS, Cauchy P, Assi SA, Hoogenkamp M. LMO2 is required for TAL1 DNA binding activity and initiation of definitive haematopoiesis at the haemangioblast stage. Nucleic Acids Res 2017; 45:9874-9888. [PMID: 28973433 PMCID: PMC5622341 DOI: 10.1093/nar/gkx573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
LMO2 is a bridging factor within a DNA binding complex and is required for definitive haematopoiesis to occur. The developmental stage of the block in haematopoietic specification is not known. We show that Lmo2−/− mouse embryonic stem cells differentiated to Flk-1+ haemangioblasts, but less efficiently to haemogenic endothelium, which only produced primitive haematopoietic progenitors. Genome-wide approaches indicated that LMO2 is required at the haemangioblast stage to position the TAL1/LMO2/LDB1 complex to regulatory elements that are important for the establishment of the haematopoietic developmental program. In the absence of LMO2, the target site recognition of TAL1 is impaired. The lack of LMO2 resulted in altered gene expression levels already at the haemangioblast stage, with transcription factor genes accounting for ∼15% of affected genes. Comparison of Lmo2−/− with Tal1−/− Flk-1+ cells further showed that TAL1 was required to initiate or sustain Lmo2 expression.
Collapse
Affiliation(s)
- Vesna S Stanulovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Lee B, Lee M, Song S, Loi LD, Lam DT, Yoon J, Baek K, Curtis DJ, Jeong Y. Specification of neurotransmitter identity by Tal1 in thalamic nuclei. Dev Dyn 2017; 246:749-758. [PMID: 28685891 DOI: 10.1002/dvdy.24546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The neurons contributing to thalamic nuclei are derived from at least two distinct progenitor domains: the caudal (cTH) and rostral (rTH) populations of thalamic progenitors. These neural compartments exhibit unique neurogenic patterns, and the molecular mechanisms underlying the acquisition of neurotransmitter identity remain largely unclear. RESULTS T-cell acute lymphocytic leukemia protein 1 (Tal1) was expressed in the early postmitotic cells in the rTH domain, and its expression was maintained in mature thalamic neurons in the ventrolateral geniculate nucleus (vLG) and the intergeniculate leaflet (IGL). To investigate a role of Tal1 in thalamic development, we used a newly generated mouse line driving Cre-mediated recombination in the rTH domain. Conditional deletion of Tal1 did not alter regional patterning in the developing diencephalon. However, in the absence of Tal1, rTH-derived thalamic neurons failed to maintain their postmitotic neuronal features, including neurotransmitter profile. Tal1-deficient thalamic neurons lost their GABAergic markers such as Gad1, Npy, and Penk in IGL/vLG. These defects may be associated at least in part with down-regulation of Nkx2.2, which is known as a critical regulator of rTH-derived GABAergic neurons. CONCLUSIONS Our results demonstrate that Tal1 plays an essential role in regulating neurotransmitter phenotype in the developing thalamic nuclei. Developmental Dynamics 246:749-758, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Myungsin Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Somang Song
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Linh Duc Loi
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Duc Tri Lam
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Jaeseung Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
47
|
Freire AG, Waghray A, Soares-da-Silva F, Resende TP, Lee DF, Pereira CF, Nascimento DS, Lemischka IR, Pinto-do-Ó P. Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports 2017. [PMID: 28648899 PMCID: PMC5511108 DOI: 10.1016/j.stemcr.2017.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Notch signaling plays a role in specifying a cardiac fate but the downstream effectors remain unknown. In this study we implicate the Notch downstream effector HES5 in cardiogenesis. We show transient Hes5 expression in early mesoderm of gastrulating embryos and demonstrate, by loss and gain-of-function experiments in mouse embryonic stem cells, that HES5 favors cardiac over primitive erythroid fate. Hes5 overexpression promotes upregulation of the cardiac gene Isl1, while the hematopoietic regulator Scl is downregulated. Moreover, whereas a pulse of Hes5 instructs cardiac commitment, sustained expression after lineage specification impairs progression of differentiation to contracting cardiomyocytes. These findings establish a role for HES5 in cardiogenesis and provide insights into the early cardiac molecular network. Hes5 is expressed in the nascent mesoderm of gastrulating mouse embryos Hes5 knockdown enhances primitive erythropoiesis in mESCs A stage-specific pulse of Hes5 instructs preferential cardiac fate in mESCs Sustained Hes5 activation impairs differentiation to contracting cardiomyocytes
Collapse
Affiliation(s)
- Ana G Freire
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Avinash Waghray
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francisca Soares-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Medicina, Universidade de Coimbra, 3004-504 Coimbra, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Tatiana P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dung-Fang Lee
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Carlos-Filipe Pereira
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
48
|
Morikawa T, Takubo K. Use of Imaging Techniques to Illuminate Dynamics of Hematopoietic Stem Cells and Their Niches. Front Cell Dev Biol 2017; 5:62. [PMID: 28660186 PMCID: PMC5468376 DOI: 10.3389/fcell.2017.00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023] Open
Abstract
Continuous generation of blood cells over an organism's lifetime is supported by hematopoietic stem/progenitor cells (HSPCs) capable of producing all hematopoietic cell subtypes. Adult mammalian HSPCs are localized to bone marrow and regulated by their neighboring microenvironment, or "niche." Because interactions of HSPCs with their niches are highly dynamic and complex, the recent development of imaging technologies provides a powerful new tool to understand stem cell/niche biology. In this review, we discuss recent advances in our understanding of dynamic HSPC/niche interactions during development, homeostasis, disease states or aging with a focus on studies advanced by imaging analysis. We also summarize methods to visualize HSPCs and niche cells in vivo, including use of HSPC reporter mice and chemical probes. Findings emerging from these investigations could suggest novel therapies for diseases and aging.
Collapse
Affiliation(s)
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and MedicineTokyo, Japan
| |
Collapse
|
49
|
SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 2017; 129:2051-2060. [DOI: 10.1182/blood-2016-12-754051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Abstract
SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL’s activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL’s regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.
Collapse
|
50
|
Dpath software reveals hierarchical haemato-endothelial lineages of Etv2 progenitors based on single-cell transcriptome analysis. Nat Commun 2017; 8:14362. [PMID: 28181481 PMCID: PMC5309826 DOI: 10.1038/ncomms14362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Developmental, stem cell and cancer biologists are interested in the molecular definition of cellular differentiation. Although single-cell RNA sequencing represents a transformational advance for global gene analyses, novel obstacles have emerged, including the computational management of dropout events, the reconstruction of biological pathways and the isolation of target cell populations. We develop an algorithm named dpath that applies the concept of metagene entropy and allows the ranking of cells based on their differentiation potential. We also develop self-organizing map (SOM) and random walk with restart (RWR) algorithms to separate the progenitors from the differentiated cells and reconstruct the lineage hierarchies in an unbiased manner. We test these algorithms using single cells from Etv2-EYFP transgenic mouse embryos and reveal specific molecular pathways that direct differentiation programmes involving the haemato-endothelial lineages. This software program quantitatively assesses the progenitor and committed states in single-cell RNA-seq data sets in a non-biased manner. Single-cell RNA sequencing has enabled great advances in understanding developmental biology but reconstructing cellular lineages from this data remains challenging. Here the authors develop an algorithm, dpath, which models the lineage relationships of underlying single cells based on single cell RNA seq data and apply it to study lineage progression of Etv2 expressing progenitors.
Collapse
|