1
|
Ferrari M, Muto A, Bruno L, Muzzalupo I, Chiappetta A. Modulation of Anthocyanin Biosynthesis-Related Genes during the Ripening of Olea europaea L. cvs Carolea and Tondina Drupes in Relation to Environmental Factors. Int J Mol Sci 2023; 24:ijms24108770. [PMID: 37240115 DOI: 10.3390/ijms24108770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Anthocyanins protect plants against various biotic and abiotic stresses, and anthocyanin-rich foods exert benefits on human health due to their antioxidant activity. Nevertheless, little information is available on the influence of genetic and environmental factors on the anthocyanin content in olive fruits. Based on this consideration, the total anthocyanin content, the genes involved in anthocyanin biosynthesis, and three putative R2R3-MYB transcription factors were evaluated at different ripening stages in the drupes of the Carolea and Tondina cultivars, sampled at different altitudes in the Calabria region, Italy. During drupe ripening, the total anthocyanin content and the transcript levels of analyzed genes gradually increased. In line with the anthocyanin content, a different level of expression of anthocyanin structural genes was observed in 'Carolea' compared to 'Tondina', and in relation to the cultivation area. Furthermore, we identified Oeu050989.1 as a putative R2R3-MYB involved in the regulation of anthocyanin structural genes correlated with the environmental temperature change response. We conclude that anthocyanin accumulation is strongly regulated by development, genotype, and also by environmental factors such as temperature, associated with the altitude gradient. The obtained results contribute to reducing the current information gap regarding the molecular mechanisms on anthocyanin biosynthesis regulation related to the environmental conditions in Olea europaea.
Collapse
Affiliation(s)
- Michele Ferrari
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Antonella Muto
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Innocenzo Muzzalupo
- CREA-Council for Agricultural Research and Agricultural Economy Analysis, Forestry and Wood Research Center, 87036 Rende, Italy
| | - Adriana Chiappetta
- Department of Biology, Ecology, and Earth Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
2
|
Wang J, Zhang C, Li Y. Genome-Wide Identification and Expression Profiles of 13 Key Structural Gene Families Involved in the Biosynthesis of Rice Flavonoid Scaffolds. Genes (Basel) 2022; 13:genes13030410. [PMID: 35327963 PMCID: PMC8951560 DOI: 10.3390/genes13030410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are a class of key polyphenolic secondary metabolites with broad functions in plants, including stress defense, growth, development and reproduction. Oryza sativa L. (rice) is a well-known model plant for monocots, with a wide range of flavonoids, but the key flavonoid biosynthesis-related genes and their molecular features in rice have not been comprehensively and systematically characterized. Here, we identified 85 key structural gene candidates associated with flavonoid biosynthesis in the rice genome. They belong to 13 families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS), flavone synthase II (FNSII), flavanone 2-hydroxylase (F2H), flavonoid 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). Through structural features, motif analyses and phylogenetic relationships, these gene families were further grouped into five distinct lineages and were examined for conservation and divergence. Subsequently, 22 duplication events were identified out of a total of 85 genes, among which seven pairs were derived from segmental duplication events and 15 pairs were from tandem duplications, demonstrating that segmental and tandem duplication events play important roles in the expansion of key flavonoid biosynthesis-related genes in rice. Furthermore, these 85 genes showed spatial and temporal regulation in a tissue-specific manner and differentially responded to abiotic stress (including six hormones and cold and salt treatments). RNA-Seq, microarray analysis and qRT-PCR indicated that these genes might be involved in abiotic stress response, plant growth and development. Our results provide a valuable basis for further functional analysis of the genes involved in the flavonoid biosynthesis pathway in rice.
Collapse
|
3
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 DOI: 10.3389/fgene.021.744220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
4
|
Yan H, Ma G, Teixeira da Silva JA, Qiu L, Xu J, Zhou H, Wei M, Xiong J, Li M, Zhou S, Wu J, Tang X. Genome-Wide Identification and Analysis of NAC Transcription Factor Family in Two Diploid Wild Relatives of Cultivated Sweet Potato Uncovers Potential NAC Genes Related to Drought Tolerance. Front Genet 2021; 12:744220. [PMID: 34899836 PMCID: PMC8653416 DOI: 10.3389/fgene.2021.744220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) proteins play a pivotal role in modulating plant development and offer protection against biotic and abiotic stresses. Until now, no systematic knowledge of NAC family genes is available for the food security crop, sweet potato. Here, a comprehensive genome-wide survey of NAC domain-containing proteins identified 130 ItbNAC and 144 ItfNAC genes with full length sequences in the genomes of two diploid wild relatives of cultivated sweet potato, Ipomoea triloba and Ipomoea trifida, respectively. These genes were physically mapped onto 15 I. triloba and 16 I. trifida chromosomes, respectively. Phylogenetic analysis divided all 274 NAC proteins into 20 subgroups together with NAC transcription factors (TFs) from Arabidopsis. There were 9 and 15 tandem duplication events in the I. triloba and I. trifida genomes, respectively, indicating an important role of tandem duplication in sweet potato gene expansion and evolution. Moreover, synteny analysis suggested that most NAC genes in the two diploid sweet potato species had a similar origin and evolutionary process. Gene expression patterns based on RNA-Seq data in different tissues and in response to various hormone, biotic or abiotic treatments revealed their possible involvement in organ development and response to various biotic/abiotic stresses. The expression of 36 NAC TFs, which were upregulated in the five tissues and in response to mannitol treatment, was also determined by real-time quantitative polymerase chain reaction (RT-qPCR) in hexaploid cultivated sweet potato exposed to drought stress. Those results largely corroborated the expression profile of mannitol treatment uncovered by the RNA-Seq data. Some significantly up-regulated genes related to drought stress, such as ItbNAC110, ItbNAC114, ItfNAC15, ItfNAC28, and especially ItfNAC62, which had a conservative spatial conformation with a closely related paralogous gene, ANAC019, may be potential candidate genes for a sweet potato drought tolerance breeding program. This analysis provides comprehensive and systematic information about NAC family genes in two diploid wild relatives of cultivated sweet potato, and will provide a blueprint for their functional characterization and exploitation to improve the tolerance of sweet potato to abiotic stresses.
Collapse
Affiliation(s)
- Haifeng Yan
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | | | - Lihang Qiu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Juan Xu
- Biological Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China
| | - Minzheng Wei
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Xiong
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingzhi Li
- Biodata Biotechnology Co., Ltd, Hefei, China
| | - Shaohuan Zhou
- GuangXi Center for Disease Prevention and Control, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Jianming Wu
- Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement and Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| | - Xiuhua Tang
- Cash Crop Institute of Guangxi Academy of Agricultural Sciences, Nanning, China,*Correspondence: Shaohuan Zhou, ; Jianming Wu, ; Xiuhua Tang,
| |
Collapse
|
5
|
Emelianova K, Martínez Martínez A, Campos-Dominguez L, Kidner C. Multi-tissue transcriptome analysis of two Begonia species reveals dynamic patterns of evolution in the chalcone synthase gene family. Sci Rep 2021; 11:17773. [PMID: 34493743 PMCID: PMC8423730 DOI: 10.1038/s41598-021-96854-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Begonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.
Collapse
Affiliation(s)
- Katie Emelianova
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| | - Andrea Martínez Martínez
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, EH9 3JU UK
| | - Lucia Campos-Dominguez
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, EH9 3JU UK
| | - Catherine Kidner
- grid.426106.70000 0004 0598 2103Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR UK ,grid.4305.20000 0004 1936 7988School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Rd, Edinburgh, EH9 3JU UK
| |
Collapse
|
6
|
Frazee LJ, Rifkin J, Maheepala DC, Grant AG, Wright S, Kalisz S, Litt A, Spigler R. New genomic resources and comparative analyses reveal differences in floral gene expression in selfing and outcrossing Collinsia sister species. G3 (BETHESDA, MD.) 2021; 11:jkab177. [PMID: 34014319 PMCID: PMC8496223 DOI: 10.1093/g3journal/jkab177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
The evolutionary transition from outcross- to self-fertilization is one of the most common in angiosperms and is often associated with a parallel shift in floral morphological and developmental traits, such as reduced flower size and pollen to ovule ratios, known as the "selfing syndrome." How these convergent phenotypes arise, the extent to which they are shaped by selection, and the nature of their underlying genetic basis are unsettled questions in evolutionary biology. The genus Collinsia (Plantaginaceae) includes seven independent transitions from outcrossing or mixed mating to high selfing rates accompanied by selfing syndrome traits. Accordingly, Collinsia represents an ideal system for investigating this parallelism, but requires genomic resource development. We present a high quality de novo genome assembly for the highly selfing species Collinsia rattanii. To begin addressing the basis of selfing syndrome developmental shifts, we evaluate and contrast patterns of gene expression from floral transcriptomes across three stages of bud development for C. rattanii and its outcrossing sister species Collinsia linearis. Relative to C. linearis, total gene expression is less variable among individuals and bud stages in C. rattanii. In addition, there is a common pattern among differentially expressed genes: lower expression levels that are more constant across bud development in C. rattanii relative to C. linearis. Transcriptional regulation of enzymes involved in pollen formation specifically in early bud development may influence floral traits that distinguish selfing and outcrossing Collinsia species through pleiotropic functions. Future work will include additional Collinsia outcrossing-selfing species pairs to identify genomic signatures of parallel evolution.
Collapse
Affiliation(s)
- Lauren J Frazee
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Joanna Rifkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada
| | - Dinusha C Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Alannie-Grace Grant
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stephen Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S, Canada
| | - Susan Kalisz
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel Spigler
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Peng LP, Hao Q, Men SQ, Wang XR, Huang WY, Tong NN, Chen M, Liu ZA, Ma XF, Shu QY. Ecotopic over-expression of PoCHS from Paeonia ostii altered the fatty acids composition and content in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2021; 172:64-76. [PMID: 33247451 DOI: 10.1111/ppl.13293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthetic pathway and has been studied in many plants, but the function of the CHS gene has not been well characterized in Paeonia ostii. In this study, we obtained a CHS homolog gene from P. ostii, which possessed the putative conserved amino acids of chalcone synthase by multiple alignment analysis and demonstrated the highest expression in developing seeds. In vitro assays of the recombinant PoCHS protein confirmed enzymatic activity using malonyl-CoA and 4-coumaroyl-CoA as substrates, and the optimal pH and reaction temperature were 7.5 and 40 °C, respectively. Furthermore, ectopic over-expression of PoCHS in Arabidopsis up-regulated the expression levels of genes involved in seed development (ABI), glycolysis (PKp2, PDH-E1a, and SUS2/3), and especially fatty acid biosynthesis (BCCP2, CAC2, CDS2, FatA, and FAD3). This resulted in an increased unsaturated fatty acid content, especially α-linolenic acid, in transgenic Arabidopsis seeds. In this study, we examined the functions of CHS homolog of P. ostii and demonstrated its new function in seed fatty acid biosynthesis.
Collapse
Affiliation(s)
- Li-Ping Peng
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Si-Qi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Ruo Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Yuan Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Tong
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mo Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Feng Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
9
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
10
|
Gu Z, Zhu J, Hao Q, Yuan YW, Duan YW, Men S, Wang Q, Hou Q, Liu ZA, Shu Q, Wang L. A Novel R2R3-MYB Transcription Factor Contributes to Petal Blotch Formation by Regulating Organ-Specific Expression of PsCHS in Tree Peony (Paeonia suffruticosa). PLANT & CELL PHYSIOLOGY 2019; 60:599-611. [PMID: 30496505 DOI: 10.1093/pcp/pcy232] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/24/2018] [Indexed: 05/20/2023]
Abstract
Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Jin Zhu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yao-Wu Yuan
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Yuan-Wen Duan
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Siqi Men
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianyu Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinzheng Hou
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, China
| | - Zheng-An Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Qingyan Shu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Kuo YT, Chao YT, Chen WC, Shih MC, Chang SB. Segmental and tandem chromosome duplications led to divergent evolution of the chalcone synthase gene family in Phalaenopsis orchids. ANNALS OF BOTANY 2019; 123:69-77. [PMID: 30113635 PMCID: PMC6344096 DOI: 10.1093/aob/mcy136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/22/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Orchidaceae is a large plant family, and its extraordinary adaptations may have guaranteed its evolutionary success. Flavonoids are a group of secondary metabolites that mediate plant acclimation to challenge environments. Chalcone synthase (CHS) catalyses the initial step in the flavonoid biosynthetic pathway. This is the first chromosome-level investigation of the CHS gene family in Phalaenopsis aphrodite and was conducted to elucidate if divergence of this gene family is associated with chromosome evolution. METHODS Complete CHS genes were identified from our whole-genome sequencing data sets and their gene expression profiles were obtained from our transcriptomic data sets. Fluorescence in situ hybridization (FISH) was conducted to position five CHS genes to high-resolution pachytene chromosomes. KEY RESULTS The five Phalaenopsis CHS genes can be classified into three groups, PaCHS1, PaCHS2 and the tandemly arrayed three-gene cluster, which diverged earlier than those of the orchid genera and species. Additionally, pachytene chromosome-based FISH mapping showed that the three groups of CHS genes are localized on three distinct chromosomes. Moreover, an expression analysis of RNA sequencing revealed that the five CHS genes had highly differentiated expression patterns and its expression pattern-based clustering showed high correlations between sequence divergences and chromosomal localizations of the CHS gene family in P. aphrodite. CONCLUSIONS Based on their phylogenetic relationships, expression clustering analysis and chromosomal distributions of the five paralogous PaCHS genes, we proposed that expansion of this gene family in P. aphrodite occurred through segmental duplications, followed by tandem duplications. These findings provide information for further studies of CHS functions and regulations, and shed light on the divergence of an important gene family in orchids.
Collapse
Affiliation(s)
- Yi-Tzu Kuo
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- For correspondence. E-mail:
| |
Collapse
|
12
|
Hu L, He H, Zhu C, Peng X, Fu J, He X, Chen X, Ouyang L, Bian J, Liu S. Genome-wide identification and phylogenetic analysis of the chalcone synthase gene family in rice. JOURNAL OF PLANT RESEARCH 2017; 130:95-105. [PMID: 27878652 DOI: 10.1007/s10265-016-0871-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
The enzymes of the chalcone synthase family are also known as type III polyketide synthases (PKS), and produce a series of secondary metabolites in bacteria, fungi and plants. In a number of plants, genes encoding PKS comprise a large multigene family. Currently, detailed reports on rice (Oryza sativa) PKS (OsPKS) family genes and tissue expression profiling are limited. Here, 27 candidate OsPKS genes were identified in the rice genome,and 23 gene structures were confirmed by EST and cDNA sequencing; phylogenetic analysis has indicated that these 23 OsPKS members could be clustered into three groups (I-III). Comparative analysis has shown OsPKS08 and OsPKS26 could be classified with the CHS genes of other species. Two members OsPKS10 and OsPKS21 were grouped into anther specific chalcone synthase-like (ASCL) clade. Intron/exon structure analysis revealed that nearly all of the OsPKS members contained one phase-1 intron at a conserved Cys. Analysis of chromosomal localization and genome distribution showed that some of the members were distributed on a chromosome as a cluster. Expression data exhibited widespread distribution of the rice OsPKS gene family within plant tissues, suggesting functional diversification of the OsPKS genes. Our results will contribute to future study of the complexity of the OsPKS gene family in rice.
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
- Collaboration Center for Double Cropping Rice Modernization Production, Nanchang, 330045, Jiangxi, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410000, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
- Collaboration Center for Double Cropping Rice Modernization Production, Nanchang, 330045, Jiangxi, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410000, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nangchang, 330045, China
| | - Shiqiang Liu
- School of Sciences, Jiangxi Agricultural University, Nanchang Economic and Technological Development District, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
13
|
Moghe GD, Last RL. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism. PLANT PHYSIOLOGY 2015; 169:1512-23. [PMID: 26276843 PMCID: PMC4634076 DOI: 10.1104/pp.15.00994] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/13/2015] [Indexed: 05/18/2023]
Abstract
Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.
Collapse
Affiliation(s)
- Gaurav D Moghe
- Department of Biochemistry and Molecular Biology (G.D.M., R.L.L.) and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| | - Robert L Last
- Department of Biochemistry and Molecular Biology (G.D.M., R.L.L.) and Department of Plant Biology (R.L.L.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
14
|
Chomicki G, Bidel LPR, Ming F, Coiro M, Zhang X, Wang Y, Baissac Y, Jay-Allemand C, Renner SS. The velamen protects photosynthetic orchid roots against UV-B damage, and a large dated phylogeny implies multiple gains and losses of this function during the Cenozoic. THE NEW PHYTOLOGIST 2015; 205:1330-1341. [PMID: 25345817 DOI: 10.1111/nph.13106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/08/2014] [Indexed: 05/25/2023]
Abstract
UV-B radiation damage in leaves is prevented by epidermal UV-screening compounds that can be modulated throughout ontogeny. In epiphytic orchids, roots need to be protected against UV-B because they photosynthesize, sometimes even replacing the leaves. How orchid roots, which are covered by a dead tissue called velamen, avoid UV-B radiation is currently unknown. We tested for a UV-B protective function of the velamen using gene expression analyses, mass spectrometry, histochemistry, and chlorophyll fluorescence in Phalaenopsis × hybrida roots. We also investigated its evolution using comparative phylogenetic methods. Our data show that two paralogues of the chalcone synthase (CHS) gene family are UV-B-induced in orchid root tips, triggering the accumulation of two UV-B-absorbing flavonoids and resulting in effective protection of the photosynthetic root cortex. Phylogenetic and dating analyses imply that the two CHS lineages duplicated c. 100 million yr before the rise of epiphytic orchids. These findings indicate an additional role for the epiphytic orchid velamen previously thought to function solely in absorbing water and nutrients. This new function, which fundamentally differs from the mechanism of UV-B avoidance in leaves, arose following an ancient duplication of CHS, and has probably contributed to the family's expansion into the canopy during the Cenozoic.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, 80638, Germany
| | | | - Feng Ming
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Shanghai, 200433, China
- Institute of Plant Biology, School of Life Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Mario Coiro
- Institute of Agricultural Sciences, Plant Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Xuan Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Shanghai, 200433, China
- Institute of Plant Biology, School of Life Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yaofeng Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Shanghai, 200433, China
- Institute of Plant Biology, School of Life Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yves Baissac
- UMR DIADE (UM2/IRD), SMART Team, University of Montpellier 2, Place Eugene Bataillon, Montpellier, F-34 095, France
| | - Christian Jay-Allemand
- UMR DIADE (UM2/IRD), SMART Team, University of Montpellier 2, Place Eugene Bataillon, Montpellier, F-34 095, France
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, 80638, Germany
| |
Collapse
|
15
|
Miryeganeh M, Takayama K, Tateishi Y, Kajita T. Long-distance dispersal by sea-drifted seeds has maintained the global distribution of Ipomoea pes-caprae subsp. brasiliensis (Convolvulaceae). PLoS One 2014; 9:e91836. [PMID: 24755614 PMCID: PMC3995641 DOI: 10.1371/journal.pone.0091836] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 02/15/2014] [Indexed: 11/18/2022] Open
Abstract
Ipomoea pes-caprae (Convolvulaceae), a pantropical plant with sea-drifted seeds, is found globally in the littoral areas of tropical and subtropical regions. Unusual long-distance seed dispersal has been believed to be responsible for its extraordinarily wide distribution; however, the actual level of inter-population migration has never been studied. To clarify the level of migration among populations of I. pes-caprae across its range, we investigated nucleotide sequence variations by using seven low-copy nuclear markers and 272 samples collected from 34 populations that cover the range of the species. We applied coalescent-based approaches using Bayesian and maximum likelihood methods to assess migration rates, direction of migration, and genetic diversity among five regional populations. Our results showed a high number of migrants among the regional populations of I. pes-caprae subsp. brasiliensis, which suggests that migration among distant populations was maintained by long-distance seed dispersal across its global range. These results also provide strong evidence for recent trans-oceanic seed dispersal by ocean currents in all three oceanic regions. We also found migration crossing the American continents. Although this is an apparent land barrier for sea-dispersal, migration between populations of the East Pacific and West Atlantic regions was high, perhaps because of trans-isthmus migration via pollen dispersal. Therefore, the migration and gene flow among populations across the vast range of I. pes-caprae is maintained not only by seed dispersal by sea-drifted seeds, but also by pollen flow over the American continents. On the other hand, populations of subsp. pes-caprae that are restricted to only the northern part of the Indian Ocean region were highly differentiated from subsp. brasiliensis. Cryptic barriers that prevented migration by sea dispersal between the ranges of the two subspecies and/or historical differentiation that caused local adaptation to different environmental factors in each region could explain the genetic differentiation between the subspecies.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Japan
| | - Koji Takayama
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoichi Tateishi
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nakagami-gun Okinawa, Japan
| | - Tadashi Kajita
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Japan
- * E-mail:
| |
Collapse
|
16
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 2013; 48:123-52. [PMID: 23350798 DOI: 10.3109/10409238.2012.758083] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenolic secondary metabolites are only produced by plants wherein they play important roles in both biotic and abiotic defense in seed plants as well as being potentially important bioactive compounds with both nutritional and medicinal benefits reported for animals and humans as a consequence of their potent antioxidant activity. During the long evolutionary period in which plants have adapted to the environmental niches in which they exist (and especially during the evolution of land plants from their aquatic algal ancestors), several strategies such as gene duplication and convergent evolution have contributed to the evolution of this pathway. In this respect, diversity and redundancy of several key genes of phenolic secondary metabolism such as polyketide synthases, cytochrome P450s, Fe(2+)/2-oxoglutarate-dependent dioxygenases and UDP-glycosyltransferases have played an essential role. Recent technical developments allowing affordable whole genome sequencing as well as a better inventory of species-by-species chemical diversity have resulted in a dramatic increase in the number of tools we have to assess how these pathways evolved. In parallel, reverse genetics combined with detailed molecular phenotyping is allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. In this review, phenolic metabolite-related gene sequences (for a total of 65 gene families including shikimate biosynthetic genes) are compared across 23 independent species, and the phenolic metabolic complement of various plant species are compared with one another, in attempt to better understand the evolution of diversity in this crucial pathway.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
17
|
Zhao B, Liu L, Tan D, Wang J. Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Abstract
Natural products researchers are increasingly employing evolutionary analyses of genes and gene products that rely on phylogenetic trees. The field of phylogenetic inference and of evolutionary analyses based on phylogenies is growing at an amazing rate, making it difficult to keep up with the latest methodologies. Here, we summarize phylogenetic applications in natural products research, and review methods and software useful for carrying out analyses inferring or using phylogenetic trees. We include an updated overview of available alignment methods and programs, as well as a selection of some useful phylogenetic analysis tools. This review covers primarily the period 2000-2009 for applications of phylogenetic methods in natural product research, and 1990-2009 for phylogenetic methods, with some references going back to the 1960s.
Collapse
Affiliation(s)
- Imke Schmitt
- Department of Plant Biology and Bell Museum of Natural History, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108, USA.
| | | |
Collapse
|
19
|
Lu Y, Du J, Tang J, Wang F, Zhang J, Huang J, Liang W, Wang L. Environmental regulation of floral anthocyanin synthesis in Ipomoea purpurea. Mol Ecol 2009; 18:3857-71. [PMID: 19694947 DOI: 10.1111/j.1365-294x.2009.04288.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Responses of metabolites to environmental fluctuations may play large roles in biological adaptation, yet how these responses initiate in the natural environment and the molecular mechanisms remain unclear. Synthesis of floral anthocyanins, as typical examples of secondary metabolites, is known to respond to the physical environment and therefore an ideal system for understanding the process of the environmental regulation. Here, by simultaneous monitoring of six natural environmental variables and anthocyanin content of daily opening flowers throughout a natural flowering season ( approximately 50 days) of Ipomoea purpurea, we have identified significant and positive correlations of temperature (3-days ago) and ultraviolet (UV) light intensity (5-days ago) with the floral anthocyanin content. We sequenced all known (seven structural and three regulatory) anthocyanin genes in I. purpurea flowers and examined their transcript quantities in the natural environment across eight floral developmental stages (covering 0-96 h before anthesis). The anthocyanin gene expression patterns corroborated with the inferred effects from the time-series data, and further showed that the positive UV effect became negative on transcript levels about 36 h before anthesis. With falling natural temperature, content of the principal anthocyanin declined, whereas that of an alternative anthocyanin with fewer glucose and caffeic acid moieties increased. Our data suggest that environmental regulation of the anthocyanin pathway may account for more than half of the flux variation in the floral limb, and is influenced mainly by daily average temperature and UV light intensity that modulate anthocyanin transcript levels (most likely via myb1) at floral developmental stages.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Thibaud-Nissen F, Ouyang S, Buell CR. Identification and characterization of pseudogenes in the rice gene complement. BMC Genomics 2009; 10:317. [PMID: 19607679 PMCID: PMC2724416 DOI: 10.1186/1471-2164-10-317] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 07/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Osa1 Genome Annotation of rice (Oryza sativa L. ssp. japonica cv. Nipponbare) is the product of a semi-automated pipeline that does not explicitly predict pseudogenes. As such, it is likely to mis-annotate pseudogenes as functional genes. A total of 22,033 gene models within the Osa1 Release 5 were investigated as potential pseudogenes as these genes exhibit at least one feature potentially indicative of pseudogenes: lack of transcript support, short coding region, long untranslated region, or, for genes residing within a segmentally duplicated region, lack of a paralog or significantly shorter corresponding paralog. RESULTS A total of 1,439 pseudogenes, identified among genes with pseudogene features, were characterized by similarity to fully-supported gene models and the presence of frameshifts or premature translational stop codons. Significant difference in the length of duplicated genes within segmentally-duplicated regions was the optimal indicator of pseudogenization. Among the 816 pseudogenes for which a probable origin could be determined, 75% originated from gene duplication events while 25% were the result of retrotransposition events. A total of 12% of the pseudogenes were expressed. Finally, F-box proteins, BTB/POZ proteins, terpene synthases, chalcone synthases and cytochrome P450 protein families were found to harbor large numbers of pseudogenes. CONCLUSION These pseudogenes still have a detectable open reading frame and are thus distinct from pseudogenes detected within intergenic regions which typically lack definable open reading frames. Families containing the highest number of pseudogenes are fast-evolving families involved in ubiquitination and secondary metabolism.
Collapse
|
21
|
Mizuuchi Y, Shi SP, Wanibuchi K, Kojima A, Morita H, Noguchi H, Abe I. Novel type III polyketide synthases from Aloe arborescens. FEBS J 2009; 276:2391-401. [PMID: 19348024 DOI: 10.1111/j.1742-4658.2009.06971.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85-96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 degrees C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone.
Collapse
Affiliation(s)
- Yuusuke Mizuuchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
van den Hof K, van den Berg RG, Gravendeel B. Chalcone synthase gene lineage diversification confirms allopolyploid evolutionary relationships of European rostrate violets. Mol Biol Evol 2008; 25:2099-108. [PMID: 18650224 DOI: 10.1093/molbev/msn157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic relationships among and within the subsections of the genus Viola are still far from resolved. We present the first organismal phylogeny of predominantly western European species of subsection Rostratae based on the plastid trnS-trnG intron and intergenic spacer and the nuclear low-copy gene chalcone synthase (CHS) sequences. CHS is a key enzyme in the synthesis of flavonoids, which are important for flower pigmentation. Genes encoding for CHS are members of a multigene family. In Viola, 3 different CHS copies are present. CHS gene lineages obtained confirmed earlier hypotheses about reticulate relationships between species of Viola subsection Rostratae based on karyotype data. Comparison of the CHS gene lineage tree and the plastid species phylogeny of Viola reconstructed in this study indicates that the different CHS copies present in Viola are the products of both recent and more ancient duplications.
Collapse
Affiliation(s)
- Kevin van den Hof
- Nationaal Herbarium Nederland, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
23
|
Affiliation(s)
- Ikuro Abe
- School of Pharmaceutical Sciences, University of Shizuoka
- PRESTO, Japan Science and Technology Agency
| |
Collapse
|
24
|
Evolutionary mechanisms underlying secondary metabolite diversity. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 65:119, 121-40. [PMID: 18084914 DOI: 10.1007/978-3-7643-8117-2_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The enormous chemical diversity and the broad range of biological activities of secondary metabolites raise many questions about their role in nature and the specific traits leading to their evolution. The answers to these questions will not only be of fundamental interest but may also provide lessons that could help to improve the screening protocols of pharmaceutical companies and strategies for rational secondary metabolite engineering. In this review, we try to dissect evolutionary principles leading to the emergence, distribution, diversification and selection of genes involved in secondary metabolite biosyntheses. We give an overview about recent insights into the evolution of the different types of polyketide synthases (PKS) in microorganisms and plants and highlight unique mechanisms underlying polyketide diversity. Although phylogenetic and experimental data have significantly increased our knowledge about the role and evolution of secondary metabolites in the last decades there is still much dissent about the impact of natural selection. In order to understand the evolution towards metabolic diversity we therefore need more thorough investigations of the ecological role of secondary metabolites in the future.
Collapse
|
25
|
Han YY, Ming F, Wang W, Wang JW, Ye MM, Shen DL. Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis Orchid. Genetica 2006; 128:429-38. [PMID: 17028970 DOI: 10.1007/s10709-006-7668-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. The best example is the gene encoding chalcone synthase (CHS, EC2.3.1.74), the first committed step in flavonoid biosynthesis. In this study, we examined the molecular evolution of three CHS family members of Phalaenopsis including a novel chs gene (phchs5), which is slowly evolved. The inferred phylogeny of the chs genes of Phalaenopsis with other two orchid plants, Bromoheadia finlaysoniana and Dendrobium hybrid, suggested that gene duplication and divergence have occurred before divergence of these three genera. Relatively quantitative RT-PCR analysis identified expression patterns of these three chs genes in different floral tissues at different developmental stages. Phchs5 was the most abundantly expressed chs gene in floral organs and it was specifically transcribed in petal and lip at the stages when anthocyanin accumulated (stage1-4). Phchs3 and phchs4 were expressed at much lower levels than phchs5. Phchs3 was expressed in pigmented tissue (including lip, petal and sepal) at middle stages (stages 2-4) and in colorless reproductive tissue at late stage (stage 5). Phchs4 was only expressed in petal at earlier stages (stage 1-3) and in lip at middle stage (stage 4). These results present new data on differentiation of gene expression among duplicate copies of chs genes in Phalaenopsis.
Collapse
Affiliation(s)
- Ying-Ying Han
- State Key Laboratory of Genetic Engineering, Research Centre of Gene Diversity and Designed Agriculture, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
26
|
Caro SE, Stampfle JM, Greene MJ, Kotarski MA. Research Article: Using achalcone synthasegene to infer phylogenies in the genus Saintpaulia. ACTA ACUST UNITED AC 2006. [DOI: 10.1893/0005-3155(2006)77[72:uacsgt]2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Jenke-Kodama H, Börner T, Dittmann E. Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput Biol 2006; 2:e132. [PMID: 17029557 PMCID: PMC1592344 DOI: 10.1371/journal.pcbi.0020132] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/21/2006] [Indexed: 11/30/2022] Open
Abstract
Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria. Modular polyketide synthases (PKSs) of bacteria are multifunctional enzymes providing a molecular construction plan for the stepwise generation of polyketides of high structural complexity. Natural products of the polyketide class belong to the most important medicines used for the treatment of infectious diseases and cancer. The genetic “programming” of the enzymes determines the choice of different carbon units, the reduction state, and the stereochemistry of the polyketide chain. The modular architecture of PKS enzyme systems lends itself to rational engineering in the laboratory using so-called biocombinatorics approaches. Streptomycetes are soil bacteria typically comprising multiple PKS gene clusters. Jenke-Kodama, Börner, and Dittmann have addressed the question whether this prevalence of repetitive PKS modules within a single genome has an impact on the diversification of the polyketide products. Using phylogenetic approaches, the authors provide evidence that homologous recombination has led to exchange, loss, and gain of domains and domain fragments and hence to a natural “reprogramming” of the PKS assembly lines. These data are not only interesting from the evolutionary point of view but might also help to improve protocols for PKS engineering that are being developed for the synthesis of new bioactive compounds and libraries.
Collapse
Affiliation(s)
- Holger Jenke-Kodama
- Department of Molecular Ecology, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
28
|
Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J. Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci U S A 2006; 103:9118-23. [PMID: 16754868 PMCID: PMC1482576 DOI: 10.1073/pnas.0601738103] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis thaliana and related plants, glucosinolates are a major component in the blend of secondary metabolites and contribute to resistance against herbivorous insects. Methylthioalkylmalate synthases (MAM) encoded at the MAM gene cluster control an early step in the biosynthesis of glucosinolates and, therefore, are central to the diversification of glucosinolate metabolism. We sequenced bacterial artificial chromosomes containing the MAM cluster from several Arabidopsis relatives, conducted enzyme assays with heterologously expressed MAM genes, and analyzed MAM nucleotide variation patterns. Our results show that gene duplication, neofunctionalization, and positive selection provide the mechanism for biochemical adaptation in plant defense. These processes occur repeatedly in the history of the MAM gene family, indicating their fundamental importance for the evolution of plant metabolic diversity both within and among species.
Collapse
Affiliation(s)
| | - Susanne Textor
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | | | | | - Jonathan Gershenzon
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | | |
Collapse
|
29
|
Bililign T, Griffith BR, Thorson JS. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat Prod Rep 2005; 22:742-60. [PMID: 16311633 DOI: 10.1039/b407364a] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The focus of this review is to highlight the structure, bioactivity and biosynthesis of naturally occurring aryl-C-glycosides. General synthetic methods and their relevance to proposed biochemical mechanisms for the aryl-C-glycoside bond formation are also presented.
Collapse
Affiliation(s)
- Tsion Bililign
- Chemistry Department, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
30
|
Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D, Negrutiu I, Charlesworth D, Monéger F. A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 2004; 3:e4. [PMID: 15630476 PMCID: PMC536007 DOI: 10.1371/journal.pbio.0030004] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 10/12/2004] [Indexed: 11/18/2022] Open
Abstract
To help understand the evolution of suppressed recombination between sex chromosomes, and its consequences for evolution of the sequences of Y-linked genes, we have studied four X-Y gene pairs, including one gene not previously characterized, in plants in a group of closely related dioecious species of Silene which have an X-Y sex-determining system (S. latifolia, S. dioica, and S. diclinis). We used the X-linked copies to build a genetic map of the X chromosomes, with a marker in the pseudoautosomal region (PAR) to orient the map. The map covers a large part of the X chromosomes--at least 50 centimorgans. Except for a recent rearrangement in S. dioica, the gene order is the same in the X chromosomes of all three species. Silent site divergence between the DNA sequences of the X and Y copies of the different genes increases with the genes' distances from the PAR, suggesting progressive restriction of recombination between the X and Y chromosomes. This was confirmed by phylogenetic analyses of the four genes, which also revealed that the least-diverged X-Y pair could have ceased recombining independently in the dioecious species after their split. Analysis of amino acid replacements vs. synonymous changes showed that, with one possible exception, the Y-linked copies appear to be functional in all three species, but there are nevertheless some signs of degenerative processes affecting the genes that have been Y-linked for the longest times. Although the X-Y system evolved quite recently in Silene (less than 10 million years ago) compared to mammals (about 320 million years ago), our results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes.
Collapse
Affiliation(s)
- Michael Nicolas
- 1Laboratoire de Reproduction et Développement des Plantes, ENS LyonLyonFrance
| | - Gabriel Marais
- 2Institute of Evolutionary Biology, School of Biological ScienceUniversity of Edinburgh, King's Buildings, West Mains Road, EdinburghUnited Kingdom
| | - Vladka Hykelova
- 1Laboratoire de Reproduction et Développement des Plantes, ENS LyonLyonFrance
- 3Laboratory of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech Republic, BrnoCzech Republic
| | - Bohuslav Janousek
- 1Laboratoire de Reproduction et Développement des Plantes, ENS LyonLyonFrance
- 3Laboratory of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech Republic, BrnoCzech Republic
| | - Valérie Laporte
- 2Institute of Evolutionary Biology, School of Biological ScienceUniversity of Edinburgh, King's Buildings, West Mains Road, EdinburghUnited Kingdom
| | - Boris Vyskot
- 3Laboratory of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech Republic, BrnoCzech Republic
| | - Dominique Mouchiroud
- 4Laboratoire de Biométrie et Biologie Evolutive, Bâtiment Gregor MendelVilleurbanne CedexFrance
| | - Ioan Negrutiu
- 1Laboratoire de Reproduction et Développement des Plantes, ENS LyonLyonFrance
| | - Deborah Charlesworth
- 2Institute of Evolutionary Biology, School of Biological ScienceUniversity of Edinburgh, King's Buildings, West Mains Road, EdinburghUnited Kingdom
| | - Françoise Monéger
- 1Laboratoire de Reproduction et Développement des Plantes, ENS LyonLyonFrance
| |
Collapse
|
31
|
Abe I, Utsumi Y, Oguro S, Noguchi H. The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. FEBS Lett 2004; 562:171-6. [PMID: 15044020 DOI: 10.1016/s0014-5793(04)00230-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/24/2004] [Accepted: 02/24/2004] [Indexed: 11/24/2022]
Abstract
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.
Collapse
Affiliation(s)
- Ikuro Abe
- School of Pharmaceutical Sciences, and the 21st Century COE Program, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | |
Collapse
|
32
|
Fehr C, Rausher MD. Effects of variation at the flower-colour A locus on mating system parameters in Ipomoea purpurea. Mol Ecol 2004; 13:1839-47. [PMID: 15189207 DOI: 10.1111/j.1365-294x.2004.02182.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although alleles at both the W and A loci in the common morning glory, Ipomoea purpurea, produce similar white-flowered phenotypes, these alleles differ by over an order of magnitude in average frequency. In this initial attempt to determine the causes of this difference, we employed artificial arrays of plants to estimate mating system characteristics (total siring success, selfing rates and contribution to the outcross pollen pool) for the homozygous pigmented and white-flowered genotypes at the A locus. This experiment demonstrates that: (1) at both low and high frequencies, white-flowered plants were visited by pollinators at the same rate as plants with pigmented flowers; (2) at both frequencies, the a allele exhibited a greater total siring success (self and outcross pollen) than the A allele; (3) individuals of both genotypes contributed equally to the outcross pollen pool; and (4) aa plants may have a higher selfing rate than AA plants. Coupled with minimal inbreeding depression in I. purpurea, these observations indicate that the allele producing white flowers enjoys a transmission advantage that would tend to cause this allele to increase in frequency. This transmission advantage is very similar to that shown previously to be operating on the white-flowered allele at the W locus, although the specific causes of the advantage appear to differ between loci. The frequency difference between the two alleles is thus not likely to be due to differences in the effect of flower-colour variation on transmission. Rather, substantially greater deleterious pleiotropic effects associated with the white-flower a allele is likely to be the primary cause of the frequency difference.
Collapse
Affiliation(s)
- Carla Fehr
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708-0338, USA
| | | |
Collapse
|
33
|
Yang J, Gu H, Yang Z. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea). J Mol Evol 2004; 58:54-63. [PMID: 14743314 DOI: 10.1007/s00239-003-2525-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 07/21/2003] [Indexed: 11/30/2022]
Abstract
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoides, which are important for the pigmentation of flowers and act as attractants to pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. In morning glories (Ipomoea), five functional CHS genes (A-E) have been described. Phylogenetic analysis of the Ipomoea CHS gene family revealed that CHS A, B, and C experienced accelerated rates of amino acid substitution relative to CHS D and E. To examine whether the CHS genes of the morning glories underwent adaptive evolution, maximum-likelihood models of codon substitution were used to analyze the functional sequences in the Ipomoea CHS gene family. These models used the nonsynonymous/synonymous rate ratio (omega = d(N)/ d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio test suggested significant variation in selection pressure among amino acid sites, with a small proportion of them detected to be under positive selection along the branches ancestral to CHS A, B, and C. Positive Darwinian selection appears to have promoted the divergence of subfamily ABC and subfamily DE and is at least partially responsible for a rate increase following gene duplication.
Collapse
Affiliation(s)
- Ji Yang
- College of Life Sciences, Peking, University, Beijing, 100871, China
| | | | | |
Collapse
|
34
|
Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L. Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:847-55. [PMID: 12795704 DOI: 10.1046/j.1365-313x.2003.01771.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Benzophenone derivatives, such as polyprenylated benzoylphloroglucinols and xanthones, are biologically active secondary metabolites. The formation of their C13 skeleton is catalyzed by benzophenone synthase (BPS; EC 2.3.1.151) that has been cloned from cell cultures of Hypericum androsaemum. BPS is a novel member of the superfamily of plant polyketide synthases (PKSs), also termed type III PKSs, with 53-63% amino acid sequence identity. Heterologously expressed BPS was a homodimer with a subunit molecular mass of 42.8 kDa. Its preferred starter substrate was benzoyl-CoA that was stepwise condensed with three malonyl-CoAs to give 2,4,6-trihydroxybenzophenone. BPS did not accept activated cinnamic acids as starter molecules. In contrast, recombinant chalcone synthase (CHS; EC 2.3.1.74) from the same cell cultures preferentially used 4-coumaroyl-CoA and also converted CoA esters of benzoic acids. The enzyme shared 60.1% amino acid sequence identity with BPS. In a phylogenetic tree, the two PKSs occurred in different clusters. One cluster was formed by CHSs including the one from H. androsaemum. BPS grouped together with the PKSs that functionally differ from CHS. Site-directed mutagenesis of amino acids shaping the initiation/elongation cavity of CHS yielded a triple mutant (L263M/F265Y/S338G) that preferred benzoyl-CoA over 4-coumaroyl-CoA.
Collapse
Affiliation(s)
- Benye Liu
- Institut für Pharmazeutische Biologie, Mendelssohnstrasse 1, D-38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
35
|
Coberly LC, Rausher MD. Analysis of a chalcone synthase mutant in Ipomoea purpurea reveals a novel function for flavonoids: amelioration of heat stress. Mol Ecol 2003; 12:1113-24. [PMID: 12694276 DOI: 10.1046/j.1365-294x.2003.01786.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flavonoids are thought to function in the plant stress response and male fertility in some, but not all, species. We examined the effects of a self-fertile chalcone synthase null allele, a, for the effects of heat and light stress on fertilization success and flower production in Ipomoea purpurea. Pollen recipients and pollen donors of both homozygous genotypes exhibit reduced fertilization success at high temperatures, indicating that high temperature acts as a stress-lowering fertilization success. Homozygous aa individuals exhibit reduced male and female fertilization success, compared to AA individuals, at high temperatures but not at low temperatures. In addition, aa individuals produce fewer flowers than AA individuals at low temperatures, but not at high temperatures. These results suggest that flavonoids alleviate heat stress on fertilization success. They also suggest that pleiotropic effects at the A locus may explain the low frequency of the a allele in natural populations.
Collapse
Affiliation(s)
- L C Coberly
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
36
|
Yang J, Huang J, Gu H, Zhong Y, Yang Z. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 2003; 19:1752-9. [PMID: 12270901 DOI: 10.1093/oxfordjournals.molbev.a003997] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids, which are important for the pigmentation of flowers and act as attractants to the pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. Plants of the Dendranthema genus have white, yellow, and pink flowers, exhibiting considerable variation in flower color. In this article, 18 CHS genes from six Dendranthema species were sequenced. Two of them were found to be pseudogenes. The functional Dendranthema CHS genes formed three well-supported subfamilies: SF1, SF2, and SF3. The inferred phylogeny of the CHS genes of Dendranthema and Gerbera suggests that those genes originated as a result of duplications before divergence of these two genera, and the function of Dendranthema CHS genes have diverged in a similar fashion to the Gerbera CHS genes; i.e., the genes of SF1 and SF3 code for typical CHS enzymes expressed during different stages of development, whereas the genes of SF2 code for another enzyme that is different from CHS in substrate specificity and reaction. Relative rate tests revealed that the Dendranthema CHS genes significantly deviated from clocklike evolution at nonsynonymous sites. Maximum likelihood analysis showed that the nonsynonymous-synonymous (omega = d(N)/d(S)) rate ratio for the lineage ancestral to SF2 was much higher than for other lineages, with some sites having a ratio well above one. Positive selective pressure appears to have driven the divergence of SF2 from SF1 and SF3.
Collapse
Affiliation(s)
- Ji Yang
- College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
37
|
Kumar A, Ellis BE. A family of polyketide synthase genes expressed in ripening Rubus fruits. PHYTOCHEMISTRY 2003; 62:513-526. [PMID: 12620364 DOI: 10.1016/s0031-9422(02)00572-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Quality traits of raspberry fruits such as aroma and color derive in part from the polyketide derivatives, benzalacetone and dihydrochalcone, respectively. The formation of these metabolites during fruit ripening is the result of the activity of polyketide synthases (PKS), benzalcetone synthase and chalcone synthase (CHS), during fruit development. To gain an understanding of the regulation of these multiple PKSs during fruit ripening, we have characterized the repertoire of Rubus PKS genes and studied their expression patterns during fruit ripening. Using a PCR-based homology search, a family of ten PKS genes (Ripks1-10) sharing 82-98% nucleotide sequence identity was identified in the Rubus idaeus genome. Low stringency screening of a ripening fruit-specific cDNA library, identified three groups of PKS cDNAs. Group 1 and 2 cDNAs were also represented in the PCR amplified products, while group 3 represented a new class of Rubus PKS gene. The Rubus PKS gene-family thus consists of at least eleven members. The three cDNAs exhibit distinct tissue-specific and developmentally regulated patterns of expression. RiPKS5 has high constitutive levels of expression in all organs, including developing flowers and fruits, while RiPKS6 and RiPKS11 expression is consistent with developmental and tissue-specific regulation in various organs. The recombinant proteins encoded by the three RiPKS cDNAs showed a typical CHS-type PKS activity. While phylogenetic analysis placed the three Rubus PKSs in one cluster, suggesting a recent duplication event, their distinct expression patterns suggest that their regulation, and thus function(s), has evolved independently of the structural genes themselves.
Collapse
Affiliation(s)
- Amrita Kumar
- The Biotechnology Laboratory and Faculty of Agricultural Sciences, University of British Columbia, Bioscience Building, Rm 3508, 6270 University Blvd, Vancouver V6T 1Z4, Canada.
| | | |
Collapse
|
38
|
Kawabe A, Miyashita NT. Characterization of duplicated two cytosolic phosphoglucose isomerase (PgiC) loci in Arabidopsis halleri ssp. gemmifera. Genes Genet Syst 2002; 77:159-65. [PMID: 12207037 DOI: 10.1266/ggs.77.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis halleri ssp. gemmifera has two cytosolic phosphoglucose isomerase (PgiC) loci. A 48-bp deletion was observed in the junction of exon 17 and intron 17 for a locus (PgiC2). PCR-RFLP analysis using cDNA template did not detect the PgiC2 locus. Another locus (PgiC1) has common structure with A. thaliana and expressed normally. A phylogenetic tree of PgiC sequences revealed that duplication of the two loci in A. gemmifera occurred after species splitting of A. thaliana and A. gemmifera. More than 12 kb region encompassing PgiC was sequenced for both loci. In both PgiC1 and PgiC2, sequence homologous to A. thaliana PgiC 5' upstream region was not detected. A gene located on chromosome 4 of A. thaliana was detected in the 5' upstream of PgiC2. This result suggested that the microsyntheny around the PgiC region between A. thaliana and A. gemmifera is not established.
Collapse
Affiliation(s)
- Akira Kawabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan.
| | | |
Collapse
|
39
|
Koch MA, Weisshaar B, Kroymann J, Haubold B, Mitchell-Olds T. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol Biol Evol 2001; 18:1882-91. [PMID: 11557794 DOI: 10.1093/oxfordjournals.molbev.a003729] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA sequence variations of chalcone synthase (Chs) and Apetala3 gene promoters from 22 cruciferous plant species were analyzed to identify putative conserved regulatory elements. Our comparative approach confirmed the existence of numerous conserved sequences which may act as regulatory elements in both investigated promoters. To confirm the correct identification of a well-conserved UV-light-responsive promoter region, a subset of Chs promoter fragments were tested in Arabidopsis thaliana protoplasts. All promoters displayed similar light responsivenesses, indicating the general functional relevance of the conserved regulatory element. In addition to known regulatory elements, other highly conserved regions were detected which are likely to be of functional importance. Phylogenetic trees based on DNA sequences from both promoters (gene trees) were compared with the hypothesized phylogenetic relationships (species trees) of these taxa. The data derived from both promoter sequences were congruent with the phylogenies obtained from coding regions of other nuclear genes and from chloroplast DNA sequences. This indicates that promoter sequence evolution generally is reflective of species phylogeny. Our study also demonstrates the great value of comparative genomics and phylogenetics as a basis for functional analysis of promoter action and gene regulation.
Collapse
Affiliation(s)
- M A Koch
- Department of Botany, University of Agricultural Science, Vienna, Austria.
| | | | | | | | | |
Collapse
|
40
|
Abe I, Takahashi Y, Morita H, Noguchi H. Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3354-9. [PMID: 11389739 DOI: 10.1046/j.1432-1327.2001.02255.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Benzalacetone synthase (BSA) is a novel plant-specific polyketide synthase that catalyzes a one step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 skeleton of phenylbutanoids in higher plants. A cDNA encoding BAS was for the first time cloned and sequenced from rhubarb (Rheum palmatum), a medicinal plant rich in phenylbutanoids including pharmaceutically important phenylbutanone glucoside, lindleyin. The cDNA encoded a 42-kDa protein that shares 60-75% amino-acid sequence identity with other members of the CHS-superfamily enzymes. Interestingly, R. palmatum BAS lacks the active-site Phe215 residue (numbering in CHS) which has been proposed to help orient substrates and intermediates during the sequential condensation of 4-coumaroyl-CoA with malonyl-CoA in CHS. On the other hand, the catalytic cysteine-histidine dyad (Cys164-His303) in CHS is well conserved in BAS. A recombinant enzyme expressed in Escherichia coli efficiently afforded benzalacetone as a single product from 4-coumaroyl-CoA and malonyl-CoA. Further, in contrast with CHS that showed broad substrate specificity toward aliphatic CoA esters, BAS did not accept hexanoyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA as a substrate. Finally, besides the phenylbutanones in rhubarb, BAS has been proposed to play a crucial role for the construction of the C6-C4 moiety of a variety of natural products such as medicinally important gingerols in ginger plant.
Collapse
Affiliation(s)
- I Abe
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | |
Collapse
|
41
|
Durbin ML, Denton AL, Clegg MT. Dynamics of mobile element activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea). Proc Natl Acad Sci U S A 2001; 98:5084-9. [PMID: 11309503 PMCID: PMC33167 DOI: 10.1073/pnas.091095498] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2001] [Indexed: 11/18/2022] Open
Abstract
Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141-147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.
Collapse
Affiliation(s)
- M L Durbin
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
42
|
Abstract
We review gene duplication and subsequent structural and functional divergence in the anthocyanin biosynthesis genes in the Japanese and common morning glories and discuss their evolutionary implications. These plants appear to contain at least six copies of the CHS gene and three tandem copies of the DFR gene. Of these, the CHS-D and DFR-B genes are mainly responsible for flower pigmentation and mutations in these genes confer white flowers. We compared the genomic sequences of these duplicated genes between the two morning glories and found small mobile element-like sequences (MELSs) and direct repeats (DRs) in introns and intergenic regions. The results indicate that the MELS elements and DRs play significant roles in divergence after gene duplication. We also discuss DNA rearrangements occurring before and after speciation of these morning glories. DNA transposable elements belonging to the Ac/Ds or En/Spm families have acted as major spontaneous mutagens in these morning glories. We also describe the structural features of the first Mu-related element found in the morning glories and polymorphisms found in the same species.
Collapse
Affiliation(s)
- A Hoshino
- National Institute for Basic Biology, Myodaiji, 444-8585, Okazaki, Japan
| | | | | |
Collapse
|
43
|
Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 2000; 17:1483-98. [PMID: 11018155 DOI: 10.1093/oxfordjournals.molbev.a026248] [Citation(s) in RCA: 616] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed sequence variation for chalcone synthase (Chs) and alcohol dehydrogenase (Adh) loci in 28 species in the genera Arabidopsis and Arabis and related taxa from tribe Arabideae. Chs was single-copy in nearly all taxa examined, while Adh duplications were found in several species. Phylogenies constructed from both loci confirmed that the closest relatives of Arabidopsis thaliana include Arabidopsis lyrata, Arabidopsis petraea, and Arabidopsis halleri (formerly in the genus Cardaminopsis). Slightly more distant are the North American n = 7 Arabis (Boechera) species. The genus Arabis is polyphyletic-some unrelated species appear within this taxonomic classification, which has little phylogenetic meaning. Fossil pollen data were used to compute a synonymous substitution rate of 1.5 x 10 substitutions per site per year for both Chs and Adh. Arabidopsis thaliana diverged from its nearest relatives about 5 MYA, and from Brassica roughly 24 MYA. Independent molecular and fossil data from several sources all provide similar estimates of evolutionary timescale in the Brassicaceae.
Collapse
Affiliation(s)
- M A Koch
- Department of Genetics and Evolution, Max Planck Institute of Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
44
|
Clegg MT, Durbin ML. Flower color variation: a model for the experimental study of evolution. Proc Natl Acad Sci U S A 2000; 97:7016-23. [PMID: 10860965 PMCID: PMC34378 DOI: 10.1073/pnas.97.13.7016] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We review the study of flower color polymorphisms in the morning glory as a model for the analysis of adaptation. The pathway involved in the determination of flower color phenotype is traced from the molecular and genetic levels to the phenotypic level. Many of the genes that determine the enzymatic components of flavonoid biosynthesis are redundant, but, despite this complexity, it is possible to associate discrete floral phenotypes with individual genes. An important finding is that almost all of the mutations that determine phenotypic differences are the result of transposon insertions. Thus, the flower color diversity seized on by early human domesticators of this plant is a consequence of the rich variety of mobile elements that reside in the morning glory genome. We then consider a long history of research aimed at uncovering the ecological fate of these various flower phenotypes in the southeastern U.S. A large body of work has shown that insect pollinators discriminate against white phenotypes when white flowers are rare in populations. Because the plant is self-compatible, pollinator bias causes an increase in self-fertilization in white maternal plants, which should lead to an increase in the frequency of white genes, according to modifier gene theory. Studies of geographical distributions indicate other, as yet undiscovered, disadvantages associated with the white phenotype. The ultimate goal of connecting ecology to molecular genetics through the medium of phenotype is yet to be attained, but this approach may represent a model for analyzing the translation between these two levels of biological organization.
Collapse
Affiliation(s)
- M T Clegg
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | | |
Collapse
|
45
|
Oberholzer V, Durbin ML, Clegg MT. Comparative genomics of chalcone synthase and Myb genes in the grass family. Genes Genet Syst 2000; 75:1-16. [PMID: 10846616 DOI: 10.1266/ggs.75.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most plant genes occur as members of multigene families where new copies arise through duplication. Duplicate genes that do not confer an adaptive advantage to the plant are expected to rapidly erode into pseudogenes owing to the accumulation of transpositions, insertion/deletion mutations and nucleotide changes. Nonfunctional copies will drift to fixation within a few million years and ultimately erode beyond recognition. Duplicate genes that are retained over longer periods of evolutionary time must be positively selected based on some adaptive advantage conferred on the plant species. We explore the dynamics of the recruitment of new duplicate genes for chalcone synthase, the enzyme that catalyzes the first committed step of flavonoid biosynthesis, and for the myb family of transcriptional activators. Our analyses show that new chs genes are recruited into the genome of grasses at a rate of one new copy every 15 to 25 million years. In contrast, the myb gene family is much older and many duplicate copies appear to predate the separation of the angiosperm lineage from other seed plants. The general pattern suggests a rapid adaptive proliferation of new chs genes but a more ancient elaboration of regulatory gene functions. Our analyses also reveal accelerated rates of protein evolution following gene duplication and evidence is presented for interlocus exchange among duplicate gene loci.
Collapse
Affiliation(s)
- V Oberholzer
- Department of Botany & Plant Sciences, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
46
|
|
47
|
Durbin ML, McCaig B, Clegg MT. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. PLANT MOLECULAR BIOLOGY 2000; 42:79-92. [PMID: 10688131 DOI: 10.1023/a:1006375904820] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. Thus, for example, most of the enzymatic components of plant secondary metabolism are encoded by small families of genes that originated through duplication over evolutionary time. The dynamics of gene family evolution are well illustrated by the genes that encode chalcone synthase (CHS), the first committed step in flavonoid biosynthesis. We review pertinent facts about CHS evolution in flowering plants with special reference to the morning glory genus, Ipomoea. Our review shows that new CHS genes are recruited recurrently in flowering plant evolution. Rates of nucleotide substitution are frequently accelerated in new duplicate genes, and there is clear evidence for repeated shifts in enzymatic function among duplicate copies of CHS genes. In addition, we present new data on expression patterns of CHS genes as a function of tissue and developmental stage in the common morning glory (I. purpurea). These data show extensive differentiation in gene expression among duplicate copies of CHS genes. We also show that a single mutation which blocks anthocyanin biosynthesis in the floral limb is correlated with a loss of expression of one of the six duplicate CHS genes present in the morning glory genome. This suggests that different duplicate copies of CHS have acquired specialized functional roles over the course of evolution. We conclude that recurrent gene duplication and subsequent differentiation is a major adaptive strategy in plant genome evolution.
Collapse
Affiliation(s)
- M L Durbin
- Botany and Plant Sciences Department, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
48
|
Abstract
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Iowa State University, Ames 50011, USA.
| |
Collapse
|
49
|
Abstract
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.
Collapse
Affiliation(s)
- J F Wendel
- Department of Botany, Iowa State University, Ames 50011, USA.
| |
Collapse
|
50
|
Paitan Y, Orr E, Ron EZ, Rosenberg E. Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of Myxococcus xanthus. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3059-3067. [PMID: 10589713 DOI: 10.1099/00221287-145-11-3059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antibiotic TA of Myxococcus xanthus is a complex macrocyclic polyketide, produced through successive condensations of acetate by a type I PKS (polyketide synthase) mechanism. The genes encoding TA biosynthesis are clustered on a 36 kb DNA fragment, which has been cloned and analysed. The chemical structure of TA and the mechanism by which it is synthesized indicate the need for several post-modification steps, which are introduced into the carbon chain of the polyketide to form the final bioactive molecule. These include the addition of several carbon atoms originating from acetate carbonyl, three C-methylations, O-methylation and a specific hydroxylation. This paper reports the analysis of five genes which are involved in the post-modification of TA. Their functional analysis, by specific gene disruption, suggests that they may be essential for the production of the active antibiotic. The characteristics and organization of the genes suggest that they may be involved in the addition of the carbon atoms which arise from acetate.
Collapse
Affiliation(s)
- Yossi Paitan
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel1
| | - Elisha Orr
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK2
| | - Eliora Z Ron
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel1
| | - Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel1
| |
Collapse
|