1
|
Jones BS, Pareek V, Hu DD, Weaver SD, Syska C, Galfano G, Champion MM, Champion PA. N - acetyl-transferases required for iron uptake and aminoglycoside resistance promote virulence lipid production in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602253. [PMID: 39005365 PMCID: PMC11245092 DOI: 10.1101/2024.07.05.602253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged Mycobacterium marinum, a nontubercular pathogen and an established model for M. tuberculosis. M. marinum hemolysis is a proxy for phagolytic activity. We generated M. marinum strains with deletions in conserved NAT genes and screened for hemolytic activity. Several conserved lysine acetyltransferases (KATs) contributed to hemolysis. Hemolysis is mediated by the ESX-1 secretion system and by phthiocerol dimycocerosate (PDIM), a virulence lipid. For several strains, the hemolytic activity was restored by the addition of second copy of the ESX-1 locus. Using thin-layer chromatography (TLC), we found a single NAT required for PDIM and phenolic glycolipid (PGL) production. MbtK is a conserved KAT required for mycobactin siderophore synthesis and virulence. Mycobactin J exogenously complemented PDIM/PGL production in the Δ mbtK strain. The Δ mbtK M. marinum strain was attenuated in macrophage and Galleria mellonella infection models. Constitutive expression of either eis or papA5, which encode a KAT required for aminoglycoside resistance and a PDIM/PGL biosynthetic enzyme, rescued PDIM/PGL production and virulence of the Δ mbtK strain. Eis N-terminally acetylated PapA5 in vitro , supporting a mechanism for restored lipid production. Overall, our study establishes connections between the MbtK and Eis NATs, and between iron uptake and PDIM and PGL synthesis in M. marinum . Our findings underscore the multifunctional nature of mycobacterial NATs and their connection to key virulence pathways. Significance Statement Acetylation is a modification of protein N-termini, lysine residues, antibiotics and lipids. Many of the enzymes that promote acetylation belong to the GNAT family of proteins. M. marinum is a well-established as a model to understand how M. tuberculosis causes tuberculosis. In this study we sought to identify conserved GNAT proteins required for early stages of mycobacterial infection. Using M. marinum, we determined that several GNAT proteins are required for the lytic activity of M. marinum. We uncovered previously unknown connections between acetyl-transferases required for iron uptake and antimicrobial resistance, and the production of the unique mycobacterial lipids, PDIM and PGLOur data support that acetyl-transferases from the GNAT family are interconnected, and have activities beyond those previously reported.
Collapse
|
2
|
Jones BS, Hu DD, Nicholson KR, Cronin RM, Weaver SD, Champion MM, Champion PA. The loss of the PDIM/PGL virulence lipids causes differential secretion of ESX-1 substrates in Mycobacterium marinum. mSphere 2024; 9:e0000524. [PMID: 38661343 PMCID: PMC11237470 DOI: 10.1128/msphere.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis. Previous studies revealed that mycobacterial strains lacking the outer lipid PDIM have impaired ESX-1 function during laboratory growth and infection. The mechanisms underlying changes in ESX-1 function are unknown. We used a proteo-genetic approach to measure phthiocerol dimycocerosate (PDIM)- and phenolic glycolipid (PGL)-dependent protein secretion in M. marinum, a non-tubercular mycobacterial pathogen that causes tuberculosis-like disease in ectothermic animals. Importantly, M. marinum is a well-established model for mycobacterial pathogenesis. Our findings showed that M. marinum strains without PDIM and PGL showed specific, significant reductions in protein secretion compared to the WT and complemented strains. We recently established a hierarchy for the secretion of ESX-1 substrates in four (I-IV) groups. Loss of PDIM differentially impacted secretion of Group III and IV ESX-1 substrates, which are likely the effectors of pathogenesis. Our data suggest that the altered secretion of specific ESX-1 substrates is responsible for the observed ESX-1-related effects in PDIM-deficient strains.IMPORTANCEMycobacterium tuberculosis, the cause of human tuberculosis, killed an estimated 1.3 million people in 2022. Non-tubercular mycobacterial species cause acute and chronic human infections. Understanding how these bacteria cause disease is critical. Lipids in the cell envelope are essential for mycobacteria to interact with the host and promote disease. Strains lacking outer lipids are attenuated for infection, but the reasons are unclear. Our research aims to identify a mechanism for attenuation of mycobacterial strains without the PDIM and PGL outer lipids in M. marinum. These findings will enhance our understanding of the importance of lipids in pathogenesis and how these lipids contribute to other established virulence mechanisms.
Collapse
Affiliation(s)
- Bradley S. Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Daniel D. Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R. Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Simon D. Weaver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
3
|
Khan MT, Khan TA, Ahmad I, Muhammad S, Wei DQ. Diversity and novel mutations in membrane transporters of Mycobacterium tuberculosis. Brief Funct Genomics 2022; 22:168-179. [PMID: 35868449 DOI: 10.1093/bfgp/elac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), encodes a family of membrane proteins belonging to Resistance-Nodulation-Cell Division (RND) permeases also called multidrug resistance pumps. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in exporting of lipid components across the cell envelope. These proteins perform an essential role in MTB survival; however, there are no data regarding mutations in MmpL, polyketide synthase (PKS) and acyl-CoA dehydrogenase FadE proteins from Khyber Pakhtunkhwa, Pakistan. This study aimed to screen mutations in transmembrane transporter proteins including MmpL, PKS and Fad through whole-genome sequencing (WGS) in local isolates of Khyber Pakhtunkhwa province, Pakistan. Fourteen samples were collected from TB patients and drug susceptibility testing was performed. However, only three samples were completely sequenced. Moreover, 209 whole-genome sequences of the same geography were also retrieved from NCBI GenBank to analyze the diversity of mutations in MmpL, PKS and Fad proteins. Among the 212 WGS (Accession ID: PRJNA629298, PRJNA629388, and ERR2510337-ERR2510345, ERR2510546-ERR2510645), numerous mutations in Fad (n = 756), PKS (n = 479), and MmpL (n = 306) have been detected. Some novel mutations were also detected in MmpL, PKS and acyl-CoA dehydrogenase Fad. Novel mutations including Asn576Ser in MmpL8, Val943Gly in MmpL9 and Asn145Asp have been detected in MmpL3. The presence of a large number of mutations in the MTB membrane may have functional consequences on proteins. However, further experimental studies are needed to elucidate the variants' effect on MmpL, PKS and FadE functions.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Irshad Ahmad
- Department of Molecular Biology and Genetics. Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
4
|
Murphy KC. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis. Methods Mol Biol 2021; 2314:301-321. [PMID: 34235660 DOI: 10.1007/978-1-0716-1460-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phage recombination systems have been instrumental in the development of gene modification technologies for bacterial pathogens. In particular, the Che9 phage RecET system has been used successfully for over 10 years for making gene knockouts and fusions in Mycobacterium tuberculosis. This "recombineering" technology typically uses linear dsDNA substrates that contain a drug-resistance marker flanked by (up to) 500 base pairs of DNA homologous to the target site. Less often employed in mycobacterial recombineering is the use of oligonucleotides, which require only the action of the RecT annealase to align oligos to ssDNA regions of the replication fork, for subsequent incorporation into the chromosome. Despite the higher frequency of such events relative to dsDNA-promoted recombineering, oligo-mediated changes generally suffer from the disadvantage of not being selectable, thus making them harder to isolate. This chapter discusses steps and methodologies that increase the frequencies of finding oligo-mediated events, including the transfer of single nucleotide polymorphisms (SNPs) to mycobacterial chromosomes, and the use of oligos in conjunction with the mycobacterial phage Bxb1 site-specific recombination system for the easy generation of knockouts, insertion, and fusions, in a protocol known as ORBIT.
Collapse
Affiliation(s)
- Kenan C Murphy
- Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.
Collapse
Affiliation(s)
- Céline Rens
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Danielle L Sexton
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Augenstreich J, Haanappel E, Sayes F, Simeone R, Guillet V, Mazeres S, Chalut C, Mourey L, Brosch R, Guilhot C, Astarie-Dequeker C. Phthiocerol Dimycocerosates From Mycobacterium tuberculosis Increase the Membrane Activity of Bacterial Effectors and Host Receptors. Front Cell Infect Microbiol 2020; 10:420. [PMID: 32923411 PMCID: PMC7456886 DOI: 10.3389/fcimb.2020.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) synthesizes a variety of atypical lipids that are exposed at the cell surface and help the bacterium infect macrophages and escape elimination by the cell's immune responses. In the present study, we investigate the mechanism of action of one family of hydrophobic lipids, the phthiocerol dimycocerosates (DIM/PDIM), major lipid virulence factors. DIM are transferred from the envelope of Mtb to host membranes during infection. Using the polarity-sensitive fluorophore C-Laurdan, we visualized that DIM decrease the membrane polarity of a supported lipid bilayer put in contact with mycobacteria, even beyond the site of contact. We observed that DIM activate the complement receptor 3, a predominant receptor for phagocytosis of Mtb by macrophages. DIM also increased the activity of membrane-permeabilizing effectors of Mtb, among which the virulence factor EsxA. This is consistent with previous observations that DIM help Mtb disrupt host cell membranes. Taken together, our data show that transferred DIM spread within the target membrane, modify its physical properties and increase the activity of host cell receptors and bacterial effectors, diverting in a non-specific manner host cell functions. We therefore bring new insight into the molecular mechanisms by which DIM increase Mtb's capability to escape the cell's immune responses.
Collapse
Affiliation(s)
- Jacques Augenstreich
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Fadel Sayes
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roxane Simeone
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Valérie Guillet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Serge Mazeres
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS-UPS UMR 5089, Toulouse, France
| |
Collapse
|
7
|
Ma S, Huang Y, Xie F, Gong Z, Zhang Y, Stojkoska A, Xie J. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol Chem 2020; 401:331-348. [DOI: 10.1515/hsz-2019-0326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
AbstractTuberculosis caused by Mycobacterium tuberculosis remains a serious threat to public health. The M. tuberculosis cell envelope is closely related to its virulence and drug resistance. Mycobacterial membrane large proteins (MmpL) are lipid-transporting proteins of the efflux pump resistance nodulation cell division (RND) superfamily with lipid substrate specificity and non-transport lipid function. Mycobacterial membrane small proteins (MmpS) are small regulatory proteins, and they are also responsible for some virulence-related effects as accessory proteins of MmpL. The MmpL transporters are the candidate targets for the development of anti-tuberculosis drugs. This article summarizes the structure, function, phylogenetics of M. tuberculosis MmpL/S proteins and their roles in host immune response, inhibitors and regulatory system.
Collapse
Affiliation(s)
- Shuang Ma
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Fuling Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Yuan Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400700, China
| |
Collapse
|
8
|
Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, Zhang C, Zeng J, Chen T, Zhou L. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol 2019; 309:151323. [PMID: 31279617 DOI: 10.1016/j.ijmm.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/26/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022] Open
Abstract
Capreomycin (CAP), a cyclic peptide antibiotic, is considered to be an ideal second-line drug for tuberculosis (TB). However, in the past few years, the emergence of more CAP-resistant (CAPr) TB patients has limited its use. Although it has been reported that CAP resistance to Mycobacterium tuberculosis (Mtb) is associated with rrs or tlyA mutation, the exact mechanism of CAPr Mtb strains, especially the mechanism associated with tlyA deficient or mutation, is not fully understood. Herein, we utilized a multi-omics (genome, proteome, and metabolome) approach to assess CAP resistance on tlyA deficient CAPr Mtb strains (CAPr1) and tlyA point mutation CAPr Mtb strains (CAPr2) that we established for the first time in vitro to investigate the CAP-resistant mechanism. Our results showed that the CAPr1 strains (> 40 μg/ml) was more resistant to CAP than the CAPr2 strains (G695A, 10 μg/ml). Furthermore, multi-omics analysis indicated that the CAPr1 strains exhibited greater drug tolerance than the CAPr2 strains may be associated with the weakening of S-adenosyl-L-methionine-dependent methyltransferase (AdoMet-MT) activity and abnormal membrane lipid metabolism such as suppression of fatty acid metabolism, promotion of glycolipid phospholipid and glycerolipid metabolism. As a result, these studies reveal a new mechanism for CAP resistance to tlyA deficient or mutation Mtb strains, and may be helpful in developing new therapeutic approaches to prevent Mtb resistance to CAP.
Collapse
Affiliation(s)
- Jiao Zhao
- Jinan University, Guangzhou 510632, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Huimin Yan
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Zhenyan Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Jincheng Zeng
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; South China Institute of Biomedicine, Guangzhou 510530, China.
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Barnes DD, Lundahl MLE, Lavelle EC, Scanlan EM. The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis. ACS Chem Biol 2017; 12:1969-1979. [PMID: 28692249 DOI: 10.1021/acschembio.7b00394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tuberculosis is the leading infectious cause of mortality worldwide. The global epidemic, caused by Mycobacterium tuberculosis, has prompted renewed interest in the development of novel vaccines for disease prevention and control. The cell envelope of M. tuberculosis is decorated with an assortment of glycan structures, including glycolipids, that are involved in disease pathogenesis. Phenolic glycolipids and the structurally related para-hydroxybenzoic acid derivatives display potent immunomodulatory activities and have particular relevance for both understanding the interaction of the bacterium with the host immune system and also in the design of new vaccine and therapeutic candidates. Interest in glycobiology has grown exponentially over the past decade, with advancements paving the way for effective carbohydrate based vaccines. This review highlights recent advances in our understanding of phenolic glycans, including their biosynthesis and role as virulence factors in M. tuberculosis. Recent chemical synthesis approaches and biochemical analysis of synthetic glycans and their conjugates have led to fundamental insights into their roles in host-pathogen interactions. The applications of these synthetic glycans as potential vaccine candidates are discussed.
Collapse
Affiliation(s)
- Danielle D. Barnes
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| | - Mimmi L. E. Lundahl
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Ed C. Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity
Biomedical Sciences Institute, Trinity College Dublin, D02 R590, Dublin 2, Ireland
| | - Eoin M. Scanlan
- School of Chemistry
and Trinity Biomedical Sciences Institute, Trinity College, Pearse
St., Dublin 2, Ireland
| |
Collapse
|
11
|
Nusrath Unissa A, Hanna LE. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb) 2017; 105:96-107. [DOI: 10.1016/j.tube.2017.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|
12
|
Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A, Sayes F, Le Chevalier F, Chalut C, Malaga W, Guilhot C, Brosch R, Astarie-Dequeker C. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol 2017; 19. [PMID: 28095608 DOI: 10.1111/cmi.12726] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Abstract
Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT-6). This small protein, which is secreted by the type VII secretion system ESX-1 (T7SS/ESX-1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock-out or knock-in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX-1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.
Collapse
Affiliation(s)
- Jacques Augenstreich
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Ainhoa Arbues
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Roxane Simeone
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Alice Wegener
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Fabien Le Chevalier
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-Université de Toulouse (UPS), Toulouse, France
| |
Collapse
|
13
|
Baraúna RA, Ramos RTJ, Veras AAO, Pinheiro KC, Benevides LJ, Viana MVC, Guimarães LC, Edman JM, Spier SJ, Azevedo V, Silva A. Assessing the Genotypic Differences between Strains of Corynebacterium pseudotuberculosis biovar equi through Comparative Genomics. PLoS One 2017; 12:e0170676. [PMID: 28125655 PMCID: PMC5268413 DOI: 10.1371/journal.pone.0170676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Seven genomes of Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, generating high-quality scaffolds over 2.35 Mbp. This bacterium is the causative agent of disease known as "pigeon fever" which commonly affects horses worldwide. The pangenome of biovar equi was calculated and two phylogenomic approaches were used to identify clustering patterns within Corynebacterium genus. Furthermore, other comparative analyses were performed including the prediction of genomic islands and prophages, and SNP-based phylogeny. In the phylogenomic tree, C. pseudotuberculosis was divided into two distinct clades, one formed by nitrate non-reducing species (biovar ovis) and another formed by nitrate-reducing species (biovar equi). In the latter group, the strains isolated from California were more related to each other, while the strains CIP 52.97 and 1/06-A formed the outermost clade of the biovar equi. A total of 1,355 core genes were identified, corresponding to 42.5% of the pangenome. This pangenome has one of the smallest core genomes described in the literature, suggesting a high genetic variability of biovar equi of C. pseudotuberculosis. The analysis of the similarity between the resistance islands identified a higher proximity between the strains that caused more severe infectious conditions (infection in the internal organs). Pathogenicity islands were largely conserved between strains. Several genes that modulate the pathogenicity of C. pseudotuberculosis were described including peptidases, recombination enzymes, micoside synthesis enzymes, bacteriocins with antimicrobial activity and several others. Finally, no genotypic differences were observed between the strains that caused the three different types of infection (external abscess formation, infection with abscess formation in the internal organs, and ulcerative lymphangitis). Instead, it was noted that there is a higher phenetic correlation between strains isolated at California compared to the other strains. Additionally, high variability of resistance islands suggests gene acquisition through several events of horizontal gene transfer.
Collapse
Affiliation(s)
- Rafael A. Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel T. J. Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Adonney A. O. Veras
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Kenny C. Pinheiro
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus V. C. Viana
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís C. Guimarães
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Judy M. Edman
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Sharon J. Spier
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
14
|
Boot M, Sparrius M, Jim KK, Commandeur S, Speer A, van de Weerd R, Bitter W. iniBAC induction Is Vitamin B12- and MutAB-dependent in Mycobacterium marinum. J Biol Chem 2016; 291:19800-19812. [PMID: 27474746 PMCID: PMC5025670 DOI: 10.1074/jbc.m116.724088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/01/2016] [Indexed: 01/29/2024] Open
Abstract
Tuberculosis can be treated with a 6-month regimen of antibiotics. Although the targets of most of the first-line antibiotics have been identified, less research has focused on the intrabacterial stress responses that follow upon treatment with antibiotics. Studying the roles of these stress genes may lead to the identification of crucial stress-coping mechanisms that can provide additional drug targets to increase treatment efficacy. A three-gene operon with unknown function that is strongly up-regulated upon treatment with isoniazid and ethambutol is the iniBAC operon. We have reproduced these findings and show that iniBAC genes are also induced in infected host cells, although with higher variability. Next, we set out to elucidate the genetic network that results in iniBAC induction in Mycobacterium marinum By transposon mutagenesis, we identified that the operon is highly induced by mutations in genes encoding enzymes of the vitamin B12 biosynthesis pathway and the vitamin B12-dependent methylmalonyl-CoA-mutase MutAB. Lipid analysis showed that a mutA::tn mutant has decreased phthiocerol dimycocerosates levels, suggesting a link between iniBAC induction and the production of methyl-branched lipids. Moreover, a similar screen in Mycobacterium bovis BCG identified that phthiocerol dimycocerosate biosynthesis mutants cause the up-regulation of iniBAC genes. Based on these data, we propose that iniBAC is induced in response to mutations that cause defects in the biosynthesis of methyl-branched lipids. The resulting metabolic stress caused by these mutations or caused by ethambutol or isoniazid treatment may be relieved by iniBAC to increase the chance of bacterial survival.
Collapse
Affiliation(s)
- Maikel Boot
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Marion Sparrius
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Kin Ki Jim
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Susanna Commandeur
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Alexander Speer
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Robert van de Weerd
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Wilbert Bitter
- From the Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infect Dis 2016; 2:616-626. [PMID: 27759369 DOI: 10.1021/acsinfecdis.6b00070] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyrazinamide (PZA) is a critical component of first- and second-line treatments of tuberculosis (TB), yet its mechanism of action largely remains an enigma. We carried out a genetic screen to isolate Mycobacterium bovis BCG mutants resistant to pyrazinoic acid (POA), the bioactive derivative of PZA, followed by whole genome sequencing of 26 POA resistant strains. Rather than finding mutations in the proposed candidate targets fatty acid synthase I and ribosomal protein S1, we found resistance conferring mutations in two pathways: missense mutations in aspartate decarboxylase panD, involved in the synthesis of the essential acyl carrier coenzyme A (CoA), and frameshift mutations in the vitro nonessential polyketide synthase genes mas and ppsA-E, involved in the synthesis of the virulence factor phthiocerol dimycocerosate (PDIM). Probing for cross resistance to two structural analogs of POA, nicotinic acid and benzoic acid, showed that the analogs share the PDIM- but not the CoA-related mechanism of action with POA. We demonstrated that POA depletes CoA in wild-type bacteria, which is prevented by mutations in panD. Sequencing 10 POA-resistant Mycobacterium tuberculosis H37Rv isolates confirmed the presence of at least 2 distinct mechanisms of resistance to the drug. The emergence of resistance through the loss of a virulence factor in vitro may explain the lack of clear molecular patterns in PZA-resistant clinical isolates, other than mutations in the prodrug-converting enzyme. The apparent interference of POA with virulence pathways may contribute to the drug's excellent in vivo efficacy compared to its modest in vitro potency.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jickky Sarathy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jian Liang Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jansy P. Sarathy
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Véronique Dartois
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Martin Gengenbacher
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
16
|
F420H2 Is Required for Phthiocerol Dimycocerosate Synthesis in Mycobacteria. J Bacteriol 2016; 198:2020-8. [PMID: 27185825 DOI: 10.1128/jb.01035-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Phthiocerol dimycocerosates (PDIM) are a group of cell surface-associated apolar lipids of Mycobacterium tuberculosis and closely related mycobacteria, such as Mycobacterium bovis and Mycobacterium leprae A characteristic methoxy group of these lipids is generated from the methylation of a hydroxyl group of the direct precursors, the phthiotriols. The precursors arise from the reduction of phthiodiolones, the keto intermediates, by a ketoreductase. The putative phthiodiolone ketoreductase (PKR) is encoded by Rv2951c in M. tuberculosis and BCG_2972c in M. bovis BCG, and these open reading frames (ORFs) encode identical amino acid sequences. We investigated the cofactor requirement of the BCG_2972c protein. A comparative analysis based on the crystallographic structures of similar enzymes identified structural elements for binding of coenzyme F420 and hydrophobic phthiodiolones in PKR. Coenzyme F420 is a deazaflavin coenzyme that serves several key functions in pathogenic and nonpathogenic mycobacteria. We found that an M. bovis BCG mutant lacking F420-dependent glucose-6-phosphate dehydrogenase (Fgd), which generates F420H2 (glucose-6-phosphate + F420 → 6-phosphogluconate + F420H2), was devoid of phthiocerols and accumulated phthiodiolones. When the mutant was provided with F420H2, a broken-cell slurry of the mutant converted accumulated phthiodiolones to phthiocerols; F420H2 was generated in situ from F420 and glucose-6-phosphate by the action of Fgd. Thus, the reaction mixture was competent in reducing phthiodiolones to phthiotriols (phthiodiolones + F420H2 → phthiotriols + F420), which were then methylated to phthiocerols. These results established the mycobacterial phthiodiolone ketoreductase as an F420H2-dependent enzyme (fPKR). A phylogenetic analysis of close homologs of fPKR revealed potential F420-dependent lipid-modifying enzymes in a broad range of mycobacteria. IMPORTANCE Mycobacterium tuberculosis is the causative agent of tuberculosis, and phthiocerol dimycocerosates (PDIM) protect this pathogen from the early innate immune response of an infected host. Thus, the PDIM synthesis system is a potential target for the development of effective treatments for tuberculosis. The current study shows that a PDIM synthesis enzyme is dependent on the coenzyme F420 F420 is universally present in mycobacteria and absent in humans. This finding expands the number of experimentally validated F420-dependent enzymes in M. tuberculosis to six, each of which helps the pathogen to evade killing by the host immune system, and one of which activates an antituberculosis drug, PA-824. This work also has relevance to leprosy, since similar waxy lipids are found in Mycobacterium leprae.
Collapse
|
17
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
18
|
Mohandas P, Budell WC, Mueller E, Au A, Bythrow GV, Quadri LEN. Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum. FEMS Microbiol Lett 2016; 363:fnw016. [PMID: 26818253 DOI: 10.1093/femsle/fnw016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 11/14/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) contribute to the pathogenicity of several mycobacteria. Biosynthesis of these virulence factors requires polyketide synthases and other enzymes that represent potential targets for the development of adjuvant antivirulence drugs. We used six isogenic Mycobacterium marinum mutants, each with a different gene knockout in the PDIM/PGL biosynthetic pathway, to probe the pleiotropy of mutations leading to PDIM(-) PGL(-), PDIM(+) PGL(-) or PDIM(-) PGL(+) phenotypes. We evaluated the M. marinum mutants for changes in antibiotic susceptibility, cell envelope permeability, biofilm formation, surface properties, sliding motility and virulence in an amoeba model. The analysis also permitted us to begin exploring the hypothesis that different gene knockouts rendering the same PDIM and/or PGL deficiency phenotypes lead to M. marinum mutants with equivalent pleiotropic profiles. Overall, the results of our study revealed a complex picture of pleiotropic patterns emerging from different gene knockouts, uncovered unexpected phenotypic inequalities between mutants, and provided new insight into the phenotypic consequences of gene knockouts in the PDIM/PGL biosynthetic pathway.
Collapse
Affiliation(s)
- Poornima Mohandas
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - William C Budell
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - Emily Mueller
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Andrew Au
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Glennon V Bythrow
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - Luis E N Quadri
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| |
Collapse
|
19
|
Abstract
The precise knockout or modification of Mycobacterium tuberculosis genes has been critical for the identification of functions important for the growth and pathogenicity of this important bacterium. Schemes have been previously described, using both non-replicating vectors and transducing particles, for the introduction of gene knockout substrates into M. tuberculosis, where the endogenous recombination systems of the host (both homologous and illegitimate) compete for transfer of the modified allele to the chromosome. Recombineering technologies, first introduced in laboratory and pathogenic strains of Escherichia coli over the last 16 years, have been developed for use in M. tuberculosis. Described in this chapter is the use of the mycobacterial Che9c phage RecET recombination system, which has been used to make gene knockouts, reporter fusions, promoter replacements, and single base pair modifications within the M. tuberculosis and M. smegmatis chromosomes at very high frequency. Higher success rates, in a shorter period of time, are routinely observed when recombineering is compared to previously described M. tuberculosis gene knockout protocols.
Collapse
|
20
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Gómez-Velasco A, Bach H, Rana AK, Cox LR, Bhatt A, Besra GS, Av-Gay Y. Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2013; 159:726-736. [PMID: 23412844 PMCID: PMC3709824 DOI: 10.1099/mic.0.062067-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis possesses a complex cell wall that is unique and essential for interaction of the pathogen with its human host. Emerging evidence suggests that the biosynthesis of complex cell-wall lipids is mediated by serine/threonine protein kinases (STPKs). Herein, we show, using in vivo radiolabelling, MS and immunostaining analyses, that targeted deletion of one of the STPKs, pknH, attenuates the production of phthiocerol dimycocerosates (PDIMs), a major M. tuberculosis virulence lipid. Comparative protein expression analysis revealed that proteins in the PDIM biosynthetic pathway are differentially expressed in a deleted pknH strain. Furthermore, we analysed the composition of the major lipoglycans, lipoarabinomannan (LAM) and lipomannan (LM), and found a twofold higher LAM/LM ratio in the mutant strain. Thus, we provide experimental evidence that PknH contributes to the production and synthesis of M. tuberculosis cell-wall components.
Collapse
Affiliation(s)
- Anaximandro Gómez-Velasco
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amrita K Rana
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum. Infect Immun 2012; 80:1381-9. [PMID: 22290144 DOI: 10.1128/iai.06370-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and structurally related phenolic glycolipids (PGLs) are complex cell wall lipids unique to pathogenic mycobacteria. While these lipids have been extensively studied in recent years, there are conflicting reports on some aspects of their biosynthesis and on the role of PDIMs and especially PGLs in virulence of Mycobacterium tuberculosis. This has been complicated by the natural deficiency of PGLs in many clinical strains of M. tuberculosis and the frequent loss of PDIMs in laboratory M. tuberculosis strains. In this study, we isolated seven mutants of Mycobacterium marinum deficient in PDIMs and/or PGLs in which multiple genes of the PDIM/PGL biosynthetic locus were disrupted by transposon insertion. Zebrafish infection experiments showed that M. marinum strains lacking one or both of these lipids were avirulent, suggesting that both PDIMs and PGLs are required for virulence. We also found that these strains were hypersensitive to antibiotics and exhibited increased cell wall permeability. Our studies provide new insights into the biosynthesis of PDIMs/PGLs and may help us to understand the role of PDIMs and PGLs in M. tuberculosis virulence.
Collapse
|
23
|
|
24
|
Characterization of a novel heat shock protein (Hsp22.5) involved in the pathogenesis of Mycobacterium tuberculosis. J Bacteriol 2011; 193:3497-505. [PMID: 21602349 DOI: 10.1128/jb.01536-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is a worldwide health problem, given that one-third of the world's population is currently infected with Mycobacterium tuberculosis. Understanding the regulation of virulence on the molecular level will provide a better understanding of how M. tuberculosis can establish chronic infection. Using in vivo microarray analysis (IVMA), we previously identified a group of genes that are activated in BALB/c mouse lungs compared to in vitro cultures, including the rv0990c gene. Our analysis indicated that this gene is a member of the heat shock regulon and was activated under other stress conditions, including survival in macrophages or during the late phase of chronic tuberculosis in the murine lungs. Deletion of rv0990c from the genome of M. tuberculosis strain H37Rv affected the transcriptional profiles of many genes (n = 382) and operons involved in mycobacterial survival, including the dormancy regulon, ATP synthesis, respiration, protein synthesis, and lipid metabolism. Comparison of the proteomes of the mutant to those of the wild-type strain further confirmed the differential expression of 15 proteins, especially those involved in the heat shock response (e.g., DnaK and GrpE). Finally, the rv0990c mutant strain showed survival equivalent to that of the isogenic wild-type strain during active tuberculosis in guinea pigs, despite showing significant attenuation in BALB/c mice during the chronic phase of the disease. Overall, we suggest that rv0990c encodes a heat shock protein that plays an important role in mycobacterial virulence. Hence, we renamed rv0990c heat shock protein 22.5 (hsp22.5), reflecting its molecular mass.
Collapse
|
25
|
Banerjee R, Vats P, Dahale S, Kasibhatla SM, Joshi R. Comparative genomics of cell envelope components in mycobacteria. PLoS One 2011; 6:e19280. [PMID: 21573108 PMCID: PMC3089613 DOI: 10.1371/journal.pone.0019280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/25/2011] [Indexed: 12/26/2022] Open
Abstract
Mycobacterial cell envelope components have been a major focus of research due to their unique features that confer intrinsic resistance to antibiotics and chemicals apart from serving as a low-permeability barrier. The complex lipids secreted by Mycobacteria are known to evoke/repress host-immune response and thus contribute to its pathogenicity. This study focuses on the comparative genomics of the biosynthetic machinery of cell wall components across 21-mycobacterial genomes available in GenBank release 179.0. An insight into survival in varied environments could be attributed to its variation in the biosynthetic machinery. Gene-specific motifs like 'DLLAQPTPAW' of ufaA1 gene, novel functional linkages such as involvement of Rv0227c in mycolate biosynthesis; Rv2613c in LAM biosynthesis and Rv1209 in arabinogalactan peptidoglycan biosynthesis were detected in this study. These predictions correlate well with the available mutant and coexpression data from TBDB. It also helped to arrive at a minimal functional gene set for these biosynthetic pathways that complements findings using TraSH.
Collapse
Affiliation(s)
- Ruma Banerjee
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Pankaj Vats
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Sonal Dahale
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Sunitha Manjari Kasibhatla
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
| | - Rajendra Joshi
- Bioinformatics Group, Centre for Development of Advanced Computing, Pune University Campus, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
26
|
Siméone R, Léger M, Constant P, Malaga W, Marrakchi H, Daffé M, Guilhot C, Chalut C. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. FEBS J 2010. [DOI: 10.1111/j.1742-4658.2010.07688.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Domenech P, Reed MB. Rapid and spontaneous loss of phthiocerol dimycocerosate (PDIM) from Mycobacterium tuberculosis grown in vitro: implications for virulence studies. MICROBIOLOGY (READING, ENGLAND) 2009; 155:3532-3543. [PMID: 19661177 PMCID: PMC5154741 DOI: 10.1099/mic.0.029199-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isolated in vitro more than half a century ago, the H37Rv strain of Mycobacterium tuberculosis still remains the strain of choice for the majority of laboratories conducting in vivo studies of TB pathogenesis. In this report we reveal that H37Rv is highly prone to losing the ability to synthesize the cell wall lipid phthiocerol dimycocerosate (PDIM) during extended periods of in vitro culture. In addition, H37Rv stocks that have been held in vitro for even a short length of time should be thought of as a heterogeneous population of PDIM-positive and PDIM-negative cell types. We demonstrate that after weekly subculture of PDIM-positive isolates over a period of 20 weeks, the proportion of PDIM-negative cells rises above 30 %. That PDIM biosynthesis is negatively selected in vitro is evident from the broad range of mutation types we observe within cultures originating from a single PDIM-positive parental clone. Moreover, the appearance of these multiple mutation types coupled with an enhanced growth rate of PDIM-negative bacteria ensures that 'PDIM-less' clones rapidly dominate in vitro cultures. It has been known for almost a decade that strains of M. tuberculosis that lack PDIM are severely attenuated during in vivo infection. Therefore, the loss of PDIM raises a very serious issue in regard to the interpretation of putative virulence factors where heterogeneous parental cultures are potentially being compared in vivo to recombinant clones isolated within a PDIM-negative background. It is essential that researchers undertaking in vivo virulence studies confirm the presence of PDIM within all recombinant clones and the parental strains they are derived from.
Collapse
Affiliation(s)
- Pilar Domenech
- Research Institute of the McGill University Health Centre, 1625 Pine Ave, West Montreal, QC H3G 1A4, Canada
| | - Michael B Reed
- Research Institute of the McGill University Health Centre, 1625 Pine Ave, West Montreal, QC H3G 1A4, Canada
| |
Collapse
|
28
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
29
|
Chopra T, Gokhale RS. Chapter 12 Polyketide Versatility in the Biosynthesis of Complex Mycobacterial Cell Wall Lipids. Methods Enzymol 2009; 459:259-94. [DOI: 10.1016/s0076-6879(09)04612-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Andreu N, Gibert I. Cell population heterogeneity in Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb) 2008; 88:553-9. [PMID: 18502178 DOI: 10.1016/j.tube.2008.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/29/2008] [Accepted: 03/31/2008] [Indexed: 11/16/2022]
Abstract
The laboratory strain H37Rv represents one of the most commonly used strains in the study of Mycobacterium tuberculosis. Despite the apparent stability of the strain, the absence of a selective pressure for virulence factors could lead to the in vitro accumulation of attenuated mutants. To assess this hypothesis, we performed a systematic analysis of individual clones isolated from subcultured M. tuberculosis H37Rv and from a non-subcultured frozen stock. First, we studied two virulence indicators: neutral red staining and content of phthiocerol dimycocerosates (PDIMs). We found that H37Rv formed a mixed population containing wild-type cells, as well as neutral red and PDIM mutants. Then, we compared the global gene expression of 3 isolated clones (which displayed various phenotypes) and the non-subcultured stock, by microarray analysis. This transcriptional profiling confirmed that a significant heterogeneity existed despite, and in addition to, the neutral red and PDIM phenotypes. These results strongly suggest that great caution must be taken in extrapolating data obtained with M. tuberculosis H37Rv grown in vitro, and it would be prudent to study several independent clones to obtain valid conclusions. For this purpose, the neutral red and PDIM phenotypes might be useful indicators of undesired heterogeneity.
Collapse
Affiliation(s)
- Núria Andreu
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
31
|
Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol 2008; 74:1687-95. [PMID: 18192416 DOI: 10.1128/aem.01208-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative pathogen of Johne's disease, a chronic inflammatory wasting disease in ruminants. This disease has been difficult to control because of the lack of an effective vaccine. To address this need, we adapted a specialized transduction system originally developed for M. tuberculosis and modified it to improve the efficiency of allelic exchange in order to generate site-directed mutations in preselected M. avium subsp. paratuberculosis genes. With our novel optimized method, the allelic exchange frequency was 78 to 100% and the transduction frequency was 1.1 x 10(-7) to 2.9 x 10(-7). Three genes were selected for mutagenesis: pknG and relA, which are genes that are known to be important virulence factors in M. tuberculosis and M. bovis, and lsr2, a gene regulating lipid biosynthesis and antibiotic resistance. Mutants were successfully generated with a virulent strain of M. avium subsp. paratuberculosis (M. avium subsp. paratuberculosis K10) and with a recombinant K10 strain expressing the green fluorescent protein gene, gfp. The improved efficiency of disruption of selected genes in M. avium subsp. paratuberculosis should accelerate development of additional mutants for vaccine testing and functional studies.
Collapse
|
32
|
Jain M, Petzold CJ, Schelle MW, Leavell MD, Mougous JD, Bertozzi CR, Leary JA, Cox JS. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci U S A 2007; 104:5133-8. [PMID: 17360366 PMCID: PMC1829275 DOI: 10.1073/pnas.0610634104] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis synthesizes specific polyketide lipids that interact with the host and are required for virulence. Using a mass spectrometric approach to simultaneously monitor hundreds of lipids, we discovered that the size and abundance of two lipid virulence factors, phthiocerol dimycocerosate (PDIM) and sulfolipid-1 (SL-1), are controlled by the availability of a common precursor, methyl malonyl CoA (MMCoA). Consistent with this view, increased levels of MMCoA led to increased abundance and mass of both PDIM and SL-1. Furthermore, perturbation of MMCoA metabolism attenuated pathogen replication in mice. Importantly, we detected increased PDIM synthesis in bacteria growing within host tissues and in bacteria grown in culture on odd-chain fatty acids. Because M. tuberculosis catabolizes host lipids to grow during infection, we propose that growth of M. tuberculosis on fatty acids in vivo leads to increased flux of MMCoA through lipid biosynthetic pathways, resulting in increased virulence lipid synthesis. Our results suggest that the shift to host lipid catabolism during infection allows for increased virulence lipid anabolism by the bacterium.
Collapse
Affiliation(s)
- Madhulika Jain
- *Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143
| | - Christopher J. Petzold
- Genome Center, Departments of Chemistry and Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| | | | - Michael D. Leavell
- Genome Center, Departments of Chemistry and Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| | - Joseph D. Mougous
- Molecular and Cell Biology, and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Carolyn R. Bertozzi
- Departments of Chemistry and
- Molecular and Cell Biology, and
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Julie A. Leary
- Genome Center, Departments of Chemistry and Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| | - Jeffery S. Cox
- *Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Jackson M, Stadthagen G, Gicquel B. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb) 2006; 87:78-86. [PMID: 17030019 DOI: 10.1016/j.tube.2006.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
The cell envelope of pathogenic mycobacteria is highly distinctive in that it contains a number of lipids esterified with structurally related long-chain multi-methyl-branched fatty acids. These lipids have long been thought to play important roles in the cell envelope structure as well as in the pathogenicity of the tubercle bacillus. This review summarizes what is known about the biosynthesis of long-chain multiple methyl-branched fatty acid-containing lipids in Mycobacterium tuberculosis and describes the most recent findings about their regulation, transport across the different layers of the cell envelope and their biological functions.
Collapse
Affiliation(s)
- Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
34
|
Stadthagen G, Korduláková J, Griffin R, Constant P, Bottová I, Barilone N, Gicquel B, Daffé M, Jackson M. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J Biol Chem 2005; 280:40699-706. [PMID: 16210318 DOI: 10.1074/jbc.m508332200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylated p-hydroxybenzoic acid methyl esters and structurally related phenolphthiocerol glycolipids are important virulence factors of Mycobacterium tuberculosis. Although both types of molecules are thought to be derived from p-hydroxybenzoic acid, the origin of this putative biosynthetic precursor in mycobacteria remained to be established. We describe the characterization of a transposon mutant of M. tuberculosis deficient in the production of all forms of p-hydroxybenzoic acid derivatives. The transposon was found to be inserted in Rv2949c, a gene located in the vicinity of the polyketide synthase gene pks15/1, involved in the elongation of p-hydroxybenzoate to phenolphthiocerol in phenolic glycolipid-producing strains. A recombinant form of the Rv2949c enzyme was produced in the fast-growing non-pathogenic Mycobacterium smegmatis and purified to near homogeneity. The recombinant enzyme catalyzed the removal of the pyruvyl moiety of chorismate to form p-hydroxybenzoate with an apparent K(m) value for chorismate of 19.7 microm and a k(cat) value of 0.102 s(-1). Strong inhibition of the reaction by p-hydroxybenzoate but not by pyruvate was observed. These results establish Rv2949c as a chorismate pyruvate-lyase responsible for the direct conversion of chorismate to p-hydroxybenzoate and identify Rv2949c as the sole enzymatic source of p-hydroxybenzoic acid in M. tuberculosis.
Collapse
Affiliation(s)
- Gustavo Stadthagen
- Unité deGénétique Mycobactérienne, Institut Pasteur, 75015, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Onwueme KC, Vos CJ, Zurita J, Soll CE, Quadri LEN. Identification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors. J Bacteriol 2005; 187:4760-6. [PMID: 15995190 PMCID: PMC1169502 DOI: 10.1128/jb.187.14.4760-4766.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diacyl phthiocerol esters and their congeners are mycobacterial virulence factors. The biosynthesis of these complex lipids remains poorly understood. Insight into their biosynthesis will aid the development of rationally designed drugs that inhibit their production. In this study, we investigate a biosynthetic step required for diacyl (phenol)phthiocerol ester production, i.e., the reduction of the keto group of (phenol)phthiodiolones. We utilized comparative genomics to identify phthiodiolone ketoreductase gene candidates and provide a genetic analysis demonstrating gene function for two of these candidates. Moreover, we present data confirming the existence of a diacyl phthiotriol intermediate in diacyl phthiocerol biosynthesis. We also elucidate the mechanism underlying diacyl phthiocerol deficiency in some mycobacteria, such as Mycobacterium ulcerans and Mycobacterium kansasii. Overall, our findings shed additional light on the biosynthesis of an important group of mycobacterial lipids involved in virulence.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, Microbiology and Immunology, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
36
|
Jain M, Cox JS. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog 2005; 1:e2. [PMID: 16201014 PMCID: PMC1238737 DOI: 10.1371/journal.ppat.0010002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/03/2005] [Indexed: 11/21/2022] Open
Abstract
Virulent mycobacteria utilize surface-exposed polyketides to interact with host cells, but the mechanism by which these hydrophobic molecules are transported across the cell envelope to the surface of the bacteria is poorly understood. Phthiocerol dimycocerosate (PDIM), a surface-exposed polyketide lipid necessary for Mycobacterium tuberculosis virulence, is the product of several polyketide synthases including PpsE. Transport of PDIM requires MmpL7, a member of the MmpL family of RND permeases. Here we show that a domain of MmpL7 biochemically interacts with PpsE, the first report of an interaction between a biosynthetic enzyme and its cognate transporter. Overexpression of the interaction domain of MmpL7 acts as a dominant negative to PDIM synthesis by poisoning the interaction between synthase and transporter. This suggests that MmpL7 acts in complex with the synthesis machinery to efficiently transport PDIM across the cell membrane. Coordination of synthesis and transport may not only be a feature of MmpL-mediated transport in M. tuberculosis, but may also represent a general mechanism of polyketide export in many different microorganisms. Pathogenic microbes have developed sophisticated strategies to evade the human immune system and establish infection. Mycobacterium tuberculosis, the causative agent of tuberculosis, exports a wide array of lipid virulence factors to the cell surface and into host cells, where they can interact with the host immune system. A strategy to combat M. tuberculosis infections may be to interfere with the bacterium's ability to make and secrete these lipids. In the authors' efforts to understand this process, they have found that synthesis and export of a key lipid virulence factor are coupled. They propose that the synthesis and transport proteins form a complex that promotes efficient lipid export. The coordination of lipid synthesis and export, analogous to co-translational translocation of secreted proteins, may be a general mechanism employed by many different microorganisms to actively transport hydrophobic molecules from cells.
Collapse
Affiliation(s)
- Madhulika Jain
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Jeffery S Cox
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Onwueme KC, Vos CJ, Zurita J, Ferreras JA, Quadri LEN. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 2005; 44:259-302. [PMID: 16115688 DOI: 10.1016/j.plipres.2005.07.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in the study of mycobacterial lipids indicate that the class of outer membrane lipids known as dimycocerosate esters (DIMs) are major virulence factors of clinically relevant mycobacteria including Mycobacterium tuberculosis and Mycobacterium leprae. DIMs are a structurally intriguing class of polyketide synthase-derived wax esters discovered over seventy years ago, yet, little was known until recently about their biosynthesis. Availability of several mycobacterial genomes has accelerated progress toward clarifying steps in the DIM biosynthetic pathway and it is our belief that reviewing the bases of our current knowledge will clarify outstanding issues and help direct future endeavors.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
38
|
Hotter GS, Wards BJ, Mouat P, Besra GS, Gomes J, Singh M, Bassett S, Kawakami P, Wheeler PR, de Lisle GW, Collins DM. Transposon mutagenesis of Mb0100 at the ppe1-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG. J Bacteriol 2005; 187:2267-77. [PMID: 15774869 PMCID: PMC1065232 DOI: 10.1128/jb.187.7.2267-2277.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The unusual and complex cell wall of pathogenic mycobacteria plays a major role in pathogenesis, with specific complex lipids acting as defensive, offensive, or adaptive effectors of virulence. The phthiocerol and phthiodiolone dimycocerosate esters (PDIMs) comprise one such category of virulence-enhancing lipids. Recent work in several laboratories has established that the Mycobacterium tuberculosis fadD26-mmpL7 (Rv2930-Rv2942) locus plays a major role in PDIM biosynthesis and secretion and that PDIM is required for virulence. Here we describe two independent transposon mutants (WAg533 and WAg537) of Mycobacterium bovis, both of which carry an insertion in Mb0100 (= M. tuberculosis Rv0097) to reveal a new locus involved in PDIM biosynthesis. The mutations have a polar effect on expression of the downstream genes Mb0101, Mb0102 (fadD10), Mb0103, and Mb0104 (nrp), and Mb0100 is shown to be in an operon comprising these genes and Mb0099. Reverse transcription-PCR analysis shows elevated transcription of genes in the operon upstream from the transposon insertion sites in both mutants. Both mutants have altered colony morphology and do not synthesize PDIMs or glycosylphenol-PDIM. Both mutants are avirulent in a guinea pig model of tuberculosis, and when tested as a vaccine, WAg533 conferred protective immunity against M. bovis infection at least equal to that afforded by M. bovis bacillus Calmette-Guerin.
Collapse
Affiliation(s)
- Grant S Hotter
- AgResearch, Wallaceville Animal Research Centre, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Trivedi OA, Arora P, Vats A, Ansari MZ, Tickoo R, Sridharan V, Mohanty D, Gokhale RS. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol Cell 2005; 17:631-43. [PMID: 15749014 DOI: 10.1016/j.molcel.2005.02.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 12/08/2004] [Accepted: 02/04/2005] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.
Collapse
Affiliation(s)
- Omita A Trivedi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Rao A, Ranganathan A. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol Genet Genomics 2004; 272:571-9. [PMID: 15668773 DOI: 10.1007/s00438-004-1088-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Polyketide synthases (PKSs) of Mycobacterium tuberculosis are increasingly being seen as producers of virulence factors that are important for pathogenesis by the bacterium. Thus, the phenolphthiocerol synthase PKS cluster of M. tuberculosis is responsible, in part, for the synthesis of a virulence determinant called phthiocerol dimycocerosate (PDIM). Here, we provide evidence that the PpsE protein, which is part of that cluster, interacts with the type II thioesterase TesA of M. tuberculosis. The interaction was demonstrated by employing a two-hybrid system, and confirmed using a GST (glutathione S-transferase) pull-down' assay after both proteins had been purified to homogeneity. Based on the present findings, a revised model for the processing of polyketides during the synthesis of PDIM is presented.
Collapse
Affiliation(s)
- A Rao
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, PO Box 10504, 110067 New Delhi, India
| | | |
Collapse
|
42
|
Pérez E, Constant P, Lemassu A, Laval F, Daffé M, Guilhot C. Characterization of Three Glycosyltransferases Involved in the Biosynthesis of the Phenolic Glycolipid Antigens from the Mycobacterium tuberculosis Complex. J Biol Chem 2004; 279:42574-83. [PMID: 15292272 DOI: 10.1074/jbc.m406246200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans, produce highly specific long chain beta-diols, the dimycocerosates of phthiocerol, and structurally related phenolic glycolipid (PGL) antigens, which are important virulence factors. In addition, M. tuberculosis also secretes glycosylated p-hydroxybenzoic acid methyl esters (p-HBAD) that contain the same carbohydrate moiety as the species-specific PGL of M. tuberculosis (PGL-tb). The genes involved in the biosynthesis of these compounds in M. tuberculosis are grouped on a 70-kilobase chromosomal fragment containing three genes encoding putative glycosyltransferases: Rv2957, Rv2958c, and Rv2962c. To determine the functions of these genes, three recombinant M. tuberculosis strains, in which these genes were individually inactivated, were constructed and biochemically characterized. Our results demonstrated that (i) the biosynthesis of PGL-tb and p-HBAD involves common enzymatic steps, (ii) the Rv2957, Rv2958c, and Rv2962c genes are involved in the formation of the glycosyl moiety of the two classes of molecules, and (iii) the product of Rv2962c catalyzes the transfer of a rhamnosyl residue onto p-hydroxybenzoic acid ethyl ester or phenolphthiocerol dimycocerosates, whereas the products of Rv2958c and Rv2957 add a second rhamnosyl unit and a fucosyl residue to form the species-specific triglycosyl appendage of PGL-tb and p-HBAD. The recombinant strains produced provide the tools to study the role of the carbohydrate domain of PGL-tb and p-HBAD in M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Esther Pérez
- Département "Mécanismes Moléculaires des Infections Mycobactériennes," Institut de Pharmacologie et Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Pérez E, Constant P, Laval F, Lemassu A, Lanéelle MA, Daffé M, Guilhot C. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem 2004; 279:42584-92. [PMID: 15292265 DOI: 10.1074/jbc.m406134200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A few mycobacterial species, most of which are pathogenic for humans, produce dimycocerosates of phthiocerol (DIM) and of glycosylated phenolphthiocerol, also called phenolglycolipid (PGL), two groups of molecules shown to be important virulence factors. The biosynthesis of these molecules is a very complex pathway that involves more than 15 enzymatic steps and has just begun to be elucidated. Most of the genes known to be involved in these pathways are clustered on the chromosome of M. tuberculosis. Based on their amino acid sequences, we hypothesized that the proteins encoded by Rv2952 and Rv2959c, two open reading frames of this locus, are involved in the transfer of methyl groups onto various hydroxyl functions during the biosynthesis of DIM, PGL, and related p-hydroxybenzoic acid derivatives (p-HBAD). Using allelic exchange and site-specific recombination, we produced three recombinant strains of Mycobacterium tuberculosis carrying insertions in Rv2952 or Rv2959c. Analysis of these mutants revealed that (i) the protein encoded by Rv2952 is a methyltransferase catalyzing the transfer of a methyl group onto the lipid moiety of phthiotriol and glycosylated phenolphthiotriol dimycocerosates to form DIM and PGL, respectively, (ii) Rv2959c is part of an operon including the newly characterized Rv2958c gene that encodes a glycosyltransferase also involved in PGL and p-HBAD biosynthesis, and (iii) the enzyme encoded by Rv2959c catalyzes the O-methylation of the hydroxyl group located on carbon 2 of the rhamnosyl residue linked to the phenolic group of PGL and p-HBAD produced by M. tuberculosis. These data further extend our understanding of the biosynthesis of important mycobacterial virulence factors and provide additional tools to decipher the molecular mechanisms of action of these molecules during the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Esther Pérez
- Département "Mécanismes Moléculaires des Infections Mycobactériennes," Institut de Pharmacologie et Biologie Structurale, CNRS and Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Onwueme KC, Ferreras JA, Buglino J, Lima CD, Quadri LEN. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci U S A 2004; 101:4608-13. [PMID: 15070765 PMCID: PMC384794 DOI: 10.1073/pnas.0306928101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2003] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mt) produces complex virulence-enhancing lipids with scaffolds consisting of phthiocerol and phthiodiolone dimycocerosate esters (PDIMs). Sequence analysis suggested that PapA5, a so-called polyketide-associated protein (Pap) encoded in the PDIM synthesis gene cluster, as well as PapA5 homologs found in Mt and other species, are a subfamily of acyltransferases. Studies with recombinant protein confirmed that PapA5 is an acyltransferase [corrected]. Deletion analysis in Mt demonstrated that papA5 is required for PDIM synthesis. We propose that PapA5 catalyzes diesterification of phthiocerol and phthiodiolone with mycocerosate. These studies present the functional characterization of a Pap and permit inferences regarding roles of other Paps in the synthesis of complex lipids, including the antibiotic rifamycin.
Collapse
Affiliation(s)
- Kenolisa C Onwueme
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
45
|
Jenkin GA, Stinear TP, Johnson PDR, Davies JK. Subtractive hybridization reveals a type I polyketide synthase locus specific to Mycobacterium ulcerans. J Bacteriol 2004; 185:6870-82. [PMID: 14617651 PMCID: PMC262701 DOI: 10.1128/jb.185.23.6870-6882.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans causes Buruli ulcer, the third most prevalent mycobacterial infection of immunocompetent humans after tuberculosis and leprosy. Recent work has shown that the production by M. ulcerans of mycolactone, a novel polyketide, may partly explain the pathogenesis of Buruli ulcer. To search for the genetic basis of virulence in M. ulcerans, we took advantage of the close genetic relationship between M. ulcerans and Mycobacterium marinum by performing genomic suppressive subtractive hybridization of M. ulcerans with M. marinum. We identified several DNA fragments specific to M. ulcerans, in particular, a type I polyketide synthase locus with a highly repetitive modular arrangement. We postulate that this locus is responsible for the synthesis of mycolactone in M. ulcerans.
Collapse
Affiliation(s)
- Grant A Jenkin
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
46
|
Kana BD, Mizrahi V. Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis (Edinb) 2004; 84:63-75. [PMID: 14670347 DOI: 10.1016/j.tube.2003.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic systems that allow mycobacterial genomes to be mutagenized in a targeted or random fashion have provided the means for developing new tools for the diagnosis, prevention and treatment of tuberculosis by allowing potential targets to be identified and validated. In this review, we highlight key historical developments in the field of mycobacterial genetics, which have yielded the powerful repertoire of genetic tools that are now in hand and provide examples that illustrate their use in exploring specific aspects of mycobacterial metabolism.
Collapse
Affiliation(s)
- Bavesh D Kana
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, National Health Laboratory Service and School of Pathology, University of the Witwatersrand, NHLS P.O. Box 1038, Room 311 James Gear Building, Johannesburg 2000, South Africa
| | | |
Collapse
|
47
|
Portevin D, De Sousa-D'Auria C, Houssin C, Grimaldi C, Chami M, Daffé M, Guilhot C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 2003; 101:314-9. [PMID: 14695899 PMCID: PMC314182 DOI: 10.1073/pnas.0305439101] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycolic acids are major and specific constituents of the cell envelope of Corynebacterineae, a suborder of bacterial species including several important human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, or Corynebacterium diphtheriae. These long-chain fatty acids are involved in the unusual architecture and impermeability of the cell envelope of these bacteria. The condensase, the enzyme responsible for the final condensation step in mycolic acid biosynthesis, has remained an enigma for decades. By in silico analysis of various mycobacterial genomes, we identified a candidate enzyme, Pks13, that contains the four catalytic domains required for the condensation reaction. Orthologs of this enzyme were found in other Corynebacterineae species. A Corynebacterium glutamicum strain with a deletion in the pks13 gene was shown to be deficient in mycolic acid production whereas it was able to produce the fatty acids precursors. This mutant strain displayed an altered cell envelope structure. We showed that the pks13 gene was essential for the survival of Mycobacterium smegmatis. A conditional M. smegmatis mutant carrying its only copy of pks13 on a thermosensitive plasmid exhibited mycolic acid biosynthesis defect if grown at nonpermissive temperature. These results indicate that Pks13 is the condensase, a promising target for the development of new antimicrobial drugs against Corynebacterineae.
Collapse
Affiliation(s)
- Damien Portevin
- Département"Mécanismes Moléculaires des Infections Mycobactériennes," Institut de Pharmacologie et Biologie Structurale, Université Paul Sabatier (Unité Mixte de Recherche 5089), 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Dubey VS, Sirakova TD, Cynamon MH, Kolattukudy PE. Biochemical function of msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. J Bacteriol 2003; 185:4620-5. [PMID: 12867474 PMCID: PMC165776 DOI: 10.1128/jb.185.15.4620-4625.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that the disruption of one of the mycocerosic acid synthase (mas)-like genes, msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv generates a mutant incapable of producing monomethyl branched unsaturated C(16) to C(20) fatty acids that are minor constituents of acyltrehaloses and sulfolipids. The msl5 mutation did not cause any significant change in the acyl lipid composition and also did not affect growth in culture, in mouse alveolar macrophage cell line MH-S, or in the murine lung.
Collapse
Affiliation(s)
- Vinod S Dubey
- Biomolecular Science Center, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | |
Collapse
|
49
|
Sirakova TD, Dubey VS, Kim HJ, Cynamon MH, Kolattukudy PE. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun 2003; 71:3794-801. [PMID: 12819062 PMCID: PMC161999 DOI: 10.1128/iai.71.7.3794-3801.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall lipids in Mycobacterium tuberculosis are probably involved in pathogenesis. The largest open reading frame in the genome of M. tuberculosis H37Rv, pks12, is unique in that it encodes two sets of domains needed to produce fatty acids. A pks12-disrupted mutant was produced, and disruption was confirmed by both PCR analysis and Southern blotting. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that a 430-kDa protein band present in the wild type was missing in the mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS) and liquid chromatography (LC)-MS analysis of tryptic peptides showed that 54 peptides distributed throughout this protein matched the pks12-encoded sequence. Biochemical analysis using [1-(14)C]propionate as the radiotracer showed that the pks12 mutant was deficient in the synthesis of dimycocerosyl phthiocerol (DIM). SDS-PAGE, immunoblot analysis of proteins, and analysis of fatty acids showed that the mutant can produce mycocerosic acids. Thus, the pks12 gene is probably involved in the synthesis of phthiocerol, the diol required for DIM synthesis. Growth of the pks12 mutant was attenuated in mouse alveolar macrophage cell line MH-S, and the virulence of the mutant in vivo was highly attenuated in a murine model. Thus, pks12 probably participates in DIM production and its expression is involved in pathogenesis.
Collapse
Affiliation(s)
- Tatiana D Sirakova
- Department of Biochemistry and Neurobiotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
50
|
Sirakova TD, Dubey VS, Cynamon MH, Kolattukudy PE. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol 2003; 185:2999-3008. [PMID: 12730158 PMCID: PMC154080 DOI: 10.1128/jb.185.10.2999-3008.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is one of the leading preventable causes of death. Emergence of drug-resistant tuberculosis makes the discovery of new targets for antimycobacterial drugs critical. The unique mycobacterial cell wall lipids are known to play an important role in pathogenesis, and therefore the genes responsible for their biosynthesis offer potential new targets. To assess the possible role of some of the genes potentially involved in cell wall lipid synthesis, we disrupted a mas-like gene, msl7, and a chalcone synthase-like gene, pks10, with phage-mediated delivery of the disruption construct, in which the target gene was disrupted by replacement of an internal segment with the hygromycin resistance gene (hyg). Gene disruption by allelic exchange in the case of each disruptant was confirmed by PCR and Southern blot analyses. Neither msl7 nor pks10 mutants could produce dimycocerosyl phthiocerol, although both could produce mycocerosic acids. Thus, it is concluded that these gene products are involved in the biosynthesis of phthiocerol. Both mutants were found to be attenuated in a murine model, supporting the hypothesis that dimycocerosyl phthiocerol is a virulence factor and thus the many steps involved in its biosynthesis offer potential novel targets for antimycobacterial therapy.
Collapse
Affiliation(s)
- Tatiana D Sirakova
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|