1
|
Pelosi P, Knoll W. Odorant-binding proteins of mammals. Biol Rev Camb Philos Soc 2022; 97:20-44. [PMID: 34480392 DOI: 10.1111/brv.12787] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Odorant-binding proteins (OBPs) of vertebrates belong to the lipocalin superfamily and perform a dual function: solubilizing and ferrying volatile pheromones to the olfactory receptors, and complexing the same molecules in specialized glands and assisting their release into the environment. Within vertebrates, to date they have been reported only in mammals, apart from two studies on amphibians. Based on the small number of OBPs expressed in each species, on their sites of production outside the olfactory area and their presence in biological fluids known to be pheromone carriers, such as urine, saliva and sexual secretions, we conclude that OBPs of mammals are specifically dedicated to pheromonal communication. This assumption is further supported by the observation that some OBPs present in biological secretions are endowed with their own pheromonal activity, adding renewed interest to these proteins. Another novel piece of evidence is the recent discovery that glycosylation and phosphorylation can modulate the binding activity of these proteins, improving their affinity to pheromones and narrowing their specificity. A comparison with insects and other arthropods shows a completely different scenario. While mammalian OBPs are specifically tuned to pheromones, those of insects, which are completely different in sequence and structure, include carriers for general odorants in addition to those dedicated to pheromones. Additionally, whereas mammals adopted a single family of carrier proteins for chemical communication, insects and other arthropods are endowed with several families of semiochemical-binding proteins. Here, we review the literature on the structural and functional properties of vertebrate OBPs, summarize the most interesting new findings and suggest possible exciting future developments.
Collapse
Affiliation(s)
- Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenz Straße 24, Tulln, 3430, Austria
| |
Collapse
|
2
|
Janssenswillen S, Roelants K, Carpentier S, de Rooster H, Metzemaekers M, Vanschoenwinkel B, Proost P, Bossuyt F. Odorant-binding proteins in canine anal sac glands indicate an evolutionarily conserved role in mammalian chemical communication. BMC Ecol Evol 2021; 21:182. [PMID: 34565329 PMCID: PMC8474896 DOI: 10.1186/s12862-021-01910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chemical communication is an important aspect of the behavioural ecology of a wide range of mammals. In dogs and other carnivores, anal sac glands are thought to convey information to conspecifics by secreting a pallet of small volatile molecules produced by symbiotic bacteria. Because these glands are unique to carnivores, it is unclear how their secretions relate to those of other placental mammals that make use of different tissues and secretions for chemical communication. Here we analyse the anal sac glands of domestic dogs to verify the secretion of proteins and infer their evolutionary relationship to those involved in the chemical communication of non-carnivoran mammals. Results Proteomic analysis of anal sac gland secretions of 17 dogs revealed the consistently abundant presence of three related proteins. Homology searches against online databases indicate that these proteins are evolutionary related to ‘odorant binding proteins’ (OBPs) found in a wide range of mammalian secretions and known to contribute to chemical communication. Screening of the dog’s genome sequence show that the newly discovered OBPs are encoded by a single cluster of three genes in the pseudoautosomal region of the X-chromosome. Comparative genomic screening indicates that the same locus is shared by a wide range of placental mammals and that it originated at least before the radiation of extant placental orders. Phylogenetic analyses suggest a dynamic evolution of gene duplication and loss, resulting in large gene clusters in some placental taxa and recurrent loss of this locus in others. The homology of OBPs in canid anal sac glands and those found in other mammalian secretions implies that these proteins maintained a function in chemical communication throughout mammalian evolutionary history by multiple shifts in expression between secretory tissues involved in signal release and nasal mucosa involved in signal reception. Conclusions Our study elucidates a poorly understood part of the biology of a species that lives in close association with humans. In addition, it shows that the protein repertoire underlying chemical communication in mammals is more evolutionarily stable than the variation of involved glands and tissues would suggest. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01910-w.
Collapse
Affiliation(s)
- Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sebastien Carpentier
- Proteomics Core - SyBioMa, Katholieke Universiteit Leuven, Herestraat 49 - 03.313, 3000, Leuven, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mieke Metzemaekers
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Bram Vanschoenwinkel
- Community Ecology Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Center for Environmental Management, University of the Free State, Bloemfontein, 9030, South Africa
| | - Paul Proost
- Rega Institute, Molecular Immunology, Katholieke Universiteit Leuven, Herestraat 49 - Bus1042, 3000, Leuven, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
3
|
Identification of potential chemosignals in the European water vole Arvicola terrestris. Sci Rep 2019; 9:18378. [PMID: 31804568 PMCID: PMC6895148 DOI: 10.1038/s41598-019-54935-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Abstract
The water vole Arvicola terrestris is endemic to Europe where its outbreak generates severe economic losses for farmers. Our project aimed at characterising putative chemical signals used by this species, to develop new sustainable methods for population control that could also be used for this species protection in Great Britain. The water vole, as well as other rodents, uses specific urination sites as territorial and sex pheromone markers, still unidentified. Lateral scent glands and urine samples were collected from wild males and females caught in the field, at different periods of the year. Their volatile composition was analysed for each individual and not on pooled samples, revealing a specific profile of flank glands in October and a specific profile of urinary volatiles in July. The urinary protein content appeared more contrasted as males secrete higher levels of a lipocalin than females, whenever the trapping period. We named this protein arvicolin. Male and female liver transcript sequencing did not identify any expression of other odorant-binding protein sequence. This work demonstrates that even in absence of genome, identification of chemical signals from wild animals is possible and could be helpful in strategies of species control and protection.
Collapse
|
4
|
The olfactory secretome varies according to season in female sheep and goat. BMC Genomics 2019; 20:794. [PMID: 31666027 PMCID: PMC6822404 DOI: 10.1186/s12864-019-6194-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Small ungulates (sheep and goat) display a seasonal breeding, characterised by two successive periods, sexual activity (SA) and sexual rest (SR). Odours emitted by a sexually active male can reactivate the ovulatory cycle of anoestrus females. The plasticity of the olfactory system under these hormonal changes has never been explored at the peripheral level of odours reception. As it was shown in pig that the olfactory secretome (proteins secreted in the nasal mucus) could be modified under hormonal control, we monitored its composition in females of both species through several reproductive seasons, thanks to a non-invasive sampling of olfactory mucus. For this purpose, two-dimensional gel electrophoresis (2D-E), western-blot with specific antibodies, MALDI-TOF and high-resolution (nano-LC-MS/MS) mass spectrometry, RACE-PCR and molecular modelling were used. Results In both species the olfactory secretome is composed of isoforms of OBP-like proteins, generated by post-translational modifications, as phosphorylation, N-glycosylation and O-GlcNAcylation. Important changes were observed in the olfactory secretome between the sexual rest and the sexual activity periods, characterised in ewe by the specific expression of SAL-like proteins and the emergence of OBPs O-GlcNAcylation. In goat, the differences between SA and SR did not come from new proteins expression, but from different post-translational modifications, the main difference between the SA and SR secretome being the number of isoforms of each protein. Proteomics data are available via ProteomeXchange with identifier PXD014833. Conclusion Despite common behaviour, seasonal breeding, and genetic resources, the two species seem to adapt their olfactory equipment in SA by different modalities: the variation of olfactory secretome in ewe could correspond to a specialization to detect male odours only in SA, whereas in goat the stability of the olfactory secretome could indicate a constant capacity of odours detection suggesting that the hallmark of SA in goat might be the emission of specific odours by the sexually active male. In both species, the olfactory secretome is a phenotype reflecting the physiological status of females, and could be used by breeders to monitor their receptivity to the male effect.
Collapse
|
5
|
Reverse chemical ecology: Olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. Proc Natl Acad Sci U S A 2017; 114:E9802-E9810. [PMID: 29078359 DOI: 10.1073/pnas.1711437114] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The giant panda Ailuropoda melanoleuca belongs to the family of Ursidae; however, it is not carnivorous, feeding almost exclusively on bamboo. Being equipped with a typical carnivorous digestive apparatus, the giant panda cannot get enough energy for an active life and spends most of its time digesting food or sleeping. Feeding and mating are both regulated by odors and pheromones; therefore, a better knowledge of olfaction at the molecular level can help in designing strategies for the conservation of this species. In this context, we have identified the odorant-binding protein (OBP) repertoire of the giant panda and mapped the protein expression in nasal mucus and saliva through proteomics. Four OBPs have been identified in nasal mucus, while the other two were not detected in the samples examined. In particular, AimelOBP3 is similar to a subset of OBPs reported as pheromone carriers in the urine of rodents, saliva of the boar, and seminal fluid of the rabbit. We expressed this protein, mapped its binding specificity, and determined its crystal structure. Structural data guided the design and preparation of three protein mutants bearing single-amino acid replacements in the ligand-binding pocket, for which the corresponding binding affinity spectra were measured. We also expressed AimelOBP5, which is markedly different from AimelOBP3 and complementary in its binding spectrum. By comparing our binding data with the structures of bamboo volatiles and those of typical mammalian pheromones, we formulate hypotheses on which may be the most relevant semiochemicals for the giant panda.
Collapse
|
6
|
Rasmussen LE. Chemical communication: An integral part of functional Asian elephant (Elephas maximus) society. ECOSCIENCE 2016. [DOI: 10.1080/11956860.1998.11682469] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Stopková R, Zdráhal Z, Ryba S, Sedo O, Sandera M, Stopka P. Novel OBP genes similar to hamster Aphrodisin in the bank vole, Myodes glareolus. BMC Genomics 2010; 11:45. [PMID: 20085627 PMCID: PMC2824723 DOI: 10.1186/1471-2164-11-45] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 01/19/2010] [Indexed: 12/03/2022] Open
Abstract
Background Chemical communication in mammals involves globular lipocalins that protect and transport pheromones during their passage out of the body. Efficient communication via this protein - pheromone complex is essential for triggering multiple responses including aggression, mate choice, copulatory behaviour, and onset and synchronization of oestrus. The roles of lipocalins in communication were studied in many organisms and especially in mice (i.e. Mus musculus domesticus) which excrete Major Urinary Proteins (Mup) in excessive amounts in saliva and urine. Other mammals, however, often lack the genes for Mups or their expression is very low. Therefore, we aimed at characterization of candidate lipocalins in Myodes glareolus which are potentially linked to chemical communication. One of them is Aphrodisin which is a unique lipocalin that was previously described from hamster vaginal discharge and is known to carry pheromones stimulating copulatory behaviour in males. Results Here we show that Aphrodisin-like proteins exist in other species, belong to a group of Odorant Binding Proteins (Obp), and contrary to the expression of Aphrodisin only in hamster genital tract and parotid glands of females, we have detected these transcripts in both sexes of M. glareolus with the expression confirmed in various tissues including prostate, prepucial and salivary glands, liver and uterus. On the level of mRNA, we have detected three different gene variants. To assess their relevance for chemical communication we investigated the occurrence of particular proteins in saliva, urine and vaginal discharge. On the protein level we confirmed the presence of Obp2 and Obp3 in both saliva and urine. Appropriate bands in the range of 17-20 kDa from vaginal discharge were, however, beyond the MS detection limits. Conclusion Our results demonstrate that three novel Obps (Obp1, Obp2, and Obp3) are predominant lipocalins in Myodes urine and saliva. On the protein level we have detected further variants and thus we assume that similarly as Major Urinary Proteins in mice, these proteins may be important in chemical communication in this Cricetid rodent.
Collapse
Affiliation(s)
- Romana Stopková
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, CZ-128 44, Czech Republic
| | | | | | | | | | | |
Collapse
|
8
|
Srikantan S, Parekh V, De PK. cDNA cloning and regulation of two sex-hormone-repressed hamster tear lipocalins having homology with odorant/pheromone-binding proteins. ACTA ACUST UNITED AC 2005; 1729:154-65. [PMID: 15950295 DOI: 10.1016/j.bbaexp.2005.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 04/11/2005] [Accepted: 04/27/2005] [Indexed: 11/16/2022]
Abstract
A major 20-kDa protein is female-specifically expressed in exorbital lacrimal gland (LG) of hamsters and secreted in tears. Here, we identify this female-specific LG protein (FLP) as a lipocalin, having 85% protein sequence identity with male-specific submandibular salivary gland proteins (MSP) secreted in saliva and urine of male hamsters. MSP is also female-specifically expressed in LG and secreted in tears but FLP was undetectable in submandibular gland (SMG). FLP and MSP have similar sex-hormonal regulation in LG, which is different from regulation of MSP in SMG. Female-specific expression of FLP and MSP in LG is due to their incomplete repression by endogenous estrogens and gonadectomy in both sexes and lactation in females resulted in their marked induction, which was prevented by estrogen or androgen treatment. FLP and MSP show best sequence identity with odorant/pheromone-binding lipocalins (58-29%). Maximum identity (58%) is with rat odorant-binding protein (OBP) expressed in lateral nasal glands, followed by aphrodisin of hamster vaginal discharge (39%). Cognate transcript and a cross-reacting 20-kDa protein were detected in nasal glands of rat in both sexes but not in hamsters. Results suggest that two closely related lipocalin genes encode FLP and MSP, which are evolutionarily closer to rat OBP than to hamster aphrodisin and these have evolved different tissue-specificity and sex-hormonal regulation. Possible functions for FLP and MSP are suggested, considering their homology to odorant/pheromone-binding lipocalins, their presence in tears, saliva and urine as well as their sex-specific and lactation-induced expression.
Collapse
Affiliation(s)
- Subramanya Srikantan
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Andhra Pradesh, India
| | | | | |
Collapse
|
9
|
Ferrari E, Tsay A, Eggleston PA, Spisni A, Chapman MD. Environmental detection of mouse allergen by means of immunoassay for recombinant Mus m 1. J Allergy Clin Immunol 2004; 114:341-6. [PMID: 15316513 DOI: 10.1016/j.jaci.2004.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mouse urinary allergens are an important cause of occupational asthma in animal facilities. Domestic exposure to mouse allergens is a risk factor for asthma among inner-city residents. OBJECTIVE We sought to develop a sensitive and specific assay for assessing environmental mouse allergen exposure. METHODS An ELISA for recombinant (r)Mus m 1 was developed by using rabbit polyclonal antibodies to rMus m 1 that were affinity purified against the natural allergen. Assay specificity was established by means of immunoblotting and ELISA. Mus m 1 levels in mouse, other mammalian allergenic products, and house dust samples from inner-city homes were compared. RESULTS Polyclonal antibodies to Mus m 1 showed a single 20-kd band on immunoblots against rMus m 1 and male mouse urine. Parallel dose-response curves were obtained by using mouse urine extract and natural Mus m 1 or rMus m 1. Mus m 1 was detected in mouse allergenic products (0.10-10.0 microg/mL) and in gerbil allergenic products (0.1 microg/mL) but was less than the limit of detection in epithelial extracts from 10 other animal species. Environmental measurements showed an excellent correlation between Mus m 1 levels in house dust extracts from inner-city asthma studies by using 2 different Mus m 1 standards (n=22; r=0.99; P <.001). CONCLUSIONS A highly sensitive ELISA has been developed with rMus m 1. This assay is suitable for monitoring domestic and environmental exposure to mouse urinary allergens.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Experimental Medicine Section of Chemistry and Structural Biochemistry University of Parma, Italy
| | | | | | | | | |
Collapse
|
10
|
Briand L, Trotier D, Pernollet JC. Aphrodisin, an aphrodisiac lipocalin secreted in hamster vaginal secretions. Peptides 2004; 25:1545-52. [PMID: 15374656 DOI: 10.1016/j.peptides.2003.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/21/2003] [Indexed: 11/21/2022]
Abstract
Vertebrates communicate through pheromones, which favor biological regulations within each species. Aphrodisin, a protein belonging to the lipocalin superfamily, found in hamster vaginal secretions, is detected by the male accessory olfactory system and induces or facilitates its copulatory behavior. Although much is known about aphrodisin structure, the question of whether aphrodisin bears itself the pheromonal function or is simply a carrier for hydrophobic small pheromones has not been definitely solved. Arguments based on use of recombinant aphrodisin deprived of any natural ligand and its capability to convey hamster pheromonal compounds will be discussed, together with progresses concerning putative natural ligand(s).
Collapse
Affiliation(s)
- Loïc Briand
- Biochimie et Structure des Protéines, INRA, UR 477, F-78352 Jouy-en-Josas, France
| | | | | |
Collapse
|
11
|
Hartmann S, Sollwedel A, Hoffmann A, Sonnenburg B, Lucius R. Characterization of IgE responses in a rodent model of filariasis and the allergenic potential of filarial antigens using an in vitro assay. Parasite Immunol 2003; 25:9-16. [PMID: 12753433 DOI: 10.1046/j.1365-3024.2003.00496.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filarial infections are characterized by high IgE antibody responses. So far, it is not clear whether IgE antibodies are involved in protection, pathology or both. We established a bioassay to detect reactive IgE antibodies in jirds infected with the filaria Acanthocheilonema viteae. Sera of A. viteae-infected jirds were used to sensitize rat basophil leukaemia (RBL) cells and degranulation was stimulated by addition of antigens of A. viteae. Reactive IgE responses were detected from 2 weeks post infection (p.i.) and throughout the A. viteae infection. Male antigen triggered the strongest mediator release, followed by female worms, infective larvae (L3) and microfilariae. Separation of male and female antigen indicated that several antigens of both genders are potent allergens. In particular, one male specific allergen of about 550 kDa induced strongest degranulation of RBL cells. In addition, mediator release stimulated by antigen fractions of about 15 kDa was due to filarial cystatin. In conclusion, we describe a convenient in vitro assay to examine IgE mediated responses in jirds. A sex specific filarial protein with high allergenic potential is identified and cystatin is established as a potent allergen of A. viteae.
Collapse
|
12
|
Spinelli S, Vincent F, Pelosi P, Tegoni M, Cambillau C. Boar salivary lipocalin. Three-dimensional X-ray structure and androsterol/androstenone docking simulations. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2449-56. [PMID: 12027882 DOI: 10.1046/j.1432-1033.2002.02901.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The X-ray structure of variant A of authentic boar salivary lipocalin (SAL), a pheromone-binding protein specifically expressed in the submaxillary glands of the boar, has been solved and refined at 2.1 A resolution. The structure displays a classical lipocalin fold with a nine-stranded sandwiched beta barrel and an alpha helix. A putative glycosylation site, at position 53, has been found to carry a GlcNAc sugar residue. In contrast with what was expected on the basis of mass spectroscopy reports, the internal cavity was found to be devoid of bound pheromonal compound (androstenone or androstenol). Instead, a small electron density volume could be satisfied by a glycerol molecule, a component of the cryoprotecting liquor. The internal cavity was revealed to be very small for steroid compound accommodation. Therefore, docking and molecular dynamics experiments were performed with both pheromonal compounds. These simulations clearly demonstrate a volume increase of the cavity upon steroid binding and the adaptation of the amino-acid side chains to the steroid molecules. This explains the higher affinity of SAL for both steroid molecules compared to other smaller molecules, although no specific interaction is established with either compound.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités Aix-Marseille I & II, France
| | | | | | | | | |
Collapse
|
13
|
Suire S, Stewart F, Beauchamp J, Kennedy MW. Uterocalin, a lipocalin provisioning the preattachment equine conceptus: fatty acid and retinol binding properties, and structural characterization. Biochem J 2001; 356:369-76. [PMID: 11368763 PMCID: PMC1221847 DOI: 10.1042/0264-6021:3560369] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The equine conceptus is surrounded by a fibrous capsule that persists until about day 20 of pregnancy, whereupon the capsule is lost, the conceptus attaches to the endometrium and placentation proceeds. Before attachment, the endometrium secretes in abundance a protein of the lipocalin family, uterocalin. The cessation of secretion coincides with the end of the period during which the conceptus is enclosed in its capsule, suggesting that uterocalin is essential for the support of the embryo before direct contact between maternal and foetal tissues is established. Using recombinant protein and fluorescence-based assays, we show that equine uterocalin binds the fluorescent fatty acids 11-(dansylamino)undecanoic acid, dansyl-D,L-alpha-amino-octanoic acid and cis-parinaric acid, and, by competition, oleic, palmitic, arachidonic, docosahexaenoic, gamma-linolenic, cis-eicosapentaenoic and linoleic acids. Uterocalin also binds all-trans-retinol, the binding site for which is coincident or interactive with that for fatty acids. Molecular modelling and intrinsic fluorescence analysis of the wild-type protein and a Trp-->Glu mutant protein indicated that uterocalin has an unusually solvent-exposed Trp side chain projecting from its large helix directly into solvent. This feature is unusual among lipocalins and might relate to binding to, and uptake by, the trophoblast. Uterocalin therefore has the localization and binding activities for the provisioning of the equine conceptus with lipids including those essential for morphogenesis and pattern formation. The possession of a fibrous capsule surrounding the conceptus might be an ancestral condition in mammals; homologues of uterocalin might be essential for early development in marsupials and in eutherians in which there is a prolonged preimplantation period.
Collapse
Affiliation(s)
- S Suire
- Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | |
Collapse
|
14
|
Tschesche H, Zölzer V, Triebel S, Bartsch S. The human neutrophil lipocalin supports the allosteric activation of matrix metalloproteinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1918-28. [PMID: 11277914 DOI: 10.1046/j.1432-1327.2001.02066.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human neutrophil lipocalin (HNL), a member of the large family of lipocalins that exhibit various physiological functions, is coexpressed in granulocytes with progelatinase B (MMP-9). Part of it is covalently bound to the proenzyme and therefore may play a possible role in the activation process of promatrix metalloproteinases. We now report that HNL is able to accelerate the direct activation of promatrix metalloproteinases slightly. A significant enhancement of the activity could be demonstrated for the HgCl2- and the plasma kallikrein-induced activation of all three secretory forms of proMMP-9 and of proMMP-8. The same activating effects were exerted by HNL isolated from granulocytes as well as by the recombinant forms expressed by the yeast Pichia pastoris or by Escherichia coli. This demonstrates that the carbohydrate moiety is not essential for the biological activity of HNL. Activation and activity enhancement are obviously mediated by entrapping the remaining N-terminal sequence residues of the partially truncated proenzyme into the hydrophobic binding pocket of the HNL. In conclusion these results document that HNL can exert an enzyme-activating effect in the regulation of inflammatory and pathophysiological responses of granulocytes in the physiological activation of MMPs that have been subject to limited proteolytic processing.
Collapse
Affiliation(s)
- H Tschesche
- Department of Biochemistry, Faculty of Chemistry, University of Bielefeld, Germany.
| | | | | | | |
Collapse
|
15
|
Tegoni M, Pelosi P, Vincent F, Spinelli S, Campanacci V, Grolli S, Ramoni R, Cambillau C. Mammalian odorant binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:229-40. [PMID: 11058764 DOI: 10.1016/s0167-4838(00)00167-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Odorant binding proteins (OBPs) pertain to one of the most abundant classes of proteins found in the olfactory apparatus. OBPs are a sub-class of lipocalins, defined by their property of reversibly binding volatile chemicals, that we call 'odorants'. Numerous sequences of OBPs are now available, derived from protein sequencing from nasal mucus material, or from DNA sequences. The structural knowledge of OBPs has been improved too in recent years, with the availability of two X-ray structures. The physiological role of OBPs remains, however, essentially hypothetical, and most probably, not linked to a function of odor transport. The present knowledge on OBP biochemistry, sequence and structure will be examined here in relation to the different functional hypotheses proposed for OBPs.
Collapse
Affiliation(s)
- M Tegoni
- Architecture et Fonction des Macromolécules Biologiques, URA 9039-CNRS, IFRI, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kasper S, Matusik RJ. Rat probasin: structure and function of an outlier lipocalin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:249-58. [PMID: 11058766 DOI: 10.1016/s0167-4838(00)00170-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Probasin (PB) occurs both as a secreted and a nuclear protein that is abundantly expressed in the epithelial cells of the rat prostate. A genomic clone of 17.5 kb gene was isolated from a rat liver genomic library, determining that the probasin gene was comprised of seven exons where the splice donor/acceptor sites conformed to the GT/AG consensus sequence. The exon number and size are remarkably similar to those of aphrodisin, rat alpha(2)-urinary globulin and major urinary protein, outlier members of the lipocalin superfamily. In addition, alignment of the deduced amino acids determined that the probasin gene also contains the glycine-X-tryptophan (G-X-W) motif similar to that of human retinol serum binding protein which binds retinol, and the C-X-X-X-C motif also found in insect lipocalins that bind pheromones. The cysteine residues in exons 3 and 6 are conserved, predicting a secondary structure of eight beta-sheets and the alpha-helix commonly seen in the lipocalin superfamily. Unique PB characteristics include a large genomic fragment (17.5 kb compared to the 3-5 kb seen in other lipocalin genes) and an isoelectric point (pI) of 11.5 which is very basic compared to that of the other more acidic lipocalins. Functionally, PB gene expression is regulated by androgens and zinc in the epithelial cells of the rodent prostate. The 5'-flanking region of probasin contains two androgen receptor binding sites that allow androgen-specific gene expression as well as prostate-specific elements that target and maintain high levels of transgene expression in several PB transgenic mouse models.
Collapse
Affiliation(s)
- S Kasper
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | |
Collapse
|
17
|
Cavaggioni A, Mucignat-Caretta C. Major urinary proteins, alpha(2U)-globulins and aphrodisin. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1482:218-28. [PMID: 11058763 DOI: 10.1016/s0167-4838(00)00149-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The major urinary proteins (MUPs) are proteins secreted by the liver and filtered by the kidneys into the urine of adult male mice and rats, the MUPs of rats being also referred to as alpha(2U)-globulins. The MUP family also comprises closely related proteins excreted by exocrine glands of rodents, independently of their sex. The MUP family is an expression of a multi-gene family. There is complex hormonal and tissue-specific regulation of MUP gene expression. The multi-gene family and its outflow are characterized by a polymorphism which extends over species, strains, sexes, and individuals. There is evidence of evolutionary conservation of the genes and their outflow within the species and evidence of change between species. MUPs share the eight-stranded beta-barrel structure lining a hydrophobic pocket, common to lipocalins. There is also a high degree of structural conservation between mouse and rat MUPs. MUPs bind small natural odorant molecules in the hydrophobic pocket with medium affinity in the 10(4)-10(5) M(-1) range, and are excreted in the field, with bound odorants. The odorants are then released slowly in air giving a long lasting olfactory trace to the spot. MUPs seem to play complex roles in chemosensory signalling among rodents, functioning as odorant carriers as well as proteins that prime endocrine reactions in female conspecifics. Aphrodisin is a lipocalin, found in hamster vaginal discharge, which stimulates male copulatory behaviour. Aphrodisin does not seem to bind odorants and no polymorphism has been shown. Both MUPs and aphrodisin stimulate the vomeronasal organ of conspecifics.
Collapse
Affiliation(s)
- A Cavaggioni
- Dipartimento di Anatomia e Fisiologia Umana, Università di Padova, Via Marzolo 3, 35131 Padova, Italy
| | | |
Collapse
|
18
|
Thavathiru E, Jana NR, De PK. Abundant secretory lipocalins displaying male and lactation-specific expression in adult hamster submandibular gland. cDNA cloning and sex hormone-regulated repression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:467-76. [PMID: 10561587 DOI: 10.1046/j.1432-1327.1999.00884.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously identified massively expressed 24- and 20.5-kDa male-specific proteins in submandibular salivary glands (SMG) of adult hamsters. Here we report the cloning of the cDNA encoding the 24-kDa protein which we have now found to be a heterogenously N-glycosylated form of the 20.5-kDa protein. The deduced amino acid sequence indicated that the protein is a member of the lipocalin family, the two most related lipocalins being rat odorant-binding protein of nasal mucosa and aphrodisin, a pheromonal protein present in vaginal discharge and saliva of female hamsters. Northern blot analysis showed that cognate mRNA is expressed in hamster SMG and lacrimal gland (LG) displaying marked sex-hormonal repression. The sex-hormonal repression patterns showed similarities and dissimilarities between SMG and LG but they were, respectively, similar to the sex-hormonal repression pattern noted for the SMG 24/20.5-kDa male-specific proteins and for an abundant female-specific 20-kDa LG secretory protein. These SMG and LG proteins were found to be immunologically similar and secretion of the SMG proteins in saliva and their excretion in urine was detected. The male-specific and abundant expression of the SMG proteins were seen at and after sexual maturity but was not dependent on androgens. Surprisingly, a temporary male-like expression of these SMG proteins was seen in lactating females which was obliterated by oestrogen administration. Our results show that despite differences in their repression by sex hormones, the gene for SMG 24/20.5-kDa proteins is similar or identical to that of LG 20-kDa protein and their marked repression by both androgens and oestrogens might be at the transcriptional level. Moreover, they might be excellent models with which to study sex hormone repression of gene expression at the molecular level. The results of homology search and the male- and lactation-specific pressure of the SMG proteins in adult saliva and urine suggests a possibility of their involvement in olfaction-mediated chemical communication between hamsters.
Collapse
Affiliation(s)
- E Thavathiru
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
19
|
Hirsch JR, Meyer M, Mägert HJ, Forssmann WG, Mollerup S, Herter P, Weber G, Cermak R, Ankorina-Stark I, Schlatter E, Kruhøffer M. cGMP-dependent and -independent inhibition of a K+ conductance by natriuretic peptides: molecular and functional studies in human proximal tubule cells. J Am Soc Nephrol 1999; 10:472-80. [PMID: 10073597 DOI: 10.1681/asn.v103472] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In immortalized human kidney epithelial (IHKE-1) cells derived from proximal tubules, two natriuretic peptide receptors (NPR) were identified. In addition to NPR-A, which is bound by atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and urodilatin (URO), a novel form of NPR-B that might be bound by C-type natriuretic peptide (CNP) was identified using PCR. This novel splice variant of NPR-B (NPR-Bi) was also found in human kidney. Whereas ANP, BNP, and URO increased intracellular cGMP levels in IHKE-1 cells in a concentration-dependent manner, CNP had no effect on cGMP levels. To determine the physiologic responses to these agonists in IHKE-1 cells, the membrane voltage (Vm) was monitored using the slow whole-cell patch-clamp technique. ANP (10 nM), BNP (10 nM), and URO (16 nM) depolarized these cells by 3 to 4 mV (n = 47, 7, and 16, respectively), an effect that could be mimicked by 0.1 mM 8-Br-cGMP (n = 15). The effects of ANP and 8-Br-cGMP were not additive (n = 4). CNP (10 nM) also depolarized these cells, by 3+/-1 mV (n = 28), despite the absence of an increase in cellular cGMP levels, indicating a cGMP-independent mechanism. In the presence of CNP, 8-Br-cGMP further depolarized Vm significantly, by 1.6+/-0.3 mV (n = 5). The depolarizations by ANP were completely abolished in the presence of Ba2+ (1 mM, n = 4) and thus can be related to inhibition of a K+ conductance in the luminal membrane of IHKE-1 cells. The depolarizations attributable to CNP were completely blocked when genistein (10 microM, n = 6), an inhibitor of tyrosine kinases, was present. These findings indicate that natriuretic peptides regulate electrogenic transport processes via cGMP-dependent and -independent pathways that influence the Vm of IHKE-1 cells.
Collapse
MESH Headings
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/pharmacology
- Base Sequence
- Biological Transport
- Calcium/metabolism
- Cells, Cultured
- Cyclic AMP/analysis
- Cyclic AMP/biosynthesis
- Cyclic GMP/analysis
- Cyclic GMP/biosynthesis
- Electric Conductivity
- Genistein/pharmacology
- Growth Inhibitors/pharmacology
- Humans
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Natriuretic Peptide, Brain/metabolism
- Natriuretic Peptide, Brain/pharmacology
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/pharmacology
- Patch-Clamp Techniques
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Potassium/metabolism
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Radioimmunoassay
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium/metabolism
Collapse
Affiliation(s)
- J R Hirsch
- Westfälische Wilhelms-Universität Münster, Medizinische Poliklinik, Experimentelle Nephrologie, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mägert HJ, Cieslak A, Alkan O, Lüscher B, Kauffels W, Forssmann WG. The golden hamster aphrodisin gene. Structure, expression in parotid glands of female animals, and comparison with a similar murine gene. J Biol Chem 1999; 274:444-50. [PMID: 9867863 DOI: 10.1074/jbc.274.1.444] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The so-called lipocalins are a family of extracellular proteins that are known to typically fulfill tasks as transport proteins for small hydrophobic molecules. However, in the last decade, a large diversity has been described concerning their functions, for example as enzymes, immunomodulators, or proteins involved in coloration and pheromone action. Aphrodisin belongs to those lipocalins, which are of significant importance for the pheromonal stimulation of copulatory behavior in male hamsters. We recently succeeded in characterizing the corresponding cDNA and demonstrated the expression of the aphrodisin gene in the vagina, uterus, and Bartholin's glands of female hamsters. Here we report the structure of the aphrodisin gene and the functionality of its promoter region. We further compare the aphrodisin gene to the related gene for mouse odorant-binding protein 1a, indicating similar functions of their products. As a novelty, we show that the aphrodisin gene, in addition to the above-mentioned tissues, is also expressed in female hamster parotid glands. In contradiction to the results expected, we finally demonstrate that aphrodisin already occurs in vaginal discharge before the female animals reach fertility. These findings may lead to the identification of as yet unknown aphrodisin functions.
Collapse
Affiliation(s)
- H J Mägert
- Lower Saxony Institute for Peptide Research, D-30 625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Structural data on odorant-binding proteins (OBPs), both in vertebrates and in insects, are reviewed and discussed. OBPs are soluble proteins interacting with odor molecules and pheromones in the perireceptor areas, the nasal mucus in vertebrates and the sensillar lymph in insects. The physiological function of these proteins is still uncertain, but information on their structure is abundant and accurate. Based on complete amino acid sequences, several subclasses have been identified, suggesting a role in odor discrimination. The OBPs of vertebrates belong to the family of lipocalins that includes proteins involved in the delivery of pheromonal messages. Those of insects do not bear significant similarity to any other class of proteins. The three-dimensional structure of the bovine OBP is a beta-barrel, while for insect OBPs a model has been proposed, mainly containing alpha-helix motifs. In some cases the amino acid residues involved in ligand binding have been identified with the use of photoaffinity label analogues.
Collapse
Affiliation(s)
- P Pelosi
- Istituto di Industrie Agrarie, University of Pisa, Italy.
| |
Collapse
|
22
|
Pes D, Mameli M, Andreini I, Krieger J, Weber M, Breer H, Pelosi P. Cloning and expression of odorant-binding proteins Ia and Ib from mouse nasal tissue. Gene X 1998; 212:49-55. [PMID: 9661663 DOI: 10.1016/s0378-1119(98)00131-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We had previously reported the purification and partial characterisation of four distinct odorant-binding proteins from male mouse nasal epithelium. One of these, named OBP-I appeared to be a heterodimer, whose subunits, Ia and Ib showed significant similarity in their N-terminal amino acid sequences with hamster aphrodisin. In this paper, we report the complete amino acid sequences of these two polypeptide chains, as deduced from nucleotide sequences of their relative cDNA. These data confirm the high similarity of both proteins with hamster aphrodisin. A comparison with the sequences of other known OBPs indicate that they are more closely related to members of class I, including bovine OBP, rat OBP-I and pig OBP-I. A putative odorant-binding site is indicated by the presence of amino acid residues conserved with respect to the bovine protein, whose three-dimensional structure has been recently resolved. In-situ hybridisation has revealed identical expression patterns for the two proteins, further supporting the heterodimeric structure of these proteins in the nasal mucus.
Collapse
Affiliation(s)
- D Pes
- Dipartimento di Chimica e Biotecnologie Agrarie, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Mägert HJ, Reinecke M, David I, Raab HR, Adermann K, Zucht HD, Hill O, Hess R, Forssmann WG. Uroguanylin: gene structure, expression, processing as a peptide hormone, and co-storage with somatostatin in gastrointestinal D-cells. REGULATORY PEPTIDES 1998; 73:165-76. [PMID: 9556079 DOI: 10.1016/s0167-0115(97)01078-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guanylin/GCAP-I and uroguanylin/GCAP-II are two structurally related peptides which play an important role in the regulation of water/electrolyte balance within the gut. In order to enable the investigation and comparison of both peptide hormones at the genomic level, we decided to clone the corresponding genes. The human gene for guanylin/GCAP-I and its 5'-flanking region have been described recently. Here, we report the three exon/two intron structure of the human uroguanylin/GCAP-II gene and its localization on chromosome 1 p35-34, as determined by radiation hybrid mapping. Together with data obtained for the guanylin/GCAP-I gene we show that these genes are localized in the same chromosomal area with other guanlyl cyclase-activating peptides like ANP etc. Northern hybridization revealed that the expression of the uroguanylin/GCAP-II gene is highest in the intestinal mucosa, especially in the ileum and colon. By means of polymerase chain reaction (PCR), an expression was also observed in the stomach where no guanylin/GCAP-I expression is detectable. Using immunohistochemical methods, uroguanylin/GCAP-II immunoreactive material was distinctly localized in D-type gastric and intestinal endocrine cells. Although the comparable data on the genomic organisation of both peptide hormones verify their high degree of relationship, this finding indicates a special task of uroguanylin/GCAP-II within the stomach, such as regulatory functions in gastric secretion. The redundant expression of the GCAP/GC-C system in the small and large intestine, however, is as yet unclear.
Collapse
Affiliation(s)
- H J Mägert
- Lower Saxony Institute for Peptide Research, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
Collapse
Affiliation(s)
- D R Flower
- Department of Physical Chemistry and BioAnalysis, Astra Charnwood, Loughborough, Leics, U.K
| |
Collapse
|
25
|
Abstract
The behaviours of organisms as diverse as elephants and butterflies are affected by pheromones with identical or similar structures. Recent developments in the molecular biology of pheromone detection suggest why.
Collapse
Affiliation(s)
- D R Kelly
- Department of Chemistry, University of Wales, College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, UK
| |
Collapse
|