1
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
2
|
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral Protein HBx: Roles in Viral Replication and Hepatocarcinogenesis. Viruses 2024; 16:1361. [PMID: 39339838 PMCID: PMC11437454 DOI: 10.3390/v16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Collapse
Affiliation(s)
- Dong Li
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
| | | | - Thomas Tu
- The Westmead Institute for Medical Research, Faculty of Medicine, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
3
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Emilius L, Bremm F, Binder AK, Schaft N, Dörrie J. Tumor Antigens beyond the Human Exome. Int J Mol Sci 2024; 25:4673. [PMID: 38731892 PMCID: PMC11083240 DOI: 10.3390/ijms25094673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Lisabeth Emilius
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.E.); (F.B.); (A.K.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Choonnasard A, Shofa M, Okabayashi T, Saito A. Conserved Functions of Orthohepadnavirus X Proteins to Inhibit Type-I Interferon Signaling. Int J Mol Sci 2024; 25:3753. [PMID: 38612565 PMCID: PMC11011558 DOI: 10.3390/ijms25073753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Orthohepadnavirus causes chronic hepatitis in a broad range of mammals, including primates, cats, woodchucks, and bats. Hepatitis B virus (HBV) X protein inhibits type-I interferon (IFN) signaling, thereby promoting HBV escape from the human innate immune system and establishing persistent infection. However, whether X proteins of Orthohepadnavirus viruses in other species display a similar inhibitory activity remains unknown. Here, we investigated the anti-IFN activity of 17 Orthohepadnavirus X proteins derived from various hosts. We observed conserved activity of Orthohepadnavirus X proteins in inhibiting TIR-domain-containing adaptor protein inducing IFN-β (TRIF)-mediated IFN-β signaling pathway through TRIF degradation. X proteins from domestic cat hepadnavirus (DCH), a novel member of Orthohepadnavirus, inhibited mitochondrial antiviral signaling protein (MAVS)-mediated IFNβ signaling pathway comparable with HBV X. These results indicate that inhibition of IFN signaling is conserved in Orthohepadnavirus X proteins.
Collapse
Affiliation(s)
- Amonrat Choonnasard
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.C.); (M.S.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.C.); (M.S.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.C.); (M.S.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.C.); (M.S.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
6
|
Saeed U, Piracha ZZ, Alrokayan S, Hussain T, Almajhdi FN, Waheed Y. Immunoinformatics and Evaluation of Peptide Vaccines Derived from Global Hepatitis B Viral HBx and HBc Proteins Critical for Covalently Closed Circular DNA Integrity. Microorganisms 2023; 11:2826. [PMID: 38137971 PMCID: PMC10745757 DOI: 10.3390/microorganisms11122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The Hepatitis B virus (HBV) HBx and HBc proteins play a crucial role in associating with covalently closed circular DNA (cccDNA), the primary factor contributing to intrahepatic viral persistence and a major obstacle in achieving a cure for HBV. The cccDNA serves as a reservoir for viral persistence. Targeting the viral HBc and HBx proteins' interaction with cccDNA could potentially limit HBV replication. In this study, we present epitopes identified from global consensus sequences of HBx and HBc proteins that have the potential to serve as targets for the development of effective vaccine candidates. Furthermore, conserved residues identified through this analysis can be utilized in designing novel, site-specific anti-HBV agents capable of targeting all major genotypes of HBV. Our approach involved designing global consensus sequences for HBx and HBc proteins, enabling the analysis of variable regions and highly conserved motifs. These identified motifs and regions offer potent sites for the development of peptide vaccines, the design of site-specific RNA interference, and the creation of anti-HBV inhibitors. The epitopes derived from global consensus sequences of HBx and HBc proteins emerge as promising targets for the development of effective vaccine candidates. Additionally, the conserved residues identified provide valuable insights for the development of innovative, site-specific anti-HBV agents capable of targeting all major genotypes of HBV from A to J.
Collapse
Affiliation(s)
- Umar Saeed
- Clinical and Biomedical Research Center (CBRC) and Multidisciplinary Laboratory (MDL), Foundation University Islamabad, Islamabad 44000, Pakistan;
- Department of Microbiology, Ajou University School of Medicine, Suwon 443-749, Republic of Korea;
| | - Zahra Zahid Piracha
- Department of Microbiology, Ajou University School of Medicine, Suwon 443-749, Republic of Korea;
- International Center of Medical Sciences Research (ICMSR), Islamabad 44000, Pakistan
| | - Salman Alrokayan
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Tajamul Hussain
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
- Center of Excellence in Biotechnology Research, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11451, Saudi Arabia
| | - Fahad N. Almajhdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
7
|
Liu W, Yao Q, Su X, Deng Y, Yang M, Peng B, Zhao F, Du C, Zhang X, Zhu J, Wang D, Li W, Li H. Molecular insights into Spindlin1-HBx interplay and its impact on HBV transcription from cccDNA minichromosome. Nat Commun 2023; 14:4663. [PMID: 37537164 PMCID: PMC10400593 DOI: 10.1038/s41467-023-40225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Molecular interplay between host epigenetic factors and viral proteins constitutes an intriguing mechanism for sustaining hepatitis B virus (HBV) life cycle and its chronic infection. HBV encodes a regulatory protein, HBx, which activates transcription and replication of HBV genome organized as covalently closed circular (ccc) DNA minichromosome. Here we illustrate how HBx accomplishes its task by hijacking Spindlin1, an epigenetic reader comprising three consecutive Tudor domains. Our biochemical and structural studies have revealed that the highly conserved N-terminal 2-21 segment of HBx (HBx2-21) associates intimately with Tudor 3 of Spindlin1, enhancing histone H3 "K4me3-K9me3" readout by Tudors 2 and 1. Functionally, Spindlin1-HBx engagement promotes gene expression from the chromatinized cccDNA, accompanied by an epigenetic switch from an H3K9me3-enriched repressive state to an H3K4me3-marked active state, as well as a conformational switch of HBx that may occur in coordination with other HBx-binding factors, such as DDB1. Despite a proposed transrepression activity of HBx2-21, our study reveals a key role of Spindlin1 in derepressing this conserved motif, thereby promoting HBV transcription from its chromatinized genome.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qiyan Yao
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaonan Su
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yafang Deng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mo Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyles Str., Frederick, MD, 21702, USA
| | - Bo Peng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Fan Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Chao Du
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Xiulan Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jinsong Zhu
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Suzhou Puxin Life Science Technology, Ltd, Suzhou, 215124, China
| | - Daliang Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
8
|
Villanueva RA, Loyola A. Pre- and Post-Transcriptional Control of HBV Gene Expression: The Road Traveled towards the New Paradigm of HBx, Its Isoforms, and Their Diverse Functions. Biomedicines 2023; 11:1674. [PMID: 37371770 DOI: 10.3390/biomedicines11061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.
Collapse
Affiliation(s)
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
9
|
Hepatitis B Virus Variants with Multiple Insertions and/or Deletions in the X Open Reading Frame 3′ End: Common Members of Viral Quasispecies in Chronic Hepatitis B Patients. Biomedicines 2022; 10:biomedicines10051194. [PMID: 35625929 PMCID: PMC9139148 DOI: 10.3390/biomedicines10051194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Deletions in the 3′ end region of the hepatitis B virus (HBV) X open reading frame (HBX) may affect the core promoter (Cp) and have been frequently associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the presence of variants with deletions and/or insertions (Indels) in this region in the quasispecies of 50 chronic hepatitis B (CHB) patients without HCC. We identified 103 different Indels in 47 (94%) patients, in a median of 3.4% of their reads (IQR, 1.3–8.4%), and 25% (IQR, 13.1–40.7%) of unique sequences identified in each quasispecies (haplotypes). Of those Indels, 101 (98.1%) caused 44 different altered stop codons, the most commonly observed were at positions 128, 129, 135, and 362 (putative position). Moreover, 39 (37.9%) Indels altered the TATA-like box (TA) sequences of Cp; the most commonly observed caused TA2 + TA3 fusion, creating a new putative canonical TATA box. Four (8%) patients developed negative clinical outcomes after a median follow-up of 9.4 (8.7–12) years. In conclusion, we observed variants with Indels in the HBX 3′ end in the vast majority of our CHB patients, some of them encoding alternative versions of HBx with potential functional roles, and/or alterations in the regulation of transcription.
Collapse
|
10
|
Zhang C, Xie Y, Lai R, Wu J, Guo Z. Nonsynonymous C1653T Mutation of Hepatitis B Virus X Gene Enhances Malignancy of Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2022; 9:367-377. [PMID: 35535232 PMCID: PMC9078866 DOI: 10.2147/jhc.s348690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Cuifang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Oncology, The Pingshan County People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Ying Xie
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Ruixue Lai
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Correspondence: Zhanjun Guo, Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, People’s Republic of China, Tel + 86 311 8609 5734, Fax + 86 311 8609 5237, Email
| |
Collapse
|
11
|
Ueda C, Langton M, Chen J, Pandelia ME. The HBx protein from hepatitis B virus coordinates a redox-active Fe-S cluster. J Biol Chem 2022; 298:101698. [PMID: 35148994 PMCID: PMC9010755 DOI: 10.1016/j.jbc.2022.101698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
The viral protein HBx is the key regulatory factor of the hepatitis B virus (HBV) and the main etiology for HBV-associated liver diseases, such as cirrhosis and hepatocellular carcinoma. Historically, HBx has defied biochemical and structural characterization, deterring efforts to understand its molecular mechanisms. Here we show that soluble HBx fused to solubility tags copurifies with either a [2Fe-2S] or a [4Fe-4S] cluster, a feature that is shared among five HBV genotypes. We show that the O2-stable [2Fe-2S] cluster form converts to an O2-sensitive [4Fe-4S] state when reacted with chemical reductants, a transformation that is best described by a reductive coupling mechanism reminiscent of Fe-S cluster scaffold proteins. In addition, the Fe-S cluster conversions are partially reversible in successive reduction-oxidation cycles, with cluster loss mainly occurring during (re)oxidation. The considerably negative reduction potential of the [4Fe-4S]2+/1+ couple (-520 mV) suggests that electron transfer may not be likely in the cell. Collectively, our findings identify HBx as an Fe-S protein with striking similarities to Fe-S scaffold proteins both in cluster type and reductive transformation. An Fe-S cluster in HBx offers new insights into its previously unknown molecular properties and sets the stage for deciphering the roles of HBx-associated iron (mis)regulation and reactive oxygen species in the context of liver tumorigenesis.
Collapse
Affiliation(s)
- Chie Ueda
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Michelle Langton
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | | |
Collapse
|
12
|
Panasiuk YV, Vlasenko NV, Churilova NS, Klushkina VV, Dubodelov DV, Kudryavtseva EN, Korabelnikova MI, Rodionova ZS, Semenenko TA, Kuzin SN, Akimkin VG. [Modern views on the role of X gene of the hepatitis B virus (Hepadnaviridae: Orthohepadnavirus: Hepatitis B virus) in the pathogenesis of the infection it causes]. Vopr Virusol 2022; 67:7-17. [PMID: 35293184 DOI: 10.36233/0507-4088-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
The review presents information on the role of hepatitis B virus (Hepadnaviridae: Orthohepadnavirus: Hepatitis B virus) (HBV) X gene and the protein it encodes (X protein) in the pathogenesis of viral hepatitis B. The evolution of HBV from primordial to the modern version of hepadnaviruses (Hepadnaviridae), is outlined as a process that began about 407 million years ago and continues to the present. The results of scientific works of foreign researchers on the variety of the influence of X protein on the infectious process and its role in the mechanisms of carcinogenesis are summarized. The differences in the effect of the X protein on the course of the disease in patients of different ethnic groups with regard to HBV genotypes are described. The significance of determining the genetic variability of X gene as a fundamental characteristic of the virus that has significance for the assessment of risks of hepatocellular carcinoma (HCC) spread among the population of the Russian Federation is discussed.
Collapse
Affiliation(s)
- Y V Panasiuk
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - N V Vlasenko
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - N S Churilova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - V V Klushkina
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - D V Dubodelov
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - E N Kudryavtseva
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - M I Korabelnikova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - Z S Rodionova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - T A Semenenko
- FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - S N Kuzin
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - V G Akimkin
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| |
Collapse
|
13
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Salpini R, D’Anna S, Benedetti L, Piermatteo L, Gill U, Svicher V, Kennedy PTF. Hepatitis B virus DNA integration as a novel biomarker of hepatitis B virus-mediated pathogenetic properties and a barrier to the current strategies for hepatitis B virus cure. Front Microbiol 2022; 13:972687. [PMID: 36118192 PMCID: PMC9478028 DOI: 10.3389/fmicb.2022.972687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic infection with Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality worldwide. HBV-DNA integration into the human genome is recognized as a frequent event occurring during the early phases of HBV infection and characterizing the entire course of HBV natural history. The development of refined molecular biology technologies sheds new light on the functional implications of HBV-DNA integration into the human genome, including its role in the progression of HBV-related pathogenesis and in triggering the establishment of pro-oncogenic mechanisms, promoting the development of hepatocellular carcinoma. The present review provides an updated and comprehensive overview of the current body of knowledge on HBV-DNA integration, focusing on the molecular mechanisms underlying HBV-DNA integration and its occurrence throughout the different phases characterizing the natural history of HBV infection. Furthermore, here we discuss the main clinical implications of HBV integration as a biomarker of HBV-related pathogenesis, particularly in reference to hepatocarcinogenesis, and how integration may act as a barrier to the achievement of HBV cure with current and novel antiviral therapies. Overall, a more refined insight into the mechanisms and functionality of HBV integration is paramount, since it can potentially inform the design of ad hoc diagnostic tools with the ability to reveal HBV integration events perturbating relevant intracellular pathways and for identifying novel therapeutic strategies targeting alterations directly related to HBV integration.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Stefano D’Anna
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Livia Benedetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Upkar Gill
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Valentina Svicher
- Department of Biology, University of Rome Tor Vergata, Roma, Italy
- *Correspondence: Valentina Svicher,
| | - Patrick T. F. Kennedy
- Barts Liver Centre, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Patrick T. F. Kennedy,
| |
Collapse
|
15
|
Canonical and Divergent N-Terminal HBx Isoform Proteins Unveiled: Characteristics and Roles during HBV Replication. Biomedicines 2021; 9:biomedicines9111701. [PMID: 34829930 PMCID: PMC8616016 DOI: 10.3390/biomedicines9111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a viral regulatory and multifunctional protein. It is well-known that the canonical HBx reading frame bears two phylogenetically conserved internal in-frame translational initiation codons at Met2 and Met3, thus possibly generating divergent N-terminal smaller isoforms during translation. Here, we demonstrate that the three distinct HBx isoforms are generated from the ectopically expressed HBV HBx gene, named XF (full-length), XM (medium-length), and XS (short-length); they display different subcellular localizations when expressed individually in cultured hepatoma cells. Particularly, the smallest HBx isoform, XS, displayed a predominantly cytoplasmic localization. To study HBx proteins during viral replication, we performed site-directed mutagenesis to target the individual or combinatorial expression of the HBx isoforms within the HBV viral backbone (full viral genome). Our results indicate that of all HBx isoforms, only the smallest HBx isoform, XS, can restore WT levels of HBV replication, and bind to the viral mini chromosome, thereby establishing an active chromatin state, highlighting its crucial activities during HBV replication. Intriguingly, we found that sequences of HBV HBx genotype H are devoid of the conserved Met3 position, and therefore HBV genotype H infection is naturally silent for the expression of the HBx XS isoform. Finally, we found that the HBx XM (medium-length) isoform shares significant sequence similarity with the N-terminus domain of the COMMD8 protein, a member of the copper metabolism MURR1 domain-containing (COMMD) protein family. This novel finding might facilitate studies on the phylogenetic origin of the HBV X protein. The identification and functional characterization of its isoforms will shift the paradigm by changing the concept of HBx from being a unique, canonical, and multifunctional protein toward the occurrence of different HBx isoforms, carrying out different overlapping functions at different subcellular localizations during HBV genome replication. Significantly, our current work unveils new crucial HBV targets to study for potential antiviral research, and human virus pathogenesis.
Collapse
|
16
|
Qu B, Brown RJP. Strategies to Inhibit Hepatitis B Virus at the Transcript Level. Viruses 2021; 13:v13071327. [PMID: 34372533 PMCID: PMC8310268 DOI: 10.3390/v13071327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Approximately 240 million people are chronically infected with hepatitis B virus (HBV), despite four decades of effective HBV vaccination. During chronic infection, HBV forms two distinct templates responsible for viral transcription: (1) episomal covalently closed circular (ccc)DNA and (2) host genome-integrated viral templates. Multiple ubiquitous and liver-specific transcription factors are recruited onto these templates and modulate viral gene transcription. This review details the latest developments in antivirals that inhibit HBV gene transcription or destabilize viral transcripts. Notably, nuclear receptor agonists exhibit potent inhibition of viral gene transcription from cccDNA. Small molecule inhibitors repress HBV X protein-mediated transcription from cccDNA, while small interfering RNAs and single-stranded oligonucleotides result in transcript degradation from both cccDNA and integrated templates. These antivirals mediate their effects by reducing viral transcripts abundance, some leading to a loss of surface antigen expression, and they can potentially be added to the arsenal of drugs with demonstrable anti-HBV activity. Thus, these candidates deserve special attention for future repurposing or further development as anti-HBV therapeutics.
Collapse
Affiliation(s)
- Bingqian Qu
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, 63225 Langen, Germany
- Correspondence: (B.Q.); (R.J.P.B.)
| |
Collapse
|
17
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
18
|
Abstract
Hepatitis B virus (HBV), which was discovered in 1965, is a threat to global public health. HBV infects human hepatocytes and leads to acute and chronic liver diseases, and there is no cure. In cells infected by HBV, viral DNA can be integrated into the cellular genome. HBV DNA integration is a complicated process during the HBV life cycle. Although HBV integration normally results in replication-incompetent transcripts, it can still act as a template for viral protein expression. Of note, it is a primary driver of hepatocellular carcinoma (HCC). Recently, with the development of detection methods and research models, the molecular biology and the pathogenicity of HBV DNA integration have been better revealed. Here, we review the advances in the research of HBV DNA integration, including molecular mechanisms, detection methods, research models, the effects on host and viral gene expression, the role of HBV integrations in the pathogenesis of HCC, and potential treatment strategies. Finally, we discuss possible future research prospects of HBV DNA integration.
Collapse
Affiliation(s)
- Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Andrew Liu
- Laboratory of Molecular Cardiology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
19
|
Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength. J Virol 2020; 94:JVI.01663-19. [PMID: 31852786 PMCID: PMC7081907 DOI: 10.1128/jvi.01663-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies. Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Pol-derived reported epitopes with functional association and high conservation. We subsequently predicted novel HLA-binding peptides for 6 HLA supertypes prevalent in HBV-infected patients. Potential epitopes expected to be the least prone to immune escape were subjected to a state-of-the-art in vitro assay to validate their HLA-binding capacity. Using this method, a total of 13 HLA binders derived from HBx and 33 binders from Pol were identified across HLA types. Subsequently, we demonstrated interferon gamma (IFN-γ) production in response to 5 of the novel HBx-derived binders and 17 of the novel Pol-derived binders. In addition, we validated several infrequently described epitopes. Collectively, these results specify a set of highly potent T cell epitopes that represent a valuable resource for future HBV immunotherapy design. IMPORTANCE Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies.
Collapse
|
20
|
HBV X protein mutations affect HBV transcription and association of histone-modifying enzymes with covalently closed circular DNA. Sci Rep 2020; 10:802. [PMID: 31964944 PMCID: PMC6972884 DOI: 10.1038/s41598-020-57637-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B X protein (HBx) plays a role in the epigenetic regulation of hepatitis B virus (HBV) replication. This study investigated the effects of HBx mutations on HBV transcription and the recruitment of HBx, histone acetyl-transferase P300 and histone deacetylase 1 (HDAC1) to circularized HBV DNA (which resembles covalently closed circular DNA [cccDNA]). Compared with wild type, majority of mutants had lower levels of intracellular HBV RNA (44–77% reduction) and secretory HBsAg (25–81% reduction), and 12 mutants had a reduction in intracellular encapsidated HBV DNA (33–64% reduction). Eight mutants with >70% reduction in HBV RNA and/or HBsAg were selected for chromatin immunoprecipitation analysis. Four HBx mutants with mutations in amino acid residues 55–60 and 121–126 had a lower degree of HBx-cccDNA association than wild type HBx (mean % input: 0.02–0.64% vs. 3.08% in wild type). A reduced association between cccDNA and P300 (mean % input: 0.69–1.81% vs. 3.48% in wild type) and an augmented association with HDAC1 (mean % input: 4.01–14.0% vs. 1.53% in wild type) were detected. HBx amino acid residues 55–60 and 121–126 may play an important role in HBV transcription regulation, via their impeded interaction with cccDNA and altered recruitment of histone modifying enzymes to cccDNA.
Collapse
|
21
|
Spatiotemporal Analysis of Hepatitis B Virus X Protein in Primary Human Hepatocytes. J Virol 2019; 93:JVI.00248-19. [PMID: 31167911 PMCID: PMC6675897 DOI: 10.1128/jvi.00248-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus X protein (HBx) is a promising drug target since it promotes the degradation of the host structural maintenance of chromosomes 5/6 complex (Smc5/6) that inhibits HBV transcription. To date, it has not been possible to study HBx in physiologically relevant cell culture systems due to the lack of a highly specific and selective HBx antibody. In this study, we developed a novel monoclonal HBx antibody and performed a spatiotemporal analysis of HBx in a natural infection system. This revealed that HBx localizes to the nucleus of infected cells, is expressed shortly after infection, and has a short half-life. In addition, we demonstrated that inhibiting HBx expression or function promotes the reappearance of Smc6 in the nucleus of infected cells. These data provide new insights into HBx and underscore its potential as a novel target for the treatment of chronic HBV infection. The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the host DNA damage-binding protein 1 (DDB1) E3 ubiquitin ligase to target Smc5/6 for degradation. HBx is an attractive therapeutic target for the treatment of chronic hepatitis B (CHB), but it is challenging to study this important viral protein in the context of natural infection due to the lack of a highly specific and sensitive HBx antibody. In this study, we developed a novel monoclonal antibody that enables detection of HBx protein in HBV-infected primary human hepatocytes (PHH) by Western blotting and immunofluorescence. Confocal imaging studies with this antibody demonstrated that HBx is predominantly located in the nucleus of HBV-infected PHH, where it exhibits a diffuse staining pattern. In contrast, a DDB1-binding-deficient HBx mutant was detected in both the cytoplasm and nucleus, suggesting that the DDB1 interaction plays an important role in the nuclear localization of HBx. Our study also revealed that HBx is expressed early after infection and has a short half-life (∼3 h) in HBV-infected PHH. In addition, we found that treatment with small interfering RNAs (siRNAs) that target DDB1 or HBx mRNA decreased HBx protein levels and led to the reappearance of Smc6 in the nuclei of HBV-infected PHH. Collectively, these studies provide the first spatiotemporal analysis of HBx in a natural infection system and also suggest that HBV transcriptional silencing by Smc5/6 can be restored by therapeutic targeting of HBx. IMPORTANCE Hepatitis B virus X protein (HBx) is a promising drug target since it promotes the degradation of the host structural maintenance of chromosomes 5/6 complex (Smc5/6) that inhibits HBV transcription. To date, it has not been possible to study HBx in physiologically relevant cell culture systems due to the lack of a highly specific and selective HBx antibody. In this study, we developed a novel monoclonal HBx antibody and performed a spatiotemporal analysis of HBx in a natural infection system. This revealed that HBx localizes to the nucleus of infected cells, is expressed shortly after infection, and has a short half-life. In addition, we demonstrated that inhibiting HBx expression or function promotes the reappearance of Smc6 in the nucleus of infected cells. These data provide new insights into HBx and underscore its potential as a novel target for the treatment of chronic HBV infection.
Collapse
|
22
|
Hepatitis B Virus X Protein Function Requires Zinc Binding. J Virol 2019; 93:JVI.00250-19. [PMID: 31167910 PMCID: PMC6675892 DOI: 10.1128/jvi.00250-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.
Collapse
|
23
|
Xu QG, Yuan SX, Tao QF, Yu J, Cai J, Yang Y, Guo XG, Lin KY, Ma JZ, Dai DS, Wang ZG, Gu FM, Zhao LH, Li LQ, Liu JF, Sun SH, Zang YJ, Liu H, Yang F, Zhou WP. A novel HBx genotype serves as a preoperative predictor and fails to activate the JAK1/STATs pathway in hepatocellular carcinoma. J Hepatol 2019; 70:904-917. [PMID: 30654066 DOI: 10.1016/j.jhep.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Genetic variability in the hepatitis B virus X gene (HBx) is frequently observed and is associated with hepatocellular carcinoma (HCC) progression. However, a genotype classification based on the full-length HBx sequence and the impact of genotypes on hepatitis B virus (HBV)-related HCC prognosis remain unclear. We therefore aimed to perform this genotype classification and assess its clinical impact. METHODS We classified the genotypes of the full-length HBx gene through sequencing and a cluster analysis of HBx DNA from a cohort of patients with HBV-related HCC, which served as the primary cohort (n = 284). Two independent HBV-related HCC cohorts, a validation cohort (n = 171) and a serum cohort (n = 168), were used to verify the results. Protein microarray assay analysis was performed to explore the underlying mechanism. RESULTS In the primary cohort, the HBx DNA was classified into 3 genotypes: HBx-EHBH1, HBx-EHBH2, and HBx-EHBH3. HBx-EHBH2 (HBx-E2) indicated better recurrence-free survival and overall survival for patients with HCC. HBx-E2 was significantly correlated with the absence of liver cirrhosis, a small tumor size, a solitary tumor, complete encapsulation and Barcelona Clinic Liver Cancer (BCLC) stage A-0 tumors. Additionally, HBx-E2 served as a significant prognostic factor for patients with BCLC stage B HCC after hepatectomy. Mechanistically, HBx-E2 is unable to promote proliferation in HCC cells and normal hepatocytes. It also fails to activate the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3)/STAT5 pathway. CONCLUSION Our study identifies a novel HBx genotype that is unable to promote the proliferation of HCC cells and suggests a potential marker to preoperatively predict the prognosis of patients with BCLC stage B, HBV-associated, HCC. LAY SUMMARY We classified a novel genotype of the full-length hepatitis B virus X gene (HBx), HBx-E2. This genotype was identified in tumor and nontumor tissues from patients with hepatitis B virus-related hepatocellular carcinoma. HBx-E2 could preoperatively predict the prognosis of patients with intermediate stage hepatocellular carcinoma, after resection.
Collapse
Affiliation(s)
- Qing-Guo Xu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China; Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng-Xian Yuan
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qi-Fei Tao
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jian Yu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jie Cai
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xing-Gang Guo
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Kong-Ying Lin
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China; Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China
| | - Jin-Zhao Ma
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - De-Shu Dai
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhen-Guang Wang
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Fang-Ming Gu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Ling-Hao Zhao
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi, China
| | - Jing-Feng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China
| | - Shu-Han Sun
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Yun-Jin Zang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Fu Yang
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China.
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China.
| |
Collapse
|
24
|
Kim YR, Byun MR, Choi JW. Integrin α6 as an invasiveness marker for hepatitis B viral X-driven hepatocellular carcinoma. Cancer Biomark 2018; 23:135-144. [PMID: 30010110 DOI: 10.3233/cbm-181498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) accounts for more than 60% of hepatocellular carcinoma (HCC) cases. However, there is limited information about the features of HBV-driven HCC that differentiate it from other types of HCC. OBJECTIVE The aim of this study is to find a gene specific to HBV-driven HCC and understand its role during tumorigenesis. METHODS The differences in gene expression patterns were analyzed among patients with hepatitis virus-unrelated liver cirrhosis, and hepatitis C virus- and HBV-driven HCC. Genes expressed only in HBV patients were compared to genes of transgenic mice expressing hepatitis B viral X gene. RESULTS Integrin α6 was commonly overexpressed in both HBV-driven HCC patients and transgenic mice expressing viral X. This gene's activation induced overexpression of integrin α6, as well as formation of integrins α6β1 and α6β4, without changing the expression of non-integrin laminin receptors. Suppression of integrin α6 caused significant inhibition of tumor migration in vitro. CONCLUSIONS This study found a significant association between HBV and integrin α6, which may be responsible for early migration and invasion of HCC. Thus, integrin α6 is a predictive marker for tumor recurrence and invasiveness of HBV-driven HCC.
Collapse
Affiliation(s)
- Yi Rang Kim
- Department of Hemato-Oncology, Yuseong Sun Hospital, Daejeon, Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, Korea.,Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
25
|
Kapoor NR, Chadha R, Kumar S, Choedon T, Reddy VS, Kumar V. The HBx gene of hepatitis B virus can influence hepatic microenvironment via exosomes by transferring its mRNA and protein. Virus Res 2017; 240:166-174. [PMID: 28847700 DOI: 10.1016/j.virusres.2017.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/02/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
The cellular secretory vesicles known as 'exosomes' have emerged as key player in intercellular transport and communication between different eukaryotic in order to maintain body homeostasis. Many pathogenic viruses utilize exosome pathway to efficiently transfer bioactive components from infected cells to naïve cells. Here, we show that HBx can tweak the exosome biogenesis machinery both by enhancing neutral sphingomyelinase2 activity as well as by interacting with exosomal biomarkers such as neutral sphingomyelinase2, CD9 and CD81. The nano particle tracking analysis revealed enhanced secretion of exosomes by the HBx-expressing cells while confocal studies confirmed the co-localization of HBx with CD9 and CD63. Importantly, we observed the encapsulation of HBx mRNA and protein in these exosomes besides some other qualitative changes. The exosomal cargo secreted by HBx-expressing cells had a profound effect on the recipient hepatic cells including creation of a milieu conducive for cellular-transformation. Thus, the present study unfolds a novel role of HBx in intercellular communication by facilitating horizontal transfer of viral gene products and other host factors via exosomes in order to support viral spread and pathogenesis.
Collapse
Affiliation(s)
- Neetu Rohit Kapoor
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Radhika Chadha
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Saravanan Kumar
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tenzin Choedon
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
26
|
Tu T, Budzinska MA, Shackel NA, Urban S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017; 9:v9040075. [PMID: 28394272 PMCID: PMC5408681 DOI: 10.3390/v9040075] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies.
Collapse
Affiliation(s)
- Thomas Tu
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | - Magdalena A Budzinska
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Nicholas A Shackel
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Liverpool Hospital, Gastroenterology, Sydney, NSW 2170, Australia.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Ghalali A, Martin-Renedo J, Högberg J, Stenius U. Atorvastatin Decreases HBx-Induced Phospho-Akt in Hepatocytes via P2X Receptors. Mol Cancer Res 2017; 15:714-722. [PMID: 28209758 DOI: 10.1158/1541-7786.mcr-16-0373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is rated as the fifth most common malignancy and third in cancer-related deaths worldwide. Statins, HMG-CoA reductase inhibitors, are potent cholesterol-lowering drugs, and recent epidemiologic evidence suggests that statins prevent aggressive HCC development. Previous experiments revealed that statins downregulate phosphorylated Akt (pAkt). Here, it is demonstrated that atorvastatin decreases nuclear pAkt levels in pancreatic and lung cancer cell lines within minutes, and this rapid effect is mediated by the purinergic P2X receptors. Akt is upregulated by hepatitis viruses and has oncogenic activity in HCC; therefore, we tested the possibility that the P2X-Akt pathway is important for the anticipated anticancer effects of statins in hepatocytes. Atorvastatin decreased hepatitis B virus X protein- and insulin-induced pAkt and pGsk3β (Ser9) levels. Furthermore, Akt-induced lipogenesis was counteracted by atorvastatin, and these statin-induced effects were dependent on P2X receptors. Statin also decreased proliferation and invasiveness of hepatocytes. These data provide mechanistic evidence for a P2X receptor-dependent signaling pathway by which statins decrease pAkt, its downstream phosphorylation target pGsk3β, and lipogenesis in hepatocytes.Implications: The Akt pathway is deregulated and may act as a driver in HCC development; the P2X-Akt signaling pathway may have a role in anticancer effects of statins. Mol Cancer Res; 15(6); 714-22. ©2017 AACR.
Collapse
Affiliation(s)
- Aram Ghalali
- Institute of Environment Medicine. Karolinska Institutet, Stockholm, Sweden.
| | | | - Johan Högberg
- Institute of Environment Medicine. Karolinska Institutet, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environment Medicine. Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Su ZJ, Cao JS, Wu YF, Chen WN, Lin X, Wu YL, Lin X. Deubiquitylation of hepatitis B virus X protein (HBx) by ubiquitin-specific peptidase 15 (USP15) increases HBx stability and its transactivation activity. Sci Rep 2017; 7:40246. [PMID: 28074857 PMCID: PMC5225491 DOI: 10.1038/srep40246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus X protein (HBx) plays important roles in viral replication and the development of hepatocellular carcinoma. HBx is a rapid turnover protein and ubiquitin-proteasome pathway has been suggested to influence HBx stability as treatment with proteasome inhibitors increases the levels of HBx protein and causes accumulation of the polyubiquitinated forms of HBx. Deubiquitinases (DUBs) are known to act by removing ubiquitin moieties from proteins and thereby reverse their stability and/or activity. However, no information is available regarding the involvement of DUBs in regulation of ubiquitylation-dependent proteasomal degradation of HBx protein. This study identified the deubiquitylating enzyme USP15 as a critical regulator of HBx protein level. USP15 was found to directly interact with HBx via binding to the HBx region between amino acid residues 51 and 80. USP15 increased HBx protein levels in a dose-dependent manner and siRNA-mediated knockdown of endogenous USP15 reduced HBx protein levels. Increased HBx stability and steady-state level by USP15 were attributable to reduced HBx ubiquitination and proteasomal degradation. Importantly, the transcriptional transactivation function of HBx is enhanced by overexpression of USP15. These results suggest that USP15 plays an essential role in stabilizing HBx and subsequently affects the biological function of HBx.
Collapse
Affiliation(s)
- Zhi-Jun Su
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Department of Infectious Diseases, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Jia-Shou Cao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yan-Fang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yun-Li Wu
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Department of Infectious Diseases, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
29
|
Liu S, Koh SSY, Lee CGL. Hepatitis B Virus X Protein and Hepatocarcinogenesis. Int J Mol Sci 2016; 17:ijms17060940. [PMID: 27314335 PMCID: PMC4926473 DOI: 10.3390/ijms17060940] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the most associated factors in hepatocarcinogenesis. HBV is able to integrate into the host genome and encode the multi-functional hepatitis B virus x protein (HBx). Although the mechanism between HBx and carcinogenesis is still elusive, recent studies have shown that HBx was able to influence various signaling pathways, as well as epigenetic and genetic processes. This review will examine and summarize recent literature about HBx’s role in these various processes.
Collapse
Affiliation(s)
- Shuaichen Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital, Jilin University, Changchun 130021, China.
| | - Samantha S Y Koh
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610 Singapore, Singapore.
| | - Caroline G L Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore, Singapore.
- Duke-NUS Graduate Medical School, 169857 Singapore, Singapore.
| |
Collapse
|
30
|
Jamal A, Swarnalatha M, Sultana S, Joshi P, Panda SK, Kumar V. The G1 phase E3 ubiquitin ligase TRUSS that gets deregulated in human cancers is a novel substrate of the S-phase E3 ubiquitin ligase Skp2. Cell Cycle 2016; 14:2688-700. [PMID: 26038816 DOI: 10.1080/15384101.2015.1056946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
E3 ubiquitin ligases have been implicated in the ubiquitination and proteasome-mediated degradation of several key regulators of cell cycle. Owing to their pleotropic behavior, E3 ubiquitin ligases are tightly regulated both at transcriptional and post-translational levels. The E3 ubiquitin ligase TRUSS (tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein) which negatively regulates c-Myc, are found down-regulated in most human cancer cell lines. However, the mechanism of regulation of intracellular levels of TRUSS remains elusive. Here we show that TRUSS is expressed majorly during the G1 phase of cell cycle and its level starts to decline with the expression of S-phase specific E3 ligase Skp2. Enforced expression of Skp2 led to a marked increase in the ubiquitination of TRUSS after its phosphorylation by GSK3β and followed by rapid proteolytic degradation. Our co-immunoprecipitation studies suggested a direct interaction between Skp2 and TRUSS through the LRR motif of Skp2. Interestingly, the human tumor samples that exhibited elevated expression of Skp2, showed relatively poor expression of TRUSS. Further, enforced expression of HBx, the oncoprotein of Hepatitis B virus which is known to stabilize c-Myc and enhance its oncogenic potential, led to the intracellular accumulation of TRUSS as well as c-Myc. Apparently, HBx also interacted with TRUSS which negatively impacted the TRUSS-c-Myc and TRUSS-Skp2 interactions leading to stabilization of TRUSS. Thus, the present study suggests that TRUSS is a novel substrate of E3 ligase Skp2 and that disruption of TRUSS-Skp2 interaction by viral oncoproteins could lead to pathophysiological sequelae.
Collapse
Affiliation(s)
- Azfar Jamal
- a Virology Group; International Center for Genetic Engineering and Biotechnology ; New Delhi , India
| | | | | | | | | | | |
Collapse
|
31
|
Rapid and Accurate Determination of Lipopolysaccharide O-Antigen Types in Klebsiella pneumoniae with a Novel PCR-Based O-Genotyping Method. J Clin Microbiol 2015; 54:666-75. [PMID: 26719438 DOI: 10.1128/jcm.02494-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/25/2015] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae, a Gram-negative bacillus that causes life-threatening infections in both hospitalized patients and ambulatory persons, can be classified into nine lipopolysaccharide (LPS) O-antigen serotypes. The O-antigen type has important clinical and epidemiological significance. However, K. pneumoniae O serotyping is cumbersome, and the reagents are not commercially available. To overcome the limitations of conventional serotyping methods, we aimed to create a rapid and accurate PCR method for K. pneumoniae O genotyping. We sequenced the genetic determinants of LPS O antigen from serotypes O1, O2a, O2ac, O3, O4, O5, O8, O9, and O12. We established a two-step genotyping scheme, based on the two genomic regions associated with O-antigen biosynthesis. The first set of PCR primers, which detects alleles at the wzm-wzt loci of the wb gene cluster, distinguishes between O1/O2, O3, O4, O5, O8, O9, and O12. The second set of PCR primers, which detects alleles at the wbbY region, further differentiates between O1, O2a, and O2ac. We verified the specificity of O genotyping against the O-serotype reference strains. We then tested the sensitivity and specificity of O genotyping in K. pneumoniae, using the 56 K-serotype reference strains with known O serotypes determined by an inhibition enzyme-linked immunosorbent assay (iELISA). There is a very good correlation between the O genotypes and classical O serotypes. Three discrepancies were observed and resolved by nucleotide sequencing--all in favor of O genotyping. The PCR-based O genotyping, which can be easily performed in clinical and research microbiology laboratories, is a rapid and accurate method for determining the LPS O-antigen types of K. pneumoniae isolates.
Collapse
|
32
|
Niller HH, Ay E, Banati F, Demcsák A, Takacs M, Minarovits J. Wild type HBx and truncated HBx: Pleiotropic regulators driving sequential genetic and epigenetic steps of hepatocarcinogenesis and progression of HBV-associated neoplasms. Rev Med Virol 2015; 26:57-73. [PMID: 26593760 DOI: 10.1002/rmv.1864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) is one of the causative agents of hepatocellular carcinoma. The molecular mechanisms of tumorigenesis are complex. One of the host factors involved is apparently the long-lasting inflammatory reaction which accompanies chronic HBV infection. Although HBV lacks a typical viral oncogene, the HBx gene encoding a pleiotropic regulatory protein emerged as a major player in liver carcinogenesis. Here we review the tumorigenic functions of HBx with an emphasis on wild type and truncated HBx variants, and their role in the transcriptional dysregulation and epigenetic reprogramming of the host cell genome. We suggest that HBx acquired by the HBV genome during evolution acts like a cellular proto-onc gene that is activated by deletion during hepatocarcinogenesis. The resulting viral oncogene (v-onc gene) codes for a truncated HBx protein that facilitates tumor progression. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Eva Ay
- Department of Retrovirology, National Center for Epidemiology, Budapest, Hungary
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, Mosonmagyarovar, Hungary
| | - Anett Demcsák
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| | - Maria Takacs
- Division of Virology, National Center for Epidemiology, Budapest, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary
| |
Collapse
|
33
|
Ahuja R, Kapoor NR, Kumar V. The HBx oncoprotein of hepatitis B virus engages nucleophosmin to promote rDNA transcription and cellular proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1783-95. [PMID: 25918010 DOI: 10.1016/j.bbamcr.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022]
Abstract
The pleiotropic HBx oncoprotein of hepatitis B virus is well known to promote the expression of ribosomal RNAs and several host proteins that are known to support the development and progression of hepatocellular carcinoma (HCC). While overexpression of the nucleolar phosphoprotein, nucleophosmin (NPM), correlates with HCC progression, its upregulation by viral HBx and the resulting impact on perturbed nucleolar functions remain enigmatic. The present study shows that HBx up-regulates NPM levels and hijacks its functions to promote cellular proliferation. We found that HBx expression stabilizes NPM through post-translational modifications. Enhanced CDK2-mediated phosphorylation of NPM at Thr199 upon HBx expression prevented its proteolytic cleavage and provided resistance to apoptosis. Further, HBx directly interacted with the C-terminal domain of NPM and got translocated into the nucleolus where it facilitated the recruitment of RNA polymerase I transcriptional machinery onto the rDNA promoter. Our results indicate that HBx enhances rDNA transcription via a novel regulatory mechanism involving acetylation of NPM and the subsequent depletion of histones from the rDNA promoter. Enhanced production of ribosomal RNA resulting from co-expression of HBx and NPM promoted ribosome biogenesis, cellular proliferation and transformation. Taken together, our study strongly suggests an important role of NPM in mediating the oncogenic effects of HBx and the corresponding nucleolar perturbations induced by this viral oncoprotein.
Collapse
Affiliation(s)
- Richa Ahuja
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neetu Rohit Kapoor
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
34
|
Li D, Ding J, Chen Z, Chen Y, Lin N, Chen F, Wang X. Accurately mapping the location of the binding site for the interaction between hepatitis B virus X protein and cytochrome c oxidase III. Int J Mol Med 2014; 35:319-24. [PMID: 25483779 PMCID: PMC4292715 DOI: 10.3892/ijmm.2014.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) plays an important pathogenetic role in hepatocarcinoma tumorigenesis. As HBx does not have the ability to bind to double-stranded DNA (dsDNA), protein-protein interaction is crucial for HBx functions. In a previous study, we screened a novel HBx-interacting protein, the cytochrome c oxidase subunit III (COXIII). In the present study, we aimed to accurately map the location of the binding site for the interaction of HBx with COXIII. Two fragments of HBx mutants (X1 aa1-72 and X2 aa1-117) were amplified by polymerase chain reaction (PCR) and separately inserted into the pAS2-1 plasmid. PCR and gene sequencing confirmed the correct insertion of the mutant fragments in the plasmid. The tanscription of the mutant fragments in yeast cells was demonstrated by RT-PCR and western blot analysis confirmed that they were accurately translated into fusion proteins. Hybridization on solid medium and the detection of β-galactosidase (β-gal) activity indicated that the binding site for the interaction between HBx and COXIII was located between aa72 and aa117. Specific interactions between the HBxX2 protein and COXIII were verified by co-immunoprecipitation. To the best of our knowledge, this is the first study showing to demonstrate that aa72-117 in HBx is the key region for binding with COXIII.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jian Ding
- Department of Gastroenterology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhixin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yun Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Na Lin
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Fenglin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiaozhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
35
|
Saxena N, Kumar V. The HBx oncoprotein of hepatitis B virus deregulates the cell cycle by promoting the intracellular accumulation and re-compartmentalization of the cellular deubiquitinase USP37. PLoS One 2014; 9:e111256. [PMID: 25347529 PMCID: PMC4210131 DOI: 10.1371/journal.pone.0111256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/16/2014] [Indexed: 01/25/2023] Open
Abstract
The HBx oncoprotein of hepatitis B Virus has been accredited as one of the protagonists in driving hepatocarcinogenesis. HBx exerts its influence over the cell cycle progression by potentiating the activity of cyclin A/E-CDK2 complex, the Cyclin A partner of which is a well-known target of cellular deubiquitinase USP37. In the present study, we observed the intracellular accumulation of cyclin A and USP37 proteins under the HBx microenvironment. Flow cytometry analysis of the HBx-expressing cells showed deregulation of cell cycle apparently due to the enhanced gene expression and stabilization of USP37 protein and deubiquitination of Cyclin A by USP37. Our co-immunoprecipitation and confocal microscopic studies suggested a direct interaction between USP37 and HBx. This interaction promoted the translocation of USP37 outside the nucleus and prevented its association and ubiquitination by E3 ubiquitin ligases - APC/CDH1 and SCF/β-TrCP. Thus, HBx seems to control the cell cycle progression via the cyclin A-CDK2 complex by regulating the intracellular distribution and stability of deubiquitinase USP37.
Collapse
Affiliation(s)
- Nehul Saxena
- Virology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vijay Kumar
- Virology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
36
|
Chinnappan M, Singh AK, Kakumani PK, Kumar G, Rooge SB, Kumari A, Varshney A, Rastogi A, Singh AK, Sarin SK, Malhotra P, Mukherjee SK, Bhatnagar RK. Key elements of the RNAi pathway are regulated by hepatitis B virus replication and HBx acts as a viral suppressor of RNA silencing. Biochem J 2014; 462:347-58. [PMID: 24902849 DOI: 10.1042/bj20140316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The host-mediated RNAi pathways restrict replication of viruses in plant, invertebrate and vertebrate systems. However, comparatively little is known about the interplay between RNAi and various viral infections in mammalian hosts. We show in the present study that the siRNA-mediated silencing of Drosha, Dicer and Ago2 [argonaute RISC (RNA-induced silencing complex) catalytic component 2] transcripts in Huh7 cells resulted in elevated levels of HBV (hepatitis B virus)-specific RNAs and, conversely, we observed a decrease in mRNA and protein levels of same RNAi components in HepG2 cells infected with HBV. Similar reductions were also detectable in CHB (chronic hepatitis B) patients. Analysis of CHB liver biopsy samples, with high serum HBV DNA load (>log108 IU/ml), revealed a reduced mRNA and protein levels of Drosha, Dicer and Ago2. The low expression levels of key RNAi pathway components in CHB patient samples as well as hepatic cells established a link between HBV replication and RNAi components. The HBV proteins were also examined for RSS (RNA-silencing suppressor) properties. Using GFP-based reversion of silencing assays, in the present study we found that HBx is an RSS protein. Through a series of deletions and substitution mutants, we found that the full-length HBx protein is required for optimum RSS activity. The in vitro dicing assays revealed that the HBx protein inhibited the human Dicer-mediated processing of dsRNAs into siRNAs. Together, our results suggest that the HBx protein might function as RSS to manipulate host RNAi defence, in particular by abrogating the function of Dicer. The present study may have implications in the development of newer strategies to combat HBV infection.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Avishek Kumar Singh
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Pavan Kumar Kakumani
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Gautam Kumar
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | | | - Anupama Kumari
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Aditi Varshney
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Archana Rastogi
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Ashok Kumar Singh
- ‡Department of Zoology, University of Delhi, New Delhi, DL 110007, India
| | - Shiv Kumar Sarin
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Pawan Malhotra
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | | | - Raj Kamal Bhatnagar
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| |
Collapse
|
37
|
Wang D, Cai H, Yu WB, Yu L. Identification of hepatitis B virus X gene variants between hepatocellular carcinoma tissues and pericarcinoma liver tissues in Eastern China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:5988-5996. [PMID: 25337243 PMCID: PMC4203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/24/2014] [Indexed: 06/04/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most malignant tumors worldwide, especially in Eastern China where HBV infection confirmed as the most important pathological element. HBV X gene, extremely easy to mutate and integrate into hepatocytes, plays a significant role in HBV infection and HCC development. We deduced that mutations of integrated HBx gene make transformation more malignant. The aim of the study was to investigate whether there were different mutation patterns between the HCC tissues and the pericarcinoma liver tissues (PCLT) from patients with HCC in Eastern China. METHODS HBx genes extracted from 287 HCC tissue samples and 195 PCLT tissue samples were analyzed by sequence alignment and stratified analysis with the matched medical records. RESULTS Mutations occurred complicated and changeable in both HCC and PCLT. COOH-terminal truncation is more frequently found in HCC than PCLT (P < 0.05). There is no single site mutation of nucleic acid or amino acid makes distribution discrepancy between HCC and PCLT. Hydrophobic/hydrophilic character of amino acid of site 43, 47, 127, 131, 132 make distribution discrepancy between HCC and PCLT in men when stratified for gender (P < 0.05). Hydrophobic/hydrophilic character of amino acid of site 40 makes distribution discrepancy between HCC and PCLT in both male and female (P < 0.05). Hydrophobic/hydrophilic character of amino acid of site 47 and 127 make significant discrepancy among clinical stage I, II, III (P < 0.05). CONCLUSIONS During the infection and replication of HBV, HBx mutates to adjust itself to the hepatocyte and increase the carcinogenesis. COOH-terminal truncated HBX may play a stimulative role in HBV-related HCC carcinogenesis as well as hydrophobic/hydrophilic character changes in some specific amino acid sites.
Collapse
Affiliation(s)
- Dan Wang
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| | - Hao Cai
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| | - Wen-Bo Yu
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| | - Long Yu
- The State Key Laboratory of Genetics Engineering, Fudan University Shanghai, 200433, P.R. China
| |
Collapse
|
38
|
Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, Azhar E, Chaudhary A, Qadri I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J Gastroenterol 2014; 20:10238-10248. [PMID: 25132741 PMCID: PMC4130832 DOI: 10.3748/wjg.v20.i30.10238] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/30/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus (HBV) infection. HBV-encoded X protein (HBx) is known to play a pivotal role in the pathogenesis of viral induced HCC. HBx is a multifunctional protein of 17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC. HBX might interfere with several cellular processes such as oxidative stress, DNA repair, signal transduction, transcription, protein degradation, cell cycle progression and apoptosis. A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC. By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions, transcriptional transactivation, DNA repair, cell, signaling and pathogenesis of HCC. The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC, and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant. This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.
Collapse
|
39
|
Mass spectrometric determination of disulfide bonds in the biologically active recombinant HBx protein of hepatitis B virus. Biochemistry 2014; 53:4685-95. [PMID: 24971648 DOI: 10.1021/bi500140t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many proteins rely on disulfide bonds formed between pairs of cysteines for the stability of their folded state and to keep regulatory control over their functions. The hepatitis B virus-encoded HBx oncoprotein is known to perform an overwhelming array of functions in the cell and has been implicated in the development of hepatocellular carcinoma. However, its structure has not been elucidated. HBx carries nine conserved cysteine residues that have proven to be crucial for its various functions. However, the status of disulfide bonds between the cysteine residues reported in previous studies remains discrepant because of the use of refolded recombinant HBx that may contain non-native disulfides. Now we have determined the disulfide linkages in soluble and biologically active recombinant maltose binding protein-HBx fusion protein using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We report four disulfide linkages in HBx protein, viz., between Cys(7) and Cys(69), Cys(61) and Cys(115), Cys(78) and Cys(137), and Cys(17) and Cys(143), based on the differential mobility of corresponding disulfide-linked peptide ions under reducing and nonreducing conditions. Cys(148) was observed to be free. Site-directed mutagenesis of Cys(143) and Cys(148) with serine and functional analyses of these mutants affirmed the importance of these residues in the ability of HBx to potentiate Cdk2/cyclin E kinase activity and transcriptionally activate promoter reporter gene activity. Thus, this study identifies native disulfide linkages in the structure of a biologically active viral oncoprotein.
Collapse
|
40
|
Zhou F, Xu H, Chen M, Xiao H, Zhang Z, Lu Y, Ren J, Dong J. X gene/core promoter deletion mutation: a novel mechanism leading to hepatitis B 'e' antigen‑negative chronic hepatitis B. Mol Med Rep 2014; 10:799-803. [PMID: 24841504 DOI: 10.3892/mmr.2014.2248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 03/24/2014] [Indexed: 12/27/2022] Open
Abstract
Mutations in the precore and core promoter regions of hepatitis B 'e' antigen (HBeAg) are implicated in HBeAg‑negative chronic hepatitis B virus (HBV) infection (CHB). The objective of the current study was to investigate novel mutant patterns that lead to HBeAg‑negative CHB. The . PreX-X genomic region from the sera of HBV‑infected patients was amplified, and analysis of the sequences displayed a unique deletion region, 234 nucleotides in length, which was observed in 54 clones and named core promoter deletion (CPD). CPD may have an important role in the cause of HBeAg‑negative CHB. In addition, a novel deletion mutation in the X gene was observed in patients with CHB. This deletion mutant codes a 76‑amino‑acid X factor instead of the X protein. In the present study, a new mutation pattern was discovered that may contribute to the cause of HBeAg-negative CHB, and therefore it is worthy of future studies.
Collapse
Affiliation(s)
- Fei Zhou
- Center of Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Hongzhi Xu
- Department of Gastroenterology, Xiamen Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Meiya Chen
- Department of Gastroenterology, Xiamen Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Hongmin Xiao
- Department of Gastroenterology, Xiamen Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Zhiping Zhang
- Department of Gastroenterology, Xiamen Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yapi Lu
- Department of Gastroenterology, Xiamen Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianlin Ren
- Department of Gastroenterology, Xiamen Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jing Dong
- Center of Liver Disease, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
41
|
Lee YY, Mok MTS, Cheng ASL. Dissecting the pleiotropic actions of HBx mutants against hypoxia in hepatocellular carcinoma. Hepatobiliary Surg Nutr 2014; 3:95-7. [PMID: 24812603 DOI: 10.3978/j.issn.2304-3881.2014.02.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 01/05/2023]
Abstract
Error-prone integration of the hepatitis B virus X protein (HBx) into the hepatocellular genome generates a multitude of mutants exerting diverse effects on the development and progression of hepatocellular carcinoma (HCC). A recent study by Lai and colleagues revealed the disparate regulatory activity of clinically-predominant HBx mutants towards hypoxia-inducible factor-1α (HIF-1α), a central regulator of tumor angiogenesis, proliferation, metastasis and differentiation. These findings have shed insight into specific viral contribution of hypoxic response during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ying-Ying Lee
- 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, 2 State Key Laboratory of Digestive Disease, 3 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ; 4 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518052, China
| | - Myth T S Mok
- 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, 2 State Key Laboratory of Digestive Disease, 3 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ; 4 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518052, China
| | - Alfred Sze-Lok Cheng
- 1 Institute of Digestive Disease and Department of Medicine and Therapeutics, 2 State Key Laboratory of Digestive Disease, 3 School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ; 4 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518052, China
| |
Collapse
|
42
|
Abstract
The hepatitis B virus (HBV) is a small enveloped DNA virus that causes acute and chronic hepatitis. HBV infection is a world health problem, with 350 million chronically infected people at increased risk of developing liver disease and hepatocellular carcinoma (HCC). HBV has been classified among human tumor viruses by virtue of a robust epidemiologic association between chronic HBV carriage and HCC occurrence. In the absence of cytopathic effect in infected hepatocytes, the oncogenic role of HBV might involve a combination of direct and indirect effects of the virus during the multistep process of liver carcinogenesis. Liver inflammation and hepatocyte proliferation driven by host immune responses are recognized driving forces of liver cell transformation. Genetic and epigenetic alterations can also result from viral DNA integration into host chromosomes and from prolonged expression of viral gene products. Notably, the transcriptional regulatory protein HBx encoded by the X gene is endowed with tumor promoter activity. HBx has pleiotropic activities and plays a major role in HBV pathogenesis and in liver carcinogenesis. Because hepatic tumors carry a dismal prognosis, there is urgent need to develop early diagnostic markers of HCC and effective therapies against chronic hepatitis B. Deciphering the oncogenic mechanisms that underlie HBV-related tumorigenesis might help developing adapted therapeutic strategies.
Collapse
Affiliation(s)
- Lise Rivière
- Institut Pasteur, Hepacivirus and Innate Immunity Unit, 28 rue du Dr Roux, 75015, Paris, France,
| | | | | |
Collapse
|
43
|
Liu LP, Hu BG, Ye C, Ho RLK, Chen GG, Lai PBS. HBx mutants differentially affect the activation of hypoxia-inducible factor-1α in hepatocellular carcinoma. Br J Cancer 2013; 110:1066-73. [PMID: 24346287 PMCID: PMC3929872 DOI: 10.1038/bjc.2013.787] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in HBx gene are frequently found in HBV-associated hepatocellular carcinoma (HCC). Activation of hypoxia-inducible factor-1α (HIF-1α) contributes to HCC development and progression. Wild-type HBx has been demonstrated to activate HIF-1α, but the effect of HBx mutations on HIF-1α has not been elucidated. METHODS HBx mutations were identified by gene sequencing in 101 HCC tissues. Representative HBx mutants were cloned and transfected into HCC cells. Expression and activation of HIF-1α were analysed by western blot and luciferase assays, respectively. The relationship between HBx mutants and HIF-1α expression in HCC tissues was also evaluated. RESULTS The dual mutations K130M/V131I enhanced the functionality of HBx as they upregulated the expression and transcriptional activity of HIF-1α. The C-terminal truncations and deletion mutations, however, weakened the ability of HBx to upregulate HIF-1α. Meanwhile, the C-terminus was further found to be essential for the stability and transactivation of HBx. In the HCC tissues, there was a positive association between the HBx mutants and HIF-1α expression. CONCLUSION Different mutations of HBx exert differentiated effects on the functionality of HIF-1α, however, the overall activity of HBx mutants appears to increase the expression and transcriptional activity of HIF-1α.
Collapse
Affiliation(s)
- L-P Liu
- 1] Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China [2] Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong Province, China
| | - B-G Hu
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - C Ye
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - R L K Ho
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - G G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - P B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
44
|
Chen YM, Wu SH, Qiu CN, Yu DJ, Wang XJ. Hepatitis B virus subgenotype C2- and B2-associated mutation patterns may be responsible for liver cirrhosis and hepatocellular carcinoma, respectively. Braz J Med Biol Res 2013; 46:614-22. [PMID: 23903686 PMCID: PMC3859330 DOI: 10.1590/1414-431x20133032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to examine hepatitis B virus (HBV) subgenotypes and mutations in enhancer II, basal core promoter, and precore regions of HBV in relation to risks of liver cirrhosis (LC) and hepatocellular carcinoma (HCC) in Southeast China. A case-control study was performed, including chronic hepatitis B (CHB; n=125), LC (n=120), and HCC (n=136). HBV was genotyped by multiplex polymerase chain reaction and subgenotyped by restriction fragment length polymorphism. HBV mutations were measured by DNA sequencing. HBV genotype C (68.2%) predominated and genotype B (30.2%) was the second most common. Of these, C2 (67.5%) was the most prevalent subgenotype, and B2 (30.2%) ranked second. Thirteen mutations with a frequency >5% were detected. Seven mutation patterns (C1653T, G1719T, G1730C, T1753C, A1762T, G1764A, and G1799C) were associated with C2, and four patterns (C1810T, A1846T, G1862T, and G1896A) were associated with B2. Six patterns (C1653T, G1730C, T1753C, A1762T, G1764A, and G1799C) were obviously associated with LC, and 10 patterns (C1653T, G1730C, T1753C, A1762T, G1764A, G1799C, C1810T, A1846T, G1862T, and G1896A) were significantly associated with HCC compared with CHB. Four patterns (C1810T, A1846T, G1862T, and G1896A) were significantly associated with HCC compared with LC. Multivariate regression analyses showed that HBV subgenotype C2 and C2-associated mutation patterns (C1653T, T1753C, A1762T, and G1764A) were independent risk factors for LC when CHB was the control, and that B2-associated mutation patterns (C1810T, A1846T, G1862T, and G1896A) were independent risk factors for HCC when LC was the control.
Collapse
Affiliation(s)
- Y M Chen
- Affiliated Hangzhou Hospital, Nanjing Medical University, Department of Laboratory Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
45
|
Swarnalatha M, Singh AK, Kumar V. Promoter occupancy of MLL1 histone methyltransferase seems to specify the proliferative and apoptotic functions of E2F1 in a tumour microenvironment. J Cell Sci 2013; 126:4636-46. [PMID: 23868976 DOI: 10.1242/jcs.126235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The E2F family of transcription factors are considered versatile modulators, poised at biological crossroads to execute diverse cellular functions. Despite extensive studies on E2F, the molecular mechanisms that control specific biological functions of the E2F1 transcription factor are still not fully understood. Here we have addressed the molecular underpinnings of paradoxical functions of E2F1 in a tumour microenvironment using the 'X15-myc' oncomouse model of hepatocellular carcinoma. We observed that the HBx oncoprotein of hepatitis B virus regulates E2F1 functions by interfering with its binding to Skp2 E3 ubiquitin ligase. The HBx-Skp2 interaction led to the accumulation of transcriptionally active E2F1 and histone methyltransferase mixed lineage leukemia 1 (MLL1) protein. During early stages of hepatocarcinogenesis, the increased E2F1 activity promoted cellular proliferation by stimulating the genes involved in cell cycle control and replication. However, during the late stages, E2F1 triggered replication-stress-induced DNA damage and sensitized cells to apoptotic death in a p53-independent manner. Interestingly, the different promoter occupancy of MLL1 during the early and late stages of tumour development seemed to specify the proliferative and apoptotic functions of E2F1, through its dynamic interaction with the co-activator CBP or co-repressor Brg1. Thus, the temporally regulated promoter occupancy of histone methyltransferase could be a regulatory mechanism associated with the diverse cellular functions of the E2F family of transcription factors.
Collapse
Affiliation(s)
- Manickavinayaham Swarnalatha
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
46
|
Shi HP, Zhang J, Shang XC, Xie XY. Hepatitis B Virus Gene C1653T Polymorphism Mutation and Hepatocellular Carcinoma Risk: an Updated Meta-analysis. Asian Pac J Cancer Prev 2013; 14:1043-7. [DOI: 10.7314/apjcp.2013.14.2.1043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Hernández S, Venegas M, Brahm J, Villanueva RA. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism. Infect Agent Cancer 2012; 7:27. [PMID: 23079056 PMCID: PMC3533737 DOI: 10.1186/1750-9378-7-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/20/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED BACKGROUND Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. METHODS In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. RESULTS We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. CONCLUSIONS Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation.
Collapse
Affiliation(s)
- Sergio Hernández
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| | - Mauricio Venegas
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Javier Brahm
- Sección de Gastroenterología, Departamento de Medicina, Hospital Clínico Universidad de Chile, Avda. Santos Dumont 999, Independencia, Santiago 8340457, Chile
| | - Rodrigo A Villanueva
- Laboratorio de Virus Hepatitis, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avda. República 217, 3er piso, Santiago 8370146, Chile
| |
Collapse
|
48
|
Pandey V, Kumar V. HBx protein of hepatitis B virus promotes reinitiation of DNA replication by regulating expression and intracellular stability of replication licensing factor CDC6. J Biol Chem 2012; 287:20545-54. [PMID: 22523071 DOI: 10.1074/jbc.m112.359760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prevention of re-replication via negative regulation of replication initiator proteins, such as CDC6, is key to maintenance of genomic integrity, whereas their up-regulation is generally associated with perturbation in cell cycle, genomic instability, and potentially, tumorigenesis. The HBx oncoprotein of hepatitis B virus is well known to deregulate cell cycle and has been intricately linked to development of hepatocellular carcinoma. Despite a clear understanding of the proliferative effects of HBx on cell cycle, a mechanistic link between HBx-mediated hepatocarcinogenesis and host cell DNA replication remains poorly perused. Here we show that HBx overexpression in both the cellular as well as the transgenic environment resulted in the accumulation of CDC6 through transcriptional and post-translational up-regulation. The HBx-mediated increase in CDK2 activity altered the E2F1-Rb (retinoblastoma) balance, which favored CDC6 gene expression by E2F1. Besides, HBx impaired the APC(Cdh1)-dependent protein degradation pathway and conferred intracellular stability to CDC6 protein. Increase in CDC6 levels correlated with increase in CDC6 occupancy on the β-globin origin of replication, suggesting increment in origin licensing and re-replication. In conclusion, our findings strongly suggest a novel role for CDC6 in abetting the oncogenic sabotage carried out by HBx and support the paradigm that pre-replicative complex proteins have a role in oncogenic transformation.
Collapse
Affiliation(s)
- Vijaya Pandey
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
49
|
Khattar E, Mukherji A, Kumar V. Akt augments the oncogenic potential of the HBx protein of hepatitis B virus by phosphorylation. FEBS J 2012; 279:1220-30. [PMID: 22309289 DOI: 10.1111/j.1742-4658.2012.08514.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis B virus X protein (HBx) is a putative viral oncoprotein that plays an important role in various cellular processes, including modulation of the phosphatidylinositol 3-kinase/Akt signalling pathway. However, the molecular mechanism of Akt activation remains elusive. Here we show that HBx interacts with Akt1 kinase and is phosphorylated at serine 31 as indicated by mutational analysis of the Akt recognition motif (creating the HBxS31A mutant) or immunoblotting of HBx immunoprecipitates using Akt motif-specific antibody. The Akt-dependent phosphorylation of HBx was abrogated in the presence of the phosphatidylinositol 3-kinase inhibitor LY294002 or Akt1 gene silencing by specific siRNA. Co-immunoprecipitation studies provided evidence for HBx-Akt interaction in a cellular environment. This interaction was also confirmed in hepatoma HepG2.2.15 cells in which HBx was expressed at physiological levels from the integrated hepatitis B viral genome. The HBx-Akt interaction was essential for Akt signalling, and involved displacement of the Akt-bound negative regulator 'C-terminal modulator protein' by HBx. HBx-activated Akt phosphorylated its downstream target glycogen synthase kinase 3β, leading to stabilization of β-catenin, while p65 phosphorylation resulted in enhanced promoter recruitment and expression of target genes encoding cyclin D1 and Bcl-XL. Further, the oncogenic potential of HBx was significantly augmented in the presence of Akt in a soft agar colony formation assay. Together, these results suggest that oncogenic co-operation between HBx and Akt may be important for cell proliferation, abrogation of apoptosis and tumorigenic transformation of cells.
Collapse
Affiliation(s)
- Ekta Khattar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | |
Collapse
|
50
|
Fatima G, Mathan G, Kumar V. The HBx protein of hepatitis B virus regulates the expression, intracellular distribution and functions of ribosomal protein S27a. J Gen Virol 2011; 93:706-715. [PMID: 22158882 DOI: 10.1099/vir.0.035691-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pleiotropic HBx protein of hepatitis B virus is linked functionally to the development of hepatocellular carcinoma (HCC) via effectors and signalling pathways of the host. To identify such effectors in a macrocarcinogenic environment, a PCR-based cDNA subtraction analysis was carried out in the X15-myc oncomouse model of HCC. Altogether, 19 categories of genes, mainly involved in protein biosynthesis and the electron-transport chain, were found to be upregulated in the liver of these mice. Ribosomal protein S27a (RPS27a), which is a natural fusion protein of N-terminal ubiquitin and C-terminal extension protein (CEP), topped the list of expressed genes, with >20-fold higher expression compared with its normal level. Sustained and elevated expression of RPS27a in the mouse liver and its moderate expression in cell culture in the presence of HBx suggested an indirect role of RPS27a in hepatocarcinogenesis. Nevertheless, a remarkable change in the intracellular distribution of ubiquitin from cytoplasm to late-endosomal lysosomes, and of CEP from nucleoli to the perinucleolar region/nuclear foci, was observed in the presence of HBx. RPS27a accelerated the progression of the cell cycle and cooperated with HBx in this process. Further, the knockdown of RPS27a expression by RNA interference in an HBx microenvironment led to retarded cell-cycle progression and reduced cell size. Thus, these results suggest strongly that RPS27a could be an effector of HBx-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Grace Fatima
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ganeshan Mathan
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|