1
|
Using a Network-Based Analysis Approach to Investigate the Involvement of S. aureus in the Pathogenesis of Granulomatosis with Polyangiitis. Int J Mol Sci 2023; 24:ijms24031822. [PMID: 36768148 PMCID: PMC9915048 DOI: 10.3390/ijms24031822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Chronic nasal carriage of Staphylococcus aureus (SA) has been shown to be significantly higher in GPA patients when compared to healthy subjects, as well as being associated with increased endonasal activity and disease relapse. The aim of this study was to investigate SA involvement in GPA by applying a network-based analysis (NBA) approach to publicly available nasal transcriptomic data. Using these data, our NBA pipeline generated a proteinase 3 (PR3) positive ANCA associated vasculitis (AAV) disease network integrating differentially expressed genes, dysregulated transcription factors (TFs), disease-specific genes derived from GWAS studies, drug-target and protein-protein interactions. The PR3+ AAV disease network captured genes previously reported to be dysregulated in AAV associated. A subnetwork focussing on interactions between SA virulence factors and enriched biological processes revealed potential mechanisms for SA's involvement in PR3+ AAV. Immunosuppressant treatment reduced differential expression and absolute TF activities in this subnetwork for patients with inactive nasal disease but not active nasal disease symptoms at the time of sampling. The disease network generated identified the key molecular signatures and highlighted the associated biological processes in PR3+ AAV and revealed potential mechanisms for SA to affect these processes.
Collapse
|
2
|
Bah I, Alkhateeb T, Youssef D, Yao ZQ, McCall CE, El Gazzar M. KDM6A Lysine Demethylase Directs Epigenetic Polarity of MDSCs during Murine Sepsis. J Innate Immun 2021; 14:112-123. [PMID: 34289476 PMCID: PMC9082193 DOI: 10.1159/000517407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
Sepsis-induced myeloid-derived suppressor cells (MDSCs) increase mortality risk. We previously identified that long non-coding RNA Hotairm1 supports myeloid precursor shifts to Gr1+CD11b+ MDSCs during mouse sepsis. A major unanswered question is what molecular processes control Hotairm1 expression. In this study, we found by a genetic deletion that a specific PU.1-binding site is indispensable in controlling Hotairm1 transcription. We then identified H3K4me3 and H3K27me3 at the PU.1 site on the Hotairm1 promoter. Controlling an epigenetic switch of Hotairm1 transcription by PU.1 was histone KDM6A demethylase for H3K27me3 that derepressed its transcription with possible contributions from Ezh2 methyltransferase for H3K27me3. KDM6A knockdown in MDSCs increased H3K27me3, decreased H3K4me3, and inhibited Hotairm1 transcription activation by PU.1. These results enlighten clinical translation research of PU.1 epigenetic regulation as a potential sepsis immune-checkpoint treatment site.
Collapse
Affiliation(s)
- Isatou Bah
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Tuqa Alkhateeb
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Dima Youssef
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Zhi Q. Yao
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohamed El Gazzar
- Department of Internal Medicine, East Tennessee State University College of Medicine, Johnson City, Tennessee, USA,*Mohamed El Gazzar,
| |
Collapse
|
3
|
Abdel-Azim H, Sun W, Wu L. Strategies to generate functionally normal neutrophils to reduce infection and infection-related mortality in cancer chemotherapy. Pharmacol Ther 2019; 204:107403. [PMID: 31470030 DOI: 10.1016/j.pharmthera.2019.107403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils form an essential part of innate immunity against infection. Cancer chemotherapy-induced neutropenia (CCIN) is a condition in which the number of neutrophils in a patient's bloodstream is decreased, leading to increased susceptibility to infection. Granulocyte colony-stimulating factor (GCSF) has been the only approved treatment for CCIN over two decades. To date, CCIN-related infection and mortality remain a significant concern, as neutrophils generated in response to administered GCSF are functionally immature and cannot effectively fight infection. This review summarizes the molecular regulatory mechanisms of neutrophil granulocytic differentiation and innate immunity development, dissects the biology of GCSF in myeloid expansion, highlights the shortcomings of GCSF in CCIN treatment, updates the recent advance of a selective retinoid agonist that promotes neutrophil granulocytic differentiation, and evaluates the benefits of developing GCSF biosimilars to increase access to GCSF biologics versus seeking a new mode to fundamentally advance GCSF therapy for treatment of CCIN.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, City of Hope National Medical Center, 1500 E. Duarte road, Duarte, CA 91010, USA
| | - Lingtao Wu
- Research and Development, Therapeutic Approaches, 2712 San Gabriel Boulevard, Rosemead, CA 91770, USA.
| |
Collapse
|
4
|
Mennens SFB, Bolomini-Vittori M, Weiden J, Joosten B, Cambi A, van den Dries K. Substrate stiffness influences phenotype and function of human antigen-presenting dendritic cells. Sci Rep 2017; 7:17511. [PMID: 29235514 PMCID: PMC5727489 DOI: 10.1038/s41598-017-17787-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are specialized immune cells that scan peripheral tissues for foreign material or aberrant cells and, upon recognition of such danger signals, travel to lymph nodes to activate T cells and evoke an immune response. For this, DCs travel large distances through the body, encountering a variety of microenvironments with different mechanical properties such as tissue stiffness. While immune-related pathological conditions such as fibrosis or cancer are associated with tissue stiffening, the role of tissue stiffness in regulating key functions of DCs has not been studied yet. Here, we investigated the effect of substrate stiffness on the phenotype and function of DCs by conditioning DCs on polyacrylamide substrates of 2, 12 and 50 kPa. Interestingly, we found that C-type lectin expression on immature DCs (iDCs) is regulated by substrate stiffness, resulting in differential antigen internalization. Furthermore, we show that substrate stiffness affects β2 integrin expression and podosome formation by iDCs. Finally, we demonstrate that substrate stiffness influences CD83 and CCR7 expression on mature DCs, the latter leading to altered chemokine-directed migration. Together, our results indicate that DC phenotype and function are affected by substrate stiffness, suggesting that tissue stiffness is an important determinant for modulating immune responses.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Matteo Bolomini-Vittori
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Khawar MB, Mukhtar M, Abbasi MH, Sheikh N. IL-32θ: a recently identified anti-inflammatory variant of IL-32 and its preventive role in various disorders and tumor suppressor activity. Am J Transl Res 2017; 9:4726-4737. [PMID: 29218075 PMCID: PMC5714761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Interleukin-32 theta (IL-32θ) is newly identified isoform of IL-32 which plays a vital role in inflammatory responses. Like IL-32α and IL-32β, IL-32θ isoform acts as an intracellular inflammatory modulator. It results in reduction of IL-1β production by attenuating the expression of PU.1 and inhibition of monocytes differentiation into macrophages. IL-32θ hinders TNF-α expression by inhibiting p38 MAPK and inhibitor of κB (IκB) as well. It also reserved STAT3-ZEB1 pathway leading to the inhibition of epithelial-mesenchymal transition (EMT) and stemness. Hence, it can be concluded that IL-32θ is an anti-inflammatory cytokine that can act as a tumor suppressor and can play vital role in colon cancer therapies. IL-32θ also plays a crucial role in immune system responses and cellular differentiation during disease pathogenesis. To our best knowledge this is the first ever review to condense the importance, precise mode of action in disease progression and latent remedial implications of IL-32θ in several inflammatory disorders.
Collapse
Affiliation(s)
| | - Maryam Mukhtar
- Department of Zoology, University of The Punjab, Q-A CampusLahore, 54590, Pakistan
| | | | - Nadeem Sheikh
- Department of Zoology, University of The Punjab, Q-A CampusLahore, 54590, Pakistan
- Centre for Applied Molecular Biology (CAMB), University of The Punjab87-West Canal Bank Road, Thokar Niaz Baig Lahore, Pakistan
| |
Collapse
|
6
|
Reduced PU.1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients. Blood 2017; 129:3087-3099. [PMID: 28325862 DOI: 10.1182/blood-2016-07-730135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/28/2017] [Indexed: 01/13/2023] Open
Abstract
β-Thalassemia is associated with several abnormalities of the innate immune system. Neutrophils in particular are defective, predisposing patients to life-threatening bacterial infections. The molecular and cellular mechanisms involved in impaired neutrophil function remain incompletely defined. We used the Hbbth3/+ β-thalassemia mouse and hemoglobin E (HbE)/β-thalassemia patients to investigate dysregulated neutrophil activity. Mature neutrophils from Hbbth3/+ mice displayed a significant reduction in chemotaxis, opsonophagocytosis, and production of reactive oxygen species, closely mimicking the defective immune functions observed in β-thalassemia patients. In Hbbth3/+ mice, the expression of neutrophil CXCR2, CD11b, and reduced NAD phosphate oxidase components (p22phox, p67phox, and gp91phox) were significantly reduced. Morphological analysis of Hbbth3/+ neutrophils showed that a large percentage of mature phenotype neutrophils (Ly6GhiLy6Clow) appeared as band form cells, and a striking expansion of immature (Ly6GlowLy6Clow) hyposegmented neutrophils, consisting mainly of myelocytes and metamyelocytes, was noted. Intriguingly, expression of an essential mediator of neutrophil terminal differentiation, the ets transcription factor PU.1, was significantly decreased in Hbbth3/+ neutrophils. In addition, in vivo infection with Streptococcus pneumoniae failed to induce PU.1 expression or upregulate neutrophil effector functions in Hbbth3/+ mice. Similar changes to neutrophil morphology and PU.1 expression were observed in splenectomized and nonsplenectomized HbE/β-thalassemia patients. This study provides a mechanistic insight into defective neutrophil maturation in β-thalassemia patients, which contributes to deficiencies in neutrophil effector functions.
Collapse
|
7
|
Malu K, Garhwal R, Pelletier MGH, Gotur D, Halene S, Zwerger M, Yang ZF, Rosmarin AG, Gaines P. Cooperative Activity of GABP with PU.1 or C/EBPε Regulates Lamin B Receptor Gene Expression, Implicating Their Roles in Granulocyte Nuclear Maturation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:910-22. [PMID: 27342846 PMCID: PMC5022553 DOI: 10.4049/jimmunol.1402285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/30/2016] [Indexed: 01/26/2023]
Abstract
Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted E-twenty-six (ETS) factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils.
Collapse
Affiliation(s)
- Krishnakumar Malu
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Rahul Garhwal
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Margery G H Pelletier
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Deepali Gotur
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520
| | - Monika Zwerger
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland; and
| | - Zhong-Fa Yang
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Alan G Rosmarin
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Peter Gaines
- Department of Biological Sciences, Biomedical Engineering and Biotechnology Program, University of Massachusetts, Lowell, MA 01854;
| |
Collapse
|
8
|
Wei S, Zhao M, Wang X, Li Y, Wang K. PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol 2016; 9:44. [PMID: 27146823 PMCID: PMC4857283 DOI: 10.1186/s13045-016-0274-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Long noncoding RNA HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) has been characterized as a critical factor in all-trans retinoic acid (ATRA)-induced differentiation of acute promyelocytic leukemia (APL) cells. However, the essential transcription factor for gene expression of HOTAIRM1 is still unknown. FINDINGS Chromatin immunoprecipitation (ChIP) assays revealed that PU.1 constitutively bound to the regulatory region of HOTAIRM1. Co-expression of PU.1 led to the transactivation of the regulatory region of HOTAIRM1 in a reporter assay. Detailed analysis showed that two PU.1 motifs, which were located around +1100 bp downstream of the transcriptional start site of the HOTAIRM1 promoter, were responsible for the PU.1-dependent transactivation. The induction of HOTAIRM1 by ATRA was dependent on PU.1, and ectopic expression of PU.1 significantly up-regulated HOTAIRM1. Furthermore, low HOTAIRM1 expression was observed in APL cells, which was attributed to the reduced PU.1 expression rather than the repression by PML-RARα via the direct binding. CONCLUSION PU.1 directly activates the expression of HOTAIRM1 through binding to the regulatory region of HOTAIRM1 during granulocytic differentiation. The reduced PU.1 expression, rather than PML-RARα itself, results in the low expression of HOTAIRM1 in APL cells. Our findings enrich the knowledge on the regulation of lncRNAs and the underlying mechanisms of the abnormal expression of lncRNAs involved in APL.
Collapse
Affiliation(s)
- Shuyong Wei
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Ming Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Xiaoling Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Yizhen Li
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
IL-32θ inhibits monocytic differentiation of leukemia cells by attenuating expression of transcription factor PU.1. Oncotarget 2015; 6:4394-405. [PMID: 25726525 PMCID: PMC4414198 DOI: 10.18632/oncotarget.3013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/31/2014] [Indexed: 12/18/2022] Open
Abstract
PU.1 is a key transcription factor regulating the myeloid differentiation. PU.1-induced monocytic differentiation into macrophage is also important for blood cancer development. Therefore, we chose THP-1 monocytic leukemia cells to investigate the function of a recently discovered IL-32θ. Genetic analyses identified differences in the sequences of IL-32θ and IL-32β. Using previously established cell lines that stably express IL-32θ and IL-32β and cell lines transiently expressing IL-32θ, we observed that expression of IL-32θ inhibited phorbol 12-myristate 13-acetate (PMA)-induced monocytic differentiation in both THP-1 and HL-60 cells. IL-32θ also suppressed expression of the macrophage cell surface markers, CD11b, CD18, and CD36. Interestingly, expression of IL-32β or IL-32θ had no effect on the expression levels of cell cycle related factors. As a result, we concluded that these isoforms did not contribute to PMA-induced cell cycle arrest. IL-32θ was found to modulate expression of PU.1, a transcription factor necessary for myeloid lineage commitment. Transient expression of PU.1 in THP-1/IL-32θ cells rescued the observed differentiation defect. Additionally, transient expression of both CCAAT-enhancer-binding protein α (C/EBPα) and PU.1 in THP-1/IL-32θ cells exhibited synergistic effects in rescuing the differentiation defect. These observations indicate that intracellular IL-32θ inhibits the differentiation of monocytes into macrophages by attenuating PU.1 expression.
Collapse
|
10
|
Almolda B, de Labra C, Barrera I, Gruart A, Delgado-Garcia JM, Villacampa N, Vilella A, Hofer MJ, Hidalgo J, Campbell IL, González B, Castellano B. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun 2015; 45:80-97. [PMID: 25449577 DOI: 10.1016/j.bbi.2014.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/24/2014] [Accepted: 10/25/2014] [Indexed: 12/31/2022] Open
Abstract
Interleukin-10 (IL-10) is a cytokine classically linked with anti-inflammatory and protective functions in the central nervous system (CNS) in different neurodegenerative and neuroinflammatory conditions. In order to study the specific role of local CNS produced IL-10, we have created a new transgenic mouse line with astrocyte-targeted production of IL-10 (GFAP-IL10Tg). In the present study, the effects of local CNS IL-10 production on microglia, astrocytes and neuronal connectivity under basal conditions were investigated using immunohistochemistry, molecular biology techniques, electrophysiology and behavioural studies. Our results showed that, in GFAP-IL10Tg animals, microglia displayed an increase in density and a specific activated phenotype characterised by morphological changes in specific areas of the brain including the hippocampus, cortex and cerebellum that correlated with the level of transgene expressed IL-10 mRNA. Distinctively, in the hippocampus, microglial cells adopted an elongated morphology following the same direction as the dendrites of pyramidal neurons. Moreover, this IL-10-induced microglial phenotype showed increased expression of certain molecules including Iba1, CD11b, CD16/32 and F4/80 markers, "de novo" expression of CD150 and no detectable levels of either CD206 or MHCII. To evaluate whether this specific activated microglial phenotype was associated with changes in neuronal activity, the electrophysiological properties of pyramidal neurons of the hippocampus (CA3-CA1) were analysed in vivo. We found a lower excitability of the CA3-CA1 synapses and absence of long-term potentiation (LTP) in GFAP-IL10Tg mice. This study is the first description of a transgenic mouse with astrocyte-targeted production of the cytokine IL-10. The findings indicate that IL-10 induces a specific activated microglial phenotype concomitant with changes in hippocampal LTP responses. This transgenic animal will be a very useful tool to study IL-10 functions in the CNS, not only under basal conditions, but also after different experimental lesions or induced diseases.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | - Carmen de Labra
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Iliana Barrera
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | | | - Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Università degli Studi di Modena e Reggio Emilia, 41125, Italy
| | - Markus J Hofer
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Iain L Campbell
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
11
|
Kang JW, Park YS, Kim MS, Lee DH, Bak Y, Ham SY, Song YS, Hong JT, Yoon DY. IL-32α down-regulates β2 integrin (CD18) expression by suppressing PU.1 expression in myeloid cells. Cell Signal 2014; 26:1514-22. [DOI: 10.1016/j.cellsig.2014.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/06/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
|
12
|
Regulation of the hematopoietic cell kinase (HCK) by PML/RARα and PU.1 in acute promyelocytic leukemia. Leuk Res 2011; 36:219-23. [PMID: 21993313 DOI: 10.1016/j.leukres.2011.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/01/2011] [Accepted: 09/17/2011] [Indexed: 11/21/2022]
Abstract
This study investigates the dynamic regulation of human hematopoietic cell kinase (HCK) in acute promyelocytic leukemia (APL) and the underlying molecular mechanisms. First, the level of HCK in APL blasts was found lower than that in normal granulocytes and monocytes. Second, the HCK promoter was repressed by PML/RARα and this repression required PU.1. PU.1 was capable of transactivating the HCK promoter through a region encompassing three PU.1 motifs. Chromatin immunoprecipitation assays provided evidence that PU.1 and PML/RARα bound to the HCK promoter in vivo. Finally, we found an unequivocal increase of HCK expression upon treatment with all-trans retinoic acid.
Collapse
|
13
|
|
14
|
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bédard A, Tenen DG, Hoang T. c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 2007; 27:2919-33. [PMID: 17283046 PMCID: PMC1899927 DOI: 10.1128/mcb.00936-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1beta (IL-1beta) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein beta (C/EBPbeta). Unexpectedly, the interaction interface with PU.1 and C/EBPbeta involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1beta locus is occupied by PU.1 and C/EBPbeta and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Collapse
Affiliation(s)
- Benoit Grondin
- Institute of Research in Immunology and Cancer, University of Montreal, P.O. Box 6128, Downtown station, Montréal, Québec
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Resendes KK, Rosmarin AG. GA-binding protein and p300 are essential components of a retinoic acid-induced enhanceosome in myeloid cells. Mol Cell Biol 2006; 26:3060-70. [PMID: 16581781 PMCID: PMC1446933 DOI: 10.1128/mcb.26.8.3060-3070.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Expression of CD18, the beta chain of the leukocyte integrins, is transcriptionally regulated by retinoic acid (RA) in myeloid cells. Full RA responsiveness of the CD18 gene requires its proximal promoter, which lacks a retinoic acid response element (RARE). Rather, RA responsiveness of the CD18 proximal promoter requires ets sites that are bound by GA-binding protein (GABP). The transcriptional coactivator, p300, further increases CD18 RA responsiveness. We demonstrate that GABPalpha, the ets DNA-binding subunit of GABP, physically interacts with p300 in myeloid cells. This interaction involves the GABPalpha pointed domain (PNT) and identifies p300 as the first known interaction partner of GABPalpha PNT. Expression of the PNT domain, alone, disrupts the GABPalpha-p300 interaction and decreases the RA responsiveness of the CD18 proximal promoter. Chromatin immunoprecipitation and chromosome conformation capture demonstrate that, in the presence of RA, GABPalpha and p300 at the proximal promoter recruit retinoic acid receptor/retinoid X receptor from a distal RARE to form an enhanceosome. A dominant negative p300 construct disrupts enhanceosome formation and reduces the RA responsiveness of CD18. Thus, proteins on the CD18 proximal promoter recruit the distal RARE in the presence of RA. This is the first description of an RA-induced enhanceosome and demonstrates that GABP and p300 are essential components of CD18 RA responsiveness in myeloid cells.
Collapse
Affiliation(s)
- Karen K Resendes
- Dept. of Molecular Biology, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | | |
Collapse
|
16
|
Gross SA, Zheng JH, Le AT, Kerzic PJ, Irons RD. PU.1 phosphorylation correlates with hydroquinone-induced alterations in myeloid differentiation and cytokine-dependent clonogenic response in human CD34+ hematopoietic progenitor cells. Cell Biol Toxicol 2006; 22:229-41. [PMID: 16642264 DOI: 10.1007/s10565-006-0128-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 02/02/2005] [Indexed: 12/12/2022]
Abstract
The transcriptional regulatory factor PU.1 is important for the regulation of a diverse group of hematopoietic and myeloid genes. Posttranslational phosphorylation of PU.1 has been demonstrated in the regulation of a variety of promoters in normal cells. In leukemia cells, differing patterns of PU.1 phosphorylation have been described among acute myelogenous leukemia (AML) subtypes. Therefore, we hypothesized that modulation of PU.1-dependent gene expression might be a molecular mediator of alterations in myeloid cell growth and differentiation that have been demonstrated to be early events in benzene-induced leukemogenesis. We found that freshly isolated human CD34(+) hematopoietic progenitor cells (HPC) exhibit multiple PU.1-DNA binding species that represent PU.1 proteins in varying degrees of phosphorylation states as determined by phosphatase treatment in combination with electrophoretic mobility shift assay (EMSA). Maturation of granulocyte and monocyte lineages is also accompanied by distinct changes in PU.1-DNA binding patterns. Experiments reveal that increasing doses of the benzene metabolite, hydroquinone (HQ) induce a time-and dose-dependent alteration in the pattern of PU.1-DNA binding in cultured human CD34(+) cells, corresponding to hyperphosphorylation of the PU.1 protein. HQ-induced alterations in PU.1-DNA binding are concomitant with a sustained immature CD34(+) phenotype and cytokine-dependent enhanced clonogenic activity in cultured human HPC. These results suggest that HQ induces a dysregulation in the external signals modulating PU.1 protein phosphorylation and this dysregulation may be an early event in the generation of benzene-induced AML.
Collapse
Affiliation(s)
- S A Gross
- Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|
17
|
Anderson G, Gries M, Kurihara N, Honjo T, Anderson J, Donnenberg V, Donnenberg A, Ghobrial I, Mapara MY, Stirling D, Roodman D, Lentzsch S. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood 2005; 107:3098-105. [PMID: 16373662 DOI: 10.1182/blood-2005-08-3450] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CC-4047, an immunomodulatory analog of thalidomide, inhibits multiple myeloma with unknown effects on the human osteoclast lineage. Early osteoclast progenitors are of hematopoietic origin and differentiate into mature bone resorbing multinucleated osteoclasts. We investigated the effects of CC-4047 and thalidomide on human osteoclastogenesis, using in vitro receptor activator of NFkappa-B ligand/macrophage colony-stimulating factor-stimulated bone marrow cell cultures. Treating bone marrow cultures with CC-4047 for 3 weeks decreased osteoclast formation accompanied by complete inhibition of bone resorption. The inhibitory effect was similar when cultures were treated for 3 weeks or for only the first week (90% inhibition), indicating that CC-4047 inhibits early stages of osteoclast formation. Inhibition of osteoclastogenesis by CC-4047 was mediated by a shift of lineage commitment to granulocyte colony-forming units at the expense of granulocyte-macrophage colony-forming units. Further studies revealed that this shift in lineage commitment was mediated through down-regulation of PU.1. Treatment with thalidomide resulted in significantly less potent inhibition of osteoclast formation and bone resorption. These results provide evidence that CC-4047 blocks osteoclast differentiation during early phases of osteoclastogenesis. Therefore, CC-4047 might be a valuable drug for targeting both tumors and osteoclastic activity in patients with multiple myeloma and other diseases associated with osteolytic lesions.
Collapse
Affiliation(s)
- Gülsüm Anderson
- University of Pittsburgh Cancer Institute, Division of Hematology/Oncology, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rosmarin AG, Yang Z, Resendes KK. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 2005; 33:131-43. [PMID: 15676205 DOI: 10.1016/j.exphem.2004.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 12/24/2022]
Abstract
Myeloid cells (granulocytes and monocytes) are derived from multipotent hematopoietic stem cells. Gene transcription plays a critical role in hematopoietic differentiation. However, there is no single transcription factor that is expressed exclusively by myeloid cells and that, alone, acts as a "master" regulator of myeloid fate choice. Rather, myeloid gene expression is controlled by the combinatorial effects of several key transcription factors. Hematopoiesis has traditionally been viewed as linear and hierarchical, but there is increasing evidence of plasticity during blood cell development. Transcription factors strongly influence cellular lineage during hematopoiesis and expression of some transcription factors can alter the fate of developing hematopoietic progenitor cells. PU.1 and CCAAT/enhancer-binding protein alpha (C/EBPalpha) regulate expression of numerous myeloid genes, and gene disruption studies have shown that they play essential, nonredundant roles in myeloid cell development. They function in cooperation with other transcription factors, co-activators, and co-repressors to regulate genes in the context of chromatin. Because of their essential roles in regulating myeloid genes and in myeloid cell development, it has been hypothesized that abnormal expression of PU.1 and C/EBPalpha would contribute to aberrant myeloid differentiation, i.e. acute leukemia. Such a direct link has been elusive until recently. However, there is now persuasive evidence that mutations in both PU.1 and C/EBPalpha contribute directly to development of acute myelogenous leukemia. Thus, normal myeloid development and acute leukemia are now understood to represent opposite sides of the same hematopoietic coin.
Collapse
Affiliation(s)
- Alan G Rosmarin
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | | | |
Collapse
|
19
|
Gangenahalli GU, Gupta P, Saluja D, Verma YK, Kishore V, Chandra R, Sharma RK, Ravindranath T. Stem Cell Fate Specification: Role of Master Regulatory Switch Transcription Factor PU.1 in Differential Hematopoiesis. Stem Cells Dev 2005; 14:140-52. [PMID: 15910240 DOI: 10.1089/scd.2005.14.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PU.1 is a versatile hematopoietic cell-specific ETS-family transcriptional regulator required for the development of both the inborn and the adaptive immunity, owing to its potential ability to regulate the expression of multiple genes specific for different lineages during normal hematopoiesis. It functions in a cell-autonomous manner to control the proliferation and differentiation, predominantly of lymphomyeloid progenitors, by binding to the promoters of many myeloid genes including the macrophage colony-stimulating factor (M-CSF) receptor, granulocyte-macrophage (GM)-CSF receptor alpha, and CD11b. In B cells, it regulates the immunoglobulin lambda 2-4 and kappa 3' enhancers, and J chain promoters. Besides lineage development, PU.1 also directs homing and long-term engraftment of hematopoietic progenitors to the bone marrow. PU.1 gene disruption causes a cell-intrinsic defect in hematopoietic progenitor cells, recognized by an aberrant myeloid and B lymphoid development. It also immortalizes erythroblasts when overexpressed in many cell lines. Although a number of reviews have been published on its functional significance, in the following review we attempted to consolidate information about the differential participation and role of transcription factor PU.1 at various stages of hematopoietic development beginning from stem cell proliferation, lineage commitment and terminal differentiation into distinct blood cell types, and leukemogenesis.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kong T, Eltzschig HK, Karhausen J, Colgan SP, Shelley CS. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci U S A 2004; 101:10440-5. [PMID: 15235127 PMCID: PMC478589 DOI: 10.1073/pnas.0401339101] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory responses are associated with significant changes in tissue metabolism. In particular, metabolic shifts during inflammation can result in significant tissue hypoxia, with resultant induction of hypoxia-responsive genes. Given this association, we hypothesized that leukocyte functional responses are influenced by hypoxia. Initial experiments revealed that exposure of the promonocytic cell line U937 to hypoxia resulted in increased adhesion to activated endothelia. Such increases were transcription-dependent and were blocked by antibodies directed against beta2, but not beta1, integrins. Analysis of beta2 integrin mRNA and protein in U937 cells revealed a 5- to 6-fold increase with hypoxia. Extension of this analysis to hypoxic human whole blood revealed prominent induction of beta2 integrin mRNA and protein ex vivo. Furthermore, murine beta2 integrin mRNA was found to be significantly induced during hypoxia in vivo. Subsequent studies identified a binding site for hypoxia-inducible factor 1 (HIF-1) in the CD18 gene. This gene encodes the subunit common to all four known types of beta2 integrin heterodimer. HIF-1 binding was demonstrated in vivo, and mutational analysis of the HIF-1 site within the CD18 promoter resulted in a loss of hypoxia inducibility. Taken together, these results demonstrate that hypoxia induces leukocyte beta2 integrin expression and function by transcriptional mechanisms dependent upon HIF-1.
Collapse
Affiliation(s)
- Tianqing Kong
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
21
|
Rehli M, Niller HH, Ammon C, Langmann S, Schwarzfischer L, Andreesen R, Krause SW. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J Biol Chem 2003; 278:44058-67. [PMID: 12933821 DOI: 10.1074/jbc.m306792200] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The protein product of the CHI3L1 gene, human cartilage 39-kDa glycoprotein (HC-gp39), is a tissue-restricted, chitin-binding lectin and member of glycosyl hydrolase family 18. In contrast to many other monocyte/macrophage markers, its expression is absent in monocytes and strongly induced during late stages of human macrophage differentiation. To gain insights into the molecular mechanisms underlying its cell type-restricted and maturation-associated expression in macrophages, we initiated a detailed study of the proximal HC-gp39 promoter. Deletion analysis of reporter constructs in macrophage-like THP-1 cells localized a region directing high levels of macrophage-specific reporter gene expression to approximately 300 bp adjacent to the major transcriptional start site. The promoter sequence contained consensus binding sites for several known factors, and specific binding of nuclear PU.1, Sp1, Sp3, USF, AML-1, and C/EBP proteins was detectable in gel shift assays. In vivo footprinting assays with dimethyl sulfate demonstrate that the protection of corresponding sequences was enhanced in macrophages compared with monocytes. Mutational analysis of transcription factor binding sites indicated a predominant role for a single Sp1 binding site in regulating HC-gp39 promoter activity. In addition, gel shift assays using nuclear extracts of monocytes and macrophages demonstrated that the binding of nuclear Sp1, but not Sp3, markedly increases during macrophage differentiation. Our results further highlight the important role of Sp1 in macrophage gene regulation.
Collapse
Affiliation(s)
- Michael Rehli
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dekoninck A, Calomme C, Nizet S, de Launoit Y, Burny A, Ghysdael J, Van Lint C. Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. Oncogene 2003; 22:2882-96. [PMID: 12771939 DOI: 10.1038/sj.onc.1206392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine leukemia virus (BLV) is a B-lymphotropic oncogenic retrovirus whose transcriptional promoter is located in the viral 5' long terminal repeat (LTR). To date, no B-lymphocyte-specific cis-regulatory element has been identified in this region. Since ETS proteins are known to regulate transcription of numerous retroviruses, we searched for the presence in the BLV promoter region of binding sites for PU.1/Spi-1, a B-cell- and macrophage-specific ETS family member. In this report, nucleotide sequence analysis of the viral LTR identified a PUbox located at -95/-84 bp. We demonstrated by gel shift and supershift assays that PU.1 and the related Ets transcription factor Spi-B interacted specifically with this PUbox. A 2-bp mutation (GGAA-->CCAA) within this motif abrogated PU.1/Spi-B binding. This mutation caused a marked decrease in LTR-driven basal gene expression in transient transfection assays of B-lymphoid cell lines, but did not impair the responsiveness of the BLV promoter to the virus-encoded transactivator Tax(BLV). Moreover, ectopically expressed PU.1 and Spi-B proteins transactivated the BLV promoter in a PUbox-dependent manner. Taken together, our results provide the first demonstration of regulation of the BLV promoter by two B-cell-specific Ets transcription factors, PU.1 and Spi-B. The PU.1/Spi-B binding site identified here could play an important role in BLV replication and B-lymphoid tropism.
Collapse
Affiliation(s)
- Ann Dekoninck
- Laboratoire de Virologie Moléculaire, Service de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Bush TS, St Coeur M, Resendes KK, Rosmarin AG. GA-binding protein (GABP) and Sp1 are required, along with retinoid receptors, to mediate retinoic acid responsiveness of CD18 (beta 2 leukocyte integrin): a novel mechanism of transcriptional regulation in myeloid cells. Blood 2003; 101:311-7. [PMID: 12485937 DOI: 10.1182/blood.v101.1.311] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD18 (beta(2) leukocyte integrin) is transcriptionally regulated in myeloid cells, but the mechanisms that increase its expression in response to retinoic acid (RA) have not been defined. The CD18 promoter was activated by RA treatment in stably transfected U937 myeloid cells. We identified a retinoic acid response element (RARE) that lies nearly 900 nucleotides upstream of the CD18 transcriptional start site that was bound by the RA receptors, retinoic acid receptor (RAR) and retinoic X receptor (RXR). This RARE accounted for one half of the RA responsiveness of CD18. However, unexpectedly, one half of the dynamic response to RA was mediated by the 96-nucleotide CD18 minimal promoter, which lacks a recognizable RARE. Binding sites for the ets transcription factor, GA-binding protein (GABP), and Sp1 were required for full RA responsiveness of both the CD18 minimal promoter and the full-length promoter. The ets sites conferred RA responsiveness on an otherwise unresponsive heterologous promoter, and RA responsiveness was directly related to the number of ets sites. The transcriptional coactivator p300/CBP physically interacted with GABP in vivo, and p300 increased the responsiveness of the CD18 promoter to RA. These studies demonstrate a novel role for non-RAR transcription factors in mediating RA activation in myeloid cells. They support the concept that transcription factors other than RARs are required for RA-activated gene expression. We hypothesize that a multiprotein complex--an enhanceosome--that includes GABP, other transcription factors, and coactivators, dynamically regulates CD18 expression in myeloid cells.
Collapse
Affiliation(s)
- Thomas S Bush
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
24
|
Irons RD, Pyatt DW, Gross SA, Stillman WS. Hematopoietic stem and progenitor cells as targets for biological reactive intermediates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:441-9. [PMID: 11764977 DOI: 10.1007/978-1-4615-0667-6_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- R D Irons
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | |
Collapse
|
25
|
Li SL, Valente AJ, Qiang M, Schlegel W, Gamez M, Clark RA. Multiple PU.1 sites cooperate in the regulation of p40(phox) transcription during granulocytic differentiation of myeloid cells. Blood 2002; 99:4578-87. [PMID: 12036891 DOI: 10.1182/blood.v99.12.4578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p40(phox) protein, a regulatory component of the phagocyte NADPH oxidase, is preferentially expressed in cells of myeloid lineage. We investigated transcriptional regulation of the p40(phox) gene in HL-60 myeloid cells. Deletion analysis of approximately 6 kb of the 5'-flanking sequence of the gene demonstrated that the proximal 106 base pair of the promoter exhibited maximum reporter activity. This region contains 3 potential binding sites for PU.1, a myeloid-restricted member of the ets family of transcription factors. Mutation or deletion of each PU.1 site decreased promoter activity, and the level of activity mediated by each site correlated with its binding avidity for PU.1, as determined by gel shift competition assays. Mutation of all 3 sites abolished promoter activity in myeloid cells. PU.1-dependent expression was also observed in the Raji B-cell line, whereas the moderate level of promoter reporter activity in the nonmyeloid HeLa cell line was independent of PU.1. Chromatin immunoprecipitation assay demonstrated occupation of the PU.1 sites by PU.1 in vivo in HL-60 cells. Cotransfection of the pGL3-p40-106 reporter construct with a dominant-negative PU.1 mutant dramatically reduced promoter activity, whereas the overexpression of PU.1 increased promoter activity. Promoter activity and transcript levels of p40(phox) increased in HL-60 cells during dimethyl sulfoxide-induced differentiation toward the granulocyte phenotype, and this was associated with increased cellular levels of PU.1 protein. Our findings demonstrate that PU.1 binding at multiple sites is required for p40(phox) gene transcription in myeloid cells and that granulocytic differentiation is associated with the coordinated up-regulation of PU.1 and p40(phox) expression.
Collapse
Affiliation(s)
- Sen-Lin Li
- Department of Medicine, University of Texas Health Science Center and the South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
26
|
Panopoulos AD, Bartos D, Zhang L, Watowich SS. Control of myeloid-specific integrin alpha Mbeta 2 (CD11b/CD18) expression by cytokines is regulated by Stat3-dependent activation of PU.1. J Biol Chem 2002; 277:19001-7. [PMID: 11889125 PMCID: PMC2388249 DOI: 10.1074/jbc.m112271200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) plays an essential role in regulating multiple aspects of hematopoiesis. To elucidate the role of G-CSF in controlling hematopoietic cell migration capabilities, we studied inducible expression of the myeloid-specific marker, integrin alpha(M)beta(2) (CD11b/CD18, Mac-1), in the myeloid cell line, 32D. We found that G-CSF stimulates the synthesis and cell surface expression of alpha(M) and beta(2) integrin subunits. Induction of both alpha(M) and beta(2) is dependent on Stat3, a major G-CSF-responsive signaling protein. However, the kinetics of expression suggested the involvement of an intermediate protein regulated by Stat3. Our results demonstrate that Stat3 signaling stimulates the expression of PU.1, a critical regulator of myelopoiesis. Furthermore, we show that PU.1 is an essential intermediate for the inducible expression of alpha(M)beta(2) integrin. Thus, Stat3 promotes alpha(M)beta(2) integrin expression through its activation of PU.1. These findings indicate that G-CSF-dependent Stat3 signals stimulate the changes in cell adhesion and migration capabilities that occur during myeloid cell development. These data also demonstrate a link between Stat3 and PU.1, suggesting that Stat3 may play an instructive role in hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Stephanie S. Watowich
- ‡ To whom correspondence should be addressed: University of Texas M.D. Anderson Cancer Center, Box 178, 1515 Holcombe Blvd., Houston, TX 77030. Tel.: 713-792-8376; Fax: 713-794-1322; E-mail:
| |
Collapse
|
27
|
Abstract
Granulocytes and monocytes develop from a common myeloid progenitor. Early granulopoiesis requires the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and terminal neutrophil differentiation is dependent upon C/EBPepsilon, PU.1, Sp1, CDP, and HoxA10. Monopoiesis can be induced by Maf-B, c-Jun, or Egr-1 and is dependent upon PU.1, Sp1, and ICSBP. Signals eminating from cytokine receptors modulate factor activities but do not determine cell fates. Orchestration of the myeloid developmental program is achieved via cooperative gene regulation, via synergistic and inhibitory protein-protein interactions, via promoter auto-regulation and cross-regulation, via regulation of factor levels, and via induction of cell cycle arrest: For example, c-Myb and C/EBPalpha cooperate to activate the mim-1 and NE promoters, PU.1, C/EBPalpha, and CBF, regulate the NE, MPO, and M-CSF Receptor genes. PU.1:GATA-1 interaction and C/EBP suppression of FOG transcription inhibits erythroid and megakaryocyte gene expression. c-Jun:PU.1, ICSBP:PU.1, and perhaps Maf:Jun complexes induce monocytic genes. PU.1 and C/EBPalpha activate their own promoters, C/EBPalpha rapidly induces PU.1 and C/EBPepsilon RNA expression, and RARalpha activates the C/EBPepsilon promoter. Higher levels of PU.1 are required for monopoiesis than for B-lymphopoiesis, and higher C/EBP levels may favor granulopoiesis over monopoiesis. CBF and c-Myb stimulate proliferation whereas C/EBPalpha induces a G1/S arrest; cell cycle arrest is required for terminal myelopoiesis, perhaps due to expression of p53 or hypo-phosphorylated Rb.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA.
| |
Collapse
|
28
|
Abstract
Myeloid blood cells comprise an important component of the immune system. Proper control of both lineage- and stage-specific gene expression is required for normal myeloid cell development and function. In recent years, a relatively small number of critical transcriptional regulators have been identified that serve important roles both in myeloid cell development and regulation of lineage-restricted gene expression in mature myeloid cells. This review summarizes our current understanding of the regulation of lineage- and stage-restricted transcription during myeloid cell differentiation, how critical transcriptional regulators control myeloid cell development, and how perturbations in transcription factor function results in the development of leukemia.
Collapse
Affiliation(s)
- David G Skalnik
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
EL-Gazzar MA, Maeda K, Nomiyama H, Nakao M, Kuwahara K, Sakaguchi N. PU.1 is involved in the regulation of B lineage-associated and developmental stage-dependent expression of the germinal center-associated DNA primase GANP. J Biol Chem 2001; 276:48000-8. [PMID: 11641399 DOI: 10.1074/jbc.m106696200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germinal center-associated DNA primase (GANP) associated with MCM3 of the DNA replication complex is up-regulated selectively in germinal center B cells. We studied promoter activity of the 5' region involved in the developmental stage-dependent expression in B lineage cells by luciferase reporter assay. Selective regulation of ganp expression was observed in the -737-bp promoter region in B and plasma cell lines but was significantly low in pre-B and T cell lines. The deletion constructs displayed a gap decrease after shortening the region from -134 to -108 bp. Further narrowing suggested the involvement of the PU.1 consensus sequence at -126 bp by electrophoretic mobility shift assay. The protein component PU.1 complex is not inhibited with mutated probes at the consensus site but is inhibited with the known PU.1 probe of CD72 and with anti-PU.1 antibody. Moreover, introduction of PU.1 cDNA enhanced the reporter gene activity in a dose-dependent manner in B cells, whereas the reporter construct with the mutated PU.1 site did not respond. Anti-CD40 stimulation induced the reporter activity with a 100% increase, which is not observed with the PU.1-mutated reporter construct. These results demonstrate that the germinal center-associated DNA primase expression is partly regulated by the transcription factor PU.1 expressed in B lineage cells.
Collapse
Affiliation(s)
- M A EL-Gazzar
- Department of Immunology, Kumamoto University School of Medicine, 2-2-1, Honjo, Kumamoto, 860-0811 Japan
| | | | | | | | | | | |
Collapse
|
30
|
Koch W, Böttiger C, Mehilli J, von Beckerath N, Neumann FJ, Schömig A, Kastrati A. Association of a CD18 gene polymorphism with a reduced risk of restenosis after coronary stenting. Am J Cardiol 2001; 88:1120-4. [PMID: 11703955 DOI: 10.1016/s0002-9149(01)02045-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammatory mechanisms play an important role in the process of restenosis after percutaneous coronary interventions, with cell adhesion molecules, including Mac-1 (CD11b/CD18), as key mediators. A single nucleotide polymorphism, 1323C/T, located in exon 11 of the CD18 gene has been previously described, but its functional and clinical significances have not yet been studied. We assessed whether an association exists between this polymorphism and restenosis after coronary stenting. Clinical and angiographic measures of restenosis were evaluated over 1 year after coronary stent placement in 1,207 consecutive patients. Angiographic restenosis was defined as a > or =50% diameter stenosis at follow-up angiography. Determination of the CD18 1323C/T genotype was based on the polymerase chain reaction technique. The frequency of the T allele was 0.34 and its presence reduced the 1-year risk of a major adverse cardiac event (death, myocardial infarction, target vessel revascularization) by 29% (p = 0.011). Carriers of the T allele had a significantly lower risk of angiographic restenosis compared with noncarriers (odds ratio 0.71, 95% confidence interval 0.55 to 0.92). The incidence of restenosis decreased as a function of the number of T alleles: 38.1% in patients with genotype CC, 31.7% in patients with genotype CT, and 26.0% in patients with genotype TT (p = 0.004). Thus, the 1323T allele of the CD18 gene is associated, in a gene dose-dependent manner, with a lower incidence of angiographic restenosis after coronary stenting. This finding suggests that Mac-1 is involved in the development of restenosis after coronary stent placement.
Collapse
Affiliation(s)
- W Koch
- Deutsches Herzzentrum München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Rooney JW, Calame KL. TIF1beta functions as a coactivator for C/EBPbeta and is required for induced differentiation in the myelomonocytic cell line U937. Genes Dev 2001; 15:3023-38. [PMID: 11711437 PMCID: PMC312827 DOI: 10.1101/gad.937201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Representational difference analysis (RDA) cloning has identified transcriptional intermediary factor 1 beta (TIF1beta) as a gene inducibly expressed early during myeloid differentiation of the promyelocytic cell lines HL-60 and U937. To assess the role of TIF1beta, U937 cell lines were made that expressed antisense-hammerhead ribozymes targeted specifically against TIF1beta mRNA. These cells failed to differentiate into macrophages, as determined by several criteria: a nonadherent morphology, a failure to arrest cell cycle, lowered levels of macrophage-specific cell surface markers, resistance to Legionella pneumophila infection, a loss of the ability to phagocytose and chemotax, and decreased expression of chemokine mRNAs. One way TIF1beta acts in macrophage differentiation is to augment C/EBPbeta transcriptional activity. Furthermore, we show by EMSA supershifts and coimmunoprecipitation that C/EBPbeta and TIF1beta physically interact. Although TIF1beta is necessary for macrophage differentiation of U937 cells, it is not sufficient, based on the inability of ectopically expressed TIF1beta to induce or augment phorbol ester-induced macrophage differentiation. We conclude that TIF1beta plays an important role in the terminal differentiation program of macrophages, which involves the coactivation of C/EBPbeta and induction of C/EBPbeta-responsive myeloid genes.
Collapse
Affiliation(s)
- J W Rooney
- Department of Microbiology, Columbia School for Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
32
|
Shelley CS, Da Silva N, Teodoridis JM. During U937 monocytic differentiation repression of the CD43 gene promoter is mediated by the single-stranded DNA binding protein Pur alpha. Br J Haematol 2001; 115:159-66. [PMID: 11722429 DOI: 10.1046/j.1365-2141.2001.03066.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human CD43 is an abundant, heavily glycosylated molecule expressed exclusively on the surface of leucocytes. When leucocytes are at rest, CD43 acts to prevent intercellular interaction but during leucocyte differentiation such cell-cell interaction is facilitated by CD43. This change in the function of CD43 is mediated in part by a reduction in its level of expression. Previous studies have implicated proteolytic cleavage events at the cell surface in causing such reduction. Here, we report that, in an in vitro model of leucocyte differentiation, CD43 mRNA levels were also subject to reduction. Specifically, we demonstrated that within 48 h of the cell line U937 being induced to differentiate along the monocytic pathway, CD43 mRNA levels were reduced by 69%. This decline coincided with a decrease in the activity of the CD43 gene promoter mediated by the single-stranded DNA binding protein Pur alpha. Previously, we have demonstrated that Pur alpha mediates induction of the CD11c beta 2 integrin promoter during U937 differentiation. Consequently, Pur alpha represents a potential means by which the induction of pro-adhesive molecules and the repression of anti-adhesive molecules is co-ordinated during leucocyte differentiation.
Collapse
Affiliation(s)
- C S Shelley
- Renal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
33
|
Yamada T, Abe M, Higashi T, Yamamoto H, Kihara-Negishi F, Sakurai T, Shirai T, Oikawa T. Lineage switch induced by overexpression of Ets family transcription factor PU.1 in murine erythroleukemia cells. Blood 2001; 97:2300-7. [PMID: 11290591 DOI: 10.1182/blood.v97.8.2300] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PU.1 is an Ets family transcription factor essential for myelomonocyte and B-cell development. We previously showed that overexpression of PU.1 in murine erythroleukemia (MEL) cells inhibits growth and erythroid differentiation and induces apoptosis of the cells. In an effort to identify target genes of PU.1 concerning these phenomena by using a messenger RNA differential display strategy, we found that some myeloid-specific and lymphoid-specific genes, such as the osteopontin gene, are transcriptionally up-regulated in MEL cells after overexpression of PU.1. We then found that expression of several myelomonocyte-specific genes, including the CAAT-enhancer-binding protein-alpha and granulocyte-macrophage colony-stimulating factor receptor genes, was induced in MEL cells after overexpression of PU.1. B-cell-specific genes were also examined, and expression of the CD19 gene was found to be induced. Expression of the myelomonocyte-specific proteins CD11b and F4/80 antigen but not the B-cell-specific proteins B220 and CD19 was also induced. After overexpression of PU.1, MEL cells became adherent and phagocytic and showed enhanced nitroblue tetrazolium reduction activity. Expression of myelomonocyte-specific and B-cell-specific genes was not induced when a mutant PU.1 with part of the activation domain deleted (a change found to inhibit erythroid differentiation of MEL cells) was expressed. These results indicate that PU.1 induces a lineage switch in MEL cells toward myelomonocytic cells and that its activation domain is essential for this effect. The results also suggest that the pathway of the lineage switch is distinct from that of inhibition of erythroid differentiation in MEL cells.
Collapse
MESH Headings
- Cell Adhesion
- Cell Differentiation
- Cell Lineage/genetics
- Cell Size
- Chlorides/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Recombinant Fusion Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Subtraction Technique
- Trans-Activators/biosynthesis
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Zinc Compounds/pharmacology
Collapse
Affiliation(s)
- T Yamada
- Department of Cell Genetics, Sasaki Institute, and the Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rieske P, Pongubala JM. AKT induces transcriptional activity of PU.1 through phosphorylation-mediated modifications within its transactivation domain. J Biol Chem 2001; 276:8460-8. [PMID: 11133986 DOI: 10.1074/jbc.m007482200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signal transduction by the antigen receptor complexes is critical for developmental progression of B-lymphocytes, which are defined by assembly and sequential expression of immunoglobulin genes, which in turn are regulated by the enhancer elements. Although proximal antigen-receptor signal transduction pathways are well defined, the precise nuclear factors targeted by these signals remained unknown. Previous studies have demonstrated that tissue-restricted transcription factors including PU.1 and PU.1 interaction partner (PIP) function synergistically with c-Fos plus c-Jun to stimulate the kappaE3'-enhancer in 3T3 cells. In this study, we demonstrate that the functional synergy between these factors is enhanced in response to mitogen-activated protein kinase kinase kinase, in 3T3 cells, where the enhancer is inactive. However in S194 plasmacytoma cells, mitogen-activated protein kinase kinase kinase was able to stimulate the activity of PU.1 but unable to induce the kappaE3'-enhancer activity. We have found that Ras-phosphoinositide 3-kinase-dependent externally regulated kinase, AKT, induces kappaE3'-enhancer activity in both pre-B and plasmacytoma cells. AKT stimulation of the kappaE3'-enhancer is primarily due to PU.1 induction and is independent of PU.1 interaction with PIP. Activation of AKT had no effect on the expression levels of PU.1 or its protein-protein interaction with PIP. Using a series of deletion constructs, we have determined that the PU.1 acid-rich (amino acids 33-74) transactivation domain is necessary for AKT-mediated induction. Substitution analyses within this region indicate that phosphorylation of Ser(41) is necessary to respond to AKT. Consistent with these studies, ligation of antigen receptors in A20 B cells mimics AKT activation of PU.1. Taken together, these results provide evidence that PU.1 is induced by AKT signal in a phosphoinositide 3-kinase-dependent manner, leading to inducible or constitutive activation of its target genes.
Collapse
Affiliation(s)
- P Rieske
- Department of Biochemistry, MCP Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
35
|
Nagamura-Inoue T, Tamura T, Ozato K. Transcription factors that regulate growth and differentiation of myeloid cells. Int Rev Immunol 2001; 20:83-105. [PMID: 11342299 DOI: 10.3109/08830180109056724] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently much progress has been made in our understanding of how myeloid progenitor cells undergo commitment and become mature granulocytes or monocytes/macrophages. Studies of normal and leukemic myeloid cells as well as those of cells derived from mice with targeted disruption showed that a series of transcription factors play a major role in both commitment and maturation of myeloid cells. This is primarily because these transcription factors direct an ordered pattern of gene expression according to a well-defined developmental program. PU.1, an Ets family member, is one of the master transcription factors identified to regulate development of both granulocytes and monocytes/macrophages. Further, C/EBPalpha and C/EBPvarepsilon of the bZip family have important roles in directing granulocytic maturation. A number of additional transcription factors such as AML1, RARalpha, MZF-1, Hox and STAT families of transcription factors, Egr-1 and c-myb etc are shown to play roles in myeloid cell differentiation. Our laboratory has recently obtained evidence that ICSBP, a member of the IRF family, is involved in lineage commitment during myeloid cell differentiation and stimulates maturation of functional macrophages. Future elucidation of pathways and networks through which these transcription factors act in various stages of development would provide a more definitive picture of myeloid cell commitment and maturation.
Collapse
Affiliation(s)
- T Nagamura-Inoue
- Laboratory of Molecular Growth Regulation National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
36
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
37
|
Walton MR, Gibbons H, MacGibbon GA, Sirimanne E, Saura J, Gluckman PD, Dragunow M. PU.1 expression in microglia. J Neuroimmunol 2000; 104:109-15. [PMID: 10713349 DOI: 10.1016/s0165-5728(99)00262-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The transcription factor PU.1 has a pivotal role in both the generation and function of macrophages. To determine whether PU.1 is also involved in microglial regulation, we investigated its expression following hypoxic-ischemia (HI) brain injury and in the BV-2 microglial cell line. We found that microglia constitutively expressed high levels of PU.1 protein in both their 'resting' and 'activated' states.
Collapse
Affiliation(s)
- M R Walton
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
38
|
Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79:170-200. [PMID: 10844936 DOI: 10.1097/00005792-200005000-00004] [Citation(s) in RCA: 611] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The reduced nicotinamide dinucleotide phosphate (NADPH) oxidase complex allows phagocytes to rapidly convert O2 to superoxide anion which then generates other antimicrobial reactive oxygen intermediates, such as H2O2, hydroxyl anion, and peroxynitrite anion. Chronic granulomatous disease (CGD) results from a defect in any of the 4 subunits of the NADPH oxidase and is characterized by recurrent life-threatening bacterial and fungal infections and abnormal tissue granuloma formation. Activation of the NADPH oxidase requires translocation of the cytosolic subunits p47phox (phagocyte oxidase), p67phox, and the low molecular weight GT-Pase Rac, to the membrane-bound flavocytochrome, a heterodimer composed of the heavy chain gp91phox and the light chain p22phox. This complex transfers electrons from NADPH on the cytoplasmic side to O2 on the vacuolar or extracellular side, thereby generating superoxide anion. Activation of the NADPH oxidase requires complex rearrangements between the protein subunits, which are in part mediated by noncovalent binding between src-homology 3 domains (SH3 domains) and proline-rich motifs. Outpatient management of CGD patients relies on the use of prophylactic antibiotics and interferon-gamma. When infection is suspected, aggressive effort to obtain culture material is required. Treatment of infections involves prolonged use of systemic antibiotics, surgical debridement when feasible, and, in severe infections, use of granulocyte transfusions. Mouse knockout models of CGD have been created in which to examine aspects of pathophysiology and therapy. Gene therapy and bone marrow transplantation trials in CGD patients are ongoing and show great promise.
Collapse
Affiliation(s)
- B H Segal
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Feng X, Teitelbaum SL, Quiroz ME, Cheng SL, Lai CF, Avioli LV, Ross FP. Sp1/Sp3 and PU.1 differentially regulate beta(5) integrin gene expression in macrophages and osteoblasts. J Biol Chem 2000; 275:8331-40. [PMID: 10722663 DOI: 10.1074/jbc.275.12.8331] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Murine osteoclast precursors and osteoblasts express the integrin alpha(v)beta(5), the appearance of which on the cell surface is controlled by the beta(5), and not the alpha(v), subunit. Here, we show that a 173-base pair proximal region of the beta(5) promoter mediates beta(5) basal transcription in macrophage (osteoclast precursor)-like and osteoblast-like cells. DNase I footprinting reveal four regions (FP1-FP4) within the 173-base pair region, protected by macrophage nuclear extracts. In contrast, osteoblast nuclear extracts protect only FP1, FP2, and FP3. FP1, FP2, and FP3 bind Sp1 and Sp3 from both macrophage and osteoblast nuclear extracts. FP4 does not bind osteoblast proteins but binds PU.1 from macrophages. Transfection studies show that FP1 and FP2 Sp1/Sp3 sites act as enhancers in both MC3T3-E1 (osteoblast-like) and J774 (macrophage-like) cell lines, whereas the FP3 Sp1/Sp3 site serves as a silencer. Mutation of the FP2 Sp1/Sp3 site totally abolishes promoter activity in J774 cells, with only partial reduction in MC3T3-E1 cells. Finally, we demonstrate that PU.1 acts as a beta(5) silencer in J774 cells but plays no role in MC3T3-E1 cells. Thus, three Sp1/Sp3 sites regulate beta(5) gene expression in macrophages and osteoblast-like cells, with each element exhibiting cell-type and/or activation-suppression specificity.
Collapse
Affiliation(s)
- X Feng
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Li SL, Schlegel W, Valente AJ, Clark RA. Critical flanking sequences of PU.1 binding sites in myeloid-specific promoters. J Biol Chem 1999; 274:32453-60. [PMID: 10542290 DOI: 10.1074/jbc.274.45.32453] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The myeloid-specific transcription factor PU.1 is essential for expression of p47(phox), a component of the superoxide-forming phagocyte NADPH oxidase. The consensus PU.1 binding sequence (GAGGAA) is located on the non-coding strand from position -40 to -45 relative to the transcriptional start site of the p47phox promoter. A promoter construct extending to -46 was sufficient to drive tissue-specific expression of the luciferase reporter gene, but extension of the promoter from -46 to -48 resulted in a significant increase in reporter expression. Mutations of the nucleotides G at -46 and/or T at -47 reduced both reporter expression and PU.1 binding, whereas mutations at -48 had no effect. The PU.1 binding avidity of these sequences correlated closely with their capacity to dictate reporter gene transcription. In parallel studies on the functional PU.1 site in the promoter of CD18, mutations of nucleotides G and T at positions -76 and -77 (corresponding to -46 and -47, respectively, of the p47phox promoter) reduced PU.1 binding and nearly abolished the contribution of this element to promoter activity. We conclude that the immediate flanking nucleotides of the PU.1 consensus motif have significant effects on PU.1 binding avidity and activity and that this region is the dominant cis element regulating p47phox expression.
Collapse
Affiliation(s)
- S L Li
- Department of Medicine, University of Texas Health Science Center, Audie L. Murphy Division, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
41
|
Pan Z, Hetherington CJ, Zhang DE. CCAAT/enhancer-binding protein activates the CD14 promoter and mediates transforming growth factor beta signaling in monocyte development. J Biol Chem 1999; 274:23242-8. [PMID: 10438498 DOI: 10.1074/jbc.274.33.23242] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors from the CCAAT/enhancer-binding protein (C/EBP) family play important roles in myeloid cell differentiation. CD14 is a monocyte/macrophage differentiation marker and is strongly up-regulated during monocytic cell differentiation. Here, we report the direct binding of C/EBP to the monocyte-specific promoter of CD14. Transactivation analyses demonstrate that C/EBP family members significantly activate the CD14 promoter. These data indicate that C/EBP is directly involved in the regulation of CD14 gene expression. When myelomonoblastic U937 cells are treated with vitamin D(3) and TGF-beta, they differentiate toward monocytic cells. Using specific antibodies against different C/EBP family members in electrophoretic mobility shift assays and Western blot assays, we have identified a specific increase in the DNA binding and the expression of C/EBPalpha and C/EBPbeta during U937 monocytic cell differentiation, and we found C/EBPalpha and C/EBPbeta bind to the promoter in heterodimer. Furthermore, with stably transfected cell lines, we demonstrate that the C/EBP binding site in the CD14 promoter plays a critical role for mediating TGF-beta signaling in the synergistic activation of CD14 expression by vitamin D(3) and TGF-beta during U937 differentiation. This may indicate that C/EBPs have important functions in the process of TGF-beta signal transduction during monocyte differentiation.
Collapse
Affiliation(s)
- Z Pan
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Luo M, Shang J, Yang Z, Simkevich CP, Jackson CL, King TC, Rosmarin AG. Characterization and localization to chromosome 7 of psihGABPalpha, a human processed pseudogene related to the ets transcription factor, hGABPalpha. Gene X 1999; 234:119-26. [PMID: 10393246 DOI: 10.1016/s0378-1119(99)00167-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
GABP is a heteromeric transcription factor complex which consists of the ets related protein, GABPalpha, and the Notch-related protein, GABPbeta. We isolated a human genomic DNA fragment which is highly homologous and colinear with human GABPalpha cDNA, but which lacks introns. This processed pseudogene, psihGABPalpha, is expressed as RNA in U937 human myeloid cells, but a mutation at the site that corresponds to the ATG start methionine codon prevents its translation into protein. The pseudogene was localized to chromosome 7 using a somatic cell hybrid mapping panel and it is not syntenic with authentic GABPalpha, which was localized to chromosome 21. We have identified psihGABPalpha, a novel, GABPalpha-related processed pseudogene which is expressed as a RNA transcript in human myeloid cells.
Collapse
Affiliation(s)
- M Luo
- Division of Hematology, Brown University Department of Medicine and the Division of Hematology/Oncology, The Miriam Hospital, Providence, RI, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Elf-1 and PU.1 Induce Expression of gp91phox Via a Promoter Element Mutated in a Subset of Chronic Granulomatous Disease Patients. Blood 1999. [DOI: 10.1182/blood.v93.10.3512.410k19_3512_3520] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cytochrome b heavy chain (gp91phox) is the redox center of the NADPH-oxidase and is highly expressed in mature myeloid cells. Point mutations at −57, −55, −53, and −52 bp of the gp91phox promoter have been detected in patients with chronic granulomatous disease (CGD; Newburger et al,J Clin Invest 94:1205, 1994; and Suzuki et al, Proc Natl Acad Sci USA 95:6085, 1998). We report that Elf-1 and PU.1,ets family members highly expressed in myeloid cells, bind to this promoter element. Either factor trans-activates the −102 to +12 bp gp91phox promoter when overexpressed in nonhematopoietic HeLa cells or the PLB985 myeloid cell line. However, no synergy of gp91phox promoter activation occurs when both Elf-1 and PU.1 are overexpressed. Introduction of the −57 bp or −55 bp CGD mutations into the gp91phoxpromoter significantly reduces the binding affinity of Elf-1 and PU.1 and also reduces the ability of these factors to trans-activate the promoter. These results indicate that Elf-1 and PU.1 contribute to directing the lineage-restricted expression of the gp91phox gene in phagocytes and that failure of these factors to effectively interact with this promoter results in CGD.
Collapse
|
44
|
Lloberas J, Soler C, Celada A. The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. IMMUNOLOGY TODAY 1999; 20:184-9. [PMID: 10203717 DOI: 10.1016/s0167-5699(99)01442-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Lloberas
- Dept de Fisiologia (Biologia del macrofag), Facultat de Biologia, and Fundació August Pi i Sunyer, Campus Bellvitge, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
45
|
Egan BS, Lane KB, Shepherd VL. PU.1 and USF are required for macrophage-specific mannose receptor promoter activity. J Biol Chem 1999; 274:9098-107. [PMID: 10085160 DOI: 10.1074/jbc.274.13.9098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the current study we report the isolation of 854 base pairs of the rat mannose receptor promoter. Analysis of the sequence revealed one Sp1 site, three PU.1 sites, and a potential TATA box (TTTAAA) 33 base pairs 5' of the transcriptional start site. The tissue specificity of the promoter was determined using transient transfections. The promoter was most active in the mature macrophage cell line NR8383 although the promoter also showed activity in the monocytic cell line RAW. No activity was observed in pre-monocytic cell lines or epithelial cell lines. Mutation of the TTTAAA sequence to TTGGAA resulted in a 50% decrease in activity in transient transfection assays suggesting that the promoter contains a functional TATA box. Using electrophoretic mobility shift assays and mutagenesis we established that the transcription factors Sp1, PU.1, and USF bound to the mannose receptor promoter, but only PU.1 and USF contributed to activation. Transient transfections using a dominant negative construct of USF resulted in a 50% decrease in mannose receptor promoter activity, further establishing the role of USF in activating the rat mannose receptor promoter. Comparison of the rat, mouse, and human sequence demonstrated that some binding sites are not conserved. Gel shifts were performed to investigate differences in protein binding between species. USF bound to the rat and human promoter but not to the mouse promoter, suggesting that different mechanisms are involved in regulation of mannose receptor expression in these species. From these results we conclude that, similar to other myeloid promoters, transcription of the rat mannose receptor is regulated by binding of PU.1 and a ubiquitous factor at an adjacent site. However, unlike other myeloid promoters, we have identified USF as the ubiquitous factor, and demonstrated that the promoter contains a functional TATA box.
Collapse
Affiliation(s)
- B S Egan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | | | | |
Collapse
|
46
|
Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. TFEC Is a Macrophage-Restricted Member of the Microphthalmia-TFE Subfamily of Basic Helix-Loop-Helix Leucine Zipper Transcription Factors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed with all other known MiT subfamily members (Mitf, TFE3, TFEB). Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU.1 under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.
Collapse
Affiliation(s)
- Michael Rehli
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - Agnieszka Lichanska
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | - A. Ian Cassady
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| | | | - David A. Hume
- *Departments of Microbiology and Biochemistry and Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia; and
| |
Collapse
|
47
|
García A, Serrano A, Abril E, Jimenez P, Real LM, Cantón J, Garrido F, Ruiz-Cabello F. Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Exp Hematol 1999; 27:353-64. [PMID: 10029175 DOI: 10.1016/s0301-472x(98)00038-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inhibition of transcription factor functions was used to define their role in phorbol ester-induced cellular differentiation of a monocytic cell line, U937. We demonstrate a differential effect on cell adhesion and differentiation: antisense or competitive binding with double-stranded oligonucleotides antagonized the functions of AP-1, NF-kappaB, and PU.1 transcriptional factors. In the presence of phorbol 12-myristate 13-acetate (PMA), U937 cells attached to the plastic surface and cells were characterized by marked expression of beta2-integrin molecules on the cell surface. We show that the in vivo differentiation of U937 cells appears to occur normally in the absence of AP-1 activity. In contrast, the addition to the cell culture of phosphorothioate oligonucleotides that contained the NF-kappaB or PU.1 binding sites significantly inhibited U937 differentiation. The absence of NF-kappaB led to pleiotropic effects with a clear reduction in the expression of integrin and other lineage-specific myeloid antigens on the cell surface. In contrast, the absence of PU.1 had a more restricted effect on integrin expresion on the cell surface, probably as a result of blockage of CD18 gene expression.
Collapse
Affiliation(s)
- A García
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nuchprayoon I, Shang J, Simkevich CP, Luo M, Rosmarin AG, Friedman AD. An enhancer located between the neutrophil elastase and proteinase 3 promoters is activated by Sp1 and an Ets factor. J Biol Chem 1999; 274:1085-91. [PMID: 9873055 DOI: 10.1074/jbc.274.2.1085] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adjacent neutrophil elastase, proteinase 3, and azurocidin genes encode serine proteases expressed specifically in immature myeloid cells. Subclones of a 17-kilobase (kb) murine neutrophil elastase genomic clone were assessed for their ability to stimulate the neutrophil elastase promoter in 32D cl3 myeloid cells. Region -9.3 to -7.3 kb stimulated transcription 7-fold, whereas other genomic segments were inactive. This enhancer is located in the second intron of the proteinase-3 gene and so may regulate more than one gene in the myeloid protease cluster. Deletional analysis of the enhancer identified several segments which activated the neutrophil elastase and thymidine kinase promoters 3-6-fold. The most active segment was a 220-base pair region centered at -8.6 kb, which activated transcription 31-fold. This segment contains an Sp1 consensus site, which bound Sp1, flanked by two Ets family consensus sequences, which bound PU.1, GABP, and an Ets factor present in myeloid cell extracts. Mutation of the Sp1-binding site reduced enhancer activity 8-fold in 32D cl3 cells, and mutation of either or both Ets-binding sites reduced activity 3-4-fold. Sp1 activated the distal enhancer 5-fold, GABP 3-fold, and the combination 8-fold in Schneider cells.
Collapse
Affiliation(s)
- I Nuchprayoon
- Division of Pediatric Oncology, The Johns Hopkins Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
49
|
Xue Y, Alford P, Shackelford RE. Protein kinase C activation increases binding of transcription factor PU.1 in murine tissue macrophages. Biochem Biophys Res Commun 1999; 254:211-4. [PMID: 9920760 DOI: 10.1006/bbrc.1998.9905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PU.1 is a transcription factor found in macrophages, B cells, neutrophils, and hemopoietic stem cells. In macrophages PU.1 regulates a number of genes, including c-fms, CD11b, CD18, and FcgammaR1b. Previously, in primary macrophages PU.1 binding to the sequence GAGGAA was found to be induced by treatment with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Here we investigated the role of protein kinase C (pKC) in the induction of PU.1 binding in macrophages. We report that pharmacological activation of pKC increases PU.1 binding, while inactivation of pKC inhibits the increases in PU.1 binding by agents which activate pKC in macrophages (LPS and tumor necrosis factor-alpha), but not by an agent which does not activate pKC (IFN-gamma). pKC activation may therefore be one pathway by which PU.1 binding may be increased in primary macrophages.
Collapse
Affiliation(s)
- Y Xue
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27709, USA
| | | | | |
Collapse
|
50
|
Abstract
In addition to selecting proteins for degradation by the 26S proteasome, ubiqitination appears to serve other regulatory functions, including for endosomal/lysosomal targeting, protein translocation, and enzyme modification. Currently, little is known how multiubiquitin chains are recognized by these cellular mechanisms. Within the 26S proteasome, one subunit (Mcb1/S5a) has been identified that has affinity for multiubiquitin chains and may function as a ubiquitin receptor. We recently found that a non-proteasomal protein p62 also preferentially binds multiubiquitin chains and forms a novel cytoplasmic structure "sequestosome" which serves as a storage place for ubiquitinated proteins. In the present manuscript, the role and regulation of p62 in relation to the sequestosomal function will be reviewed.
Collapse
Affiliation(s)
- J Shin
- Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|