1
|
Gonzalez KJ, Yim KC, Blanco JCG, Boukhvalova MS, Strauch EM. Systematic computer-aided disulfide design as a general strategy to stabilize prefusion class I fusion proteins. Front Immunol 2024; 15:1406929. [PMID: 39114655 PMCID: PMC11303214 DOI: 10.3389/fimmu.2024.1406929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Numerous enveloped viruses, such as coronaviruses, influenza, and respiratory syncytial virus (RSV), utilize class I fusion proteins for cell entry. During this process, the proteins transition from a prefusion to a postfusion state, undergoing substantial and irreversible conformational changes. The prefusion conformation has repeatedly shown significant potential in vaccine development. However, the instability of this state poses challenges for its practical application in vaccines. While non-native disulfides have been effective in maintaining the prefusion structure, identifying stabilizing disulfide bonds remains an intricate task. Here, we present a general computational approach to systematically identify prefusion-stabilizing disulfides. Our method assesses the geometric constraints of disulfide bonds and introduces a ranking system to estimate their potential in stabilizing the prefusion conformation. We hypothesized that disulfides restricting the initial stages of the conformational switch could offer higher stability to the prefusion state than those preventing unfolding at a later stage. The implementation of our algorithm on the RSV F protein led to the discovery of prefusion-stabilizing disulfides that supported our hypothesis. Furthermore, the evaluation of our top design as a vaccine candidate in a cotton rat model demonstrated robust protection against RSV infection, highlighting the potential of our approach for vaccine development.
Collapse
Affiliation(s)
- Karen J. Gonzalez
- Institute of Bioinformatics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO, United States
| | - Kevin C. Yim
- Sigmovir Biosystems, Inc., Rockville, MD, United States
| | | | | | - Eva-Maria Strauch
- Institute of Bioinformatics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Medicine, School of Medicine, Washington University, St. Louis, MO, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Fredericks AM, East KW, Shi Y, Liu J, Maschietto F, Ayala A, Cioffi WG, Cohen M, Fairbrother WG, Lefort CT, Nau GJ, Levy MM, Wang J, Batista VS, Lisi GP, Monaghan SF. Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations. Front Mol Biosci 2022; 9:1080964. [PMID: 36589229 PMCID: PMC9800910 DOI: 10.3389/fmolb.2022.1080964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments. Clinical data were prospectively collected at multiple time points during ICU admission, and amino acid sequences for the NAb CDR3 segments were identified. Patients who survived severe COVID-19 had significantly more of a Class 3 antibody (C135) to SARS-CoV-2 compared to non-survivors (15059.4 vs. 1412.7, p = 0.016). In addition to highlighting the utility of RNA sequencing in revealing unique NAb profiles in COVID-19 patients with different outcomes, we provided a physical basis for our findings via atomistic modeling combined with molecular dynamics simulations. We established the interactions of the Class 3 NAb C135 with the SARS-CoV-2 spike protein, proposing a mechanistic basis for inhibition via multiple conformations that can effectively prevent ACE2 from binding to the spike protein, despite C135 not directly blocking the ACE2 binding motif. Overall, we demonstrate that deep RNA sequencing combined with structural modeling offers the new potential to identify and understand novel therapeutic(s) NAbs in individuals lacking certain immune responses due to their poor endogenous production. Our results suggest a possible window of opportunity for administration of such NAbs when their full sequence becomes available. A method involving rapid deep RNA sequencing of patients infected with SARS-CoV-2 or its variants at the earliest infection time could help to develop personalized treatments using the identified specific NAbs.
Collapse
Affiliation(s)
- Alger M. Fredericks
- Department of Surgery, Division of Surgical Research, The Miriam Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Kyle W. East
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | | | - Alfred Ayala
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - William G. Cioffi
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Maya Cohen
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - William G. Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Craig T. Lefort
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Gerard J. Nau
- Department of Medicine, Division of Infectious Disease, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Mitchell M. Levy
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Sean F. Monaghan
- Department of Surgery, Division of Surgical Research, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
3
|
Reversible structural changes in the influenza hemagglutinin precursor at membrane fusion pH. Proc Natl Acad Sci U S A 2022; 119:e2208011119. [PMID: 35939703 PMCID: PMC9388137 DOI: 10.1073/pnas.2208011119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hemagglutinin (HA) is the receptor binding and membrane fusion glycoprotein of influenza virus. Like other virus fusion glycoproteins such as those of HIV and Ebola, HA is synthesized as a precursor (HA0) that requires cleavage for fusion activity and, for influenza, exposure to low pH. Studies by X-ray and cryogenic electron microscopy (cryo-EM) have characterized conformational changes in HA that occur at membrane fusion pH. Here, using cryo-EM, we report that there are extensive changes to the structure of HA0 at low pH but that, unlike the changes in HA, the changes are reversible on return to neutral pH. The low-pH structure of HA0 is considered an indicator of potential intermediates in the conformational changes in HA at fusion pH. The subunits of the influenza hemagglutinin (HA) trimer are synthesized as single-chain precursors (HA0s) that are proteolytically cleaved into the disulfide-linked polypeptides HA1 and HA2. Cleavage is required for activation of membrane fusion at low pH, which occurs at the beginning of infection following transfer of cell-surface–bound viruses into endosomes. Activation results in extensive changes in the conformation of cleaved HA. To establish the overall contribution of cleavage to the mechanism of HA-mediated membrane fusion, we used cryogenic electron microscopy (cryo-EM) to directly image HA0 at neutral and low pH. We found extensive pH-induced structural changes, some of which were similar to those described for intermediates in the refolding of cleaved HA at low pH. They involve a partial extension of the long central coiled coil formed by melting of the preexisting secondary structure, threading it between the membrane-distal domains, and subsequent refolding as extended helices. The fusion peptide, covalently linked at its N terminus, adopts an amphipathic helical conformation over part of its length and is repositioned and packed against a complementary surface groove of conserved residues. Furthermore, and in contrast to cleaved HA, the changes in HA0 structure at low pH are reversible on reincubation at neutral pH. We discuss the implications of covalently restricted HA0 refolding for the cleaved HA conformational changes that mediate membrane fusion and for the action of antiviral drug candidates and cross-reactive anti-HA antibodies that can block influenza infectivity.
Collapse
|
4
|
Gamblin SJ, Vachieri SG, Xiong X, Zhang J, Martin SR, Skehel JJ. Hemagglutinin Structure and Activities. Cold Spring Harb Perspect Med 2021; 11:a038638. [PMID: 32513673 PMCID: PMC8485738 DOI: 10.1101/cshperspect.a038638] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hemagglutinins (HAs) are the receptor-binding and membrane fusion glycoproteins of influenza viruses. They recognize sialic acid-containing, cell-surface glycoconjugates as receptors but have limited affinity for them, and, as a consequence, virus attachment to cells requires their interaction with several virus HAs. Receptor-bound virus is transferred into endosomes where membrane fusion by HAs is activated at pH between 5 and 6.5, depending on the strain of virus. Fusion activity requires extensive rearrangements in HA conformation that include extrusion of a buried "fusion peptide" to connect with the endosomal membrane, form a bridge to the virus membrane, and eventually bring both membranes close together. In this review, we give an overview of the structures of the 16 genetically and antigenically distinct subtypes of influenza A HA in relation to these two functions in virus replication and in relation to recognition of HA by antibodies that neutralize infection.
Collapse
Affiliation(s)
- Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sébastien G Vachieri
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
5
|
Eller MW, Siaw HMH, Dyer RB. Stability of HA2 Prefusion Structure and pH-Induced Conformational Changes in the HA2 Domain of H3N2 Hemagglutinin. Biochemistry 2021; 60:2623-2636. [PMID: 34435771 PMCID: PMC8485334 DOI: 10.1021/acs.biochem.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza hemagglutinin is the fusion protein that mediates fusion of the viral and host membranes through a large conformational change upon acidification in the developing endosome. The "spring-loaded" model has long been used to describe the mechanism of hemagglutinin and other type 1 viral glycoproteins. This model postulates a metastable conformation of the HA2 subunit, caged from adopting a lower-free energy conformation by the HA1 subunit. Here, using a combination of biochemical and spectroscopic methods, we study a truncated construct of HA2 (HA2*, lacking the transmembrane domain) recombinantly expressed in Escherichia coli as a model for HA2 without the influence of HA1. Our data show that HA2* folds into a conformation like that of HA2 in full length HA and forms trimers. Upon acidification, HA2* undergoes a conformational change that is consistent with the change from pre- to postfusion HA2 in HA. This conformational change is fast and occurs on a time scale that is not consistent with aggregation. These results suggest that the prefusion conformation of HA2 is stable and the change to the postfusion conformation is due to protonation of HA2 itself and not merely uncaging by HA1.
Collapse
Affiliation(s)
- Micah W Eller
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hew Ming Helen Siaw
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Narkhede YB, Gonzalez KJ, Strauch EM. Targeting Viral Surface Proteins through Structure-Based Design. Viruses 2021; 13:v13071320. [PMID: 34372526 PMCID: PMC8310314 DOI: 10.3390/v13071320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
The emergence of novel viral infections of zoonotic origin and mutations of existing human pathogenic viruses represent a serious concern for public health. It warrants the establishment of better interventions and protective therapies to combat the virus and prevent its spread. Surface glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent target for antivirals as well as vaccines. This review focuses on recent advances for computational structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal and emerging respiratory viruses.
Collapse
Affiliation(s)
- Yogesh B Narkhede
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
| | - Karen J Gonzalez
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
| | - Eva-Maria Strauch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA;
- Correspondence:
| |
Collapse
|
7
|
Arutyunova E, Khan MB, Fischer C, Lu J, Lamer T, Vuong W, van Belkum MJ, McKay RT, Tyrrell DL, Vederas JC, Young HS, Lemieux MJ. N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 M pro Dimer. J Mol Biol 2021; 433:167003. [PMID: 33895266 PMCID: PMC8061786 DOI: 10.1016/j.jmb.2021.167003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
The main protease (Mpro, also known as 3CL protease) of SARS-CoV-2 is a high priority drug target in the development of antivirals to combat COVID-19 infections. A feline coronavirus antiviral drug, GC376, has been shown to be effective in inhibiting the SARS-CoV-2 main protease and live virus growth. As this drug moves into clinical trials, further characterization of GC376 with the main protease of coronaviruses is required to gain insight into the drug's properties, such as reversibility and broad specificity. Reversibility is an important factor for therapeutic proteolytic inhibitors to prevent toxicity due to off-target effects. Here we demonstrate that GC376 has nanomolar Ki values with the Mpro from both SARS-CoV-2 and SARS-CoV strains. Restoring enzymatic activity after inhibition by GC376 demonstrates reversible binding with both proteases. In addition, the stability and thermodynamic parameters of both proteases were studied to shed light on physical chemical properties of these viral enzymes, revealing higher stability for SARS-CoV-2 Mpro. The comparison of a new X-ray crystal structure of Mpro from SARS-CoV complexed with GC376 reveals similar molecular mechanism of inhibition compared to SARS-CoV-2 Mpro, and gives insight into the broad specificity properties of this drug. In both structures, we observe domain swapping of the N-termini in the dimer of the Mpro, which facilitates coordination of the drug's P1 position. These results validate that GC376 is a drug with an off-rate suitable for clinical trials.
Collapse
Affiliation(s)
- Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Conrad Fischer
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Jimmy Lu
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Tess Lamer
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Wayne Vuong
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Marco J van Belkum
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Ryan T McKay
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada.
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 2R3, Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada.
| |
Collapse
|
8
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
9
|
Knight M, Changrob S, Li L, Wilson PC. Imprinting, immunodominance, and other impediments to generating broad influenza immunity. Immunol Rev 2020; 296:191-204. [PMID: 32666572 DOI: 10.1111/imr.12900] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Natural influenza virus infections and seasonal vaccinations often do not confer broadly neutralizing immunity across diverse influenza strains. In addition, the virus is capable of rapid antigenic drift in order to evade pre-existing immunity. The surface glycoproteins, hemagglutinin, and neuraminidase can easily mutate their immunodominant epitopes without impacting fitness. Skewing human antibody repertoires to target more conserved epitopes is thus an expanding area of research: Many groups are attempting to produce universal influenza vaccines that can protect across a wide variety of strains. Achieving this goal will require a detailed understanding of how infection history impacts humoral responses. It will also require the ability to manipulate or enhance B cell selection in order to expand clones that can recognize subdominant but protective epitopes. In this review, we will discuss what immune imprinting means to immunologists and describe efforts to overcome or silence imprinting in order to improve vaccination efficiency.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Siriruk Changrob
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
De Jong NMC, Aartse A, Van Gils MJ, Eggink D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Rev Vaccines 2020; 19:563-577. [PMID: 32510256 DOI: 10.1080/14760584.2020.1777861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Influenza virus infections cause serious illness in millions of people each year. Although influenza virus vaccines are available, they are not optimally effective due to mismatches between the influenza virus strains used for the vaccine and the circulating strains. To improve protection by vaccines, a broadly protective or universal vaccine may be required. Strategies to develop universal vaccines aim to elicit broadly reactive antibodies, which target regions on the viral hemagglutinin (HA) protein which are conserved between strains. Broadly reactive antibodies have helped to identify such targets and can guide the design of such a vaccine. AREAS COVERED The first part of this review provides an in-depth overview of broadly reactive anti-HA antibodies, discussing their origin, breadth and their mechanisms of protection. The second part discusses the technical design and mode of action of potential universal vaccine candidates that aim to elicit these broadly reactive antibodies and provide protection against a majority of influenza strains. EXPERT OPINION While great strides have been made in the development of universal influenza vaccine candidates, real-life use still requires improvement of stability, enhancement of their breadth of protection and ease of production, while efficacies need to be determined in human trials.
Collapse
Affiliation(s)
- Nina M C De Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands.,Department of Virology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Marit J Van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
11
|
Benhaim MA, Lee KK. New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes. Viruses 2020; 12:E413. [PMID: 32276357 PMCID: PMC7232462 DOI: 10.3390/v12040413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-mediated membrane fusion is a highly regulated biological process essential for cellular and organismal functions and infection by enveloped viruses. During viral entry the membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature of these conformational changes and their impact on the membranes have long-eluded characterization. Recent advances in structural and biophysical methodologies have enabled researchers to directly observe viral fusion proteins as they carry out their functions during membrane fusion. Here we review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated membrane fusion. We highlight how recent technological advances and new biophysical approaches are providing unprecedented new insight into the membrane fusion reaction.
Collapse
Affiliation(s)
- Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 98195-7610, USA
| |
Collapse
|
12
|
Protein profiling and pseudo-parallel reaction monitoring to monitor a fusion-associated conformational change in hemagglutinin. Anal Bioanal Chem 2019; 411:4987-4998. [PMID: 31254054 DOI: 10.1007/s00216-019-01921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
Influenza infection requires viral escape from early endosomes into the cytosol, which is enabled by an acid-induced irreversible conformational transformation in the viral protein hemagglutinin. Despite the direct relationship between this conformational change and infectivity, label-free methods for characterizing this and other protein conformational changes in biological mixtures are limited. While the chemical reactivity of the protein backbone and side-chain residues is a proxy for protein conformation, coupling this reactivity to quantitative mass spectrometry is a challenge in complex environments. Herein, we evaluate whether electrophilic amidination coupled with pseudo-parallel reaction monitoring is an effective label-free approach to detect the fusion-associated conformational transformation in recombinant hemagglutinin (rHA). We identified rHA peptides that are differentially amidinated between the pre- and post-fusion states, and validated that this difference relies upon the fusion-associated conformational switch. We further demonstrate that we can distinguish the fusion profile in a matrix of digested cellular lysate. This fusion assay can be used to evaluate fusion competence for modified HA. Graphical abstract.
Collapse
|
13
|
Species-Specific Conservation of Linear Antigenic Sites on Vaccinia Virus A27 Protein Homologs of Orthopoxviruses. Viruses 2019; 11:v11060493. [PMID: 31146446 PMCID: PMC6631127 DOI: 10.3390/v11060493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32–39, #1B: aa 28–33, #1C: aa 26–31, #1D: 28–34, #4: aa 9–14, and #5: aa 68–71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A–D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5–200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A–D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.
Collapse
|
14
|
Lu IN, Kirsteina A, Farinelle S, Willieme S, Tars K, Muller CP, Kazaks A. Structure and applications of novel influenza HA tri-stalk protein for evaluation of HA stem-specific immunity. PLoS One 2018; 13:e0204776. [PMID: 30261065 PMCID: PMC6160157 DOI: 10.1371/journal.pone.0204776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
Long alpha helix (LAH) from influenza virus hemagglutinin (HA) stem or stalk domain is one of the most conserved influenza virus antigens. Expression of N-terminally extended LAH in E. coli leads to assembly of α-h elical homotrimer which is structurally nearly identical to the corresponding region of post-fusion form of native HA. This novel tri-stalk protein was able to differentiate between group 1 and 2 influenza in ELISA with virus-infected mice sera. It was also successfully applied for enzyme-linked immunospot assay to estimate the number of HA stem-reactive antibody (Ab)-secreting cells in mice. An in-house indirect ELISA was developed using a HA tri-stalk protein as a coating antigen for evaluation of HA stem-specific Ab levels in human sera collected in Luxembourg from 211 persons with occupational exposure to swine before the pandemic H1N1/09 virus had spread to Western Europe. Our results show that 70% of these pre-pandemic sera are positive for HA stem-specific Abs. In addition, levels of HA stem-specific Abs have positive correlation with the corresponding IgG titers and neutralizing activities against pandemic H1N1/09 virus.
Collapse
Affiliation(s)
- I-Na Lu
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Anna Kirsteina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Sophie Farinelle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Willieme
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Department of Molecular Biology, Faculty of Biology, Riga, Latvia
| | - Claude P Muller
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Laboratoire National de Santé, Dudelange, Luxembourg
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
15
|
Cantini F, Banci L. Structural Knowledge for Molecular Optimization: The Cases of Metal-Mediated Protein-Protein Interactions and Structural Vaccinology. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Francesca Cantini
- Magnetic Resonance Center (CERM); University of Florence; Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM); University of Florence; Via L. Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
16
|
Atomistic simulations indicate the functional loop-to-coiled-coil transition in influenza hemagglutinin is not downhill. Proc Natl Acad Sci U S A 2018; 115:E7905-E7913. [PMID: 30012616 DOI: 10.1073/pnas.1805442115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza hemagglutinin (HA) mediates viral entry into host cells through a large-scale conformational rearrangement at low pH that leads to fusion of the viral and endosomal membranes. Crystallographic and biochemical data suggest that a loop-to-coiled-coil transition of the B-loop region of HA is important for driving this structural rearrangement. However, the microscopic picture for this proposed "spring-loaded" movement is missing. In this study, we focus on understanding the transition of the B loop and perform a set of all-atom molecular dynamics simulations of the full B-loop trimeric structure with the CHARMM36 force field. The free-energy profile constructed from our simulations describes a B loop that stably folds half of the postfusion coiled coil in tens of microseconds, but the full coiled coil is unfavorable. A buried hydrophilic residue, Thr59, is implicated in destabilizing the coiled coil. Interestingly, this conserved threonine is the only residue in the B loop that strictly differentiates between the group 1 and 2 HA molecules. Microsecond-scale constant temperature simulations revealed that kinetic traps in the structural switch of the B loop can be caused by nonnative, intramonomer, or intermonomer β-sheets. The addition of the A helix stabilized the postfusion state of the B loop, but introduced the possibility for further β-sheet structures. Overall, our results do not support a description of the B loop in group 2 HAs as a stiff spring, but, rather, it allows for more structural heterogeneity in the placement of the fusion peptides during the fusion process.
Collapse
|
17
|
Characterisation of the antigenic epitopes in the subunit 2 haemagglutinin of avian influenza virus H5N1. Arch Virol 2018; 163:2199-2212. [DOI: 10.1007/s00705-018-3896-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 01/21/2023]
|
18
|
Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat Commun 2018; 9:359. [PMID: 29367723 PMCID: PMC5783933 DOI: 10.1038/s41467-017-02725-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/20/2017] [Indexed: 01/22/2023] Open
Abstract
Current influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine. Layered nanoparticles are fabricated by desolvating tetrameric M2e into protein nanoparticle cores and coating these cores by crosslinking headless HAs. Representative headless HAs of two HA phylogenetic groups are constructed and purified. Vaccinations with the resulting protein nanoparticles in mice induces robust long-lasting immunity, fully protecting the mice against challenges by divergent influenza A viruses of the same group or both groups. The results demonstrate the importance of incorporating both structure-stabilized HA stalk domains and M2e into a universal influenza vaccine to improve its protective potency and breadth. These potent disassemblable protein nanoparticles indicate a wide application in protein drug delivery and controlled release. Relatively well conserved domains of influenza A virus (IAV) proteins are potential candidates for the development of a universal IAV vaccine. Here, Deng et al. combine two such conserved antigens (M2e and HA stalk) in a double-layered protein nanoparticle and show that it protects against divergent IAVs in mice.
Collapse
|
19
|
Di Lella S, Herrmann A, Mair CM. Modulation of the pH Stability of Influenza Virus Hemagglutinin: A Host Cell Adaptation Strategy. Biophys J 2017; 110:2293-2301. [PMID: 27276248 DOI: 10.1016/j.bpj.2016.04.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/15/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Proteins undergo dynamic structural changes to function within the range of physical and chemical conditions of their microenvironments. Changes in these environments affect their activity unless the respective mutations preserve their proper function. Here, we examine the influenza A virus spike protein hemagglutinin (HA), which undergoes a dynamic conformational change that is essential to the viral life cycle and is dependent on endosomal pH. Since the cells of different potential hosts exhibit different levels of pH, the virus can only cross species barriers if HA undergoes mutations that still permit the structural change to occur. This key event occurs after influenza A enters the host cell via the endocytic route, during its intracellular transport inside endosomes. The acidic pH inside these vesicles triggers a major structural transition of HA that induces fusion of the viral envelope and the endosomal membrane, and permits the release of the viral genome. HA experiences specific mutations that alter its pH stability and allow the conformational changes required for fusion in different hosts, despite the differences in the degree of acidification of their endosomes. Experimental and theoretical studies over the past few years have provided detailed insights into the structural aspects of the mutational changes that alter its susceptibility to different pH thresholds. We will illustrate how such mutations modify the protein's structure and consequently its pH stability. These changes make HA an excellent model of the way subtle structural modifications affect a protein's stability and enable it to function in diverse environments.
Collapse
Affiliation(s)
- Santiago Di Lella
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany; Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Andreas Herrmann
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Caroline M Mair
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Human Monoclonal Antibody 81.39a Effectively Neutralizes Emerging Influenza A Viruses of Group 1 and 2 Hemagglutinins. J Virol 2016; 90:10446-10458. [PMID: 27630240 PMCID: PMC5110155 DOI: 10.1128/jvi.01284-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
The pandemic threat posed by emerging zoonotic influenza A viruses necessitates development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hMAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here, we investigated the ability of the hMAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a at a 50% effective concentration (EC50) of <0.01 to 4.9 μg/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50 μg/ml; it contained HA2-Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing MAb CR8020. Notably, among group 1 HA viruses, H11-H13 and H16 subtypes were not neutralized at 50 μg/ml; they shared the substitution HA2-Asp19Asn/Ala. Conversely, H9 viruses harboring HA2-Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA2-Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg of body weight) at 24 or 48 h after infection with recently emerged A(H5N2), A(H5N8), A(H6N1), or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA2-Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24- to 72-h-delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses.
IMPORTANCE Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans, raising public health concerns. Development of novel anti-influenza therapeutics with a broad spectrum of activity against various subtypes is necessary to mitigate disease severity. Here, we demonstrate that the hemagglutinin (HA) stalk-targeting human monoclonal antibody 81.39a effectively neutralized the majority of influenza A viruses tested, representing 16 HA subtypes. Furthermore, delayed treatment with 81.39a significantly suppressed virus replication in the lungs, prevented dramatic body weight loss, and increased survival rates of mice infected with A(H5Nx), A(H6N1), or A(H7N9) viruses. When tested in ferrets, delayed 81.39a treatment reduced viral titers, particularly in the lower respiratory tract, and substantially alleviated disease symptoms associated with severe A(H1N1)pdm09 influenza. Collectively, our data demonstrated the effectiveness of 81.39a against both seasonal and emerging influenza A viruses.
Collapse
|
21
|
Gaiotto T, Hufton SE. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning. PLoS One 2016; 11:e0164296. [PMID: 27741319 PMCID: PMC5065140 DOI: 10.1371/journal.pone.0164296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA) are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies) which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1)pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu), 2009 H1N1 pandemic (swine flu) and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our deep sequence analysis predicted that binding to the emerging H1N1 strain (A/Christchurch/16/2010) carrying the HA2-E47K mutation would not affect binding was confirmed experimentally. This demonstrates yeast display, in combination with deep sequencing, may be able to predict antibody reactivity to emerging influenza strains so assisting in the preparation for future influenza pandemics.
Collapse
Affiliation(s)
- Tiziano Gaiotto
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom
| | - Simon E. Hufton
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Lin X, Noel JK, Wang Q, Ma J, Onuchic JN. Lowered pH Leads to Fusion Peptide Release and a Highly Dynamic Intermediate of Influenza Hemagglutinin. J Phys Chem B 2016; 120:9654-60. [PMID: 27541202 DOI: 10.1021/acs.jpcb.6b06775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemagglutinin (HA), the membrane-bound fusion protein of the influenza virus, enables the entry of virus into host cells via a structural rearrangement. There is strong evidence that the primary trigger for this rearrangement is the low pH environment of a late endosome. To understand the structural basis and the dynamic consequences of the pH trigger, we employed explicit-solvent molecular dynamics simulations to investigate the initial stages of the HA transition. Our results indicate that lowered pH destabilizes HA and speeds up the dissociation of the fusion peptides (FPs). A buried salt bridge between the N-terminus and Asp1122 of HA stem domain locks the FPs and may act as one of the pH sensors. In line with recent observations from simplified protein models, we find that, after the dissociation of FPs, a structural order-disorder transition in a loop connecting the central coiled-coil to the C-terminal domains produces a highly mobile HA. This motion suggests the existence of a long-lived asymmetric or "symmetry-broken" intermediate during the HA conformational change. This intermediate conformation is consistent with models of hemifusion, and its early formation during the conformational change has implications for the aggregation seen in HA activity.
Collapse
Affiliation(s)
- Xingcheng Lin
- Center for Theoretical Biological Physics, Rice University , Houston, Texas 77030, United States.,Department of Physics and Astronomy, Rice University , Houston, Texas 77005, United States
| | - Jeffrey K Noel
- Max Delbrück Center for Molecular Medicine , Berlin 13125, Germany.,Fritz Haber Institute of the Max Planck Society , Berlin 14195, Germany
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston 77030, Texas, United States
| | - Jianpeng Ma
- Center for Theoretical Biological Physics, Rice University , Houston, Texas 77030, United States.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston 77030, Texas, United States.,Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University , Houston, Texas 77030, United States.,Department of Physics and Astronomy, Rice University , Houston, Texas 77005, United States.,Departments of Chemistry and Biosciences, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
23
|
Calder LJ, Rosenthal PB. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat Struct Mol Biol 2016; 23:853-8. [PMID: 27501535 PMCID: PMC6485592 DOI: 10.1038/nsmb.3271] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
The lipid-enveloped influenza virus enters host cells during infection by binding cell surface receptors and, following receptor-mediated endocytosis, fusing with the membrane of the endosome, delivering the viral genome and transcription machinery into the host cell. These events are mediated by the haemagglutinin (HA) surface glycoprotein. At the low pH of the endosome, an irreversible conformational change in the HA, including the exposure of the hydrophobic fusion peptide, activates membrane fusion. Here we use electron cryomicroscopy and cryotomography to image influenza virus fusion with target membranes at low pH. We visualize structural intermediates of HA and their interactions with membranes during the course of membrane fusion as well as ultra-structural changes in the virus that accompany membrane fusion. Our observations are relevant to a wide range of protein-mediated membrane fusion processes and demonstrate how dynamic membrane events may be studied by cryomicroscopy.
Collapse
|
24
|
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion. J Virol 2016; 90:6948-6962. [PMID: 27226364 DOI: 10.1128/jvi.00240-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus.
Collapse
|
25
|
Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza. PLoS Pathog 2016; 12:e1005692. [PMID: 27336297 PMCID: PMC4918916 DOI: 10.1371/journal.ppat.1005692] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza’s major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i) results in more rapid clearance of the antigen; (ii) leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii) masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza. The current influenza vaccine requires frequent updating in order to protect against small changes in the virus from one year to the next as well as larger changes associated with the emergence of new influenza strains from zoonotic reservoirs that cause pandemics. There is a considerable interest in developing “universal” vaccines that will boost immune responses to the conserved regions of the virus, in particular, to the stem region of the major virus surface molecule hemagglutinin (HA). However, recent data reveals that vaccination results in very limited boosting of antibodies to the stem of HA. We use mathematical models to explore different hypotheses that may explain why vaccination does not boost antibodies to the conserved parts of the virus. By confronting our models with the data from the human vaccination trials we found that the key mechanism preventing effective boosting of the responses to the stem of HA is masking of the stem by pre-existing antibodies developed during previous infections and vaccinations. We discuss how this masking effect could be overcome in a “universal” influenza vaccine.
Collapse
|
26
|
Herpesvirus gB: A Finely Tuned Fusion Machine. Viruses 2015; 7:6552-69. [PMID: 26690469 PMCID: PMC4690880 DOI: 10.3390/v7122957] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 01/03/2023] Open
Abstract
Enveloped viruses employ a class of proteins known as fusogens to orchestrate the merger of their surrounding envelope and a target cell membrane. Most fusogens accomplish this task alone, by binding cellular receptors and subsequently catalyzing the membrane fusion process. Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins. We summarize what is currently known about gB from two closely related herpesviruses, HSV-1 and HSV-2, with emphasis on the structure of the largely uncharted membrane interacting regions of this fusogen. We propose that the unusual mechanism of herpesvirus fusion could be linked to the unique architecture of gB.
Collapse
|
27
|
Cook JD, Soto-Montoya H, Korpela MK, Lee JE. Electrostatic Architecture of the Infectious Salmon Anemia Virus (ISAV) Core Fusion Protein Illustrates a Carboxyl-Carboxylate pH Sensor. J Biol Chem 2015; 290:18495-504. [PMID: 26082488 DOI: 10.1074/jbc.m115.644781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Segment 5, ORF 1 of the infectious salmon anemia virus (ISAV) genome, encodes for the ISAV F protein, which is responsible for viral-host endosomal membrane fusion during a productive ISAV infection. The entry machinery of ISAV is composed of a complex of the ISAV F and ISAV hemagglutinin esterase (HE) proteins in an unknown stoichiometry prior to receptor engagement by ISAV HE. Following binding of the receptor to ISAV HE, dissociation of the ISAV F protein from HE, and subsequent endocytosis, the ISAV F protein resolves into a fusion-competent oligomeric state. Here, we present a 2.1 Å crystal structure of the fusion core of the ISAV F protein determined at low pH. This structure has allowed us to unambiguously demonstrate that the ISAV entry machinery exhibits typical class I viral fusion protein architecture. Furthermore, we have determined stabilizing factors that accommodate the pH-dependent mode of ISAV transmission, and our structure has allowed the identification of a central coil that is conserved across numerous and varied post-fusion viral glycoprotein structures. We then discuss a mechanistic model of ISAV fusion that parallels the paramyxoviral class I fusion strategy wherein attachment and fusion are relegated to separate proteins in a similar fashion to ISAV fusion.
Collapse
Affiliation(s)
- Jonathan D Cook
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hazel Soto-Montoya
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Markus K Korpela
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeffrey E Lee
- From the Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
28
|
Fontana J, Steven AC. Influenza virus-mediated membrane fusion: Structural insights from electron microscopy. Arch Biochem Biophys 2015; 581:86-97. [PMID: 25958107 DOI: 10.1016/j.abb.2015.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Influenza virus, the causative agent of flu, enters the host cell by endocytosis. The low pH encountered inside endosomes triggers conformational changes in the viral glycoprotein hemagglutinin (HA), that mediate fusion of the viral and cellular membranes. This releases the viral genome into the cytoplasm of the infected cell, establishing the onset of the replication cycle. To investigate the structural basis of HA-mediated membrane fusion, a number of techniques have been employed. These include X-ray crystallography, which has provided atomic models of the HA ectodomain in its initial (pre-fusion) state and of part of HA in its final (post-fusion) state. However, this left an information deficit concerning many other aspects of the fusion process. Electron microscopy (EM) approaches are helping to fill this void. For example, influenza virions at neutral pH have been imaged by cryo-EM and cryo-electron tomography (cryo-ET); thin section EM has shown that influenza viruses enter the cell by endocytosis; the large-scale structural changes in HA when virions are exposed to low pH (pre-fusion to post-fusion states) have been visualized by negative staining and cryo-EM; acidification also induces structural changes in the M1 matrix layer and its separation from the viral envelope; intermediate HA conformations between its pre- and post-fusion states have been detected by cryo-ET supplemented with subtomogram averaging; and fusion of influenza virions with liposomes has been visualized by cryo-ET. In this review, we survey EM-based contributions towards the characterization of influenza virus-mediated membrane fusion and anticipate the potential for future developments.
Collapse
Affiliation(s)
- Juan Fontana
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Design and Structure of an Engineered Disulfide-Stabilized Influenza Virus Hemagglutinin Trimer. J Virol 2015; 89:7417-20. [PMID: 25926650 DOI: 10.1128/jvi.00808-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022] Open
Abstract
We engineered a disulfide-stabilized influenza virus hemagglutinin (HA) trimer, termed HA3-SS, by introducing cysteine residues into the HA stem to covalently bridge the three protomers. HA3-SS has increased thermostability compared to wild-type HA, and binding of head- and stem-targeted antibodies (Abs) is preserved; only minor structural changes are found in the vicinity of the additional disulfide. This platform has been applied to H1 and H3 HAs and provides prospects for design of intact, stabilized influenza virus HA immunogens.
Collapse
|
30
|
Garcia NK, Guttman M, Ebner JL, Lee KK. Dynamic changes during acid-induced activation of influenza hemagglutinin. Structure 2015; 23:665-76. [PMID: 25773144 PMCID: PMC4499473 DOI: 10.1016/j.str.2015.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 11/18/2022]
Abstract
Influenza hemagglutinin (HA) mediates virus attachment to host cells and fusion of the viral and endosomal membranes during entry. While high-resolution structures are available for the pre-fusion HA ectodomain and the post-fusion HA2 subunit, the sequence of conformational changes during HA activation has eluded structural characterization. Here, we apply hydrogen-deuterium exchange with mass spectrometry to examine changes in structural dynamics of the HA ectodomain at various stages of activation, and compare the soluble ectodomain with intact HA on virions. At pH conditions approaching activation (pH 6.0-5.5) HA exhibits increased dynamics at the fusion peptide and neighboring regions, while the interface between receptor binding subunits (HA1) becomes stabilized. In contrast to many activation models, these data suggest that HA responds to endosomal acidification by releasing the fusion peptide prior to HA1 uncaging and the spring-loaded refolding of HA2. This staged process may facilitate efficient HA-mediated fusion.
Collapse
Affiliation(s)
- Natalie K Garcia
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jamie L Ebner
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Roche J, Louis JM, Aniana A, Ghirlando R, Bax A. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding. JOURNAL OF BIOMOLECULAR NMR 2015; 61:235-48. [PMID: 25631354 PMCID: PMC4398632 DOI: 10.1007/s10858-015-9900-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/17/2015] [Indexed: 05/22/2023]
Abstract
The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6 HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6 HB trimer and the membrane affinity of gp41's ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41's transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.
Collapse
Affiliation(s)
- Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Li X, van Oers MM, Vlak JM, Braakman I. Folding of influenza virus hemagglutinin in insect cells is fast and efficient. J Biotechnol 2015; 203:77-83. [PMID: 25828453 DOI: 10.1016/j.jbiotec.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 01/19/2023]
Abstract
Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined in mammalian cells. In different mammalian cell lines the protein follows the same folding pathway with identical folding intermediates, but folds with very different kinetics. To examine the effect of cellular context on HA folding and to test to which extent insect cells would support the HA folding process, we expressed HA in Sf9 insect cells. Strikingly, in this invertebrate system HA folded faster and more efficiently, still via the same folding intermediates as in vertebrate cells. Our results suggest that insect cells provide a highly efficient and effective folding environment for influenza virus HA and the ideal production platform for HA (emergency) vaccines.
Collapse
Affiliation(s)
- Xin Li
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
33
|
Prospects of HA-based universal influenza vaccine. BIOMED RESEARCH INTERNATIONAL 2015; 2015:414637. [PMID: 25785268 PMCID: PMC4345066 DOI: 10.1155/2015/414637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/23/2014] [Indexed: 12/02/2022]
Abstract
Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs). Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA). Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs) against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.
Collapse
|
34
|
Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol 2015; 8:211-20. [PMID: 25052763 PMCID: PMC4269809 DOI: 10.1038/mi.2014.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 05/30/2014] [Indexed: 02/04/2023]
Abstract
The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine.
Collapse
|
35
|
A nonfusogenic antigen mimic of influenza hemagglutinin glycoproteins constituted with soluble full-length HA1 and truncated HA2 proteins expressed in E. coli. Mol Biotechnol 2014; 57:128-37. [PMID: 25288022 DOI: 10.1007/s12033-014-9808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A novel method is proposed to produce a soluble recombinant antigen mimic, constituted with full-length HA1 and truncated HA2 individually expressed in E. coli, instead of a precursor form of hemagglutinin protein, that is similar to the naturally processed and disulfide-linked HA1/HA2 on the envelope of the influenza A virus strain X-31 (H3N2). A truncated ectodomain of HA2 subunit, HA2(23-185)/C137S, lacked two membrane-interacting sequences, i.e., the N-terminal fusion peptide as well as the transmembrane domain and short cytoplasmic segment at the C terminus. A recombinant HA1 (rHA1) subunit protein, HA1(1-328)/C14S/L157S, lacked the signal peptide. Mutations C137S and C14S in the HA2 and HA1 subunits, respectively, were introduced to prevent any possible disulfide linkage between the two subunit proteins. The rHA antigen mimic would be nonfusogenic mainly due to the absence of the N-terminal fusion peptide as well as the C-terminal transmembrane domain in the truncated HA2, and eventually less cytotoxic as well. Antibody responses induced by two soluble rHA antigens were evaluated by ELISA assays to detect rHA antigens injected and to validate both anti-HA1 and anti-HA2 antibodies produced in the mice sera. Antigenic rHA proteins also elicited neutralizing antibodies against homologous H3N2 influenza virus in the immunized mice, without severe body weight loss or any other adverse symptoms.
Collapse
|
36
|
Hufton SE, Risley P, Ball CR, Major D, Engelhardt OG, Poole S. The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency. PLoS One 2014; 9:e103294. [PMID: 25084445 PMCID: PMC4118869 DOI: 10.1371/journal.pone.0103294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
The response to the 2009 A(H1N1) influenza pandemic has highlighted the need for additional strategies for intervention which preclude the prior availability of the influenza strain. Here, 18 single domain VHH antibodies against the 2009 A(H1N1) hemagglutinin (HA) have been isolated from a immune alpaca phage displayed library. These antibodies have been grouped as having either (i) non-neutralising, (ii) H1N1 restricted neutralising or (iii) broad cross-subtype neutralising activity. The ability to neutralise different viral subtypes, including highly pathogenic avian influenza (H5N1), correlated with the absence of hemagglutination inhibition activity, loss of binding to HA at acid pH and the absence of binding to the head domain containing the receptor binding site. This data supports their binding to epitopes in the HA stem region and a mechanism of action other than blocking viral attachment to cell surface receptors. After conversion of cross-neutralising antibodies R1a-B6 and R1a-A5 into a bivalent format, no significant enhancement in neutralisation activity was seen against A(H1N1) and A(H5N1) viruses. However, bivalent R1a-B6 showed an 18 fold enhancement in potency against A(H9N2) virus and, surprisingly, gained the ability to neutralise an A(H2N2) virus. This demonstrates that cross-neutralising antibodies, which make lower affinity interactions with the membrane proximal stem region of more divergent HA sub-types, can be optimised by bivalency so increasing their breadth of anti-viral activity. The broad neutralising activity and favourable characteristics, such as high stability, simple engineering into bivalent molecules and low cost production make these single domain antibodies attractive candidates for diagnostics and immunotherapy of pandemic influenza.
Collapse
Affiliation(s)
- Simon E. Hufton
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Paul Risley
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Christina R. Ball
- Technology Development and Infrastructure, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Diane Major
- Division of Virology, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Othmar G. Engelhardt
- Division of Virology, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Stephen Poole
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| |
Collapse
|
37
|
Order and disorder control the functional rearrangement of influenza hemagglutinin. Proc Natl Acad Sci U S A 2014; 111:12049-54. [PMID: 25082896 DOI: 10.1073/pnas.1412849111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza hemagglutinin (HA), a homotrimeric glycoprotein crucial for membrane fusion, undergoes a large-scale structural rearrangement during viral invasion. X-ray crystallography has shown that the pre- and postfusion configurations of HA2, the membrane-fusion subunit of HA, have disparate secondary, tertiary, and quaternary structures, where some regions are displaced by more than 100 Å. To explore structural dynamics during the conformational transition, we studied simulations of a minimally frustrated model based on energy landscape theory. The model combines structural information from both the pre- and postfusion crystallographic configurations of HA2. Rather than a downhill drive toward formation of the central coiled-coil, we discovered an order-disorder transition early in the conformational change as the mechanism for the release of the fusion peptides from their burial sites in the prefusion crystal structure. This disorder quickly leads to a metastable intermediate with a broken threefold symmetry. Finally, kinetic competition between the formation of the extended coiled-coil and C-terminal melting results in two routes from this intermediate to the postfusion structure. Our study reiterates the roles that cracking and disorder can play in functional molecular motions, in contrast to the downhill mechanical interpretations of the "spring-loaded" model proposed for the HA2 conformational transition.
Collapse
|
38
|
Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A 2014; 111:E2514-23. [PMID: 24927560 DOI: 10.1073/pnas.1402766111] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.
Collapse
|
39
|
Immunogen design for HIV-1 and influenza. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1891-1906. [PMID: 24892211 DOI: 10.1016/j.bbapap.2014.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022]
Abstract
Vaccines provide the most cost effective defense against pathogens. Although vaccines have been designed for a number of viral diseases, a vaccine against HIV-1 still remains elusive. In contrast, while there are excellent influenza vaccines, these need to be changed every few years because of antigenic drift and shift. The recent discovery of a large number of broadly neutralizing antibodies (bNAbs) and structural characterization of the conserved epitopes targeted by them presents an opportunity for structure based HIV-1 and influenza A vaccine design. We discuss strategies to design immunogens either targeting a particular antigenic region or focusing on native structure stabilization. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
|
40
|
Harrison JS, Higgins CD, O'Meara MJ, Koellhoffer JF, Kuhlman BA, Lai JR. Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. Structure 2014; 21:1085-96. [PMID: 23823327 DOI: 10.1016/j.str.2013.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Viral fusion proteins undergo dramatic conformational transitions during membrane fusion. For viruses that enter through the endosome, these conformational rearrangements are typically pH sensitive. Here, we provide a comprehensive review of the molecular interactions that govern pH-dependent rearrangements and introduce a paradigm for electrostatic residue pairings that regulate progress through the viral fusion coordinate. Analysis of structural data demonstrates a significant role for side-chain protonation in triggering conformational change. To characterize this behavior, we identify two distinct residue pairings, which we define as Histidine-Cation (HisCat) and Anion-Anion (AniAni) interactions. These side-chain pairings destabilize a particular conformation via electrostatic repulsion through side-chain protonation. Furthermore, two energetic control mechanisms, thermodynamic and kinetic, regulate these structural transitions. This review expands on the current literature by identification of these residue clusters, discussion of data demonstrating their function, and speculation of how these residue pairings contribute to the energetic controls.
Collapse
Affiliation(s)
- Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Mair CM, Ludwig K, Herrmann A, Sieben C. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1153-68. [PMID: 24161712 DOI: 10.1016/j.bbamem.2013.10.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus. Adaptation to different hosts in vitro was shown to require mutations within HA altering the receptor binding and/or fusion behavior of the respective virus strain. Human adapted influenza virus strains (H1N1, H3N2, H2N2) as well as recent avian influenza virus strains (H5, H7 and H9 subtypes) which gained the ability to infect humans mostly contained mutations in the receptor binding site (RBS) of HA enabling increased binding affinity of these viruses to human type (α-2,6 linked sialic acid) receptors. Thus, the receptor binding specificity seems to be the major requirement for successful adaptation to the human host; however, the RBS is not the only determinant of host specificity. Increased binding to a certain cell type does not always correlate with infection efficiency. Furthermore, viruses carrying mutations in the RBS often resulted in reduced viral fitness and were still unable to transmit between mammals. Recently, the pH stability of HA was reported to affect the transmissibility of influenza viruses. This review summarizes recent findings on the adaptation of influenza A viruses to the human host and related amino acid substitutions resulting in altered receptor binding specificity and/or modulated fusion pH of HA. Furthermore, the role of these properties (receptor specificity and pH stability of HA) for adaptation to and transmissibility in the human host is discussed. This article is part of a Special Issue entitled: Viral Membrane Proteins -- Channels for Cellular Networking.
Collapse
Affiliation(s)
- Caroline M Mair
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Kai Ludwig
- Research center of Electron Microscopy, Institute of Chemistry and Biochemistry, Free University Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Andreas Herrmann
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany.
| | - Christian Sieben
- Group of Molecular Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| |
Collapse
|
42
|
Kusumoto K, Akita H, Ishitsuka T, Matsumoto Y, Nomoto T, Furukawa R, El-Sayed A, Hatakeyama H, Kajimoto K, Yamada Y, Kataoka K, Harashima H. Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS NANO 2013; 7:7534-7541. [PMID: 23909689 DOI: 10.1021/nn401317t] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A system that permits the delivery of cargoes to the lung endothelium would be extraordinarily useful in terms of curing a wide variety of lung-related diseases. This study describes the development of a multifunctional envelope-type nanodevice (MEND) that targets the lung endothelium, delivers its encapsulated siRNA to the cytoplasm, and eradicates lung metastasis. The key to the success can be attributed to the presence of a surface-modified GALA peptide that has dual functions: targeting the sialic acid-terminated sugar chains on the pulmonary endothelium and subsequently delivering the encapsulated cargoes to the cytosol via endosomal membrane fusion, analogous to the influenza virus. The active targeting of MENDs without the formation of large aggregates was verified by intravital real-time confocal laser scanning microscopy in living lung tissue. The GALA-modified MEND is a promising carrier that opens a new generation of therapeutic approaches for satisfying unmet medical needs in curing lung diseases.
Collapse
Affiliation(s)
- Kenji Kusumoto
- Laboratory for Formulation Research, Taiho Pharmaceutical Co., Ltd. , 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mallajosyula VVA, Citron M, Lu X, Meulen JT, Varadarajan R, Liang X. In vitro
and in vivo
characterization of designed immunogens derived from the CD-helix of the stem of influenza hemagglutinin. Proteins 2013; 81:1759-75. [PMID: 23625724 DOI: 10.1002/prot.24317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Affiliation(s)
| | - Michael Citron
- Merck Research Laboratories; West Point Pennsylvania 19486
| | - Xianghan Lu
- Merck Research Laboratories; West Point Pennsylvania 19486
| | - Jan ter Meulen
- Merck Research Laboratories; West Point Pennsylvania 19486
| | | | - Xiaoping Liang
- Merck Research Laboratories; West Point Pennsylvania 19486
| |
Collapse
|
44
|
Schönichen A, Webb BA, Jacobson MP, Barber DL. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 2013; 42:289-314. [PMID: 23451893 DOI: 10.1146/annurev-biophys-050511-102349] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Collapse
Affiliation(s)
- André Schönichen
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
45
|
Design of Escherichia coli-expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. J Virol 2012; 86:13434-44. [PMID: 23015722 DOI: 10.1128/jvi.01429-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin protein (HA) on the surface of influenza virus is essential for viral entry into the host cells. The HA1 subunit of HA is also the primary target for neutralizing antibodies. The HA2 subunit is less exposed on the virion surface and more conserved than HA1. We have previously designed an HA2-based immunogen derived from the sequence of the H3N2 A/HK/68 virus. In the present study, we report the design of an HA2-based immunogen from the H1N1 subtype (PR/8/34). This immunogen (H1HA0HA6) and its circular permutant (H1HA6) were well folded and provided complete protection against homologous viral challenge. Antisera of immunized mice showed cross-reactivity with HA proteins of different strains and subtypes. Although no neutralization was observable in a conventional neutralization assay, sera of immunized guinea pigs competed with a broadly neutralizing antibody, CR6261, for binding to recombinant Viet/04 HA protein, suggesting that CR6261-like antibodies were elicited by the immunogens. Stem domain immunogens from a seasonal H1N1 strain (A/NC/20/99) and a recent pandemic strain (A/Cal/07/09) provided cross-protection against A/PR/8/34 viral challenge. HA2-containing stem domain immunogens therefore have the potential to provide subtype-specific protection.
Collapse
|
46
|
Staneková Z, Mucha V, Sládková T, Blaškovičová H, Kostolanský F, Varečková E. Epitope specificity of anti-HA2 antibodies induced in humans during influenza infection. Influenza Other Respir Viruses 2012; 6:389-95. [PMID: 22236105 DOI: 10.1111/j.1750-2659.2011.00328.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The conserved, fusion-active HA2 glycopolypeptide (HA2) subunit of influenza A hemagglutinin comprises four distinct antigenic sites. Monoclonal antibodies (MAbs) recognizing three of these sites are broadly cross-reactive and protective. OBJECTIVES This study aimed to establish whether antibodies specific to these three antigenic sites were elicited during a natural influenza infection or by vaccination of humans. METHODS Forty-five paired acute and convalescent sera from individuals with a confirmed influenza A (subtype H3) infection were examined for the presence of HA2-specific antibodies. The fraction of antibodies specific to three particular antigenic sites (designated IIF4, FC12, and CF2 here) was investigated using competitive enzyme immunoassay. RESULTS Increased levels of antibodies specific to an ectodomain of HA2 (EHA2: N-terminal residues 23-185 of HA2) were detected in 73% of tested convalescent sera (33/45), while an increased level of antibodies specific to the HA2 fusion peptide (N-terminal residues 1-38) was induced in just 15/45 individuals (33%). Competitive assays confirmed that antibodies specific to the IIF4 epitope (within HA2 residues 125-175) prevailed in 86% (13/15) over those specific to the other two epitopes during infection. However, only a negligible increase in HA2-specific antibodies was detectable following vaccination with a current subunit vaccine. CONCLUSIONS We observed that the antigenic site localized within N-terminal HA2 residues 125-175 was more immunogenic than that within residues 1-38 (HA2 fusion protein), although both are weak natural immunogens. We suggest that new anti-influenza vaccines should include HA2 (or specific epitopes localized within this glycopolypeptide) to enhance their cross-protective efficacy.
Collapse
Affiliation(s)
- Zuzana Staneková
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
47
|
Collins R, Holz R, Zimmerberg J. 5.14 The Biophysics of Membrane Fusion. COMPREHENSIVE BIOPHYSICS 2012. [PMCID: PMC7151979 DOI: 10.1016/b978-0-12-374920-8.00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A crucial interplay between protein conformations and lipid membrane energetics emerges as the guiding principle for the regulation and mechanism of membrane fusion in biological systems. As some of the basics of fusion become clear, a myriad of compelling questions come to the fore. Is the interior of the fusion pore protein or lipid? Why is synaptic release so fast? Why is PIP2 needed for exocytosis? How does fusion peptide insertion lead to fusion of viruses to cell membranes? What role does the TMD play? How can studies on membrane fission contribute to our understanding of membrane fusion? What exactly are SNARE proteins doing?
Collapse
|
48
|
The receptor-binding domain of influenza virus hemagglutinin produced in Escherichia coli folds into its native, immunogenic structure. J Virol 2010; 85:865-72. [PMID: 21068239 DOI: 10.1128/jvi.01412-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (HA) surface glycoprotein promotes influenza virus entry and is the key protective antigen in natural immunity and vaccines. The HA protein is a trimeric envelope glycoprotein consisting of a globular receptor-binding domain (HA-RBD) that is inserted into a membrane fusion-mediating stalk domain. Similar to other class I viral fusion proteins, the fusogenic stalk domain spontaneously refolds into its postfusion conformation when expressed in isolation, consistent with this domain being trapped in a metastable conformation. Using X-ray crystallography, we show that the influenza virus HA-RBD refolds spontaneously into its native, immunogenic structure even when expressed in an unglycosylated form in Escherichia coli. In the 2.10-Å structure of the HA-RBD, the receptor-binding pocket is intact and its conformational epitopes are preserved. Recombinant HA-RBD is immunogenic and protective in ferrets, and the protein also binds with specificity to sera from influenza virus-infected humans. Overall, the data provide a structural basis for the rapid production of influenza vaccines in E. coli. From an evolutionary standpoint, the ability of the HA-RBD to refold spontaneously into its native conformation suggests that influenza virus acquired this domain as an insertion into an ancestral membrane-fusion domain. The insertion of independently folding domains into fusogenic stalk domains may be a common feature of class I viral fusion proteins.
Collapse
|
49
|
|
50
|
Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc Natl Acad Sci U S A 2010; 107:13701-6. [PMID: 20615991 DOI: 10.1073/pnas.1007465107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2. The resulting construct (HA6) was expressed in Escherichia coli and refolded from inclusion bodies. Biophysical studies and mutational analysis of the protein indicate that it is folded into the desired neutral pH conformation competent to bind the broadly neutralizing HA2 directed monoclonal 12D1, not the low pH conformation observed in previous studies. HA6 was highly immunogenic in mice and the mice were protected against lethal challenge by the homologous A/HK/68 mouse-adapted virus. An HA6-like construct from another H3 strain (A/Phil/2/82) also protected mice against A/HK/68 challenge. Regions included in HA6 are highly conserved within a subtype and are fairly well conserved within a clade. Targeting the highly conserved HA2 subunit with a bacterially produced immunogen is a vaccine strategy that may aid in pandemic preparedness.
Collapse
|