1
|
Zhang X, Yang L, Gan Q, Jiang S, Liang D, Gao J, Meng Y. BmTBP upregulates the transcription of BmSuc1 in silkworm (Bombyx mori) by binding to BmTfΙΙA-S. INSECT SCIENCE 2023; 30:1405-1419. [PMID: 36585848 DOI: 10.1111/1744-7917.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The BmSuc1 gene, which encodes a novel animal-type β-fructofuranosidase (EC 3.2.1.26), was first cloned and identified in silkworm (Bombyx mori). As an essential sucrase, the activity of BmSUC1 is unaffected by alkaloidal sugar mimics in mulberry leaves. This enzyme may also directly regulate the degree of sucrose hydrolysis in the silkworm midgut. In addition, BmSUC1 is involved in the synthesis of sericin 1 in the silk gland tissue. However, the mechanism underlying the regulation of BmSuc1 transcription remains unclear. In this study, we analyzed the BmSuc1 promoter activity using a dual-luciferase reporter assay and identified 4 regions that are critical for transcriptional activation. The gene encoding a predicted transcription factor (TATA-box-binding protein; BmTBP) capable of binding to the core promoter regions was cloned. A quantitative real-time polymerase chain reaction analysis indicated the gene was highly expressed in the midgut. Downregulating BmTBP expression via RNA interference decreased the expression of BmSuc1 at the transcript and protein levels. An electrophoretic mobility shift analysis and chromatin immunoprecipitation indicated that BmTBP can bind to the TATA-box cis-regulatory element in the BmSuc1 promoter. Furthermore, a bioinformatics-based analysis and a far-western blot revealed the interaction between BmTBP and another transcription factor (BmTfIIA-S). The luciferase reporter gene assay results confirmed that the BmTBP-BmTfIIA-S complex increases the BmSuc1 promoter activity. Considered together, these findings suggest that BmTBP regulates BmSuc1 expression through its interaction with BmTfIIA-S.
Collapse
Affiliation(s)
- Xinwei Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Liangli Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Quan Gan
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Song Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Dan Liang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Junshan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
2
|
Tang X, Wang X, Huang Y, Ma L, Jiang X, Rao MJ, Xu Y, Yin P, Yuan M, Deng X, Xu Q. Natural variations of TFIIAγ gene and LOB1 promoter contribute to citrus canker disease resistance in Atalantia buxifolia. PLoS Genet 2021; 17:e1009316. [PMID: 33493197 PMCID: PMC7861543 DOI: 10.1371/journal.pgen.1009316] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 02/04/2021] [Accepted: 12/19/2020] [Indexed: 12/01/2022] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases in citrus industry worldwide. Most citrus cultivars such as sweet orange are susceptible to canker disease. Here, we utilized wild citrus to identify canker-resistant germplasms, and found that Atalantia buxifolia, a primitive (distant-wild) citrus, exhibited remarkable resistance to canker disease. Although the susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1) could also be induced in Atalantia after canker infection, the induction extent was far lower than that in sweet orange. In addition, three of amino acids encoded by transcription factor TFIIAγ in Atalantia (AbTFIIAγ) exhibited difference from those in sweet orange (CsTFIIAγ) which could stabilize the interaction between effector PthA4 and effector binding element (EBE) of LOB1 promoter. The mutation of AbTFIIAγ did not change its interaction with transcription factor binding motifs (TFBs). However, the AbTFIIAγ could hardly support the LOB1 expression induced by the PthA4. In addition, the activity of AbLOB1 promoter was significantly lower than that of CsLOB1 under the induction by PthA4. Our results demonstrate that natural variations of AbTFIIAγ and effector binding element (EBE) in the AbLOB1 promoter are crucial for the canker disease resistance of Atalantia. The natural mutations of AbTFIIAγ gene and AbLOB1 promoter in Atalantia provide candidate targets for improving the resistance to citrus canker disease. It has been well documented that most citrus cultivars are susceptible to canker disease, while little is known about the resistance or susceptibility of primitive or wild citrus to canker disease. This study reveals that primitive citrus (Atalantia buxifolia) is highly resistant to citrus canker. Transcriptome data demonstrated that Atalantia had an active resistance response to the infection of Xcc, compared with susceptible sweet orange. Our results indicated that natural variations of AbTFIIAγ gene and AbLOB1 promoter contributed to the resistance. Hence, we propose that the natural mutations of AbTFIIAγ gene and AbLOB1 promoter could provide candidate targets for breeding canker resistant citrus.
Collapse
Affiliation(s)
- Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Ling Ma
- Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Xiaolin Jiang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Ping Yin
- Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Meng Yuan
- Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
- * E-mail:
| |
Collapse
|
3
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
4
|
Wang J, Zhao S, He W, Wei Y, Zhang Y, Pegg H, Shore P, Roberts SGE, Deng W. A transcription factor IIA-binding site differentially regulates RNA polymerase II-mediated transcription in a promoter context-dependent manner. J Biol Chem 2017; 292:11873-11885. [PMID: 28539359 DOI: 10.1074/jbc.m116.770412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/23/2017] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (pol II) is required for the transcription of all protein-coding genes and as such represents a major enzyme whose activity is tightly regulated. Transcriptional initiation therefore requires numerous general transcriptional factors and cofactors that associate with pol II at the core promoter to form a pre-initiation complex. Transcription factor IIA (TFIIA) is a general cofactor that binds TFIID and stabilizes the TFIID-DNA complex during transcription initiation. Previous studies showed that TFIIA can make contact with the DNA sequence upstream or downstream of the TATA box, and that the region bound by TFIIA could overlap with the elements recognized by another factor, TFIIB, at adenovirus major late core promoter. Whether core promoters contain a DNA motif recognized by TFIIA remains unknown. Here we have identified a core promoter element upstream of the TATA box that is recognized by TFIIA. A search of the human promoter database revealed that many natural promoters contain a TFIIA recognition element (IIARE). We show that the IIARE enhances TFIIA-promoter binding and enhances the activity of TATA-containing promoters, but represses or activates promoters that lack a TATA box. Chromatin immunoprecipitation assays revealed that the IIARE activates transcription by increasing the recruitment of pol II, TFIIA, TAF4, and P300 at TATA-dependent promoters. These findings extend our understanding of the role of TFIIA in transcription, and provide new insights into the regulatory mechanism of core promoter elements in gene transcription by pol II.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Shasha Zhao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Wei He
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Yun Wei
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Yang Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China
| | - Henry Pegg
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Stefan G E Roberts
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | - Wensheng Deng
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan City, Hubei Province 430065, China.
| |
Collapse
|
5
|
Malecová B, Caputo VS, Lee DF, Hsieh JJ, Oelgeschläger T. Taspase1 processing alters TFIIA cofactor properties in the regulation of TFIID. Transcription 2015; 6:21-32. [PMID: 25996597 DOI: 10.1080/21541264.2015.1052178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
TFIIA is an important positive regulator of TFIID, the primary promoter recognition factor of the basal RNA polymerase II transcription machinery. TFIIA antagonises negative TFIID regulators such as negative cofactor 2 (NC2), promotes specific binding of the TBP subunit of TFIID to TATA core promoter sequence elements and stimulates the interaction of TBP-associated factors (TAFs) in the TFIID complex with core promoter elements located downstream of TATA, such as the initiator element (INR). Metazoan TFIIA consists of 3 subunits, TFIIAα (35 kDa), β (19 kDa) and γ (12 kDa). TFIIAα and β subunits are encoded by a single gene and result from site-specific cleavage of a 55 kDa TFIIA(α/β) precursor protein by the protease Taspase1. Metazoan cells have been shown to contain variable amounts of TFIIA (55/12 kDa) and Taspase1-processed TFIIA (35/19/12 kDa) depending on cell type, suggesting distinct gene-specific roles of unprocessed and Taspase1-processed TFIIA. How precisely Taspase1 processing affects TFIIA functions is not understood. Here we report that Taspase1 processing alters TFIIA interactions with TFIID and the conformation of TFIID/TFIIA promoter complexes. We further show that Taspase1 processing induces increased sensitivity of TFIID/TFIIA complexes to the repressor NC2, which is counteracted by the presence of an INR core promoter element. Our results provide first evidence that Taspase1 processing affects TFIIA regulation of TFIID and suggest that Taspase1 processing of TFIIA is required to establish INR-selective core promoter activity in the presence of NC2.
Collapse
Affiliation(s)
- Barbora Malecová
- a Marie Curie Research Institute; The Chart , Oxted , Surrey , United Kingdom
| | | | | | | | | |
Collapse
|
6
|
Ghouila A, Florent I, Guerfali FZ, Terrapon N, Laouini D, Yahia SB, Gascuel O, Bréhélin L. Identification of divergent protein domains by combining HMM-HMM comparisons and co-occurrence detection. PLoS One 2014; 9:e95275. [PMID: 24901648 PMCID: PMC4046975 DOI: 10.1371/journal.pone.0095275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/26/2014] [Indexed: 01/03/2023] Open
Abstract
Identification of protein domains is a key step for understanding protein function. Hidden Markov Models (HMMs) have proved to be a powerful tool for this task. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in sequenced organisms. This is done via sequence/HMM comparisons. However, this approach may lack sensitivity when searching for domains in divergent species. Recently, methods for HMM/HMM comparisons have been proposed and proved to be more sensitive than sequence/HMM approaches in certain cases. However, these approaches are usually not used for protein domain discovery at a genome scale, and the benefit that could be expected from their utilization for this problem has not been investigated. Using proteins of P. falciparum and L. major as examples, we investigate the extent to which HMM/HMM comparisons can identify new domain occurrences not already identified by sequence/HMM approaches. We show that although HMM/HMM comparisons are much more sensitive than sequence/HMM comparisons, they are not sufficiently accurate to be used as a standalone complement of sequence/HMM approaches at the genome scale. Hence, we propose to use domain co-occurrence — the general domain tendency to preferentially appear along with some favorite domains in the proteins — to improve the accuracy of the approach. We show that the combination of HMM/HMM comparisons and co-occurrence domain detection boosts protein annotations. At an estimated False Discovery Rate of 5%, it revealed 901 and 1098 new domains in Plasmodium and Leishmania proteins, respectively. Manual inspection of part of these predictions shows that it contains several domain families that were missing in the two organisms. All new domain occurrences have been integrated in the EuPathDomains database, along with the GO annotations that can be deduced.
Collapse
Affiliation(s)
- Amel Ghouila
- Institut de Biologie Computationnelle, LIRMM, CNRS, Univ. Montpellier 2, Montpellier, France
- Computer Science Department, Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Isabelle Florent
- Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, UMR7245 CNRS-MNHN, Molécules de Communication et Adaptation des Micro-organismes, Adaptation des Protozoaires à leur Environnent, Paris, France
| | - Fatma Zahra Guerfali
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Nicolas Terrapon
- Centre National de la Recherche Scientifique, Aix-Marseille Université, CNRS UMR 7257, AFMB, Marseille, France
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Sadok Ben Yahia
- Computer Science Department, Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Olivier Gascuel
- Institut de Biologie Computationnelle, LIRMM, CNRS, Univ. Montpellier 2, Montpellier, France
| | - Laurent Bréhélin
- Institut de Biologie Computationnelle, LIRMM, CNRS, Univ. Montpellier 2, Montpellier, France
- * E-mail:
| |
Collapse
|
7
|
Persistent STAT5 activation in myeloid neoplasms recruits p53 into gene regulation. Oncogene 2014; 34:1323-32. [PMID: 24681953 DOI: 10.1038/onc.2014.60] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/10/2023]
Abstract
STAT (Signal Transducer and Activator of Transcription) transcription factors are constitutively activated in most hematopoietic cancers. We previously identified a target gene, LPP/miR-28 (LIM domain containing preferred translocation partner in lipoma), induced by constitutive activation of STAT5, but not by transient cytokine-activated STAT5. miR-28 exerts negative effects on thrombopoietin receptor signaling and platelet formation. Here, we demonstrate that, in transformed hematopoietic cells, STAT5 and p53 must be synergistically bound to chromatin for induction of LPP/miR-28 transcription. Genome-wide association studies show that both STAT5 and p53 are co-localized on the chromatin at 463 genomic positions in proximal promoters. Chromatin binding of p53 is dependent on persistent STAT5 activation at these proximal promoters. The transcriptional activity of selected promoters bound by STAT5 and p53 was significantly changed upon STAT5 or p53 inhibition. Abnormal expression of several STAT5-p53 target genes (LEP, ATP5J, GTF2A2, VEGFC, NPY1R and NPY5R) is frequently detected in platelets of myeloproliferative neoplasm (MPN) patients, but not in platelets from healthy controls. In conclusion, persistently active STAT5 can recruit normal p53, like in the case of MPN cells, but also p53 mutants, such as p53 M133K in human erythroleukemia cells, leading to pathologic gene expression that differs from canonical STAT5 or p53 transcriptional programs.
Collapse
|
8
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Munger SC, Natarajan A, Looger LL, Ohler U, Capel B. Fine time course expression analysis identifies cascades of activation and repression and maps a putative regulator of mammalian sex determination. PLoS Genet 2013; 9:e1003630. [PMID: 23874228 PMCID: PMC3708841 DOI: 10.1371/journal.pgen.1003630] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/28/2013] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E) 11.0-E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6) XY gonads showed a consistent ~5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs) mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4) is a novel regulator of sex determination upstream of SF1 (Nr5a1), Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems.
Collapse
Affiliation(s)
- Steven C. Munger
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anirudh Natarajan
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, United States of America
| | - Uwe Ohler
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Silvers R, Saxena K, Kudlinzki D, Schwalbe H. Recombinant expression and purification of human TATA binding protein using a chimeric fusion. Protein Expr Purif 2012; 85:142-7. [DOI: 10.1016/j.pep.2012.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
11
|
Shiraishi S, Tamamura N, Jogo M, Tanaka Y, Tamura TA. Rapid proteasomal degradation of transcription factor IIB in accordance with F9 cell differentiation. Gene 2009; 436:115-20. [PMID: 19393171 DOI: 10.1016/j.gene.2009.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 12/15/2008] [Accepted: 01/25/2009] [Indexed: 11/28/2022]
Abstract
We found that the levels of all general transcription factors (GTFs) for RNA polymerase II decreased in F9 cells when the cells were subjected to a differentiation procedure. Different from other GTFs, decrease of TFIIB during the differentiation was suppressed by addition of a proteasome inhibitor, MG132. The half-life of TFIIB in the differentiated cells was remarkably reduced compared with that in the undifferentiated cells. Moreover, it was demonstrated that TFIIB is a poly-ubiquitinated protein. Results of this study suggest that components of the transcription machinery decreased in accordance with cell differentiation and that TFIIB is specifically and rapidly degraded by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|
12
|
TFIIB recognition elements control the TFIIA-NC2 axis in transcriptional regulation. Mol Cell Biol 2008; 29:1389-400. [PMID: 19114554 DOI: 10.1128/mcb.01346-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
TFIIB recognizes DNA sequence-specific motifs that can flank the TATA elements of the promoters of protein-encoding genes. The TFIIB recognition elements (BRE(u) and BRE(d)) can have positive or negative effects on transcription in a promoter context-dependent manner. Here we show that the BREs direct the selective recruitment of TFIIA and NC2 to the promoter. We find that TFIIA preferentially associates with BRE-containing promoters while NC2 is recruited to promoters that lack consensus BREs. The functional relevance of the BRE-dependent recruitment of TFIIA and NC2 was determined by small interfering RNA-mediated knockdown of TFIIA and NC2, both of which elicited BRE-dependent effects on transcription. Our results confirm the established functional reciprocity of TFIIA and NC2. However, our findings show that TFIIA assembly at BRE-containing promoters results in reduced transcriptional activity, while NC2 acts as a positive factor at promoters that lack functional BREs. Taken together, our results provide a basis for the selective recruitment of TFIIA and NC2 to the promoter and give new insights into the functional relationship between core promoter elements and general transcription factor activity.
Collapse
|
13
|
Zabierowski SE, Deluca NA. Stabilized binding of TBP to the TATA box of herpes simplex virus type 1 early (tk) and late (gC) promoters by TFIIA and ICP4. J Virol 2008; 82:3546-54. [PMID: 18216093 PMCID: PMC2268492 DOI: 10.1128/jvi.02560-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/10/2008] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that ICP4 has a differential requirement for the general transcription factor TFIIA in vitro (S. Zabierowski and N. DeLuca, J. Virol. 78:6162-6170, 2004). TFIIA was dispensable for ICP4 activation of a late promoter (gC) but was required for the efficient activation of an early promoter (tk). An intact INR element was required for proficient ICP4 activation of the late promoter in the absence of TFIIA. Because TFIIA is known to stabilize the binding of both TATA binding protein (TBP) and TFIID to the TATA box of core promoters and ICP4 has been shown to interact with TFIID, we tested the ability of ICP4 to stabilize the binding of either TBP or TFIID to the TATA box of representative early, late, and INR-mutated late promoters (tk, gC, and gC8, respectively). Utilizing DNase I footprinting analysis, we found that ICP4 was able to facilitate TFIIA stabilized binding of TBP to the TATA box of the early tk promoter. Using mutant ICP4 proteins, the ability to stabilize the binding of TBP to both the wild-type and the INR-mutated gC promoters was located in the amino-terminal region of ICP4. When TFIID was substituted for TBP, ICP4 could stabilize the binding of TFIID to the TATA box of the wild-type gC promoter. ICP4, however, could not effectively stabilize TFIID binding to the TATA box of the INR-mutated late promoter. The additional activities of TFIIA were required to stabilize the binding of TFIID to the INR-mutated late promoter. Collectively, these data suggest that TFIIA may be dispensable for ICP4 activation of the wild-type late promoter because ICP4 can substitute for TFIIA's ability to stabilize the binding of TFIID to the TATA box. In the absence of a functional INR, ICP4 can no longer stabilize TFIID binding to the TATA box of the late promoter and requires the additional activities of TFIIA. The stabilized binding of TFIID by TFIIA may in turn allow ICP4 to more efficiently activate transcription from non-INR containing promoters.
Collapse
Affiliation(s)
- Susan E Zabierowski
- Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
14
|
Yu S, Jiang Y, Galson DL, Luo M, Lai Y, Lu Y, Ouyang HJ, Zhang J, Xiao G. General transcription factor IIA-gamma increases osteoblast-specific osteocalcin gene expression via activating transcription factor 4 and runt-related transcription factor 2. J Biol Chem 2008; 283:5542-53. [PMID: 18171674 DOI: 10.1074/jbc.m705653200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATF4 (activating transcription factor 4) is an osteoblast-enriched transcription factor that regulates terminal osteoblast differentiation and bone formation. ATF4 knock-out mice have reduced bone mass (severe osteoporosis) throughout life. Runx2 (runt-related transcription factor 2) is a runt domain-containing transcription factor that is essential for bone formation during embryogenesis and postnatal life. In this study, we identified general transcription factor IIA gamma (TFIIA gamma) as a Runx2-interacting factor in a yeast two-hybrid screen. Immunoprecipitation assays confirmed that TFIIA gamma interacts with Runx2 in osteoblasts and when coexpressed in COS-7 cells or using purified glutathione S-transferase fusion proteins. Chromatin immunoprecipitation assay of MC3T3-E1 (clone MC-4) preosteoblast cells showed that in intact cells TFIIA gamma is recruited to the region of the osteocalcin promoter previously shown to bind Runx2 and ATF4. A small region of Runx2 (amino acids 258-286) was found to be required for TFIIA gamma binding. Although TFIIA gamma interacts with Runx2, it does not activate Runx2. Instead, TFIIA gamma binds to and activates ATF4. Furthermore, TFIIA gamma together with ATF4 and Runx2 stimulates osteocalcin promoter activity and endogenous mRNA expression. Small interfering RNA silencing of TFIIA gamma markedly reduces levels of endogenous ATF4 protein and Ocn mRNA in osteoblastic cells. Overexpression of TFIIA gamma increases levels of ATF4 protein. Finally, TFIIA gamma significantly prevents ATF4 degradation. This study shows that a general transcription factor, TFIIA gamma, facilitates osteoblast-specific gene expression through interactions with two important bone transcription factors ATF4 and Runx2.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15240, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mabuchi T, Wakamatsu T, Nakadai T, Shimada M, Yamada K, Matsuda Y, Tamura TA. Chromosomal position, structure, expression, and requirement of genes for chicken transcription factor IIA. Gene 2007; 397:94-100. [PMID: 17544229 DOI: 10.1016/j.gene.2007.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 03/14/2007] [Accepted: 04/13/2007] [Indexed: 11/18/2022]
Abstract
Transcription factor IIA (TFIIA) is one of the general transcription factors for RNA polymerase II and composed of three subunits, TFIIAalpha, TFIIAbeta and TFIIAgamma. TFIIAalpha and TFIIAbeta are encoded by a single gene (TFIIAalphabeta) and mature through internal cleavage of TFIIAalphabeta. In this study, we found that structures of TFIIAalphabeta and TFIIAgamma are highly homologous with each mammalian counterpart. Exon-intron organizations of the human and chicken TFIIA genes were also homologous. The sequence of the cleavage region of the chicken TFIIAalphabeta precursor protein was fitted to the consensus cleavage recognition site. It was thus demonstrated that TFIIA is conserved in vertebrates. TFIIA proteins are present ubiquitously in chicken tissues. Fluorescent in situ hybridization revealed that TFIIAalphabeta and TFIIAgamma genes are located in chromosome 5 and a mini-chromosome, respectively. We generated semi-knockout chicken DT40 cells for TFIIAalphabeta and TFIIAgamma genes with high homologous recombination efficiencies, whereas we failed to establish double-knockout cells for each gene. It is thought that both genes for TFIIA are required in vertebrates. TFIIA siRNA resulted in deceleration of cell growth rate, suggesting that, consistent with those of knockout assays, TFIIA is associated with cell growth regulation.
Collapse
Affiliation(s)
- Tomoko Mabuchi
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Kottapalli KR, Kottapalli P, Agrawal GK, Kikuchi S, Rakwal R. Recessive bacterial leaf blight resistance in rice: complexity, challenges and strategy. Biochem Biophys Res Commun 2007; 355:295-301. [PMID: 17307154 DOI: 10.1016/j.bbrc.2007.01.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
Physical mapping and map-based cloning strategies are routinely used for identification of candidate genes for major qualitative traits in rice. Such strategies have enabled mapping and characterization of dominant bacterial leaf blight (blb) resistance genes, but little progress has been made in case of the recessive resistance genes. Two recent studies on map-based cloning of xa5 and xa13 recessive blb resistance genes identified the general transcription factor IIA gamma subunit (TFIIAgamma) and the nodulin MtN21 as candidates, respectively. Subsequently, two other reports have raised discussion on whether the identified candidates are indeed recessive resistance genes, and are sufficient to confer blb resistance in rice. Based on published evidence, and our extensive in silico analyses of the genomic environment around xa5 and xa13 regions, we propose that the recessive gene mediated resistance mechanism is more complex and might not be governed by a single gene.
Collapse
Affiliation(s)
- Kameswara R Kottapalli
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
17
|
Prigge JR, Schmidt EE. Interaction of protein inhibitor of activated STAT (PIAS) proteins with the TATA-binding protein, TBP. J Biol Chem 2006; 281:12260-9. [PMID: 16522640 PMCID: PMC2030495 DOI: 10.1074/jbc.m510835200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription activators often recruit promoter-targeted assembly of a pre-initiation complex; many repressors antagonize recruitment. These activities can involve direct interactions with proteins in the pre-initiation complex. We used an optimized yeast two-hybrid system to screen mouse pregnancy-associated libraries for proteins that interact with TATA-binding protein (TBP). Screens revealed an interaction between TBP and a single member of the zinc finger family of transcription factors, ZFP523. Two members of the protein inhibitor of activated STAT (PIAS) family, PIAS1 and PIAS3, also interacted with TBP in screens. Endogenous PIAS1 and TBP co-immunoprecipitated from nuclear extracts, suggesting the interaction occurred in vivo. In vitro-translated PIAS1 and TBP co-immunoprecipitated, which indicated that other nuclear proteins were not required for the interaction. Deletion analysis mapped the PIAS-interacting domain of TBP to the conserved TBP(CORE) and the TBP-interacting domain on PIAS1 to a 39-amino acid C-terminal region. Mammals issue seven known PIAS proteins from four pias genes, pias1, pias3, piasx, and piasy, each with different cell type-specific expression patterns; the TBP-interacting domain reported here is the only part of the PIAS C-terminal region shared by all seven PIAS proteins. Direct analyses indicated that PIASx and PIASy also interacted with TBP. Our results suggest that all PIAS proteins might mediate situation-specific regulatory signaling at the TBP interface and that previously unknown levels of complexity could exist in the gene regulatory interplay between TBP, PIAS proteins, ZFP523, and other transcription factors.
Collapse
Affiliation(s)
- Justin R Prigge
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
18
|
Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgamma1. Mol Genet Genomics 2006; 275:354-66. [PMID: 16614777 DOI: 10.1007/s00438-005-0091-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 12/10/2005] [Indexed: 10/25/2022]
Abstract
The recessive gene xa5 for resistance to bacterial blight resistance of rice is located on chromosome 5, and evidence based on genetic recombination has been shown to encode a small subunit of the basal transcription factor IIA (Iyer and McCouch in MPMI 17(12):1348-1354, 2004). However, xa5 has not been demonstrated by a complementation test. In this study, we introduced the dominant allele Xa5 into a homozygous xa5-line, which was developed from a cross between IRBB5 (an indica variety with xa5) and Nipponbare (a japonica variety with Xa5). Transformation of Xa5 and subsequent segregation analysis confirmed that xa5 is a V39E substitution variant of the gene for TFIIAgamma on chromosome 5 (TFIIAgamma5 or Xa5). The rice has an addition gene for TFIIAgamma exists on chromosome 1 (TFIIAgamma1). Analysis of the expression patterns of Xa5 (TFIIAgamma5)/xa5 and TFIIAgamma1 revealed that both the genes are constitutively expressed in different rice organs. However, no expression of TFIIAgamma1 could be detected in the panicle by reverse transcriptase-polymerase chain reaction. To compare the structural difference between the Xa5/xa5 and TFIIAgamma1 proteins, 3-D structures were predicted using computer-aided modeling techniques. The modeled structures of Xa5 (xa5) and TFIIAgamma1 fit well with the structure of TFIIA small subunit from human, suggesting that they may all act as a small subunit of TFIIA. The E39V substitution in the xa5 protein occurs in the alpha-helix domain, a supposed conservative substitutable site, which should not affect the basal transcription function of TFIIAgamma. The structural analysis indicates that xa5 and Xa5 potentially retain their basic transcription factor function, which, in turn, may mediate the novel pathway for bacterial blight resistance and susceptibility, respectively.
Collapse
Affiliation(s)
- Guang-Huai Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
DeJong J. Basic mechanisms for the control of germ cell gene expression. Gene 2006; 366:39-50. [PMID: 16326034 DOI: 10.1016/j.gene.2005.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
The patterns of gene expression in spermatocytes and oocytes are quite different from those in somatic cells. The messenger RNAs produced by these cells are not only required to support germ cell development but, in the case of oocytes, they are also used for maturation, fertilization, and early embryogenesis. Recent studies have begun to provide an explanation for how germ-cell-specific programs of gene expression are generated. Part of the answer comes from the observation that germ cells express core promoter-associated regulatory factors that are different from those expressed in somatic cells. These factors supplement or replace their somatic counterparts to direct expression during meiosis and gametogenesis. In addition, germ cell transcription involves the recognition and use of specialized core promoter sequences. Finally, transcription must occur on chromosomal DNA templates that are reorganized into new chromatin-packaging configurations using alternate histone subunits. This article will review recent advances in our understanding of the factors and mechanisms that control transcription in ovary and testis and will discuss models for germ cell gene expression.
Collapse
Affiliation(s)
- Jeff DeJong
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, United States.
| |
Collapse
|
20
|
Catena R, Argentini M, Martianov I, Parello C, Brancorsini S, Parvinen M, Sassone-Corsi P, Davidson I. Proteolytic cleavage of ALF into alpha- and beta-subunits that form homologous and heterologous complexes with somatic TFIIA and TRF2 in male germ cells. FEBS Lett 2005; 579:3401-10. [PMID: 15927180 DOI: 10.1016/j.febslet.2005.04.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Male germ cells specifically express paralogues of components of the general transcription apparatus including ALF a paralogue of TFIIAalpha/beta. We show that endogenous ALF is proteolytically cleaved to give alpha- and beta-subunits and we map the proteolytic cleavage site by mass spectrometry. Immunoprecipitations show that ALFalpha- and beta-subunits form a series of homologous and heterologous complexes with somatic TFIIA which is coexpressed in male germ cells. In addition, we show that ALF is coexpressed in late pachytene spermatocytes and in haploid round spermatids with transcription factor TRF2, and that these proteins form stable complexes in testis extracts. Our observations highlight how cleavage of ALF and coexpression with TFIIA and TRF2 increases the combinatorial possibilities for gene regulation at different developmental stages of spermatogenesis.
Collapse
Affiliation(s)
- Raffaella Catena
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Høiby T, Mitsiou DJ, Zhou H, Erdjument-Bromage H, Tempst P, Stunnenberg HG. Cleavage and proteasome-mediated degradation of the basal transcription factor TFIIA. EMBO J 2004; 23:3083-91. [PMID: 15257296 PMCID: PMC514921 DOI: 10.1038/sj.emboj.7600304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 06/07/2004] [Indexed: 11/09/2022] Open
Abstract
The transcription factor TFIIA is encoded by two genes, TFIIAalphabeta and TFIIAgamma. In higher eukaryotes, the TFIIAalphabeta is translated as a precursor and undergoes proteolytic cleavage; the regulation and biological implications of the cleavage have remained elusive. We determined by Edman degradation that the TFIIAbeta subunit starts at Asp 278. We found that a cleavage recognition site (CRS), a string of amino acids QVDG at positions -6 to -3 from Asp 278, is essential for cleavage. Mutations in the CRS that prevent cleavage significantly prolong the half-life of TFIIA. Consistently, the cleaved TFIIA is a substrate for the ubiquitin pathway and proteasome-mediated degradation. We show that mutations in the putative phosphorylation sites of TFIIAbeta greatly affect degradation of the beta-subunit. We propose that cleavage and subsequent degradation fine-tune the amount of TFIIA in the cell and consequently the level of transcription.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, HB Nijmegen, The Netherlands
| | - Dimitra J Mitsiou
- NCMLS, Department of Molecular Biology, HB Nijmegen, The Netherlands
| | - Huiqing Zhou
- NCMLS, Department of Molecular Biology, HB Nijmegen, The Netherlands
| | | | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
22
|
Zabierowski S, DeLuca NA. Differential cellular requirements for activation of herpes simplex virus type 1 early (tk) and late (gC) promoters by ICP4. J Virol 2004; 78:6162-70. [PMID: 15163709 PMCID: PMC416540 DOI: 10.1128/jvi.78.12.6162-6170.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/10/2004] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 immediate-early protein, ICP4, activates the transcription of viral early and late genes and is essential for viral growth. It has been shown to bind DNA and interact with components of the general transcription machinery to activate or repress viral transcription, depending upon promoter context. Since early and late gene promoters have different architectures and cellular metabolism may be very different at early and late times after infection, the cellular requirements for ICP4-mediated activation of early and late genes may differ. This hypothesis was tested using tk and gC as representative early and late promoters, respectively. Nuclear extracts and phosphocellulose column fractions derived from nuclear extracts were able to reconstitute basal and ICP4-activated transcription of both promoters in vitro. When examining the contribution of the general transcription factors on the ability of ICP4 to activate transcription, the fraction containing the general transcription factor TFIIA was not essential for ICP4 activation of the gC promoter, but it was required for efficient activation of the tk promoter. The addition of recombinant TFIIA restored the ability of ICP4 to efficiently activate the tk promoter, but it had no net effect on activation of the gC promoter. The dispensability of TFIIA for ICP4 activation of the gC promoter required an intact INR element. In addition, microarray and Northern blot analysis indicated that TFIIA abundance may be reduced at late times of infection. This decrease in TFIIA expression during infection and its dispensability for activation of late but not early genes suggest one of possibly many mechanisms for the transition from viral early to late gene expression.
Collapse
Affiliation(s)
- Susan Zabierowski
- E1257 Biomedical Science Tower, Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | |
Collapse
|
23
|
De Cesare D, Fimia GM, Brancorsini S, Parvinen M, Sassone-Corsi P. Transcriptional Control in Male Germ Cells: General Factor TFIIA Participates in CREM-Dependent Gene Activation. Mol Endocrinol 2003; 17:2554-65. [PMID: 14512522 DOI: 10.1210/me.2003-0280] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulation of gene expression in haploid male germ cells follows a number of specific rules that differ from somatic cells. In this physiological context, transcriptional control mediated by the activator CREM (cAMP-responsive element modulator) represents an established paradigm. In somatic cells activation by CREM requires its phosphorylation at a unique regulatory site (Ser117) and subsequent interaction with the ubiquitous coactivator CBP (cAMP response element binding protein-binding protein). In testis, CREM transcriptional activity is controlled through interaction with a tissue-specific partner, ACT (activator of CREM in testis), which confers a powerful, phosphorylation-independent activation capacity. In addition to specialized transcription factors and coactivators, a variety of general factors of the basal transcriptional machinery, and their distinct tissue-specific isoforms, are highly expressed in testis, supporting the general notion that testis-specific gene expression requires specialized mechanisms. Here, we describe that CREM interacts with transcription factor IIA (TFIIA), a general transcription factor that stimulates RNA polymerase II-directed transcription. This association was identified by a two-hybrid screen, using a testis-derived cDNA library, and confirmed by coimmunoprecipitation. The interaction is restricted to the activator isoforms of CREM and does not require Ser117. Importantly, CREM does not interact with TFIIAtau-ALF, a testis-specific TFIIA homolog. CREM and TFIIA are expressed in a spatially and temporally coordinated fashion during the differentiation program of germ cells. The two proteins also colocalize intracellularly in spermatocyte and spermatid cells. These findings contribute to the understanding of the highly specialized rules of transcriptional regulation in haploid germ cells.
Collapse
Affiliation(s)
- Dario De Cesare
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
24
|
Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 2003; 332:783-93. [PMID: 12972251 DOI: 10.1016/s0022-2836(03)00887-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA polymerase II-dependent transcription requires the assembly of a multi-protein, preinitiation complex on core promoter elements. Transcription factor IID (TFIID) comprising the TATA box-binding protein (TBP) and TBP-associated factors (TAFs) is responsible for promoter recognition in this complex. Subsequent association of TFIIA and TFIIB provides enhanced complex stability. TFIIA is required for transcriptional stimulation by certain viral and cellular activators, and favors formation of the preinitiation complex in the presence of repressor NC2. The X-ray structures of human and yeast TBP/TFIIA/DNA complexes at 2.1A and 1.9A resolution, respectively, are presented here and seen to resemble each other closely. The interactions made by human TFIIA with TBP and DNA within and upstream of the TATA box, including those involving water molecules, are described and compared to the yeast structure. Of particular interest is a previously unobserved region of TFIIA that extends the binding interface with TBP in the yeast, but not in the human complex, and that further elucidates biochemical and genetic results.
Collapse
Affiliation(s)
- Michael Bleichenbacher
- ETH Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
25
|
Dasgupta A, Scovell WM. TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:101-10. [PMID: 12818428 DOI: 10.1016/s0167-4781(03)00080-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Successful assembly of the transcriptional preinitiation complex (PIC) is prerequisite to transcriptional initiation. At each stage of PIC assembly, regulation may occur as repressors and activators compete with and influence the incorporation of general transcription factors (GTFs). Both TFIIA and HMGB1 bind individually to the TATA-binding protein (TBP) to increase the rate of binding and to stabilize TBP binding to the TATA element. The competitive binding between these two cofactors for TBP/TATA was examined to show that TFIIA binds preferentially to TBP and inhibits HMGB1 binding. TFIIA can also readily dissociate HMGB1 from the preestablished HMGB1/TBP/TATA complex. This suggests that TFIIA and HMGB1 may bind to the same or overlapping sites on TBP and/or compete for similar DNA sites that are 5' to the TATA element. In addition, EMSA studies show that adenovirus E1A(13S) oncoprotein is unable to disrupt either the preestablished TFIIA/TBP/TATA or TFIIA/TFIIB/TBP/TATA complexes, but does inhibit complex formation when all transcription factors were simultaneously added. The inhibitory effect of E1A(13S) on the assembly of the PIC is overcome when excess TBP is added back in the reaction, while addition of either excess TFIIA or TFIIB were ineffective. This shows that the main target for E1A(13S) is free TBP and emphasizes the primary competition between E1A and the TATA-element for unbound TBP. This may be the principal point, if not the only point, at which E1A can target TBP to exert its inhibitory effect. This work, coupled with previous findings in our laboratory, indicates that TFIIA is much more effective than TFIIB in reversing the inhibitory effect of HMGB1 binding in the early stages of PIC assembly, which is consistent with the in vitro transcription results.
Collapse
Affiliation(s)
- A Dasgupta
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0213, USA
| | | |
Collapse
|
26
|
Upadhyaya AB, DeJong J. Expression of human TFIIA subunits in Saccharomyces cerevisiae identifies regions with conserved and species-specific functions. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:88-97. [PMID: 12527429 DOI: 10.1016/s0167-4781(02)00541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transcription factor TFIIA stabilizes the interaction between the TATA-binding protein (TBP) and promoter DNA and facilitates activator function. In yeast, TFIIA is composed of large (TOA1) and small (TOA2) subunits that interact to form a beta-barrel domain and a helix bundle domain. Here we report plasmid shuffle experiments showing that the human subunits (TFIIAalpha/beta, ALF, and TFIIAgamma) are not able to support growth in yeast and that the failure is associated with morphological abnormalities related to cell division. To determine the regions responsible for species specificity, we examined a series of chimeric yeast-human subunits. The results showed that yeast-human hybrids that contained the N-termini of TFIIAgamma or TFIIAalpha/beta were viable, presumably because they could form a functional interspecies alpha-helical bundle. Likewise, a TOA1 hybrid that contained the nonconserved internal region from TFIIAalpha/beta also had no effect on TFIIA function. However, hybrids that contained the acidic region III or C-terminal region IV from TFIIAalpha/beta grew more slowly than the wild-type TOA1 subunit, and if both regions were exchanged, this effect was far more severe. Although these hybrids exchanged sequences which are involved in beta-barrel formation and interactions with TBP, they were all active in a TBP-dependent mobility shift assay. The results suggest that the growth phenotypes of these hybrids might be due to a failure to interact with components of the yeast transcription machinery other than TBP. Finally, we show that sequences from region III of TFIIA large subunits fall into classes that are either highly acidic or that are divergent and nonacidic, and provide the first evidence to suggest that, at least in yeast, this region is important for TFIIA function.
Collapse
Affiliation(s)
- Ashok B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Upadhyaya AB, Khan M, Mou TC, Junker M, Gray DM, DeJong J. The germ cell-specific transcription factor ALF. Structural properties and stabilization of the TATA-binding protein (TBP)-DNA complex. J Biol Chem 2002; 277:34208-16. [PMID: 12107178 DOI: 10.1074/jbc.m204808200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly and stability of the RNA polymerase II transcription preinitiation complex on a eukaryotic core promoter involves the effects of TFIIA on the interaction between TATA-binding protein (TBP) and DNA. To extend our understanding of these interactions, we characterized properties of ALF, a germ cell-specific TFIIA-like factor. ALF was able to stabilize the binding of TBP to DNA, but it could not stabilize TBP mutants A184E, N189E, E191R, and R205E nor could it facilitate binding of the TBP-like factor TRF2/TLF to a consensus TATA element. However, phosphorylation of ALF with casein kinase II resulted in the partial restoration of complex formation using mutant TBPs. Studies of ALF-TBP complexes formed on the Adenovirus Major Late (AdML) promoter revealed protection of the TATA box and upstream sequences from -38 to -20 (top strand) and -40 to -22 (bottom strand). The half-life and apparent K(D) of this complex was determined to be 650 min and 4.8 +/- 2.7 nm, respectively. The presence of ALF or TFIIA did not significantly alter the ability of TBP to bind TATA elements from several testis-specific genes. Finally, analysis of the distinct, nonhomologous internal regions of ALF and TFIIAalpha/beta using circular dichroism spectroscopy provided the first evidence to suggest that these domains are unordered, a result consistent with other genetic and biochemical properties. Overall, the results show that while the sequence and regulation of the ALF gene are distinct from its somatic cell counterpart TFIIAalpha/beta, the TFIIAgamma-dependent interactions of these factors with TBP are nearly indistinguishable in vitro. Thus, a role for ALF in the assembly and stabilization of initiation complexes in germ cells is likely to be similar or identical to the role of TFIIA in somatic cells.
Collapse
Affiliation(s)
- Ashok B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
29
|
Langelier MF, Forget D, Rojas A, Porlier Y, Burton ZF, Coulombe B. Structural and functional interactions of transcription factor (TF) IIA with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J Biol Chem 2001; 276:38652-7. [PMID: 11509574 PMCID: PMC4492724 DOI: 10.1074/jbc.m106422200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A topological model for transcription initiation by RNA polymerase II (RNAPII) has recently been proposed. This model stipulates that wrapping of the promoter DNA around RNAPII and the general initiation factors TBP, TFIIB, TFIIE, TFIIF and TFIIH induces a torsional strain in the DNA double helix that facilitates strand separation and open complex formation. In this report, we show that TFIIA, a factor previously shown to both stimulate basal transcription and have co-activator functions, is located near the cross-point of the DNA loop where it can interact with TBP, TFIIE56, TFIIE34, and the RNAPII-associated protein (RAP) 74. In addition, we demonstrate that TFIIA can stimulate basal transcription by stimulating the functions of both TFIIE34 and RAP74 during the initiation step of the transcription reaction. These results provide novel insights into mechanisms of TFIIA function.
Collapse
Affiliation(s)
- M F Langelier
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Fukuda A, Yamauchi J, Wu SY, Chiang CM, Muramatsu M, Hisatake K. Reconstitution of recombinant TFIIH that can mediate activator-dependent transcription. Genes Cells 2001; 6:707-19. [PMID: 11532030 DOI: 10.1046/j.1365-2443.2001.00456.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND TFIIH is one of the general transcription factors required for accurate transcription of protein-coding genes by RNA polymerase II. TFIIH has helicase and kinase activities, plays a role in promoter opening and promoter escape, and is also implicated in efficient activator-dependent transcription. RESULTS We have established a reconstitution system of recombinant TFIIH using a three-virus baculovirus expression system. The recombinant TFIIH was active in CTD kinase and DNA helicase assays, and showed both basal and activator-dependent transcriptional activities that were indistinguishable from those of HeLa cell-derived TFIIH. Further analyses using recombinant TFIIH confirmed a critical role of TFIIH in activator-dependent transcription. The dose response of TFIIH in activator-dependent transcription suggested that mere recruitment of TFIIH is not sufficient for transcriptional activation. The sensitivity of activator-dependent transcription to nonhydrolysable ATP analogues indicated the importance of the enzymatic activities of TFIIH in transcriptional activation. CONCLUSIONS Our results raise a possibility that transcriptional activation by GAL4-VP16 requires enzymatic activities. Recombinant TFIIH reconstituted from this baculovirus system should be useful for analysis of the mechanisms of activation by GAL4-VP16.
Collapse
Affiliation(s)
- A Fukuda
- Department of Biochemistry, Saitama Medical School, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Yu X, Li P, Roeder RG, Wang Z. Inhibition of androgen receptor-mediated transcription by amino-terminal enhancer of split. Mol Cell Biol 2001; 21:4614-25. [PMID: 11416139 PMCID: PMC87125 DOI: 10.1128/mcb.21.14.4614-4625.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A yeast two-hybrid assay has identified an androgen-dependent interaction of androgen receptor (AR) with amino-terminal enhancer of split (AES), a member of the highly conserved Groucho/TLE family of corepressors. Full-length AR, as well as the N-terminal fragment of AR, showed direct interactions with AES in in vitro protein-protein interaction assays. AES specifically inhibited AR-mediated transcription in a well-defined cell-free transcription system and interacted specifically with the basal transcription factor (TFIIE) in HeLa nuclear extract. These observations implicate AES as a selective repressor of ligand-dependent AR-mediated transcription that acts by directly interacting with AR and by targeting the basal transcription machinery.
Collapse
Affiliation(s)
- X Yu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
32
|
Solow S, Salunek M, Ryan R, Lieberman PM. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 2001; 276:15886-92. [PMID: 11278496 DOI: 10.1074/jbc.m009385200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor IIA (TFIIA) is a positive acting general factor that contacts the TATA-binding protein (TBP) and mediates an activator-induced conformational change in the transcription factor IID (TFIID) complex. Previously, we have found that phosphorylation of yeast TFIIA stimulates TFIIA.TBP.TATA complex formation and transcription activation in vivo. We now show that human TFIIA is phosphorylated in vivo on serine residues that are partially conserved between yeast and human TFIIA large subunits. Alanine substitution mutation of serine residues 316 and 321 in TFIIA alphabeta reduced TFIIA phosphorylation significantly in vivo. Additional alanine substitutions at serines 280 and 281 reduced phosphorylation to undetectable levels. Mutation of all four serine residues reduced the ability of TFIIA to stimulate transcription in transient transfection assays with various activators and promoters, indicating that TFIIA phosphorylation is required globally for optimal function. In vitro, holo-TFIID and TBP-associated factor 250 (TAF(II)250) phosphorylated TFIIA on the beta subunit. Mutation of the four serines required for in vivo phosphorylation eliminated TFIID and TAF(II)250 phosphorylation in vitro. The NH(2)-terminal kinase domain of TAF(II)250 was sufficient for TFIIA phosphorylation, and this activity was inhibited by full-length retinoblastoma protein but not by a retinoblastoma protein mutant defective for TAF(II)250 interaction or tumor suppressor activity. TFIIA phosphorylation had little effect on the TFIIA.TBP.TATA complex in electrophoretic mobility shift assay. However, phosphorylation of TFIIA containing a gamma subunit Y65A mutation strongly stimulated TFIIA.TBP.TATA complex formation. TFIIA-gammaY65A is defective for binding to the beta-sheet domain of TBP identified in the crystal structure. These results suggest that TFIIA phosphorylation is important for strengthening the TFIIA.TBP contact or creating a second contact between TFIIA and TBP that was not visible in the crystal structure.
Collapse
Affiliation(s)
- S Solow
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
34
|
Sewack GF, Ellis TW, Hansen U. Binding of TATA binding protein to a naturally positioned nucleosome is facilitated by histone acetylation. Mol Cell Biol 2001; 21:1404-15. [PMID: 11158325 PMCID: PMC99592 DOI: 10.1128/mcb.21.4.1404-1415.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TATA sequence of the human, estrogen-responsive pS2 promoter is complexed in vivo with a rotationally and translationally positioned nucleosome (NUC T). Using a chromatin immunoprecipitation assay, we demonstrate that TATA binding protein (TBP) does not detectably interact with this genomic binding site in MCF-7 cells in the absence of transcriptional stimuli. Estrogen stimulation of these cells results in hyperacetylation of both histones H3 and H4 within the pS2 chromatin encompassing NUC T and the TATA sequence. Concurrently, TBP becomes associated with the pS2 promoter region. The relationship between histone hyperacetylation and the binding of TBP was assayed in vitro using an in vivo-assembled nucleosomal array over the pS2 promoter. With chromatin in its basal state, the binding of TBP to the pS2 TATA sequence at the edge of NUC T was severely restricted, consistent with our in vivo data. Acetylation of the core histones facilitated the binding of TBP to this nucleosomal TATA sequence. Therefore, we demonstrate that one specific, functional consequence of induced histone acetylation at a native promoter is the alleviation of nucleosome-mediated repression of the binding of TBP. Our data support a fundamental role for histone acetylation at genomic promoters in transcriptional activation by nuclear receptors and provide a general mechanism for rapid and reversible transcriptional activation from a chromatin template.
Collapse
Affiliation(s)
- G F Sewack
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
35
|
Han SY, Zhou L, Upadhyaya A, Lee SH, Parker KL, DeJong J. TFIIAalpha/beta-like factor is encoded by a germ cell-specific gene whose expression is up-regulated with other general transcription factors during spermatogenesis in the mouse. Biol Reprod 2001; 64:507-17. [PMID: 11159353 DOI: 10.1095/biolreprod64.2.507] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
TFIIAalpha/beta-like factor (ALF) is a testis-specific counterpart of the large subunit of human general transcription factor TFIIA. Northern analysis shows that ALF mRNA first appears in mouse testis at Postnatal Day 14. Similarly, expression of the general transcription factors TBP, TRF2, TFIIAalpha/beta, TFIIAgamma, and TFIIIB(90) is also increased beginning at Postnatal Day 14, suggesting that there is a coordinated induction of many general transcription factors during male germ cell differentiation. Analysis of male germ cells separated by Staput sedimentation shows that ALF is present in pachytene spermatocytes and haploid spermatids. In addition, in situ hybridization experiments with adult mouse testis shows that ALF is present in haploid spermatids. Searches of the human genome sequence database using the basic local alignment search tool reveal that the ALF and TFIIAalpha/beta(GTF2A1) genes are both composed of nine exons, whereas the TFIIAgamma (GTF2A2) gene is composed of five exons. Furthermore, nucleotide and amino acid comparisons among human and mouse ALF, TFIIAalpha/beta, and TFIIAgamma cDNA sequences show that ALF has diverged more rapidly than either TFIIAalpha/beta or TFIIAgamma. Finally, the ALF and SBLF (Stoned B-Like Factor) sequences present in the chimeric SALF cDNA are both present on human chromosome 2, and an analysis of the corresponding genes suggests a model for the formation of SALF.
Collapse
Affiliation(s)
- S Y Han
- The University of Texas at Dallas, Department of Molecular and Cell Biology, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The assembly of transcription complexes at eukaryotic promoters involves a number of distinct steps including chromatin remodeling, and recruitment of a TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme. Each of these stages is controlled by both positive and negative factors. In this review, mechanisms that regulate the interactions of TBP with promoter DNA are described. The first is autorepression, where TBP sequesters its DNA-binding surface through dimerization. Once TBP is bound to DNA, factors such as TAF(II)250 and Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the TBP/DNA complex into an inactive state. TFIIA antagonizes these TBP repressors but may be effective only in conjunction with the recruitment of the RNA polymerase II holoenzyme by promoter-bound activators. Taken together, the ability to induce a gene may depend minimally upon the ability to remodel chromatin as well as alleviate direct repression of TBP and other components of the general transcription machinery. The magnitude by which an activated gene is expressed, and thus repeatedly transcribed, might depend in part on competition between TBP inhibitors and the holoenzyme for access to the TBP/TATA complex.
Collapse
Affiliation(s)
- B F Pugh
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 6802, University Park, PA, USA.
| |
Collapse
|
37
|
Mitsiou DJ, Stunnenberg HG. TAC, a TBP-sans-TAFs complex containing the unprocessed TFIIAalphabeta precursor and the TFIIAgamma subunit. Mol Cell 2000; 6:527-37. [PMID: 11030333 DOI: 10.1016/s1097-2765(00)00052-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transcription of TATA box-containing genes by RNA polymerase II is mediated by TBP-containing and TBP-free multisubunit complexes consisting of common and unique components. We have identified a highly stable TBP-TFIIA-containing complex, TAC, which is detectable in embryonal carcinoma (EC) cells but not in differentiated cells. TAC contains the TFIIAgamma subunit and the unprocessed form of TFIIAalphabeta, although the processed TFIIAalpha and TFIIAbeta subunits are present in EC cells. TAC mediates transcriptional activation by RNA polymerase II in vivo, even though it does not contain classical TAFs. Formaldehyde cross-linking revealed that in EC but not in differentiated cells, association of TBP with chromatin is strongly enhanced when complexed with TFIIA in vivo. Remarkably, the TFIIAalphabeta precursor is preferentially, if not exclusively, associated with chromatin as compared to the processed subunits present in "free" TFIIA in EC cells.
Collapse
Affiliation(s)
- D J Mitsiou
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | |
Collapse
|
38
|
BRCA1 interaction with RNA polymerase II reveals a role for hRPB2 and hRPB10alpha in activated transcription. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10725406 PMCID: PMC16207 DOI: 10.1073/pnas.070452397] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functions of most of the 12 subunits of the RNA polymerase II (Pol II) enzyme are unknown. In this study, we demonstrate that two of the subunits, hRPB2 and hRPB10alpha, mediate the regulated stimulation of transcription. We find that the transcriptional coactivator BRCA1 interacts directly with the core Pol II complex in vitro. We tested whether single subunits from Pol II would compete with the intact Pol II complex to inhibit transcription stimulated by BRCA1. Excess purified Pol II subunits hRPB2 or hRPB10alpha blocked BRCA1- and VP16-dependent transcriptional activation in vitro with minimal effect on basal transcription. No other Pol II subunits tested inhibited activated transcription in these assays. Furthermore, hRPB10alpha, but not hRPB2, blocked Sp1-dependent activation.
Collapse
|
39
|
Schlegel BP, Green VJ, Ladias JA, Parvin JD. BRCA1 interaction with RNA polymerase II reveals a role for hRPB2 and hRPB10 in activated transcription. Proc Natl Acad Sci U S A 2000; 97:3148-53. [PMID: 10725406 PMCID: PMC16207 DOI: 10.1073/pnas.97.7.3148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The functions of most of the 12 subunits of the RNA polymerase II (Pol II) enzyme are unknown. In this study, we demonstrate that two of the subunits, hRPB2 and hRPB10alpha, mediate the regulated stimulation of transcription. We find that the transcriptional coactivator BRCA1 interacts directly with the core Pol II complex in vitro. We tested whether single subunits from Pol II would compete with the intact Pol II complex to inhibit transcription stimulated by BRCA1. Excess purified Pol II subunits hRPB2 or hRPB10alpha blocked BRCA1- and VP16-dependent transcriptional activation in vitro with minimal effect on basal transcription. No other Pol II subunits tested inhibited activated transcription in these assays. Furthermore, hRPB10alpha, but not hRPB2, blocked Sp1-dependent activation.
Collapse
Affiliation(s)
- B P Schlegel
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Ozer J, Moore PA, Lieberman PM. A testis-specific transcription factor IIA (TFIIAtau) stimulates TATA-binding protein-DNA binding and transcription activation. J Biol Chem 2000; 275:122-8. [PMID: 10617594 DOI: 10.1074/jbc.275.1.122] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor IIA (TFIIA) stimulates RNA polymerase II-specific transcription by stabilizing the association of the TATA-binding protein (TBP) with promoter DNA, inhibiting repressors of TBP, and facilitating activator-dependent conformational changes in the preinitiation complex. TFIIA is encoded by two genes (alphabeta and gamma) that are highly conserved between human and yeast. Here, we report the molecular cloning of a novel human gene that shares significant sequence similarity to the evolutionarily conserved amino- and carboxyl-terminal domains of TFIIAalphabeta. The TFIIA-related protein (TFIIAtau) was cloned from a testis-specific cDNA library, and its mRNA is expressed predominantly in testis tissue as determined by expressed sequence tag data base analysis and Northern blotting analysis. The TFIIA complex reconstituted with the testis-specific subunit, TFIIA (tau+gamma), formed the TFIIA-TBP-TATA DNA (T-A) and TFIIA-TFIIB-TBP-TATA DNA (TAB) complexes indistinguishably from TFIIA (alphabeta+gamma). TFIIA (tau+gamma) supported basal and activated transcription for most activators in reactions reconstituted with TFIIA-depleted nuclear extracts. However, TFIIA (tau+gamma) was reduced relative to TFIIA (alphabeta+gamma) for stimulating transcription with at least one activator, suggesting that these two forms of TFIIA have activator specificity. These results suggest that TFIIAtau may be important for testis-specific transcription regulation.
Collapse
Affiliation(s)
- J Ozer
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
41
|
Liu Q, Gabriel SE, Roinick KL, Ward RD, Arndt KM. Analysis of TFIIA function In vivo: evidence for a role in TATA-binding protein recruitment and gene-specific activation. Mol Cell Biol 1999; 19:8673-85. [PMID: 10567590 PMCID: PMC85009 DOI: 10.1128/mcb.19.12.8673] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that encode yeast TFIIA, overcomes the activation defects caused by the TBP mutants. Using a genetic screen, we isolated a new class of TFIIA mutants and identified three regions on TFIIA that are likely to be involved in TBP recruitment or stabilization of the TBP-TATA complex in vivo. Amino acid replacements in only one of these regions enhance TFIIA-TBP-DNA complex formation in vitro, suggesting that the other regions are involved in regulatory interactions. To determine the relative importance of TFIIA in the regulation of different genes, we constructed yeast strains to conditionally deplete TFIIA levels prior to gene activation. While the activation of certain genes, such as INO1, was dramatically impaired by TFIIA depletion, activation of other genes, such as CUP1, was unaffected. These data suggest that TFIIA facilitates DNA binding by TBP in vivo, that TFIIA may be regulated by factors that target distinct regions of the protein, and that promoters vary significantly in the degree to which they require TFIIA for activation.
Collapse
Affiliation(s)
- Q Liu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
42
|
Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, Ma DM, Maldonado E, Merino A, Mermelstein F, Olave I, Sheldon M, Shiekhattar R, Zawel L. The RNA polymerase II general transcription factors: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:83-103. [PMID: 10384273 DOI: 10.1101/sqb.1998.63.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 0885, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Upadhyaya AB, Lee SH, DeJong J. Identification of a general transcription factor TFIIAalpha/beta homolog selectively expressed in testis. J Biol Chem 1999; 274:18040-8. [PMID: 10364255 DOI: 10.1074/jbc.274.25.18040] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper we describe the isolation of a cDNA that encodes a human TFIIAalpha/beta-like factor (ALF). The open reading frame of ALF predicts a protein of 478 amino acids that contains characteristic N- and C-terminal conserved domains separated by an internal nonconserved domain. In addition, a rare ALF-containing cDNA, which possesses an extended N terminus (Stoned B/TFIIAalpha/beta-like factor; SALF) has also been identified. The results of Northern and dot blot analyses show that ALF is expressed almost exclusively in testis; in contrast, TFIIAalpha/beta and TFIIAgamma are enriched in testis but are also widely expressed in other human tissues. Recombinant ALF (69 kDa) and TFIIAgamma (12 kDa) polypeptides produced in Escherichia coli form an ALF/gamma complex that can stabilize TBP-TATA interactions in an electrophoretic mobility shift assay. The ALF/gamma complex is also able to restore transcription from the adenovirus major late promoter using HeLa cell nuclear extracts that have been depleted of TFIIA. Overall, the data show that ALF is a functional homolog of human general transcription factor TFIIAalpha/beta that may be uniquely important to testis biology.
Collapse
Affiliation(s)
- A B Upadhyaya
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | | |
Collapse
|
44
|
Solow SP, Lezina L, Lieberman PM. Phosphorylation of TFIIA stimulates TATA binding protein-TATA interaction and contributes to maximal transcription and viability in yeast. Mol Cell Biol 1999; 19:2846-52. [PMID: 10082550 PMCID: PMC84077 DOI: 10.1128/mcb.19.4.2846] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modification of general transcription factors may be an important mechanism for global gene regulation. The general transcription factor IIA (TFIIA) binds to the TATA binding protein (TBP) and is essential for high-level transcription mediated by various activators. Modulation of the TFIIA-TBP interaction is a likely target of transcriptional regulation. We report here that Toa1, the large subunit of yeast TFIIA, is phosphorylated in vivo and that this phosphorylation stabilizes the TFIIA-TBP-DNA complex and is required for high-level transcription. Alanine substitution of serine residues 220, 225, and 232 completely eliminated in vivo phosphorylation of Toa1, although no single amino acid substitution of these serine residues eliminated phosphorylation in vivo. Phosphorylated TFIIA was 30-fold more efficient in forming a stable complex with TBP and TATA DNA. Dephosphorylation of yeast-derived TFIIA reduced DNA binding activity, and recombinant TFIIA could be stimulated by in vitro phosphorylation with casein kinase II. Yeast strains expressing the toa1 S220/225/232A showed reduced high-level transcriptional activity at the URA1, URA3, and HIS3 promoters but were viable. However, S220/225/232A was synthetically lethal when combined with an alanine substitution mutation at W285, which disrupts the TFIIA-TBP interface. Phosphorylation of TFIIA could therefore be an important mechanism of transcription modulation, since it stimulates TFIIA-TBP association, enhances high-level transcription, and contributes to yeast viability.
Collapse
Affiliation(s)
- S P Solow
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | | | |
Collapse
|
45
|
Kuhlman TC, Cho H, Reinberg D, Hernandez N. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 1999; 19:2130-41. [PMID: 10022900 PMCID: PMC84006 DOI: 10.1128/mcb.19.3.2130] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.
Collapse
Affiliation(s)
- T C Kuhlman
- Graduate Program in Molecular and Cellular Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
46
|
Haile DT, Parvin JD. Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J Biol Chem 1999; 274:2113-7. [PMID: 9890972 DOI: 10.1074/jbc.274.4.2113] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The breast and ovarian specific tumor suppressor protein, BRCA1, has been shown to be a transcription factor because its carboxyl terminus, when fused to the GAL4 DNA binding domain, activates gene expression in cells. In this study, purified GAL4-BRCA1 protein functions in transcriptional activation assays using a minimal in vitro system. When compared with a standard activator, GAL4-VP16, the levels of activation produced by the BRCA1 fusion protein were stronger when in the presence of certain coactivators. The transcriptional activation by BRCA1 is maximal when in the presence of the PC4 (positive component 4) coactivator but not HMG2 (high mobility group protein 2) and when the template is negatively supercoiled. By contrast, transcriptional activation by VP16 was highest in the presence of HMG2 as well as PC4 and when DNA templates had linear topology. Activation by VP16 was largely unaffected by the concentration of TFIIH, whereas activation by BRCA1 was strongly affected by TFIIH concentrations. The differing cofactor and template requirements suggest that GAL4-BRCA1 and GAL4-VP16 regulate different steps in the pathways that lead to transcriptional activation.
Collapse
Affiliation(s)
- D T Haile
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
47
|
Ranish JA, Yudkovsky N, Hahn S. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 1999; 13:49-63. [PMID: 9887099 PMCID: PMC316368 DOI: 10.1101/gad.13.1.49] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/1998] [Accepted: 11/19/1998] [Indexed: 12/16/2022]
Abstract
Assembly and activity of yeast RNA polymerase II (Pol II) preinitiation complexes (PIC) was investigated with an immobilized promoter assay and extracts made from wild-type cells and from cells containing conditional mutations in components of the Pol II machinery. We describe the following findings: (1) In one step, TFIID and TFIIA assemble at the promoter independently of holoenzyme. In another step, holoenzyme is recruited to the promoter. Mutations in the CTD of Pol II, Srb2, Srb4, and Srb5, and two mutations in TFIIB disrupt recruitment of all holoenzyme components tested without affecting TFIID and TFIIA recruitment. These results indicate that the stepwise assembly pathway is blocked after TFIID/TFIIA binding. (2) Both the Gal4-AH and Gal4-VP16 activators stimulate formation of active PICs by increasing the extent of PIC formation. The Gal4-AH activator stimulated PIC formation by enhancing the binding of TFIID and TFIIA, whereas Gal4-VP16 could enhance the recruitment of TFIID, TFIIA, and holoenzyme. (3) Extracts deficient in TFIIA activity showed reduced assembly of all PIC components. These and other results suggest that TFIIA acts at an early step by enhancing the stable recruitment of TFIID. (4) An extract containing the TFIIB mutant E62G, had no defect in PIC formation, but had a severe defect in transcription. Similarly, mutation of the TATA box reduced PIC formation only two- to fourfold, but severely compromised transcription. These results demonstate an involvement of TFIIB and the TATA box in one or more steps after recruitment of factors to the promoter.
Collapse
Affiliation(s)
- J A Ranish
- Molecular and Cellular Biology Program, University of Washington, The Fred Hutchinson Cancer Center, Seattle 98109, USA
| | | | | |
Collapse
|
48
|
Wu SY, Kershnar E, Chiang CM. TAFII-independent activation mediated by human TBP in the presence of the positive cofactor PC4. EMBO J 1998; 17:4478-90. [PMID: 9687514 PMCID: PMC1170779 DOI: 10.1093/emboj/17.15.4478] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TFIID is a multiprotein complex comprised of the TATA-binding protein (TBP) and an array of TBP-associated factors (TAFIIs). Whereas TBP is sufficient for basal transcription in conjunction with other general transcription factors and RNA polymerase II, TAFIIs are additionally required for activator-dependent transcription in mammalian cell-free transcription systems. However, recent in vivo studies carried out in yeast suggest that TAFIIs are not globally required for activator function. The discrepancy between in vivo yeast studies and in vitro mammalian cell-free systems remains to be resolved. In this study, we describe a mammalian cell-free transcription system reconstituted with only recombinant proteins and epitope-tagged multiprotein complexes. Transcriptional activation can be recapitulated in this highly purified in vitro transcription system in the absence of TAFIIs. This TBP-mediated activation is not induced by human mediator, another transcriptional coactivator complex potentially implicated in activator response. In contrast, general transcription factors TFIIH and TFIIA play a significant role in TBP-mediated activation, which can be detected in vitro with Gal4 fusion proteins containing various transcriptional activation domains. Our data, therefore, suggest that TFIIH and TFIIA can mediate activator function in the absence of TAFIIs.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
49
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
50
|
Wu SY, Chiang CM. Properties of PC4 and an RNA polymerase II complex in directing activated and basal transcription in vitro. J Biol Chem 1998; 273:12492-8. [PMID: 9575207 DOI: 10.1074/jbc.273.20.12492] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A human RNA polymerase II (pol II) complex was isolated from a HeLa-derived cell line that conditionally expresses an epitope-tagged RPB9 subunit of human pol II. The isolated FLAG-tagged pol II complex (f:pol II) contains a subset of general transcription factors but is devoid of TFIID and TFIIA. In conjunction with TATA-binding protein (TBP) or TFIID, f:pol II is able to mediate both basal and activated transcription by Gal4-VP16 when a transcriptional coactivator PC4 is also provided. Interestingly, PC4, in the absence of a transcriptional activator, actually functions as a repressor to inhibit basal transcription. Remarkably, TBP is able to mediate activator function in this transcription system. The presence of TBP-associated factors, however, helps overcome PC4 repression and further enhance the level of activation mediated by TBP. Alleviation of PC4 repression can also be achieved by preincubation of the transcriptional components with the DNA template. Sarkosyl disruption of preinitiation complex formation further illustrates that PC4 can only inhibit transcription prior to the assembly of a functional preinitiation complex. These results suggest that PC4 represses basal transcription by preventing the assembly of a functional preinitiation complex, but it has no effect on the later steps of the transcriptional process.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|