1
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
2
|
Li L, Ju Y, Zhang C, Tong B, Lu Y, Xie X, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium. PeerJ 2023; 11:e15929. [PMID: 37753174 PMCID: PMC10519200 DOI: 10.7717/peerj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ju
- Qingdao Agricultural University, Qingdao, China
| | | | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Shaikh TM, Rahman M, Smith T, Anderson JV, Chao WS, Horvath DP. Homozygosity mapping identified loci and candidate genes responsible for freezing tolerance in Camelina sativa. THE PLANT GENOME 2023:e20318. [PMID: 36896462 DOI: 10.1002/tpg2.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Homozygosity mapping is an effective tool for detecting genomic regions responsible for a given trait when the phenotype is controlled by a limited number of dominant or co-dominant loci. Freezing tolerance is a major attribute in agricultural crops such as camelina. Previous studies indicated that freezing tolerance differences between a tolerant (Joelle) and susceptible (CO46) variety of camelina were controlled by a small number of dominant or co-dominant genes. We performed whole genome homozygosity mapping to identify markers and candidate genes responsible for freezing tolerance difference between these two genotypes. A total of 28 F3 RILs were sequenced to ∼30× coverage, and parental lines were sequenced to >30-40× coverage with Pacific Biosciences high fidelity technology and 60× coverage using Illumina whole genome sequencing. Overall, about 126k homozygous single nucleotide polymorphism markers were identified that differentiate both parents. Moreover, 617 markers were also homozygous in F3 families fixed for freezing tolerance/susceptibility. All these markers mapped to two contigs forming a contiguous stretch of chromosome 11. The homozygosity mapping detected 9 homozygous blocks among the selected markers and 22 candidate genes with strong similarity to regions in or near the homozygous blocks. Two such genes were differentially expressed during cold acclimation in camelina. The largest block contained a cold-regulated plant thionin and a putative rotamase cyclophilin 2 gene previously associated with freezing resistance in arabidopsis (Arabidopsis thaliana). The second largest block contains several cysteine-rich RLK genes and a cold-regulated receptor serine/threonine kinase gene. We hypothesize that one or more of these genes may be primarily responsible for freezing tolerance differences in camelina varieties.
Collapse
Affiliation(s)
- T M Shaikh
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Timothy Smith
- USDA/ARS, Genetics and Animal Breeding, Clay Center, NE, USA
| | - James V Anderson
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - Wun S Chao
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| | - David P Horvath
- USDA/ARS, Sunflower and Plant Biology Research Unit, Edward T, Schafer Agricultural Research Center, Fargo, ND, USA
| |
Collapse
|
4
|
Simkovich AJ, Li Y, Kohalmi SE, Griffiths JS, Wang A. Molecular Identification of Prune Dwarf Virus (PDV) Infecting Sweet Cherry in Canada and Development of a PDV Full-Length Infectious cDNA Clone. Viruses 2021; 13:2025. [PMID: 34696454 PMCID: PMC8541084 DOI: 10.3390/v13102025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Prune dwarf virus (PDV) is a member of ilarviruses that infects stone fruit species such as cherry, plum and peach, and ornamentally grown trees worldwide. The virus lacks an RNA silencing suppressor. Infection by PDV either alone, or its mixed infection with other viruses causes deteriorated fruit marketability and reduced fruit yields. Here, we report the molecular identification of PDV from sweet cherry in the prominent fruit growing region of Ontario, Canada known as the Niagara fruit belt using next generation sequencing of small interfering RNAs (siRNAs). We assessed its incidence in an experimental farm and determined the full genome sequence of this PDV isolate. We further constructed an infectious cDNA clone. Inoculation of the natural host cherry with this clone induced a dwarfing phenotype. We also examined its infectivity on several common experimental hosts. We found that it was infectious on cucurbits (cucumber and squash) with clear symptoms and Nicotiana benthamiana without causing noticeable symptoms, and it was unable to infect Arabidopsis thaliana. As generating infectious clones for woody plants is very challenging with limited success, the PDV infectious clone developed from this study will be a useful tool to facilitate molecular studies on PDV and related Prunus-infecting viruses.
Collapse
Affiliation(s)
- Aaron J. Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
| | - Susanne E. Kohalmi
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Jonathan S. Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| |
Collapse
|
5
|
Provart NJ, Brady SM, Parry G, Schmitz RJ, Queitsch C, Bonetta D, Waese J, Schneeberger K, Loraine AE. Anno genominis XX: 20 years of Arabidopsis genomics. THE PLANT CELL 2021; 33:832-845. [PMID: 33793861 PMCID: PMC8226293 DOI: 10.1093/plcell/koaa038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California, 95616, USA
| | - Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, 30602, USA
| | - Christine Queitsch
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
| | - Jamie Waese
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Faculty of Biology, LMU Munich, 82152 Munich, Germany
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
6
|
Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:24557-24566. [PMID: 32929017 PMCID: PMC7533888 DOI: 10.1073/pnas.2009554117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.
Collapse
|
7
|
Sanfaçon H. Grand Challenge in Plant Virology: Understanding the Impact of Plant Viruses in Model Plants, in Agricultural Crops, and in Complex Ecosystems. Front Microbiol 2017; 8:860. [PMID: 28596756 PMCID: PMC5442230 DOI: 10.3389/fmicb.2017.00860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/27/2017] [Indexed: 01/23/2023] Open
Affiliation(s)
- Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development CentreSummerland, BC, Canada
| |
Collapse
|
8
|
Molecular re-confirmation and floral characteristics of drooping leaf (DL) mutants generated by insertional mutagenesis in rice. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Soares MR, Facincani AP, Ferreira RM, Moreira LM, de Oliveira JC, Ferro JA, Ferro MI, Meneghini R, Gozzo FC. Proteome of the phytopathogen Xanthomonas citri subsp. citri: a global expression profile. Proteome Sci 2010; 8:55. [PMID: 21062441 PMCID: PMC2996358 DOI: 10.1186/1477-5956-8-55] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/09/2010] [Indexed: 01/28/2023] Open
Abstract
Background Citrus canker is a disease caused by Xantomonas citri subsp.citri (Xac), and has emerged as one of the major threats to the worldwide citrus crop because it affects all commercial citrus varieties, decreases the production and quality of the fruits and can spread rapidly in citrus growing areas. In this work, the first proteome of Xac was analyzed using two methodologies, two-dimensional liquid chromatography (2D LC) and tandem mass spectrometry (MS/MS). Results In order to gain insight into the metabolism of Xac, cells were grown on two different media (NB - Nutrient Broth and TSE - Tryptone Sucrose broth enriched with glutamic acid), and proteins were proteolyzed with trypsin and examined by 2D LC-MS/MS. Approximately 39% of all predicted proteins by annotation of Xac were identified with their component peptides unambiguously assigned to tandem mass spectra. The proteins, about 1,100, were distributed in all annotated functional categories. Conclusions This is the first proteomic reference map for the most aggressive strain of Xanthomonas pathogen of all orange varieties. The compilation of metabolic pathways involved with bacterial growth showed that Xac expresses a complete central and intermediary metabolism, replication, transcription and translation machineries and regulation factors, distinct membrane transporters (ABC, MFS and pumps) and receptors (MCP, TonB dependent and metabolites acquisition), two-component systems (sensor and regulatory components) and response regulators. These data corroborate the growth curve in vitro and are the first reports indicating that many of these genome annotated genes are translated into operative in Xac. This proteomic analysis also provided information regarding the influence of culture medium on growth and protein expression of Xac.
Collapse
Affiliation(s)
- Márcia R Soares
- Laboratório Nacional de Luz Sincrotron (LNLS), Campinas, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wei F, Zhang GS. Meiotically asynapsis-induced aneuploidy in autopolyploid Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2010; 123:87-95. [PMID: 19937082 DOI: 10.1007/s10265-009-0262-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/07/2009] [Indexed: 05/28/2023]
Abstract
The patterns of homologue segregation are the basis for euploidy or aneuploidy formation in diploids and allo-/auto-polyploids. Homologue segregation in diploids resembles that in allopolyploids during meiosis; however, meiotic chromosome behavior in autopolyploids is complicated by multiplication of homologous chromosome components. Obviously, loss of single chromosomes (or segmented chromosomes) frequently leads to abortion of reproductive gametes in diploids and allopolyploids. In contrast, the consequence of chromosome loss in autopolyploids is effortlessly compensated for by the presence of multiplied chromosome complements. Here, we use the meiotically asynaptic gene asy1, in combination with polyploidization, to elucidate aneuploidy formation in autotetraploid Arabidopsis. The results indicate that, due to homologous asynapsis in meiotic prophase I, retarded chromosome losses could induce aneuploidy during gametogenesis in autotetraploid asy1. The severe loss of individual chromosomes probably reaches the haploid genome among selfed or backcrossed progeny, leading to stochastic chromosome loss in Arabidopsis. Reciprocal crosses of autotetraploid asy1 with wild-type prove a pathway of duoparental transmission of aneuploidy (hypoploidy and hyperploidy). Viable hypoploids over-transmit via male gametes; conversely, viable hyperploids transmit mainly in female gametogenesis. This result suggests a more stringent maternal restriction of ploidy transmission in autopolyploid Arabidopsis.
Collapse
Affiliation(s)
- Fang Wei
- Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | |
Collapse
|
11
|
Luo Q, Zhou K, Zhao X, Zeng Q, Xia H, Zhai W, Xu J, Wu X, Yang H, Zhu L. Identification and fine mapping of a mutant gene for palealess spikelet in rice. PLANTA 2005; 221:222-30. [PMID: 15605239 DOI: 10.1007/s00425-004-1438-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/25/2004] [Indexed: 05/07/2023]
Abstract
In grass, the evolutionary relationship between lemma and palea, and their relationship to the flower organs in dicots have been variously interpreted and wildely debated. In the present study, we carried out morphological and genetic analysis of a palealess mutant (pal) from rice (Oryza sativa L.), and fine mapping the gene responsible for the mutated trait. Together, our findings indicate that the palea is replaced by two leaf-like structures in the pal flowers, and this trait is controlled by one recessive gene, termed palealess1 (pal1). With a large F2 segregating population, the pal1 gene was finally mapped into a physical region of 35 kb. Our results also suggest that the lemma and palea of rice are not homologous organs, palea is likely evolutionarily equivalent to the eudicot sepal, and the pal1 should be an A function gene for rice floral organ identity.
Collapse
Affiliation(s)
- Qiong Luo
- Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Trees are used to produce a variety of wood-based products including timber, pulp and paper. More recently, their use as a source of renewable energy has also been highlighted, as has their value for carbon mitigation within the Kyoto Protocol. Relative to food crops, the domestication of trees has only just begun; the long generation time and complex nature of juvenile and mature growth forms are contributory factors. To accelerate domestication, and to understand further some of the unique processes that occur in woody plants such as dormancy and secondary wood formation, a 'model' tree is needed. Here it is argued that Populus is rapidly becoming accepted as the 'model' woody plant and that such a 'model' tree is necessary to complement the genetic resource being developed in arabidopsis. The genus Populus (poplars, cottonwoods and aspens) contains approx. 30 species of woody plant, all found in the Northern hemisphere and exhibiting some of the fastest growth rates observed in temperate trees. Populus is fulfilling the 'model' role for a number of reasons. First, and most important, is the very recent commitment to sequence the Populus genome, a project initiated in February 2002. This will be the first woody plant to be sequenced. Other reasons include the relatively small genome size (450-550 Mbp) of Populus, the large number of molecular genetic maps and the ease of genetic transformation. Populus may also be propagated vegetatively, making mapping populations immortal and facilitating the production of large amounts of clonal material for experimentation. Hybridization occurs routinely and, in these respects, Populus has many similarities to arabidopsis. However, Populus also differs from arabidopsis in many respects, including being dioecious, which makes selfing and back-cross manipulations impossible. The long time-to-flower is also a limitation, whilst physiological and biochemical experiments are more readily conducted in Populus compared with the small-statured arabidopsis. Recent advances in the development of large expressed sequence tagged collections, microarray analysis and the free distribution of mapping pedigrees for quantitative trait loci analysis secure Populus as the ideal subject for further exploitation by a wide range of scientists including breeders, physiologists, biochemists and molecular biologists. In addition, and in contrast to other model plants, the genus Populus also has genuine commercial value as a tree for timber, plywood, pulp and paper.
Collapse
Affiliation(s)
- Gail Taylor
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| |
Collapse
|
13
|
Crowe ML, Rana D, Fraser F, Bancroft I, Trick M. BACFinder: genomic localisation of large insert genomic clones based on restriction fingerprinting. Nucleic Acids Res 2002; 30:e118. [PMID: 12409477 PMCID: PMC135841 DOI: 10.1093/nar/gnf117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed software that allows the prediction of the genomic location of a bacterial artificial chromosome (BAC) clone, or other large genomic clone, based on a simple restriction digest of the BAC. The mapping is performed by comparing the experimentally derived restriction digest of the BAC DNA with a virtual restriction digest of the whole genome sequence. Our trials indicate that this program identified the genomic regions represented by BAC clones with a degree of accuracy comparable to that of end-sequencing, but at considerably less cost. Although the program has been developed principally for use with Arabidopsis BACs, it should align large insert genomic clones to any fully sequenced genome.
Collapse
Affiliation(s)
- Mark L Crowe
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
14
|
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002; 296:92-100. [PMID: 11935018 DOI: 10.1126/science.1068275] [Citation(s) in RCA: 1845] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.
Collapse
Affiliation(s)
- Stephen A Goff
- Torrey Mesa Research Institute, Syngenta, 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 2001; 11:2101-14. [PMID: 11731501 PMCID: PMC311229 DOI: 10.1101/gr.200801] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The DEAD box RNA helicase (RH) proteins are homologs involved in diverse cellular functions in all of the organisms from prokaryotes to eukaryotes. Nevertheless, there is a lack of conservation in the splicing pattern in the 53 Arabidopsis thaliana (AtRHs), the 32 Caenorhabditis elegans (CeRHs) and the 29 Drosophila melanogaster (DmRHs) genes. Of the 153 different observed intron positions, 4 are conserved between AtRHs, CeRHs, and DmRHs, and one position is also found in RHs from yeast and human. Of the 27 different AtRH structures with introns, 20 have at least one predicted ancient intron in the regions coding for the catalytic domain. In all of the organisms examined, we found at least one gene with most of its intron predicted to be ancient. In A. thaliana, the large diversity in RH structures suggests that duplications of the ancestral RH were followed by a high number of intron deletions and additions. The very high bias toward phase 0 introns is in favor of intron addition, preferentially in phase 0. Results from this comparative study of the same gene family in a plant and in two animals are discussed in terms of the general mechanisms of gene family evolution.
Collapse
Affiliation(s)
- N Boudet
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche-Centre National Recherche Scientifique 8618, Université de Paris-Sud, Bât. 630, F-91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
The completion of the Arabidopsis thaliana (mustard weed) genome sequence constitutes a major breakthrough in plant biology. It will revolutionize how we answer questions about the biology and evolution of plants as well as how we confront and resolve world-wide agricultural problems.
Collapse
Affiliation(s)
- A Theologis
- Plant Gene Expression Center, Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
17
|
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 2000; 408:816-20. [PMID: 11130712 DOI: 10.1038/35048500] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genome of the flowering plant Arabidopsis thaliana has five chromosomes. Here we report the sequence of the largest, chromosome 1, in two contigs of around 14.2 and 14.6 megabases. The contigs extend from the telomeres to the centromeric borders, regions rich in transposons, retrotransposons and repetitive elements such as the 180-base-pair repeat. The chromosome represents 25% of the genome and contains about 6,850 open reading frames, 236 transfer RNAs (tRNAs) and 12 small nuclear RNAs. There are two clusters of tRNA genes at different places on the chromosome. One consists of 27 tRNA(Pro) genes and the other contains 27 tandem repeats of tRNA(Tyr)-tRNA(Tyr)-tRNA(Ser) genes. Chromosome 1 contains about 300 gene families with clustered duplications. There are also many repeat elements, representing 8% of the sequence.
Collapse
Affiliation(s)
- A Theologis
- Plant Gene Expression Center/USDA-U.C. Berkley, Albany, California 94710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Speulman E, van Asperen R, van der Laak J, Stiekema WJ, Pereira A. Target selected insertional mutagenesis on chromosome IV of Arabidopsis using the En-I transposon system. J Biotechnol 2000; 78:301-12. [PMID: 10751691 DOI: 10.1016/s0168-1656(00)00203-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reverse genetics using insertional mutagenesis is an efficient experimental strategy for assessing gene functions. The maize Enhancer-Inhibitor (En-I) transposable element system was used to develop an effective reverse genetics strategy in Arabidopsis based on transposons. To generate insertion mutations in a specific chromosomal region we developed a strategy for local transposition mutagenesis. A small population of 960 plants, containing independent I transpositions was used to study local mutagenesis on chromosome IV of Arabidopsis. A total of 15 genes, located on chromosome IV, were tested for I insertions and included genes identified by the European ESSA I sequencing programme. These genes were of particular interest since homologies to other genes and gene families were identified, but their exact functions were unknown. Somatic insertions were identified for all genes tested in a few specific plants. Analysis of these progeny plants over several generations revealed that the ability to generate somatic insertions in the target gene were heritable. These genotypes that show high levels of somatic insertions can be used to identify germinal insertions in the progeny.
Collapse
Affiliation(s)
- E Speulman
- CPRO, Department of Molecular Biology, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Kato A, Suzuki M, Kuwahara A, Ooe H, Higano-Inaba K, Komeda Y. Isolation and analysis of cDNA within a 300 kb Arabidopsis thaliana genomic region located around the 100 map unit of chromosome 1. Gene 1999; 239:309-16. [PMID: 10548732 DOI: 10.1016/s0378-1119(99)00403-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to analyze the organization of genes located at the 100 map unit of chromosome 1, we screened cDNAs hybridized with approximately 300kb contiguous DNA using four P1 clones and one YAC clone. A total of 40 kinds of cDNA were isolated, and their entire sequences were determined. A comparison with the GenBank/EMBL database indicated that three of the cDNAs have been found in Arabidopsis, and that similar sequences to 18 of the cDNAs had been detected in Arabidopsis or other organisms. cDNAs were aligned on a physical map of the contiguous DNA, and the transcriptional direction of each cDNA was determined. This contiguous DNA contains a large direct repeat, which contains five genes. In addition, identical or very similar sequences to two cDNAs are located in a narrow region. Thus, a total of 50 genes were identified, and the gene density was revealed to be approximately one gene every 6kb. In addition, cDNA sequencing revealed the existence of unusual transcripts. A sequence of seven cDNAs seemed to have no significant open reading frames. Furthermore, the existence of antisense RNA and the possibility of alternative splicing were also revealed.
Collapse
Affiliation(s)
- A Kato
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Speulman E, Metz PL, van Arkel G, te Lintel Hekkert B, Stiekema WJ, Pereira A. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. THE PLANT CELL 1999; 11:1853-66. [PMID: 10521517 PMCID: PMC144104 DOI: 10.1105/tpc.11.10.1853] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A modified Enhancer-Inhibitor transposon system was used to generate a series of mutant lines by single-seed descent such that multiple I insertions occurred per plant. The distribution of original insertions in the population was assessed by isolating transposon-flanking DNA, and a database of insertion sites was created. Approximately three-quarters of the identified insertion sites show similarity to sequences stored in public databases, which demonstrates the power of this regimen of insertional mutagenesis. To isolate insertions in specific genes, we developed three-dimensional pooling and polymerase chain reaction strategies that we then validated by identifying mutants for the regulator genes APETALA1 and SHOOT MERISTEMLESS. The system then was used to identify inserts in a class of uncharacterized genes involved in lipid biosynthesis; one such insertion conferred a fiddlehead mutant phenotype.
Collapse
Affiliation(s)
- E Speulman
- Centre for Plant Breeding and Reproduction Research, Department of Molecular Biology, P.O. Box 16, NL-6700 AA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. THE PLANT CELL 1999; 11:1769-1784. [PMID: 10488242 PMCID: PMC144304 DOI: 10.1105/tpc.11.9.1769] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."
Collapse
Affiliation(s)
- CM Vicient
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
22
|
Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. THE PLANT CELL 1999; 11:1769-1784. [PMID: 10488242 DOI: 10.2307/3871053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The replicative retrotransposon life cycle offers the potential for explosive increases in copy number and consequent inflation of genome size. The BARE-1 retrotransposon family of barley is conserved, disperse, and transcriptionally active. To assess the role of BARE-1 in genome evolution, we determined the copy number of its integrase, its reverse transcriptase, and its long terminal repeat (LTR) domains throughout the genus Hordeum. On average, BARE-1 contributes 13.7 x 10(3) full-length copies, amounting to 2.9% of the genome. The number increases with genome size. Two LTRs are associated with each internal domain in intact retrotransposons, but surprisingly, BARE-1 LTRs were considerably more prevalent than would be expected from the numbers of intact elements. The excess in LTRs increases as both genome size and BARE-1 genomic fraction decrease. Intrachromosomal homologous recombination between LTRs could explain the excess, removing BARE-1 elements and leaving behind solo LTRs, thereby reducing the complement of functional retrotransposons in the genome and providing at least a partial "return ticket from genomic obesity."
Collapse
Affiliation(s)
- CM Vicient
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K. Ac as a tool for the functional genomics of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:605-613. [PMID: 10504582 DOI: 10.1046/j.1365-313x.1999.00549.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To examine whether the maize autonomous transposable element Ac can be used for the functional analysis of the rice genome, we used Southern blot analysis to analyze the behaviour of Ac in 559 rice plants of four transgenic families through three successive generations. All families showed highly active transposition of Ac, and 103 plants (18.4%) contained newly transposed Ac insertions. In nine of the 12 independent transpositions analyzed, their germinal transmission was detected. Partial sequencing of 99 Ac-flanking sequences revealed that 21 clones exhibited significant similarities with protein-coding genes in databases and four of them matched rice cDNA sequences. These results indicate preferential Ac transposition into protein-coding rice genes. To examine the feasibility of PCR-based screening of gene knockouts in rice Ac plants, we prepared bulked genomic DNA from the leaves of approximately 6000 rice Ac plants and pooled the DNA according to a three-dimensional matrix. Of 14 randomly selected genes, two gene knockouts were identified, and one encoding a rice cytochrome P450 (CYP86) gene was shown to be stably inherited to the progeny. Together, these results suggest that Ac can be efficiently used for the functional analysis of the rice genome.
Collapse
Affiliation(s)
- H Enoki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang ML, Belmonte S, Kim U, Dolan M, Morris JW, Goodman HM. A Cluster of ABA-Regulated Genes on Arabidopsis thaliana BAC T07M07. Genome Res 1999. [DOI: 10.1101/gr.9.4.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Arabidopsis thaliana BAC T07M07 encoding the abscisic acid-insensitive 4 (ABI4) locus has been sequenced completely. It contains a 95,713-bp insert and 24 predicted genes. Most putative genes were confirmed by gel-based RNA profiling and a cluster of ABA-regulated genes was identified. One of the 24 genes, designatedPP2C5, encodes a putative protein phosphatase 2C. The encoded protein was expressed in Escherichia coli, and its enzyme activity in vitro was confirmed.[The sequence data described in this paper have been submitted to GenBank under accession no. AF085279.]
Collapse
|
25
|
Terryn N, Heijnen L, De Keyser A, Van Asseldonck M, De Clercq R, Verbakel H, Gielen J, Zabeau M, Villarroel R, Jesse T, Neyt P, Hogers R, Van Den Daele H, Ardiles W, Schueller C, Mayer K, Déhais P, Rombauts S, Van Montagu M, Rouzé P, Vos P. Evidence for an ancient chromosomal duplication in Arabidopsis thaliana by sequencing and analyzing a 400-kb contig at the APETALA2 locus on chromosome 4. FEBS Lett 1999; 445:237-45. [PMID: 10094464 DOI: 10.1016/s0014-5793(99)00097-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As part of the European Scientists Sequencing Arabidopsis program, a contiguous region (396607 bp) located on chromosome 4 around the APETALA2 gene was sequenced. Analysis of the sequence and comparison to public databases predicts 103 genes in this area, which represents a gene density of one gene per 3.85 kb. Almost half of the genes show no significant homology to known database entries. In addition, the first 45 kb of the contig, which covers 11 genes, is similar to a region on chromosome 2, as far as coding sequences are concerned. This observation indicates that ancient duplications of large pieces of DNA have occurred in Arabidopsis.
Collapse
Affiliation(s)
- N Terryn
- Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aubourg S, Kreis M, Lecharny A. The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 1999; 27:628-36. [PMID: 9862990 PMCID: PMC148225 DOI: 10.1093/nar/27.2.628] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The numerous genomic sequences and ESTs released by the Arabidopsis thaliana Genome Initiative (AGI) have allowed a systematic and functional study of the DEAD box RNA helicase family. Sequencing and in silico analysis led to the characterization of 28 novel A. thaliana DEAD box RNA helicases forming a family of 32 members, named AtRH. Fourteen AtRH genes with an unexpected heterogeneous mosaic structure are described and compared bringing new information about the genesis of the gene family. The mapping of the AtRH genes shows their repartition on the five chromosomes without clustering and therefore AtRH s have been estimated to 60 genes per A.thaliana haploid genome. Sequence comparisons revealed a very conserved catalytic central domain flanked or not by four classes of extensions in the N- and/or C- extremities. The global amino acid composition of the extensions are tentatively correlated to specific functions such as targeting, protein interaction or RNA binding. The expression of the 32 AtRH genes has been recorded in different tissues. Separate patterns of expression and alternative polyadenylation sites have been shown. Based on the integration of all this information, we propose a classification of the AtRH proteins into subfamilies with associated functions.
Collapse
Affiliation(s)
- S Aubourg
- Institut de Biotechnologie des Plantes, Laboratoire de Biologie du Développement des Plantes, Bâtiment 630, Université de Paris-Sud-ERS/CNRS 569, F-91405 Orsay Cedex, France
| | | | | |
Collapse
|
27
|
Stephen Lasky LR, Hood L. Deciphering Genomes Through Automated Large-scale Sequencing. J Microbiol Methods 1999. [DOI: 10.1016/s0580-9517(08)70204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
28
|
Camilleri C, Lafleuriel J, Macadré C, Varoquaux F, Parmentier Y, Picard G, Caboche M, Bouchez D. A YAC contig map of Arabidopsis thaliana chromosome 3. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:633-642. [PMID: 9675906 DOI: 10.1046/j.1365-313x.1998.00159.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have constructed a YAC contig map of Arabidopsis thaliana chromosome 3. From an estimated total size of 25 Mb, about 21 Mb were covered by 148 clones arranged into nine YAC contigs, which represented most of the low-copy regions of the chromosome. YAC clones were anchored with 259 molecular markers, including 111 for which linkage information was previously available. Most of the genetic map was included in the YAC coverage, and more than 60% of the genetic markers from the reference recombinant inbred line map were anchored, giving a high level of integration between the genetic and physical maps. The submetacentric structure of the chromosome was confirmed by physical data; 3R (the top arm of the linkage map) was about 12 Mb, and 3L (the bottom arm of the linkage map) was about 9 Mb. This YAC physical map will aid in chromosome walking experiments and provide a framework for large-scale DNA sequencing of chromosome 3.
Collapse
Affiliation(s)
- C Camilleri
- Laboratoire de Biologie Cellulaire, INRA, Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Alonso-Blanco C, Peeters AJ, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MT. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:259-71. [PMID: 9628021 DOI: 10.1046/j.1365-313x.1998.00115.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An amplified fragment polymorphism (AFLP) based linkage map has been generated for a new Landsberg erecta/ Cape Verde Islands (Ler/Cvi) recombinant inbred line (RIL) population. A total of 321 molecular PCR based markers and the erecta mutation were mapped. AFLP markers were also analysed in the Landsberg erecta/Columbia (Ler/Col) RIL population (Lister and Dean, 1993) and 395 AFLP markers have been integrated into the previous Arabidopsis molecular map of 122 RFLPs, CAPSs and SSLPs. This enabled the evaluation of the efficiency and robustness of AFLP technology for linkage analyses in Arabidopsis. AFLP markers were found throughout the linkage map. The two RIL maps could be integrated through 49 common markers which all mapped at similar positions. Comparison of both maps led to the conclusion that segregating bands from a common parent can be compared between different populations, and that AFLP bands of similar molecular size, amplified with the same primer combination in two different ecotypes, are likely to correspond to the same locus. AFLPs were found clustering around the centromeric regions, and the authors have established the map position of the centromere of chromosome 3 by a quantitative analysis of AFLP bands using trisomic plants. AFLP markers were also used to estimate the polymorphism rate among the three ecotypes. The larger polymorphism rate found between Ler and Cvi compared to Ler and Col will mean that the new RIL population will provide a useful material to map DNA polymorphisms and quantitative trait loci.
Collapse
Affiliation(s)
- C Alonso-Blanco
- Graduate School Experimental Plant Sciences, Wageningen Agricultural University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Martienssen RA. Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 1998; 95:2021-6. [PMID: 9482828 PMCID: PMC33836 DOI: 10.1073/pnas.95.5.2021] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposable elements provide a convenient and flexible means to disrupt plant genes, so allowing their function to be assessed. By engineering transposons to carry reporter genes and regulatory signals, the expression of target genes can be monitored and to some extent manipulated. Two strategies for using transposons to assess gene function are outlined here: First, the PCR can be used to identify plants that carry insertions into specific genes from among pools of heavily mutagenized individuals (site-selected transposon mutagenesis). This method requires that high copy transposons be used and that a relatively large number of reactions be performed to identify insertions into genes of interest. Second, a large library of plants, each carrying a unique insertion, can be generated. Each insertion site then can be amplified and sequenced systematically. These two methods have been demonstrated in maize, Arabidopsis, and other plant species, and the relative merits of each are discussed in the context of plant genome research.
Collapse
Affiliation(s)
- R A Martienssen
- Cold Spring Harbor Laboratory, Box 100, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
31
|
Abstract
Plants are the basis of life on earth. We cannot overemphasize their importance. The value of plant genome initiatives is self-evident. The need is to identify priorities for action. The angiosperm genome is highly variable, but the extent of this variability is unknown. Uncertainties remain about the number of genes and the number of species living. Many plants will become extinct before they are discovered. We risk losing both genes and vital information about plant uses. There are also major gaps in our karyotypic knowledge. No chromosome count exists for >70% of angiosperm species. DNA C values are known for only approximately 1% of angiosperms, a sample unrepresentative of the global flora. Researchers reported new relationships between genome size and characters of major interest for plant breeding and the environment and the need for more data. In 1997, a Royal Botanic Gardens Kew workshop identified gaps and planned international collaboration to fill them. An electronic version of the Angiosperm DNA C value database also was published. Another initiative, which will make a very significant contribution to the conservation of plant genetic diversity on a global scale is Kew's Millennium Seed Bank, partly funded by the U.K. Millennium Commission, celebrating the year 2000. Costing up to 80 million (1 = $1.62), its main aims are to collect and conserve the seed of almost all of the U.K. spermatophyte flora by the year 2000, to collect and conserve a further 10% of the world spermatophyte flora principally from the drylands by 2009, and to provide a world class building as the focus of this activity by 2000.
Collapse
Affiliation(s)
- M D Bennett
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey TW9 3DS, United Kingdom
| |
Collapse
|
32
|
Silverstone AL, Ciampaglio CN, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. THE PLANT CELL 1998; 10:155-69. [PMID: 9490740 PMCID: PMC143987 DOI: 10.1105/tpc.10.2.155] [Citation(s) in RCA: 503] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The recessive rga mutation is able to partially suppress phenotypic defects of the Arabidopsis gibberellin (GA) biosynthetic mutant ga1-3. Defects in stem elongation, flowering time, and leaf abaxial trichome initiation are suppressed by rga. This indicates that RGA is a negative regulator of the GA signal transduction pathway. We have identified 10 additional alleles of rga from a fast-neutron mutagenized ga1-3 population and used them to isolate the RGA gene by genomic subtraction. Our data suggest that RGA may be functioning as a transcriptional regulator. RGA was found to be a member of the VHIID regulatory family, which includes the radial root organizing gene SCARECROW and another GA signal transduction repressor, GAI. RGA and GAI proteins share a high degree of homology, but their N termini are more divergent. The presence of several structural features, including homopolymeric serine and threonine residues, a putative nuclear localization signal, leucine heptad repeats, and an LXXLL motif, indicates that the RGA protein may be a transcriptional regulator that represses the GA response. In support of the putative nuclear localization signal, we demonstrated that a transiently expressed green fluorescent protein-RGA fusion protein is localized to the nucleus in onion epidermal cells. Because the rga mutation abolished the high level of expression of the GA biosynthetic gene GA4 in the ga1-3 mutant background, we conclude that RGA may also play a role in controlling GA biosynthesis.
Collapse
Affiliation(s)
- A L Silverstone
- Developmental, Cell and Molecular Biology Group, Department of Botany, Box 91000, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
33
|
Silverstone AL, Ciampaglio CN, Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. THE PLANT CELL 1998; 10:155-169. [PMID: 9490740 DOI: 10.2307/3870695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The recessive rga mutation is able to partially suppress phenotypic defects of the Arabidopsis gibberellin (GA) biosynthetic mutant ga1-3. Defects in stem elongation, flowering time, and leaf abaxial trichome initiation are suppressed by rga. This indicates that RGA is a negative regulator of the GA signal transduction pathway. We have identified 10 additional alleles of rga from a fast-neutron mutagenized ga1-3 population and used them to isolate the RGA gene by genomic subtraction. Our data suggest that RGA may be functioning as a transcriptional regulator. RGA was found to be a member of the VHIID regulatory family, which includes the radial root organizing gene SCARECROW and another GA signal transduction repressor, GAI. RGA and GAI proteins share a high degree of homology, but their N termini are more divergent. The presence of several structural features, including homopolymeric serine and threonine residues, a putative nuclear localization signal, leucine heptad repeats, and an LXXLL motif, indicates that the RGA protein may be a transcriptional regulator that represses the GA response. In support of the putative nuclear localization signal, we demonstrated that a transiently expressed green fluorescent protein-RGA fusion protein is localized to the nucleus in onion epidermal cells. Because the rga mutation abolished the high level of expression of the GA biosynthetic gene GA4 in the ga1-3 mutant background, we conclude that RGA may also play a role in controlling GA biosynthesis.
Collapse
Affiliation(s)
- A L Silverstone
- Developmental, Cell and Molecular Biology Group, Department of Botany, Box 91000, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | |
Collapse
|
34
|
Affiliation(s)
- S Beck
- Sanger Centre, Hinxton, Cambridge, UK.
| | | |
Collapse
|
35
|
Dubois P, Cutler S, Belzile FJ. Regional insertional mutagenesis on chromosome III of Arabidopsis thaliana using the maize Ac element. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:141-151. [PMID: 9680972 DOI: 10.1046/j.1365-313x.1998.00006.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The authors describe the production and characterization of a collection of Arabidopsis lines each carrying a transposed Ac (trAc) element. A total of 507 lines were obtained following germinal transpositions of a single Ac element located on the upper portion of chromosome III. Southern analysis revealed that up to 90% of the lines in this collection harbour distinct insertions of Ac in the Arabidopsis genome. As previous studies on the behaviour of Ac in Arabidopsis have indicated that approximately two out of three transposition events occur to linked loci, the authors hypothesized that this collection could be of great use in isolating insertional mutants for genes located in the vicinity of the donor locus. PCR and phenotypic screens were performed to identify mutations in five loci located within a 40 cm region of chromosome III centered on the donor locus. Molecular analyses confirmed the presence of germinal insertions of Ac in three of the loci (NPTII, ABI3 and EST #210A22). At a fourth locus (AtDMC1), despite the absence of a germinal insertion, one line in which somatic insertions occurred regularly was identified and may be of use in isolating a germinal insertion. This collection of trAc lines constitutes a useful complement to the existing collection of T-DNA insertion lines and will soon be made available through the Arabidopsis Biological Resource Center.
Collapse
Affiliation(s)
- P Dubois
- Université Laval, Québec, Canada
| | | | | |
Collapse
|
36
|
Babiychuk E, Fuangthong M, Van Montagu M, Inzé D, Kushnir S. Efficient gene tagging in Arabidopsis thaliana using a gene trap approach. Proc Natl Acad Sci U S A 1997; 94:12722-7. [PMID: 9356517 PMCID: PMC25099 DOI: 10.1073/pnas.94.23.12722] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/1997] [Indexed: 02/05/2023] Open
Abstract
Large quantities of DNA sequence information about plant genes are rapidly accumulating in public databases, but to progress from DNA sequence to biological function a mutant allele for each of the genes ideally should be available. Here we describe a gene trap construct that allowed us to disrupt transcribed genes with a high efficiency in Arabidopsis thaliana. In the T-DNA vector used, the expression of a bacterial reporter gene coding for neomycin phosphotransferase II (nptII) depends on the in vivo generation of a translation fusion upon the T-DNA integration into the Arabidopsis genome. Analysis of 20 selected transgenic lines showed that 12 lines are T-DNA insertion mutants. The disrupted genes analyzed encoded ribosomal proteins (three lines), aspartate tRNA synthase, DNA ligase, basic-domain leucine zipper DNA binding protein, ATP-binding cassette transporter, and five proteins of unknown function. Four tagged genes were new for Arabidopsis. The results presented here suggest that gene trapping, using nptII as a reporter gene, can be as high as 80% and opens novel perspectives for systematic gene tagging in A. thaliana.
Collapse
Affiliation(s)
- E Babiychuk
- Laboratorium voor Genetica, Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
37
|
Abstract
Higher plants are sessile organisms that perceive environmental cues such as light and chemical signals and respond by changing their morphologies. Signaling pathways utilize a complex network of interactions to orchestrate biochemical and physiological responses such as flowering, fruit ripening, germination, photosynthetic regulation, and shoot or root development. In this session, the mechanisms of signaling systems that trigger plant responses to light and to the gaseous hormone, ethylene, were discussed. These signals are first sensed by a receptor and transmitted to the nucleus by a complex network. A signal may be transmitted to the nucleus by any of several systems including GTP binding proteins (G proteins), which change activity upon GTP binding; protein kinase cascades, which sequentially phosphorylate and activate a series of proteins; and membrane ion channels, which change ionic characteristics of the cells. The signal is manifested in the nucleus as a change in the activity of DNA-binding proteins, which are transcription factors that specifically interact and modulate the regulatory regions of genes. Thus, detection of an environmental signal is transmitted through a transduction pathway, and changes in transcription factor activity may coordinate changes in the expression of a portfolio of genes to direct new developmental programs.
Collapse
Affiliation(s)
- R M Mulligan
- Department of Developmental and Cell Biology, University of California, Irvine 92697-2300, USA
| | | | | |
Collapse
|
38
|
Dinkins RD, Bandaranayake H, Baeza L, Griffiths AJ, Green BR. hcf5, a nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with a pleiotropic effect on chloroplast gene expression. PLANT PHYSIOLOGY 1997; 113:1023-31. [PMID: 9112766 PMCID: PMC158225 DOI: 10.1104/pp.113.4.1023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A photosynthetic mutant of Arabidopsis thaliana, hcf5, was isolated by screening M2 seedlings for high chlorophyll fluorescence. Thylakoid morphology was strikingly abnormal, with large grana stacks and almost no stroma lamellae. Fluorescence induction kinetics, activity assays, and immunoblotting showed that photosystem II was absent. Polypeptides of the photosystem I complex, the Cyt b6/f complex, coupling factor, and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase were also severely depleted. However, the nuclear-encoded chlorophyll a/b light-harvesting complex polypeptides were unaffected. The rbcL transcript was present at very low levels, the pattern of transcripts from the polycistronic psbB-psbH-petB-petD operon was abnormal, and the mature psbH message was almost completely lacking. This suggests that the hcf5 locus may encode a product required for the correct expression of several chloroplast genes.
Collapse
Affiliation(s)
- R D Dinkins
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Tremousaygue D, Bardet C, Dabos P, Regad F, Pelese F, Nazer R, Gander E, Lescure B. Genome DNA sequencing around the EF-1 alpha multigene locus of Arabidopsis thaliana indicates a high gene density and a shuffling of noncoding regions. Genome Res 1997; 7:198-209. [PMID: 9074924 DOI: 10.1101/gr.7.3.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Arabidopsis thaliana, EF-1 alpha proteins are encoded by a multigene family of four members. Three of them are clustered at the same locus, which was positioned 24 cM from the top of chromosome 1. A region of DNA spanning 63 kb around these locus was sequenced and analyzed. One main characteristic of the locus is the mosaic organization of both genes and intergenic regions. Fourteen genes were identified, among which only four were already described, and other unidentified are most likely present. Functionally diverse genes are found at close intervals. Exon and intron distribution is highly variable at this locus, one gene being split into at least 20 introns. Several duplications were found within the sequenced segment both in coding and noncoding regions, including two gene families. Moreover, a sequence corresponding to the 5' noncoding region of the EF-1 alpha genes and harboring a 5' intervening sequence is duplicated and found upstream of several genes, suggesting that noncoding regions can be shuffled during evolution.
Collapse
Affiliation(s)
- D Tremousaygue
- Laboratoire de Biologie Moleculaire des relations Plantes-Microorganismes, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Castanet Tolosan, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- E M Meyerowitz
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| |
Collapse
|
42
|
|
43
|
Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 1997; 15:57-61. [PMID: 8988169 DOI: 10.1038/ng0197-57] [Citation(s) in RCA: 572] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have determined the complete sequence of the mitochondrial DNA in the model plant species Arabidopsis thaliana, affording access to the first of its three genomes. The 366,924 nucleotides code for 57 identified genes, which cover only 10% of the genome. Introns in these genes add about 8%, open reading frames larger than 100 amino acids represent 10% of the genome, duplications account for 7%, remnants of retrotransposons of nuclear origin contribute 4% and integrated plastid sequences amount to 1%-leaving 60% of the genome unaccounted for. With the significant contribution of duplications, imported foreign DNA and the extensive background of apparently functionless sequences, the mosaic structure of the Arabidopsis thaliana mitochondrial genome features many aspects of size-relaxed nuclear genomes.
Collapse
Affiliation(s)
- M Unseld
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Miklos GL, Rubin GM. The role of the genome project in determining gene function: insights from model organisms. Cell 1996; 86:521-9. [PMID: 8752207 DOI: 10.1016/s0092-8674(00)80126-9] [Citation(s) in RCA: 361] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- G L Miklos
- The Neurosciences Institute, San Diego, California 92121, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- T Sasaki
- Rice Genome Research Program, National Institute of Agrobiological Resources/Institute of the Society for Technoinnovation of Agriculture, Forestry and Fisheries, Ibaraki, Japan.
| | | | | | | |
Collapse
|
46
|
|
47
|
Collins FS. Ahead of schedule and under budget: the Genome Project passes its fifth birthday. Proc Natl Acad Sci U S A 1995; 92:10821-3. [PMID: 7479891 PMCID: PMC40523 DOI: 10.1073/pnas.92.24.10821] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- F S Collins
- National Center for Human Genome Research, National Institutes of Health, Bethesda, MD 20892-2152, USA
| |
Collapse
|