1
|
Li S, Palo MZ, Zhang X, Pintilie G, Zhang K. Snapshots of the second-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM. Nat Commun 2023; 14:1294. [PMID: 36928031 PMCID: PMC10020454 DOI: 10.1038/s41467-023-36724-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Group I introns are catalytic RNAs that coordinate two consecutive transesterification reactions for self-splicing. To understand how the group I intron promotes catalysis and coordinates self-splicing reactions, we determine the structures of L-16 Tetrahymena ribozyme in complex with a 5'-splice site analog product and a 3'-splice site analog substrate using cryo-EM. We solve six conformations from a single specimen, corresponding to different splicing intermediates after the first ester-transfer reaction. The structures reveal dynamics during self-splicing, including large conformational changes of the internal guide sequence and the J5/4 junction as well as subtle rearrangements of active-site metals and the hydrogen bond formed between the 2'-OH group of A261 and the N2 group of guanosine substrate. These results help complete a detailed structural and mechanistic view of this paradigmatic group I intron undergoing the second step of self-splicing.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Michael Z Palo
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Xiaojing Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
2
|
Luo B, Zhang C, Ling X, Mukherjee S, Jia G, Xie J, Jia X, Liu L, Baulin EF, Luo Y, Jiang L, Dong H, Wei X, Bujnicki JM, Su Z. Cryo-EM reveals dynamics of Tetrahymena group I intron self-splicing. Nat Catal 2023. [DOI: 10.1038/s41929-023-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
3
|
Girvin ZC, Gellman SH. Exploration of Diverse Reactive Diad Geometries for Bifunctional Catalysis via Foldamer Backbone Variation. J Am Chem Soc 2018; 140:12476-12483. [PMID: 30226762 DOI: 10.1021/jacs.8b05869] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
What is the best spatial arrangement of a pair of reactive groups for bifunctional catalysis of a chemical transformation? The conformational versatility of proteins allows reactive group geometry to be explored and optimized via evolutionary selection, but it has been difficult for chemists to identify synthetic scaffolds that allow broad comparative evaluation among alternative reactive group geometries. Here we show that a family of helices, adopted predictably by oligomers composed partially or exclusively of β-amino acid residues, enables us to explore a range of orientations for a pair of pyrrolidine units that must work in tandem to catalyze a crossed aldol reaction. Thus, the crossed aldol reaction serves as an assay of reactive diad efficacy. We have chosen a test reaction free of stereochemical complexity in order to streamline our study of reactivity. The best geometry enhances the initial rate of product formation by two orders of magnitude. Our findings raise the possibility that rudimentary catalysts involving an isolated secondary structure might have facilitated the development of prebiotic reaction networks.
Collapse
Affiliation(s)
- Zebediah C Girvin
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Samuel H Gellman
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
4
|
Ney Y, Jawad Nasim M, Kharma A, Youssef LA, Jacob C. Small Molecule Catalysts with Therapeutic Potential. Molecules 2018; 23:E765. [PMID: 29584669 PMCID: PMC6017662 DOI: 10.3390/molecules23040765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
Abstract
Catalysts are employed in many areas of research and development where they combine high efficiency with often astonishing selectivity for their respective substrates. In biology, biocatalysts are omnipresent. Enzymes facilitate highly controlled, sophisticated cellular processes, such as metabolic conversions, sensing and signalling, and are prominent targets in drug development. In contrast, the therapeutic use of catalysts per se is still rather limited. Recent research has shown that small molecule catalytic agents able to modulate the redox state of the target cell bear considerable promise, particularly in the context of inflammatory and infectious diseases, stroke, ageing and even cancer. Rather than being "active" on their own in a more traditional sense, such agents develop their activity by initiating, promoting, enhancing or redirecting reactions between biomolecules already present in the cell, and their activity therefore depends critically on the predisposition of the target cell itself. Redox catalysts, for instance, preferably target cells with a distinct sensitivity towards changes in an already disturbed redox balance and/or increased levels of reactive oxygen species. Indeed, certain transition metal, chalcogen and quinone agents may activate an antioxidant response in normal cells whilst at the same time triggering apoptosis in cancer cells with a different pre-existing "biochemical redox signature" and closer to the internal redox threshold. In pharmacy, catalysts therefore stand out as promising lead structures, as sensor/effector agents which are highly effective, fairly selective, active in catalytic, i.e., often nanomolar concentrations and also very flexible in their structural design.
Collapse
Affiliation(s)
- Yannick Ney
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Ammar Kharma
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Lama A Youssef
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Damascus University, Damascus, Syria.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
5
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
6
|
Sengupta RN, Van Schie SNS, Giambaşu G, Dai Q, Yesselman JD, York D, Piccirilli JA, Herschlag D. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. RNA (NEW YORK, N.Y.) 2016; 22:32-48. [PMID: 26567314 PMCID: PMC4691833 DOI: 10.1261/rna.053710.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Biological catalysis hinges on the precise structural integrity of an active site that binds and transforms its substrates and meeting this requirement presents a unique challenge for RNA enzymes. Functional RNAs, including ribozymes, fold into their active conformations within rugged energy landscapes that often contain misfolded conformers. Here we uncover and characterize one such "off-pathway" species within an active site after overall folding of the ribozyme is complete. The Tetrahymena group I ribozyme (E) catalyzes cleavage of an oligonucleotide substrate (S) by an exogenous guanosine (G) cofactor. We tested whether specific catalytic interactions with G are present in the preceding E•S•G and E•G ground-state complexes. We monitored interactions with G via the effects of 2'- and 3'-deoxy (-H) and -amino (-NH(2)) substitutions on G binding. These and prior results reveal that G is bound in an inactive configuration within E•G, with the nucleophilic 3'-OH making a nonproductive interaction with an active site metal ion termed MA and with the adjacent 2'-OH making no interaction. Upon S binding, a rearrangement occurs that allows both -OH groups to contact a different active site metal ion, termed M(C), to make what are likely to be their catalytic interactions. The reactive phosphoryl group on S promotes this change, presumably by repositioning the metal ions with respect to G. This conformational transition demonstrates local rearrangements within an otherwise folded RNA, underscoring RNA's difficulty in specifying a unique conformation and highlighting Nature's potential to use local transitions of RNA in complex function.
Collapse
Affiliation(s)
- Raghuvir N Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Sabine N S Van Schie
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - George Giambaşu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Joseph D Yesselman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Darrin York
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Joseph A Piccirilli
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA Department of Chemical Engineering, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA Department of Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA Department of Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Gleitsman KR, Herschlag DH. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction. RNA (NEW YORK, N.Y.) 2014; 20:1732-1746. [PMID: 25246656 PMCID: PMC4201826 DOI: 10.1261/rna.044362.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/15/2014] [Indexed: 06/01/2023]
Abstract
Determination of quantitative thermodynamic and kinetic frameworks for ribozymes derived from the Azoarcus group I intron and comparisons to their well-studied analogs from the Tetrahymena group I intron reveal similarities and differences between these RNAs. The guanosine (G) substrate binds to the Azoarcus and Tetrahymena ribozymes with similar equilibrium binding constants and similar very slow association rate constants. These and additional literature observations support a model in which the free ribozyme is not conformationally competent to bind G and in which the probability of assuming the binding-competent state is determined by tertiary interactions of peripheral elements. As proposed previously, the slow binding of guanosine may play a role in the specificity of group I intron self-splicing, and slow binding may be used analogously in other biological processes. The internal equilibrium between ribozyme-bound substrates and products is similar for these ribozymes, but the Azoarcus ribozyme does not display the coupling in the binding of substrates that is observed with the Tetrahymena ribozyme, suggesting that local preorganization of the active site and rearrangements within the active site upon substrate binding are different for these ribozymes. Our results also confirm the much greater tertiary binding energy of the 5'-splice site analog with the Azoarcus ribozyme, binding energy that presumably compensates for the fewer base-pairing interactions to allow the 5'-exon intermediate in self splicing to remain bound subsequent to 5'-exon cleavage and prior to exon ligation. Most generally, these frameworks provide a foundation for design and interpretation of experiments investigating fundamental properties of these and other structured RNAs.
Collapse
Affiliation(s)
- Kristin R Gleitsman
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| | - Daniel H Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA
| |
Collapse
|
8
|
Bonneau E, Legault P. NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions. Biochemistry 2014; 53:579-90. [PMID: 24364590 PMCID: PMC3906864 DOI: 10.1021/bi401484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
9
|
Abstract
For structured RNAs that possess catalytic activity, this activity provides a powerful probe for measuring the progress of folding and the effects of RNA chaperone proteins on the folding rate. The crux of this approach is that only the natively folded RNA is able to perform the catalytic reaction. This method can provide a quantitative measure of the fraction of native RNA over time, and it can readily distinguish the native state from all misfolded conformations. Here we describe an activity-based method measuring native folding of ribozymes derived from self-splicing group I introns, and we show how the assay can be used to monitor acceleration of native folding by DEAD-box RNA helicase proteins that function as general RNA chaperones. By measuring the amount of substrate that is converted to product in a rapid first turnover, we describe how to determine the fraction of the ribozyme population that is present in the native state. Further, we describe how to perform a two-stage or discontinuous assay in which folding proceeds in stage one and then solution conditions are changed in stage two to permit catalytic activity and block further folding. This protocol allows folding to be followed under a broad range of solution conditions, including those that do not support catalytic activity, and facilitates studies of chaperone proteins.
Collapse
Affiliation(s)
- Brant Gracia
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
10
|
Ruben EA, Schwans JP, Sonnett M, Natarajan A, Gonzalez A, Tsai Y, Herschlag D. Ground state destabilization from a positioned general base in the ketosteroid isomerase active site. Biochemistry 2013; 52:1074-81. [PMID: 23311398 DOI: 10.1021/bi301348x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We compared the binding affinities of ground state analogues for bacterial ketosteroid isomerase (KSI) with a wild-type anionic Asp general base and with uncharged Asn and Ala in the general base position to provide a measure of potential ground state destabilization that could arise from the close juxtaposition of the anionic Asp and hydrophobic steroid in the reaction's Michaelis complex. The analogue binding affinity increased ~1 order of magnitude for the Asp38Asn mutation and ~2 orders of magnitude for the Asp38Ala mutation, relative to the affinity with Asp38, for KSI from two sources. The increased level of binding suggests that the abutment of a charged general base and a hydrophobic steroid is modestly destabilizing, relative to a standard state in water, and that this destabilization is relieved in the transition state and intermediate in which the charge on the general base has been neutralized because of proton abstraction. Stronger binding also arose from mutation of Pro39, the residue adjacent to the Asp general base, consistent with an ability of the Asp general base to now reorient to avoid the destabilizing interaction. Consistent with this model, the Pro mutants reduced or eliminated the increased level of binding upon replacement of Asp38 with Asn or Ala. These results, supported by additional structural observations, suggest that ground state destabilization from the negatively charged Asp38 general base provides a modest contribution to KSI catalysis. They also provide a clear illustration of the well-recognized concept that enzymes evolve for catalytic function and not, in general, to maximize ground state binding. This ground state destabilization mechanism may be common to the many enzymes with anionic side chains that deprotonate carbon acids.
Collapse
Affiliation(s)
- Eliza A Ruben
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
12
|
Sengupta RN, Herschlag D, Piccirilli JA. Thermodynamic evidence for negative charge stabilization by a catalytic metal ion within an RNA active site. ACS Chem Biol 2012; 7:294-9. [PMID: 22029738 DOI: 10.1021/cb200202q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein and RNA enzymes that catalyze phosphoryl transfer reactions frequently contain active site metal ions that interact with the nucleophile and leaving group. Mechanistic models generally hinge upon the assumption that the metal ions stabilize negative charge buildup along the reaction coordinate. However, experimental data that test this assumption directly remain difficult to acquire. We have used an RNA substrate bearing a 3'-thiol group to investigate the energetics of a metal ion interaction directly relevant to transition state stabilization in the Tetrahymena group I ribozyme reaction. Our results show that this interaction lowers the pK(a) of the 3'-thiol by 2.6 units, stabilizing the bound 3'-thiolate by 3.6 kcal/mol. These data, combined with prior studies, provide strong evidence that this metal ion interaction facilitates the forward reaction by stabilization of negative charge buildup on the leaving group 3'-oxygen and facilitates the reverse reaction by deprotonation and activation of the nucleophilic 3'-hydroxyl group.
Collapse
Affiliation(s)
- Raghuvir N. Sengupta
- Department of Biochemistry & Molecular Biology and Department of Chemistry, The University of Chicago, 929 East 57th Street, Gordon Center for Integrative Science W406, Chicago, Illinois 60637, United States
- Department of Biochemistry, Stanford University, Beckman Center, B400, Stanford,
California 94305-5307, United States
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Beckman Center, B400, Stanford,
California 94305-5307, United States
| | - Joseph A. Piccirilli
- Department of Biochemistry & Molecular Biology and Department of Chemistry, The University of Chicago, 929 East 57th Street, Gordon Center for Integrative Science W406, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Benz-Moy TL, Herschlag D. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 2011; 50:8733-55. [PMID: 21815635 PMCID: PMC3186870 DOI: 10.1021/bi2008245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The conserved catalytic core of the Tetrahymena group I ribozyme is encircled by peripheral elements. We have conducted a detailed structure-function study of the five long-range tertiary contacts that fasten these distal elements together. Mutational ablation of each of the tertiary contacts destabilizes the folded ribozyme, indicating a role of the peripheral elements in overall stability. Once folded, three of the five tertiary contact mutants exhibit defects in overall catalysis that range from 20- to 100-fold. These and the subsequent results indicate that the structural ring of peripheral elements does not act as a unitary element; rather, individual connections have distinct roles as further revealed by kinetic and thermodynamic dissection of the individual reaction steps. Ablation of P14 or the metal ion core/metal ion core receptor (MC/MCR) destabilizes docking of the substrate-containing P1 helix into tertiary interactions with the ribozyme's conserved core. In contrast, ablation of the L9/P5 contact weakens binding of the guanosine nucleophile by slowing its association, without affecting P1 docking. The P13 and tetraloop/tetraloop receptor (TL/TLR) mutations had little functional effect and small, local structural changes, as revealed by hydroxyl radical footprinting, whereas the P14, MC/MCR, and L9/P5 mutants show structural changes distal from the mutation site. These changes extended into regions of the catalytic core involved in docking or guanosine binding. Thus, distinct allosteric pathways couple the long-range tertiary contacts to functional sites within the conserved core. This modular functional specialization may represent a fundamental strategy in RNA structure-function interrelationships.
Collapse
Affiliation(s)
- Tara L. Benz-Moy
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Daniel Herschlag
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
14
|
Forconi M, Porecha RH, Piccirilli JA, Herschlag D. Tightening of active site interactions en route to the transition state revealed by single-atom substitution in the guanosine-binding site of the Tetrahymena group I ribozyme. J Am Chem Soc 2011; 133:7791-800. [PMID: 21539364 PMCID: PMC3119543 DOI: 10.1021/ja111316y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein enzymes establish intricate networks of interactions to bind and position substrates and catalytic groups within active sites, enabling stabilization of the chemical transition state. Crystal structures of several RNA enzymes also suggest extensive interaction networks, despite RNA's structural limitations, but there is little information on the functional and the energetic properties of these inferred networks. We used double mutant cycles and presteady-state kinetic analyses to probe the putative interaction between the exocyclic amino group of the guanosine nucleophile and the N7 atom of residue G264 of the Tetrahymena group I ribozyme. As expected, the results supported the presence of this interaction, but remarkably, the energetic penalty for introducing a CH group at the 7-position of residue G264 accumulates as the reaction proceeds toward the chemical transition state to a total of 6.2 kcal/mol. Functional tests of neighboring interactions revealed that the presence of the CH group compromises multiple contacts within the interaction network that encompass the reactive elements, apparently forcing the nucleophile to bind and attack from an altered, suboptimal orientation. The energetic consequences of this indirect disruption of neighboring interactions as the reaction proceeds demonstrate that linkage between binding interactions and catalysis hinges critically on the precise structural integrity of a network of interacting groups.
Collapse
Affiliation(s)
- Marcello Forconi
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Rishi H. Porecha
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
|
16
|
Determining the catalytic role of remote substrate binding interactions in ketosteroid isomerase. Proc Natl Acad Sci U S A 2009; 106:14271-5. [PMID: 19706511 DOI: 10.1073/pnas.0901032106] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental difference between enzymes and small chemical catalysts is the ability of enzymes to use binding interactions with nonreactive portions of substrates to accelerate chemical reactions. Remote binding interactions can localize substrates to the active site, position substrates relative to enzymatic functional groups and other substrates, trigger conformational changes, induce local destabilization, and modulate an active site environment by solvent exclusion. We investigated the role of remote substrate binding interactions in the reaction catalyzed by the enzyme ketosteroid isomerase (KSI), which catalyzes a double bond migration of steroid substrates through a dienolate intermediate that is stabilized in an oxyanion hole. Comparison of a single-ring and multiple-ring substrate allowed the catalytic contribution of binding interactions with the distal substrate rings to be determined. The value of k(cat)/K(M) for a single-ring substrate is reduced 27,000-fold relative to a multiple-ring steroid substrate, suggesting that remote binding interactions with the steroid substrate contribute substantially to the KSI reaction. Nevertheless, the reaction rates for KSI-bound single- and multiple-ring substrates (k(cat)) are within 2-fold. Further, oxyanion hole mutations have the same effect on reactions of the single- and multiple-ring substrates. These results suggest that remote binding interactions contribute >5 kcal/mol to catalysis by KSI but that local rather than remote interactions dictate the catalytic contributions from KSI's general base and oxyanion hole.
Collapse
|
17
|
|
18
|
Dotson PP, Sinha J, Testa SM. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction. FEBS J 2008; 275:3110-22. [PMID: 18479464 DOI: 10.1111/j.1742-4658.2008.06464.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Group I introns catalyze the self-splicing reaction, and their derived ribozymes are frequently used as model systems for the study of RNA folding and catalysis, as well as for the development of non-native catalytic reactions. Utilizing a group I intron-derived ribozyme from Pneumocystis carinii, we previously reported a non-native reaction termed trans excision-splicing (TES). In this reaction, an internal segment of RNA is excised from an RNA substrate, resulting in the covalent reattachment of the flanking regions. TES proceeds through two consecutive phosphotransesterification reactions, which are similar to the reaction steps of self-splicing. One key difference is that TES utilizes the 3'-terminal guanosine of the ribozyme as the first-step nucleophile, whereas self-splicing utilizes an exogenous guanosine. To further aid in our understanding of ribozyme reactions, a kinetic framework for the first reaction step (substrate cleavage) was established. The results demonstrate that the substrate binds to the ribozyme at a rate expected for simple helix formation. In addition, the rate constant for the first step of the TES reaction is more than one order of magnitude lower than the analogous step in self-splicing. Results also suggest that a conformational change, likely similar to that in self-splicing, exists between the two reaction steps of TES. Finally, multiple turnover is curtailed because dissociation of the cleavage product is slower than the rate of chemistry.
Collapse
Affiliation(s)
- P Patrick Dotson
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
19
|
Abstract
During RNA maturation, the group I intron promotes two sequential phosphorotransfer reactions resulting in exon ligation and intron release. Here, we report the crystal structure of the intron in complex with spliced exons and two additional structures that examine the role of active-site metal ions during the second step of RNA splicing. These structures reveal a relaxed active site, in which direct metal coordination by the exons is lost after ligation, while other tertiary interactions are retained between the exon and the intron. Consistent with these structural observations, kinetic and thermodynamic measurements show that the scissile phosphate makes direct contact with metals in the ground state before exon ligation and in the transition state, but not after exon ligation. Despite no direct exonic interactions and even in the absence of the scissile phosphate, two metal ions remain bound within the active site. Together, these data suggest that release of the ligated exons from the intron is preceded by a change in substrate-metal coordination before tertiary hydrogen bonding contacts to the exons are broken.
Collapse
|
20
|
Bevilacqua PC, Cerrone-Szakal AL, Siegfried NA. Insight into the functional versatility of RNA through model-making with applications to data fitting. Q Rev Biophys 2007; 40:55-85. [PMID: 17391549 DOI: 10.1017/s0033583507004593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNA World hypothesis posits that life emerged from self-replicating RNA molecules. For any single biopolymer to be the basis for life, it must both store information and perform diverse functions. It is well known that RNA can store information. Advances in recent years have revealed that RNA can exhibit remarkable functional versatility as well. In an effort to judge the functional versatility of RNA and thereby the plausibility that RNA was at one point the basis for life, a statistical chemical approach is adopted. Essential biological functions are reduced to simple molecular models in a minimalist, biopolymer-independent fashion. The models dictate requisite states, populations of states, and physical and chemical changes occurring between the states. Next, equations are derived from the models, which lead to complex phenomenological constants such as observed and functional constants that are defined in terms of familiar elementary chemical descriptors: intrinsic rate constants, microscopic ligand equilibrium constants, secondary structure stability, and ligand concentration. Using these equations, simulations of functional behavior are performed. These functional models provide practical frameworks for fitting and organizing real data on functional RNAs such as ribozymes and riboswitches. At the same time, the models allow the suitability of RNA as a basis for life to be judged. We conclude that RNA, while inferior to extant proteins in most, but not all, functional respects, may be more versatile than proteins, performing a wider range of elementary biological functions at a tolerable level. Inspection of the functional models and various RNA structures uncovers several surprising ways in which the nucleobases can conspire to afford chemical catalysis and evolvability. These models support the plausibility that RNA, or a closely related informational biopolymer, could serve as the basis for a fairly simple form of life.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
21
|
Karbstein K, Lee J, Herschlag D. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing. Biochemistry 2007; 46:4861-75. [PMID: 17385892 PMCID: PMC2597287 DOI: 10.1021/bi062169g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several ribozyme constructs have been used to dissect aspects of the group I self-splicing reaction. The Tetrahymena L-21 ScaI ribozyme, the best studied of these intron analogues, catalyzes a reaction analogous to the first step of self-splicing, in which a 5'-splice site analogue (S) and guanosine (G) are converted into a 5'-exon analogue (P) and GA. This ribozyme preserves the active site but lacks a short 5'-terminal segment (called the IGS extension herein) that forms dynamic helices, called the P1 extension and P10 helix. The P1 extension forms at the 5'-splice site in the first step of self-splicing, and P10 forms at the 3'-splice site in the second step of self-splicing. To dissect the contributions from the IGS extension and the helices it forms, we have investigated the effects of each of these elements at each reaction step. These experiments were performed with the L-16 ScaI ribozyme, which retains the IGS extension, and with 5'- and 3'-splice site analogues that differ in their ability to form the helices. The presence of the IGS extension strengthens binding of P by 40-fold, even when no new base pairs are formed. This large effect was especially surprising, as binding of S is essentially unaffected for S analogues that do not form additional base pairs with the IGS extension. Analysis of a U.U pair immediately 3' to the cleavage site suggests that a previously identified deleterious effect from a dangling U residue on the L-21 ScaI ribozyme arises from a fortuitous active site interaction and has implications for RNA tertiary structure specificity. Comparisons of the affinities of 5'-splice site analogues that form only a subset of base pairs reveal that inclusion of the conserved G.U base pair at the cleavage site of group I introns destabilizes the P1 extension >100-fold relative to the stability of a helix with all Watson-Crick base pairs. Previous structural data with model duplexes and the recent intron structures suggest that this effect can be attributed to partial unstacking of the P1 extension at the G.U step. These results suggest a previously unrecognized role of the G.U wobble pair in self-splicing: breaking cooperativity in base pair formation between P1 and the P1 extensions. This effect may facilitate replacement of the P1 extension with P10 after the first chemical step of self-splicing and release of the ligated exons after the second step of self-splicing.
Collapse
Affiliation(s)
| | - Jihee Lee
- Department of Chemistry, Stanford University
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University
- Department of Chemistry, Stanford University
- Correspondence should be addressed to: Daniel Herschlag, Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, , Phone: (650) 723 9442, Fax: (650) 723 6783
| |
Collapse
|
22
|
Tijerina P, Bhaskaran H, Russell R. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc Natl Acad Sci U S A 2006; 103:16698-703. [PMID: 17075070 PMCID: PMC1636518 DOI: 10.1073/pnas.0603127103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We explore the interactions of CYT-19, a DExD/H-box protein that functions in folding of group I RNAs, with a well characterized misfolded species of the Tetrahymena ribozyme. Consistent with its function, CYT-19 accelerates refolding of the misfolded RNA to its native state. Unexpectedly, CYT-19 performs another reaction much more efficiently; it unwinds the 6-bp P1 duplex formed between the ribozyme and its oligonucleotide substrate. Furthermore, CYT-19 performs this reaction 50-fold more efficiently than it unwinds the same duplex free in solution, suggesting that it forms additional interactions with the ribozyme, most likely using a distinct RNA binding site from the one responsible for unwinding. This site can apparently bind double-stranded RNA, as attachment of a simple duplex adjacent to P1 recapitulates much of the activation provided by the ribozyme. Unwinding the native P1 duplex does not accelerate refolding of the misfolded ribozyme, implying that CYT-19 can disrupt multiple contacts on the RNA, consistent with its function in folding of multiple RNAs. Further experiments showed that the P1 duplex unwinding activity is virtually the same whether the ribozyme is misfolded or native but is abrogated by formation of tertiary contacts between the P1 duplex and the body of the ribozyme. Together these results suggest a mechanism for CYT-19 and other general DExD/H-box RNA chaperones in which the proteins bind to structured RNAs and efficiently unwind loosely associated duplexes, which biases the proteins to disrupt nonnative base pairs and gives the liberated strands an opportunity to refold.
Collapse
Affiliation(s)
- Pilar Tijerina
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712
| | - Hari Bhaskaran
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712
| | - Rick Russell
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Doudna JA, Lorsch JR. Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 2005; 12:395-402. [PMID: 15870731 DOI: 10.1038/nsmb932] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 04/05/2005] [Indexed: 01/24/2023]
Abstract
Evolution has resoundingly favored protein enzymes over RNA-based catalysts, yet ribozymes occupy important niches in modern cell biology that include the starring role in catalysis of protein synthesis on the ribosome. Recent results from structural and biochemical studies show that natural ribozymes use an impressive range of catalytic mechanisms, beyond metalloenzyme chemistry and analogous to more chemically diverse protein enzymes. These findings make it increasingly possible to compare details of RNA- and protein-based catalysis.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, USA.
| | | |
Collapse
|
24
|
Karbstein K, Tang KH, Herschlag D. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect. RNA (NEW YORK, N.Y.) 2004; 10:1730-1739. [PMID: 15496521 PMCID: PMC1370661 DOI: 10.1261/rna.7118104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 08/05/2004] [Indexed: 05/24/2023]
Abstract
Previous work on group I introns has suggested that a central base triple might be more important for the first rather than the second step of self-splicing, leading to a model in which the base triple undergoes a conformational change during self-splicing. Here, we use the well-characterized L-21 ScaI ribozyme derived from the Tetrahymena group I intron to probe the effects of base-triple disruption on individual reaction steps. Consistent with previous results, reaction of a ternary complex mimicking the first chemical step in self-splicing is slowed by mutations in this base triple, whereas reaction of a ternary complex mimicking the second step of self-splicing is not. Paradoxically, mechanistic dissection of the base-triple disruption mutants indicates that active site binding is weakened uniformly for the 5'-splice site and the 5'-exon analog, mimics for the species bound in the first and second step of self-splicing. Nevertheless, the 5'-exon analog remains bound at the active site, whereas the 5'-splice site analog does not. This differential effect arises despite the uniform destabilization, because the wild-type ribozyme binds the 5'-exon analog more strongly in the active site than in the 5'-splice site analog. Thus, binding into the active site constitutes an additional barrier to reaction of the 5'-splice site analog, but not the 5'-exon analog, resulting in a reduced reaction rate constant for the first step analog, but not the second step analog. This threshold model explains the self-splicing observations without the need to invoke a conformational change involving the base triple, and underscores the importance of quantitative dissection for the interpretation of effects from mutations.
Collapse
Affiliation(s)
- Katrin Karbstein
- Stanford University, School of Medicine, Beckman Center B400, Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
25
|
Abstract
Since the discovery of enzymes as biological catalysts, study of their enormous catalytic power and exquisite specificity has been central to biochemistry. Nevertheless, there is no universally accepted comprehensive description. Rather, numerous proposals have been presented over the past half century. The difficulty in developing a comprehensive description for the catalytic power of enzymes derives from the highly cooperative nature of their energetics, which renders impossible a simple division of mechanistic features and an absolute partitioning of catalytic contributions into independent and energetically additive components. Site-directed mutagenesis has emerged as an enormously powerful approach to probe enzymatic catalysis, illuminating many basic features of enzyme function and behavior. The emphasis of site-directed mutagenesis on the role of individual residues has also, inadvertently, limited experimental and conceptual attention to the fundamentally cooperative nature of enzyme function and energetics. The first part of this review highlights the structural and functional interconnectivity central to enzymatic catalysis. In the second part we ask: What are the features of enzymes that distinguish them from simple chemical catalysts? The answers are presented in conceptual models that, while simplified, help illustrate the vast amount known about how enzymes achieve catalysis. In the last section, we highlight the molecular and energetic questions that remain for future investigation and describe experimental approaches that will be necessary to answer these questions. The promise of advancing and integrating cutting edge conceptual, experimental, and computational tools brings mechanistic enzymology to a new era, one poised for novel fundamental insights into biological catalysis.
Collapse
Affiliation(s)
- Daniel A Kraut
- Department of Biochemistry, Stanford University, B400 Beckman Center, 279 Campus Drive, Stanford, California 94305-5307, USA.
| | | | | |
Collapse
|
26
|
Zahler NH, Christian EL, Harris ME. Recognition of the 5' leader of pre-tRNA substrates by the active site of ribonuclease P. RNA (NEW YORK, N.Y.) 2003; 9:734-45. [PMID: 12756331 PMCID: PMC1370440 DOI: 10.1261/rna.5220703] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 03/13/2003] [Indexed: 05/20/2023]
Abstract
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Adenosine/genetics
- Base Sequence
- Binding Sites
- Catalysis
- Conserved Sequence
- Endoribonucleases/chemistry
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Models, Biological
- Mutation
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribonuclease P
- Sequence Analysis, RNA
- Substrate Specificity
Collapse
Affiliation(s)
- Nathan H Zahler
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4973, USA
| | | | | |
Collapse
|
27
|
Karbstein K, Herschlag D. Extraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: implications for RNA preorganization and function. Proc Natl Acad Sci U S A 2003; 100:2300-5. [PMID: 12591943 PMCID: PMC151335 DOI: 10.1073/pnas.252749799] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tetrahymena ribozyme derived from the self-splicing group I intron binds a 5'-splice site analog (S) and guanosine (G), catalyzing their conversion to a 5'-exon analog (P) and GA. Herein, we show that binding of guanosine is exceptionally slow, limiting the reaction at near neutral pH. Our results implicate a conformational rearrangement on guanosine binding, likely because the binding site is not prearranged in the absence of ligand. The fast accommodation of guanosine (10(2) to 10(3) x s(-1)) and prior structural data suggest local rather than global rearrangements, raising the possibility that folding of this and perhaps other large RNAs is not fully cooperative. Guanosine binding is accelerated by addition of residues that form helices, referred to as P9.0 and P10, immediately 5' and 3' to the guanosine. These rate enhancements provide evidence for binding intermediates that have the adjacent helices formed before accommodation of guanosine into its binding site. Because the ability to form the P9.0 and P10 helices distinguishes the guanosine at the correct 3'-splice site from other guanosine residues, the faster binding of the correct guanosine can enhance specificity of 3'-splice site selection. Thus, paradoxically, the absence of a preformed binding site and the resulting slow guanosine binding can contribute to splicing specificity by providing an opportunity for the adjacent helices to increase the rate of binding of the guanosine specifying the 3'-splice site.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA
| | | |
Collapse
|
28
|
Bevilacqua PC, Brown TS, Nakano SI, Yajima R. Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 2003; 73:90-109. [PMID: 14691943 DOI: 10.1002/bip.10519] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
The hepatitis delta virus (HDV) ribozymes are self-cleaving RNA sequences critical to the replication of a small RNA genome. A recently determined crystal structure together with biochemical and biophysical studies provides new insight into the possible catalytic mechanism of these ribozymes. The HDV ribozymes are examples of naturally occurring small ribozymes that catalyze cleavage of the RNA backbone with a rate enhancement of 10(6)- to 10(7)-fold over the uncatalyzed rate. To achieve this level of rate enhancement, the HDV ribozymes have been proposed to employ several catalytic strategies that include the use of metal ions, intrinsic binding energy, and a novel example of general acid-base catalysis with a cytosine side chain acting as a proton donor or acceptor.
Collapse
Affiliation(s)
- I-hung Shih
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
30
|
Rupert PB, Massey AP, Sigurdsson ST, Ferré-D'Amaré AR. Transition state stabilization by a catalytic RNA. Science 2002; 298:1421-4. [PMID: 12376595 DOI: 10.1126/science.1076093] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The hairpin ribozyme catalyzes sequence-specific cleavage of RNA through transesterification of the scissile phosphate. Vanadate has previously been used as a transition state mimic of protein enzymes that catalyze the same reaction. Comparison of the 2.2 angstrom resolution structure of a vanadate-hairpin ribozyme complex with structures of precursor and product complexes reveals a rigid active site that makes more hydrogen bonds to the transition state than to the precursor or product. Because of the paucity of RNA functional groups capable of general acid-base or electrostatic catalysis, transition state stabilization is likely to be an important catalytic strategy for ribozymes.
Collapse
Affiliation(s)
- Peter B Rupert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
31
|
Bell AF, Feng Y, Hofstein HA, Parikh S, Wu J, Rudolph MJ, Kisker C, Whitty A, Tonge PJ. Stereoselectivity of enoyl-CoA hydratase results from preferential activation of one of two bound substrate conformers. CHEMISTRY & BIOLOGY 2002; 9:1247-55. [PMID: 12445775 DOI: 10.1016/s1074-5521(02)00263-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enoyl-CoA hydratase catalyzes the hydration of trans-2-crotonyl-CoA to 3(S)- and 3(R)-hydroxybutyryl-CoA with a stereoselectivity (3(S)/3(R)) of 400,000 to 1. Importantly, Raman spectroscopy reveals that both the s-cis and s-trans conformers of the substrate analog hexadienoyl-CoA are bound to the enzyme, but that only the s-cis conformer is polarized. This selective polarization is an example of ground state strain, indicating the existence of catalytically relevant ground state destabilization arising from the selective complementarity of the enzyme toward the transition state rather than the ground state. Consequently, the stereoselectivity of the enzyme-catalyzed reaction results from the selective activation of one of two bound substrate conformers rather than from selective binding of a single conformer. These findings have important implications for inhibitor design and the role of ground state interactions in enzyme catalysis.
Collapse
Affiliation(s)
- Alasdair F Bell
- Department of Chemistry, Center for Structural Biology, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cheng H, Nikolic-Hughes I, Wang JH, Deng H, O'Brien PJ, Wu L, Zhang ZY, Herschlag D, Callender R. Environmental effects on phosphoryl group bonding probed by vibrational spectroscopy: implications for understanding phosphoryl transfer and enzymatic catalysis. J Am Chem Soc 2002; 124:11295-306. [PMID: 12236744 DOI: 10.1021/ja026481z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used vibrational spectroscopy to study bonding in monosubstituted dianionic phosphates, both to learn more about basic properties intrinsic to this important class of biological substrates and to assess the ability of vibrational spectroscopy to provide a "sensor" or probe of the local environment experienced by the phosphoryl group. We examined the bonding properties of the phosphoryl group via vibrational spectroscopy for a series of compounds in which the phosphoryl substituent was varied systematically and extensively. A broad linear correlation of the bridging P-O(R) bond length and the pK(a) of the substituent alcohol was observed. The results indicate that the P-O(R) bond changes by only approximately 0.04 A with alcohol substituents that vary in pK(a) by approximately 12 units, suggesting that phosphoryl group bonding responds in a subtle but regular manner to changes in the local environment. We also determined the effect on the phosphoryl bonding from changes in the solvent environment. Addition of dimethyl sulfoxide (DMSO) elongates the bridging bond, presumably as a result of lessened solvation to the nonbridging oxygens and conservation of bond order to phosphorus. Finally, we have addressed the relationship between ground-state bonding properties and reactivity, as changing the leaving group substituent and adding DMSO have large rate effects, and it was previously proposed that lengthening of the bond to be broken is the cause of the increased reactivity. The results herein suggest, however, that the change in the bridging bond energy is small compared to the changes in energy that accompany the observed reactivity differences. Further analysis indicates that electrostatic interactions can provide a common driving force underlying both bond lengthening and the observed rate increases. We suggest that ground-state distortions of substrates bound to enzymes can provide a readout of the electrostatic active site environment, an environment that is otherwise difficult to assess.
Collapse
Affiliation(s)
- Hu Cheng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461-1602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shih IH, Been MD. Energetic contribution of non-essential 5' sequence to catalysis in a hepatitis delta virus ribozyme. EMBO J 2001; 20:4884-91. [PMID: 11532952 PMCID: PMC125606 DOI: 10.1093/emboj/20.17.4884] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hepatitis delta virus (HDV) ribozymes employ multiple catalytic strategies to achieve overall rate enhancement of RNA cleavage. These strategies include general acid-base catalysis by a cytosine side chain and involvement of divalent metal ions. Here we used a trans-acting form of the antigenomic ribozyme to examine the contribution of the 5' sequence in the substrate to HDV ribozyme catalysis. The cleavage rate constants increased for substrates with 5' sequence alterations that reduced ground-state binding to the ribozyme. Quantitatively, a plot of activation free energy of chemical conversion versus Gibb's free energy of substrate binding revealed a linear relationship with a slope of -1. This relationship is consistent with a model in which components of the substrate immediately 5' to the cleavage site in the HDV ribozyme-substrate complex destabilize ground-state binding. The intrinsic binding energy derived from the ground-state destabilization could contribute up to 2 kcal/mol toward the total 8.5 kcal/mol reduction in activation free energy for RNA cleavage catalyzed by the HDV ribozyme.
Collapse
Affiliation(s)
- I.-hung Shih
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
Present address: Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| | - Michael D. Been
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
Present address: Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA Corresponding author e-mail:
| |
Collapse
|
34
|
Geyer CR, Sen D. Use of intrinsic binding energy for catalysis by a cofactor-independent DNA enzyme. J Mol Biol 2000; 299:1387-98. [PMID: 10873461 DOI: 10.1006/jmbi.2000.3818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concept of the Circe effect, according to which an enzyme's substrate-binding energy is utilized to destabilize the substrate towards the reaction transition state, has been shown to be a relevant catalytic strategy for naturally occurring protein enzymes and for two ribozymes that use nucleotide-based substrates and metal ion cofactors. We wished to investigate whether such a catalytic strategy extends even to divergent and unevolved catalysts constructed from biopolymers. We examined the properties of a small, in vitro selected, and cofactor-independent DNA enzyme, PS5.M, which catalyzes porphyrin metallation. The metallation reaction is unique, in that the energies for binding and for metallation of both the substrate and of a transition-state analogue (TSA) can be measured. We report that PS5.M, originally selected for binding to the TSA, displays the Circe effect in channeling a significant component of entropy-rich "intrinsic" binding energy to distort and to alter the basicity of the bound substrate. The study demonstrates that nucleic acids are, by themselves, capable of creating active sites for the catalysis of chemical reactions involving non-nucleotide substrates. Furthermore, the study of the metallation of the TSA provides a quantitative estimate of the effectiveness of such a compound in mimicking the true transition state for porphyrin metallation.
Collapse
Affiliation(s)
- C R Geyer
- Institute of Molecular Biology & Biochemistry and Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | | |
Collapse
|
35
|
Shan SO, Herschlag D. An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction. RNA (NEW YORK, N.Y.) 2000; 6:795-813. [PMID: 10864040 PMCID: PMC1369959 DOI: 10.1017/s1355838200000649] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The presence of catalytic metal ions in RNA active sites has often been inferred from metal-ion rescue of modified substrates and sometimes from inhibitory effects of alternative metal ions. Herein we report that, in the Tetrahymena group I ribozyme reaction, the deleterious effect of a thio substitution at the pro-Sp position of the reactive phosphoryl group is rescued by Mn2+. However, analysis of the reaction of this thio substrate and of substrates with other modifications strongly suggest that this rescue does not stem from a direct Mn2+ interaction with the Sp sulfur. Instead, the apparent rescue arises from a Mn2+ ion interacting with the residue immediately 3' of the cleavage site, A(+1), that stabilizes the tertiary interactions between the oligonucleotide substrate (S) and the active site. This metal site is referred to as site D herein. We also present evidence that a previously observed Ca2+ ion that inhibits the chemical step binds to metal site D. These and other observations suggest that, whereas the interactions of Mn2+ at site D are favorable for the chemical reaction, the Ca2+ at site D exerts its inhibitory effect by disrupting the alignment of the substrates within the active site. These results emphasize the vigilance necessary in the design and interpretation of metal-ion rescue and inhibition experiments. Conversely, in-depth mechanistic analysis of the effects of site-specific substrate modifications can allow the effects of specific metal ion-RNA interactions to be revealed and the properties of individual metal-ion sites to be probed, even within the sea of metal ions bound to RNA.
Collapse
Affiliation(s)
- S O Shan
- Department of Biochemistry, Stanford University, California 94305-5307, USA
| | | |
Collapse
|
36
|
Engelhardt MA, Doherty EA, Knitt DS, Doudna JA, Herschlag D. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis. Biochemistry 2000; 39:2639-51. [PMID: 10704214 DOI: 10.1021/bi992313g] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phylogenetic comparisons and site-directed mutagenesis indicate that group I introns are composed of a catalytic core that is universally conserved and peripheral elements that are conserved only within intron subclasses. Despite this low overall conservation, peripheral elements are essential for efficient splicing of their parent introns. We have undertaken an in-depth structure-function analysis to investigate the role of one of these elements, P5abc, using the well-characterized ribozyme derived from the Tetrahymena group I intron. Structural comparisons using solution-based free radical cleavage revealed that a ribozyme lacking P5abc (E(DeltaP5abc)) and E(DeltaP5abc) with P5abc added in trans (E(DeltaP5abc).P5abc) adopt a similar global tertiary structure at Mg(2+) concentrations greater than 20 mM [Doherty, E. A., et al. (1999) Biochemistry 38, 2982-90]. However, free E(DeltaP5abc) is greatly compromised in overall oligonucleotide cleavage activity, even at Mg(2+) concentrations as high as 100 mM. Further characterization of E(DeltaP5abc) via DMS modification revealed local structural differences at several positions in the conserved core that cluster around the substrate binding sites. Kinetic and thermodynamic dissection of individual reaction steps identified defects in binding of both substrates to E(DeltaP5abc), with > or =25-fold weaker binding of a guanosine nucleophile and > or =350-fold weaker docking of the oligonucleotide substrate into its tertiary interactions with the ribozyme core. These defects in binding of the substrates account for essentially all of the 10(4)-fold decrease in overall activity of the deletion mutant. Together, the structural and functional observations suggest that the P5abc peripheral element not only provides stability but also positions active site residues through indirect interactions, thereby preferentially stabilizing the active ribozyme structure relative to alternative less active states. This is consistent with the view that peripheral elements engage in a network of mutually reinforcing interactions that together ensure cooperative folding of the ribozyme to its active structure.
Collapse
Affiliation(s)
- M A Engelhardt
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
37
|
Yoshida A, Shan SO, Herschlag D, Piccirilli JA. The role of the cleavage site 2'-hydroxyl in the Tetrahymena group I ribozyme reaction. CHEMISTRY & BIOLOGY 2000; 7:85-96. [PMID: 10662698 DOI: 10.1016/s1074-5521(00)00074-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The 2'-hydroxyl of U preceding the cleavage site, U(-1), in the Tetrahymena ribozyme reaction contributes 10(3)-fold to catalysis relative to a 2'-hydrogen atom. Previously proposed models for the catalytic role of this 2'-OH involve coordination of a catalytic metal ion and hydrogen-bond donation to the 3'-bridging oxygen. An additional model, hydrogen-bond donation by the 2'-OH to a nonbridging reactive phosphoryl oxygen, is also consistent with previous results. We have tested these models using atomic-level substrate modifications and kinetic and thermodynamic analyses. RESULTS Replacing the 2'-OH with -NH(3)(+) increases the reaction rate approximately 60-fold, despite the absence of lone-pair electrons on the 2'-NH(3)(+) group to coordinate a metal ion. Binding and reaction of a modified oligonucleotide substrate with 2'-NH(2) at U(-1) are unaffected by soft-metal ions. These results suggest that the 2'-OH of U(-1) does not interact with a metal ion. The contribution of the 2'-moiety of U(-1) is unperturbed by thio substitution at either of the nonbridging oxygens of the reactive phosphoryl group, providing no indication of a hydrogen bond between the 2'-OH and the nonbridging phosphoryl oxygens. In contrast, the 10(3)-fold catalytic advantage of 2'-OH relative to 2'-H is eliminated when the 3'-bridging oxygen is replaced by sulfur. As sulfur is a weaker hydrogen-bond acceptor than oxygen, this effect suggests a hydrogen-bonding interaction between the 2'-OH and the 3'-bridging oxygen. CONCLUSIONS These results provide the first experimental support for the model in which the 2'-OH of U(-1) donates a hydrogen bond to the neighboring 3'-bridging oxygen, thereby stabilizing the developing negative charge on the 3'-oxygen in the transition state.
Collapse
Affiliation(s)
- A Yoshida
- Departments of Biochemistry and Molecular Biology, and Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
38
|
Gordon PM, Sontheimer EJ, Piccirilli JA. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA (NEW YORK, N.Y.) 2000; 6:199-205. [PMID: 10688359 PMCID: PMC1369906 DOI: 10.1017/s1355838200992069] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mechanistic analyses of nuclear pre-mRNA splicing by the spliceosome and group II intron self-splicing provide insight into both the catalytic strategies of splicing and the evolutionary relationships between the different splicing systems. We previously showed that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA has no effect on splicing. We now report that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA causes a switch in metal specificity when the second step of splicing is monitored using a bimolecular exon-ligation assay. This suggests that the spliceosome uses a catalytic metal ion to stabilize the 3'-oxyanion leaving group during the second step of splicing, as shown previously for the first step. The lack of a metal-specificity switch under cis splicing conditions indicates that a rate-limiting conformational change between the two steps of splicing may mask the subsequent chemical step and the metal-specificity switch. As the group II intron, a true ribozyme, uses identical catalytic strategies for splicing, our results strengthen the argument that the spliceosome is an RNA catalyst that shares a common molecular ancestor with group II introns.
Collapse
Affiliation(s)
- P M Gordon
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
39
|
Shan SO, Yoshida A, Sun S, Piccirilli JA, Herschlag D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci U S A 1999; 96:12299-304. [PMID: 10535916 PMCID: PMC22911 DOI: 10.1073/pnas.96.22.12299] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1999] [Accepted: 08/27/1999] [Indexed: 11/18/2022] Open
Abstract
Metal ions are critical for catalysis by many RNA and protein enzymes. To understand how these enzymes use metal ions for catalysis, it is crucial to determine how many metal ions are positioned at the active site. We report here an approach, combining atomic mutagenesis with quantitative determination of metal ion affinities, that allows individual metal ions to be distinguished. Using this approach, we show that at the active site of the Tetrahymena group I ribozyme the previously identified metal ion interactions with three substrate atoms, the 3'-oxygen of the oligonucleotide substrate and the 3'- and 2'-moieties of the guanosine nucleophile, are mediated by three distinct metal ions. This approach provides a general tool for distinguishing active site metal ions and allows the properties and roles of individual metal ions to be probed, even within the sea of metal ions bound to RNA.
Collapse
Affiliation(s)
- S o Shan
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA
| | | | | | | | | |
Collapse
|
40
|
Bach RD, Canepa C, Glukhovtsev MN. Influence of Electrostatic Effects on Activation Barriers in Enzymatic Reactions: Pyridoxal 5‘-Phosphate-Dependent Decarboxylation of α-Amino Acids. J Am Chem Soc 1999. [DOI: 10.1021/ja9907616] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert D. Bach
- Contribution from the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 197163
| | - Carlo Canepa
- Contribution from the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 197163
| | - Mikhail N. Glukhovtsev
- Contribution from the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 197163
| |
Collapse
|
41
|
Sontheimer EJ, Gordon PM, Piccirilli JA. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome. Genes Dev 1999; 13:1729-41. [PMID: 10398685 PMCID: PMC316845 DOI: 10.1101/gad.13.13.1729] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The identical reaction pathway executed by the spliceosome and self-splicing group II intron ribozymes has prompted the idea that both may be derived from a common molecular ancestor. The minimal sequence and structural similarities between group II introns and the spliceosomal small nuclear RNAs, however, have left this proposal in question. Mechanistic comparisons between group II self-splicing introns and the spliceosome are therefore important in determining whether these two splicing machineries may be related. Here we show that 3'-sulfur substitution at the 5' splice site of a group II intron causes a metal specificity switch during the first step of splicing. In contrast, 3'-sulfur substitution has no significant effect on the metal specificity of the second step of cis-splicing. Isolation of the second step uncovers a metal specificity switch that is masked during the cis-splicing reaction. These results demonstrate that group II intron ribozymes are metalloenzymes that use a catalytic metal ion for leaving group stabilization during both steps of self-splicing. Furthermore, because 3'-sulfur substitution of a spliceosomal intron has precisely the same effects as were observed during cis-splicing of the group II intron, these results provide striking parallels between the catalytic mechanisms employed by these two systems.
Collapse
Affiliation(s)
- E J Sontheimer
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
42
|
Sontheimer EJ, Sun S, Piccirilli JA. Metal ion catalysis during splicing of premessenger RNA. Nature 1997; 388:801-5. [PMID: 9285595 DOI: 10.1038/42068] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The removal of intervening sequences from premessenger RNA is essential for the expression of most eukaryotic genes. The spliceosome ribonucleoprotein complex catalyses intron removal by two sequential phosphotransesterification reactions, but the catalytic mechanisms are unknown. It has been proposed that two divalent metal ions may mediate catalysis of both reaction steps, activating the 2'- or 3'-hydroxyl groups for nucleophilic attack and stabilizing the 3'-oxyanion leaving groups by direct coordination. Here we show that in splicing reactions with a precursor RNA containing a 3'-sulphur substitution at the 5' splice site, interaction between metal ion and leaving group is essential for catalysis of the first reaction step. This establishes that the spliceosome is a metalloenzyme and demonstrates a direct parallel with the catalytic strategy used by the self-splicing group I intron from Tetrahymena. In contrast, 3'-sulphur substitution at the 3' splice site provides no evidence for a metal ion-leaving group interaction in the second reaction step, suggesting that the two steps of splicing proceed by different catalytic mechanisms and therefore in distinct active sites.
Collapse
Affiliation(s)
- E J Sontheimer
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
43
|
Abstract
The number of RNA molecules that have novel catalytic activities has dramatically increased during the past two years. This ribozymic boom is not due to the discovery of additional examples of natural ribozymes but rather to the development of artificial ribozymes isolated by in vitro selection and evolution techniques. The structural and functional complexities of these artificial ribozymes, however, do not match those of the larger natural ribozymes. The understanding of both RNA structure and catalysis performed by natural and artificial ribozymes paves the way for the creation of RNA molecules that are able to efficiently catalyze more complex reactions.
Collapse
Affiliation(s)
- L Jaeger
- UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France.
| |
Collapse
|
44
|
Narlikar GJ, Herschlag D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem 1997; 66:19-59. [PMID: 9242901 DOI: 10.1146/annurev.biochem.66.1.19] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A classic approach in biology, both organismal and cellular, is to compare morphologies in order to glean structural and functional commonalities. The comparative approach has also proven valuable on a molecular level. For example, phylogenetic comparisons of RNA sequences have led to determination of conserved secondary and even tertiary structures, and comparisons of protein structures have led to classifications of families of protein folds. Here we take this approach in a mechanistic direction, comparing protein and RNA enzymes. The aim of comparing RNA and protein enzymes is to learn about fundamental physical and chemical principles of biological catalysis. The more recently discovered RNA enzymes, or ribozymes, provide a distinct perspective on long-standing questions of biological catalysis. The differences described in this review have taught us about the aspects of RNA and proteins that are distinct, whereas the common features have helped us to understand the aspects that are fundamental to biological catalysis. This has allowed the framework that was put forth by Jencks for protein catalysts over 20 years ago (1) to be extended to RNA enzymes, generalized, and strengthened.
Collapse
Affiliation(s)
- G J Narlikar
- Department of Chemistry, Stanford University, California 94305-5307, USA
| | | |
Collapse
|
45
|
Shan SO, Herschlag D. The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis. Proc Natl Acad Sci U S A 1996; 93:14474-9. [PMID: 8962076 PMCID: PMC26157 DOI: 10.1073/pnas.93.25.14474] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The equilibrium for formation of the intramolecular hydrogen bond (KHB) in a series of substituted salicylate monoanions was investigated as a function of delta pKa, the difference between the pKa values of the hydrogen bond donor and acceptor, in both water and dimethyl sulfoxide. The dependence of log KHB upon delta pKa is linear in both solvents, but is steeper in dimethyl sulfoxide (slope = 0.73) than in water (slope = 0.05). Thus, hydrogen bond strength can undergo substantially larger increases in nonaqueous media than aqueous solutions as the charge density on the donor or acceptor atom increases. These results support a general mechanism for enzymatic catalysis, in which hydrogen bonding to a substrate is strengthened as charge rearranges in going from the ground state to the transition state; the strengthening of the hydrogen bond would be greater in a nonaqueous enzymatic active site than in water, thus providing a rate enhancement for an enzymatic reaction relative to the solution reaction. We suggest that binding energy of an enzyme is used to fix the substrate in the low-dielectric active site, where the strengthening of the hydrogen bond in the course of a reaction is increased.
Collapse
Affiliation(s)
- S O Shan
- Department of Biochemistry, Beckman Center, Stanford University, CA 94305-5307, USA
| | | |
Collapse
|
46
|
Thomson JB, Patel BK, Jiménez V, Eckart K, Eckstein F. Synthesis and Properties of Diuridine Phosphate Analogues Containing Thio and Amino Modifications. J Org Chem 1996; 61:6273-6281. [PMID: 11667467 DOI: 10.1021/jo960795l] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several analogues of diuridine phosphate (UpU) were synthesized in order to investigate why replacing the 2'-hydroxyl with a 2'-amino group prevents hydrolysis. These analogues were designed to investigate what influence the 2'-substituent and 5'-leaving group have upon the rate of hydrolysis. All the analogues were considerably more labile than UpU toward acid-base-catalyzed hydrolysis. In the pH region from 6 to 9, the rate of hydrolysis of uridylyl (3'-5') 5'-thio-5'-deoxyuridine (UpsU) hydrolysis rose, in a log linear fashion, from a value of 5 x 10(-)(6) s(-)(1) at pH 6 to 3200 x 10(-)(6) s(-)(1) at pH 9, indicating that attack on the phosphorus by the 2'-oxo anion is rate-limiting in the hydrolysis mechanism. In contrast, the rate of uridylyl (3'-5') 5'-amino-5'-deoxyuridine (UpnU) hydrolysis fell from a value of 1802 x 10(-)(6) s(-)(1) at pH 5 to 140 x 10(-)(6) s(-)(1) at pH 7.5, where it remained constant up to pH 11.5, thus indicating an acid-catalyzed reaction. The analogue 2'-amino-2'-deoxyuridylyl (3'-5') 5'-thio-5'-deoxyuridine (amUpsU) was readily hydrolyzed above pH 7, in contrast to the hydrolytic stability of amUpT, with rates between 85 x 10(-)(6) s(-)(1) and 138 x 10(-)(6) s(-)(1). The hydrolysis of 2'-amino-2'-deoxyuridylyl (3'-5') 5'-amino-5'-deoxythymidine (amUpnT) rose from 17 x 10(-)(6) s(-)(1) at pH 11.5 to 11 685 x 10(-)(6) s(-)(1) at pH 7.0, indicating an acid-catalyzed reaction, where protonation of the 5'-amine is rate limiting. The cleavage rates of UpsU, UpnU, and amUpsU were accelerated in the presence of Mg(2+), Zn(2+), and Cd(2+) ions, but a correlation with interaction between metal ion and leaving group could only be demonstrated for amUpsU. UpsU and UpnU are also substrates for RNase A with UpsU having similar Michaelis-Menten parameters to UpU. In contrast, UpnU is more rapidly degraded with an approximate 35-fold increase in catalytic efficiency, which is reflected purely in an increase in the value of k(cat).
Collapse
Affiliation(s)
- James B. Thomson
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Str.3, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Maegley KA, Admiraal SJ, Herschlag D. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies. Proc Natl Acad Sci U S A 1996; 93:8160-6. [PMID: 8710841 PMCID: PMC38640 DOI: 10.1073/pnas.93.16.8160] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Despite the biological and medical importance of signal transduction via Ras proteins and despite considerable kinetic and structural studies of wild-type and mutant Ras proteins, the mechanism of Ras-catalyzed GTP hydrolysis remains controversial. We take a different approach to this problem: the uncatalyzed hydrolysis of GTP is analyzed, and the understanding derived is applied to the Ras-catalyzed reaction. Evaluation of previous mechanistic proposals from this chemical perspective suggests that proton abstraction from the attacking water by a general base and stabilization of charge development on the gamma-phosphoryl oxygen atoms would not be catalytic. Rather, this analysis focuses attention on the GDP leaving group, including the beta-gamma bridge oxygen of GTP, the atom that undergoes the largest change in charge in going from the ground state to the transition state. This leads to a new catalytic proposal in which a hydrogen bond from the backbone amide of Gly-13 to this bridge oxygen is strengthened in the transition state relative to the ground state, within an active site that provides a template complementary to the transition state. Strengthened transition state interactions of the active site lysine, Lys-16, with the beta-nonbridging phosphoryl oxygens and a network of interactions that positions the nucleophilic water molecule and gamma-phosphoryl group with respect to one another may also contribute to catalysis. It is speculated that a significant fraction of the GAP-activated GTPase activity of Ras arises from an additional interaction of the beta-gamma bridge oxygen with an Arg side chain that is provided in trans by GAP. The conclusions for Ras and related G proteins are expected to apply more widely to other enzymes that catalyze phosphoryl (-PO(3)2-) transfer, including kinases and phosphatases.
Collapse
Affiliation(s)
- K A Maegley
- Department of Biochemistry, Beckman Center, Stanford University, CA 94305-5307, USA
| | | | | |
Collapse
|
48
|
Narlikar GJ, Herschlag D. Isolation of a local tertiary folding transition in the context of a globally folded RNA. NATURE STRUCTURAL BIOLOGY 1996; 3:701-10. [PMID: 8756329 DOI: 10.1038/nsb0896-701] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Binding of the Tetrahymena ribozyme's oligonucleotide substrate represents a local folding event in the context of a globally folded RNA. Substrate binding involves P1 duplex formation with the ribozyme's internal guide sequence to give an "open complex', followed by docking of the P1 duplex into tertiary interactions to give a "closed complex'. We have isolated the open complex as a thermodynamically stable species using a site-specific modification and high Na+ concentrations. This has allowed characterization of P1 docking, which represents a folding transition between local secondary and local tertiary structure. P1 docking is entropically driven, possibly accompanied by a release of bound water molecules. Strategies analogous to those described here can be used more generally to study local folding events in large structured RNAs and to explore the structural and energetic landscape for RNA folding.
Collapse
Affiliation(s)
- G J Narlikar
- Department of Chemistry, Stanford University, California 94305-5307, USA
| | | |
Collapse
|
49
|
|
50
|
Group I Ribozymes: Substrate Recognition, Catalytic Strategies, and Comparative Mechanistic Analysis. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-642-61202-2_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|