1
|
Joshi K, Wright CS, Biswas RR, Iyer-Biswas S. Architectural underpinnings of stochastic intergenerational homeostasis. Phys Rev E 2024; 110:024405. [PMID: 39295040 DOI: 10.1103/physreve.110.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/24/2024] [Indexed: 09/21/2024]
Abstract
Living systems are naturally complex and adaptive and offer unique insights into the strategies for achieving and sustaining stochastic homeostasis in different conditions. Here we focus on homeostasis in the context of stochastic growth and division of individual bacterial cells. We take advantage of high-precision long-term dynamical data that have recently been used to extract emergent simplicities and to articulate empirical intra- and intergenerational scaling laws governing these stochastic dynamics. From these data, we identify the core motif in the mechanistic coupling between division and growth, which naturally yields these precise rules, thus also bridging the intra- and intergenerational phenomenologies. By developing and utilizing techniques for solving a broad class of first-passage processes, we derive the exact analytic necessary and sufficient condition for sustaining stochastic intergenerational cell-size homeostasis within this framework. Furthermore, we provide predictions for the precision kinematics of cell-size homeostasis and the shape of the interdivision time distribution, which are compellingly borne out by the high-precision data. Taken together, these results provide insights into the functional architecture of control systems that yield robust yet flexible stochastic homeostasis.
Collapse
|
2
|
Herdman M, Isbilir B, von Kügelgen A, Schulze U, Wainman A, Bharat TAM. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat Commun 2024; 15:3355. [PMID: 38637514 PMCID: PMC11026435 DOI: 10.1038/s41467-024-47529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
3
|
Barrows JM, Goley ED. Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology. J Bacteriol 2023; 205:e0038422. [PMID: 36715542 PMCID: PMC9945503 DOI: 10.1128/jb.00384-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
First isolated and classified in the 1960s, Caulobacter crescentus has been instrumental in the study of bacterial cell biology and differentiation. C. crescentus is a Gram-negative alphaproteobacterium that exhibits a dimorphic life cycle composed of two distinct cell types: a motile swarmer cell and a nonmotile, division-competent stalked cell. Progression through the cell cycle is accentuated by tightly controlled biogenesis of appendages, morphological transitions, and distinct localization of developmental regulators. These features as well as the ability to synchronize populations of cells and follow their progression make C. crescentus an ideal model for answering questions relevant to how development and differentiation are achieved at the single-cell level. This review will explore the discovery and development of C. crescentus as a model organism before diving into several key features and discoveries that have made it such a powerful organism to study. Finally, we will summarize a few of the ongoing areas of research that are leveraging knowledge gained over the last century with C. crescentus to highlight its continuing role at the forefront of cell and developmental biology.
Collapse
Affiliation(s)
- Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Fatima NI, Fazili KM, Bhat NH. Proteolysis dependent cell cycle regulation in Caulobacter crescentus. Cell Div 2022; 17:3. [PMID: 35365160 PMCID: PMC8973945 DOI: 10.1186/s13008-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Caulobacter crescentus, a Gram-negative alpha-proteobacterium, has surfaced as a powerful model system for unraveling molecular networks that control the bacterial cell cycle. A straightforward synchronization protocol and existence of many well-defined developmental markers has allowed the identification of various molecular circuits that control the underlying differentiation processes executed at the level of transcription, translation, protein localization and dynamic proteolysis. The oligomeric AAA+ protease ClpXP is a well-characterized example of an enzyme that exerts post-translational control over a number of pathways. Also, the proteolytic pathways of its candidate proteins are reported to play significant roles in regulating cell cycle and protein quality control. A detailed evaluation of the impact of its proteolysis on various regulatory networks of the cell has uncovered various significant cellular roles of this protease in C. crescentus. A deeper insight into the effects of regulatory proteolysis with emphasis on cell cycle progression could shed light on how cells respond to environmental cues and implement developmental switches. Perturbation of this network of molecular machines is also associated with diseases such as bacterial infections. Thus, research holds immense implications in clinical translation and health, representing a promising area for clinical advances in the diagnosis, therapeutics and prognosis.
Collapse
Affiliation(s)
- Nida I Fatima
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Nowsheen Hamid Bhat
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India.
| |
Collapse
|
5
|
Mohapatra SS, Fioravanti A, Vandame P, Spriet C, Pini F, Bompard C, Blossey R, Valette O, Biondi EG. Methylation-dependent transcriptional regulation of crescentin gene (creS) by GcrA in Caulobacter crescentus. Mol Microbiol 2020; 114:127-139. [PMID: 32187735 DOI: 10.1111/mmi.14500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/13/2020] [Indexed: 12/17/2022]
Abstract
In Caulobacter crescentus the combined action of chromosome replication and the expression of DNA methyl-transferase CcrM at the end of S-phase maintains a cyclic alternation between a full- to hemi-methylated chromosome. This transition of the chromosomal methylation pattern affects the DNA-binding properties of the transcription factor GcrA that controls the several key cell cycle functions. However, the molecular mechanism by which GcrA and methylation are linked to transcription is not fully elucidated yet. Using a combination of cell biology, genetics, and in vitro analysis, we deciphered how GcrA integrates the methylation pattern of several S-phase expressed genes to their transcriptional output. We demonstrated in vitro that transcription of ctrA from the P1 promoter in its hemi-methylated state is activated by GcrA, while in its fully methylated state GcrA had no effect. Further, GcrA and methylation together influence a peculiar distribution of creS transcripts, encoding for crescentin, the protein responsible for the characteristic shape of Caulobacter cells. This gene is duplicated at the onset of chromosome replication and the two hemi-methylated copies are spatially segregated. Our results indicated that GcrA transcribed only the copy where coding strand is methylated. In vitro transcription assay further substantiated this finding. As several of the cell cycle-regulated genes are also under the influence of methylation and GcrA-dependent transcriptional regulation, this could be a mechanism responsible for maintaining the gene transcription dosage during the S-phase.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ralf Blossey
- University of Lille, CNRS, UMR 8576 UGSF, Lille, France
| | - Odile Valette
- Aix Marseille University, CNRS, LCB, Marseille, France
| | | |
Collapse
|
6
|
A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genet 2019; 15:e1007897. [PMID: 30707707 PMCID: PMC6373972 DOI: 10.1371/journal.pgen.1007897] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Many bacteria have complex cell shapes, but the mechanisms producing their distinctive morphologies are still poorly understood. Caulobacter crescentus, for instance, exhibits a stalk-like extension that carries an adhesive holdfast mediating surface attachment. This structure forms through zonal peptidoglycan biosynthesis at the old cell pole and elongates extensively under phosphate-limiting conditions. We analyzed the composition of cell body and stalk peptidoglycan and identified significant differences in the nature and proportion of peptide crosslinks, indicating that the stalk represents a distinct subcellular domain with specific mechanical properties. To identify factors that participate in stalk formation, we systematically inactivated and localized predicted components of the cell wall biosynthetic machinery of C. crescentus. Our results show that the biosynthesis of stalk peptidoglycan involves a dedicated peptidoglycan biosynthetic complex that combines specific components of the divisome and elongasome, suggesting that the repurposing of preexisting machinery provides a straightforward means to evolve new morphological traits.
Collapse
|
7
|
Männik J, Walker BE, Männik J. Cell cycle-dependent regulation of FtsZ in Escherichia coli in slow growth conditions. Mol Microbiol 2018; 110:1030-1044. [PMID: 30230648 DOI: 10.1111/mmi.14135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
FtsZ is the key regulator of bacterial cell division. It initiates division by forming a dynamic ring-like structure, the Z-ring, at the mid-cell. What triggers the formation of the Z-ring during the cell cycle is poorly understood. In Escherichia coli, the common view is that FtsZ concentration is constant throughout its doubling time and therefore regulation of assembly is controlled by some yet-to-be-identified protein-protein interactions. Using a newly developed functional, fluorescent FtsZ reporter, we performed a quantitative analysis of the FtsZ concentration throughout the cell cycle under slow growth conditions. In contrast to the common expectation, we show that FtsZ concentrations vary in a cell cycle-dependent manner, and that upregulation of FtsZ synthesis correlates with the formation of the Z-ring. The first half of the cell cycle shows an approximately fourfold upregulation of FtsZ synthesis, followed by its rapid degradation by ClpXP protease in the last 10% of the cell cycle. The initiation of rapid degradation coincides with the dissociation of FtsZ from the septum. Altogether, our data suggest that the Z-ring formation in slow growth conditions in E. coli is partially controlled by a regulatory sequence wherein upregulation of an essential cell cycle factor is followed by its degradation.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Bryant E Walker
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jaan Männik
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Collier J. Cell division control in Caulobacter crescentus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:685-690. [PMID: 29715525 DOI: 10.1016/j.bbagrm.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Caulobacter crescentus is a free-living Alphaproteobacterium that thrives in oligotrophic environments. This review focuses on the regulatory network used by this bacterium to control the levels of cell division proteins, their organization inside the cell and their activity as a function of the cell cycle. Strikingly, C. crescentus makes frequent use of master transcriptional regulators and epigenetic signals, most likely to synchronize cell division with other events of the cell cycle. In addition, cellular metabolism and DNA damage sensors emerge as central players regulating cell division in response to changing environmental conditions.
Collapse
Affiliation(s)
- Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland.
| |
Collapse
|
9
|
|
10
|
Woldemeskel SA, Goley ED. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus. Trends Microbiol 2017; 25:673-687. [PMID: 28359631 DOI: 10.1016/j.tim.2017.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/05/2023]
Abstract
Bacterial cell shape is a genetically encoded and inherited feature that is optimized for efficient growth, survival, and propagation of bacteria. In addition, bacterial cell morphology is adaptable to changes in environmental conditions. Work in recent years has demonstrated that individual features of cell shape, such as length or curvature, arise through the spatial regulation of cell wall synthesis by cytoskeletal proteins. However, the mechanisms by which these different morphogenetic factors are coordinated and how they may be globally regulated in response to cell cycle and environmental cues are only beginning to emerge. Here, we have summarized recent advances that have been made to understand morphology in the dimorphic Gram-negative bacterium Caulobacter crescentus.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. Subcell Biochem 2017; 84:103-137. [PMID: 28500524 DOI: 10.1007/978-3-319-53047-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.
Collapse
|
12
|
Liu J, Francis LI, Jonas K, Laub MT, Chien P. ClpAP is an auxiliary protease for DnaA degradation in Caulobacter crescentus. Mol Microbiol 2016; 102:1075-1085. [PMID: 27667502 DOI: 10.1111/mmi.13537] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 11/28/2022]
Abstract
The Clp family of proteases is responsible for controlling both stress responses and normal growth. In Caulobacter crescentus, the ClpXP protease is essential and drives cell cycle progression through adaptor-mediated degradation. By contrast, the physiological role for the ClpAP protease is less well understood with only minor growth defects previously reported for ΔclpA cells. Here, we show that ClpAP plays an important role in controlling chromosome content and cell fitness during extended growth. Cells lacking ClpA accumulate aberrant numbers of chromosomes upon prolonged growth suggesting a defect in replication control. Levels of the replication initiator DnaA are elevated in ΔclpA cells and degradation of DnaA is more rapid in cells lacking the ClpA inhibitor ClpS. Consistent with this observation, ClpAP degrades DnaA in vitro while ClpS inhibits this degradation. In cells lacking Lon, the protease previously shown to degrade DnaA in Caulobacter, ClpA overexpression rescues defects in fitness and restores degradation of DnaA. Finally, we show that cells lacking ClpA are particularly sensitive to inappropriate increases in DnaA activity. Our work demonstrates an unexpected effect of ClpAP in directly regulating replication through degradation of DnaA and expands the functional role of ClpAP in Caulobacter.
Collapse
Affiliation(s)
- Jing Liu
- Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Laura I Francis
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kristina Jonas
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Laub
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Chien
- Molecular and Cellular Biology Graduate Program, Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
13
|
Rowlett VW, Margolin W. The bacterial divisome: ready for its close-up. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0028. [PMID: 26370940 DOI: 10.1098/rstb.2015.0028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial cells divide by targeting a transmembrane protein machine to the division site and regulating its assembly and disassembly so that cytokinesis occurs at the correct time in the cell cycle. The structure and dynamics of this machine (divisome) in bacterial model systems are coming more clearly into focus, thanks to incisive cell biology methods in combination with biochemical and genetic approaches. The main conserved structural element of the machine is the tubulin homologue FtsZ, which assembles into a circumferential ring at the division site that is stabilized and anchored to the inner surface of the cytoplasmic membrane by FtsZ-binding proteins. Once this ring is in place, it recruits a series of transmembrane proteins that ultimately trigger cytokinesis. This review will survey the methods used to characterize the structure of the bacterial divisome, focusing mainly on the Escherichia coli model system, as well as the challenges that remain. These methods include recent super-resolution microscopy, cryo-electron tomography and synthetic reconstitution.
Collapse
Affiliation(s)
- Veronica W Rowlett
- Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - William Margolin
- Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
14
|
Sundararajan K, Miguel A, Desmarais SM, Meier EL, Casey Huang K, Goley ED. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction. Nat Commun 2015; 6:7281. [PMID: 26099469 PMCID: PMC4532373 DOI: 10.1038/ncomms8281] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/26/2015] [Indexed: 12/17/2022] Open
Abstract
The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery, and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here, we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges, and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL, however cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wildtype. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment.
Collapse
Affiliation(s)
- Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Amanda Miguel
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Samantha M Desmarais
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Elizabeth L Meier
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kerwyn Casey Huang
- 1] Department of Bioengineering, Stanford University, Stanford, California 94305, USA [2] Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Robert L. Size sensors in bacteria, cell cycle control, and size control. Front Microbiol 2015; 6:515. [PMID: 26074903 PMCID: PMC4448035 DOI: 10.3389/fmicb.2015.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/09/2015] [Indexed: 12/18/2022] Open
Abstract
Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.
Collapse
Affiliation(s)
- Lydia Robert
- UMR1319 Micalis, Institut National de la Recherche AgronomiqueJouy-en-Josas, France
- UMR Micalis, AgroParisTechJouy-en-Josas, France
- Laboratoire Jean Perrin (Université Pierre et Marie Curie-Centre National de la Recherche Scientifique UMR8237), Université Pierre et Marie CurieParis, France
| |
Collapse
|
16
|
DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Trends Microbiol 2014; 22:528-35. [DOI: 10.1016/j.tim.2014.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/20/2023]
|
17
|
Tanifuji G, Onodera NT, Moore CE, Archibald JM. Reduced Nuclear Genomes Maintain High Gene Transcription Levels. Mol Biol Evol 2013; 31:625-35. [DOI: 10.1093/molbev/mst254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Trip EN, Veening JW, Stewart EJ, Errington J, Scheffers DJ. Balanced transcription of cell division genes inBacillus subtilisas revealed by single cell analysis. Environ Microbiol 2013; 15:3196-209. [DOI: 10.1111/1462-2920.12148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Erik Nico Trip
- Department of Molecular Microbiology; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
| | - Eric J. Stewart
- Department of Biology; Northeastern University; Boston MA USA
| | - Jeff Errington
- Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne UK
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
| |
Collapse
|
19
|
Fernandez-Fernandez C, Gonzalez D, Collier J. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. PLoS One 2011; 6:e26028. [PMID: 22022497 PMCID: PMC3193534 DOI: 10.1371/journal.pone.0026028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/15/2011] [Indexed: 12/05/2022] Open
Abstract
DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.
Collapse
Affiliation(s)
- Carmen Fernandez-Fernandez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Diego Gonzalez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L. Assembly of the Caulobacter cell division machine. Mol Microbiol 2011; 80:1680-98. [PMID: 21542856 DOI: 10.1111/j.1365-2958.2011.07677.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinesis in Gram-negative bacteria is mediated by a multiprotein machine (the divisome) that invaginates and remodels the inner membrane, peptidoglycan and outer membrane. Understanding the order of divisome assembly would inform models of the interactions among its components and their respective functions. We leveraged the ability to isolate synchronous populations of Caulobacter crescentus cells to investigate assembly of the divisome and place the arrival of each component into functional context. Additionally, we investigated the genetic dependence of localization among divisome proteins and the cell cycle regulation of their transcript and protein levels to gain insight into the control mechanisms underlying their assembly. Our results revealed a picture of divisome assembly with unprecedented temporal resolution. Specifically, we observed (i) initial establishment of the division site, (ii) recruitment of early FtsZ-binding proteins, (iii) arrival of proteins involved in peptidoglycan remodelling, (iv) arrival of FtsA, (v) assembly of core divisome components, (vi) initiation of envelope invagination, (vii) recruitment of polar markers and cytoplasmic compartmentalization and (viii) cell separation. Our analysis revealed differences in divisome assembly among Caulobacter and other bacteria that establish a framework for identifying aspects of bacterial cytokinesis that are widely conserved from those that are more variable.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 2011; 6:e18179. [PMID: 21494595 PMCID: PMC3073932 DOI: 10.1371/journal.pone.0018179] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells.
Collapse
|
22
|
Yao D, Buchan A, Suzuki MT. In situ activity of NAC11-7 roseobacters in coastal waters off the Chesapeake Bay based on ftsZ expression. Environ Microbiol 2011; 13:1032-41. [DOI: 10.1111/j.1462-2920.2010.02408.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Abstract
Events in the past decade have made it both possible and interesting to ask how bacteria create cells of defined length, diameter, and morphology. The current consensus is that bacterial shape is determined by the coordinated activities of cytoskeleton complexes that drive cell elongation and division. Cell length is most easily explained by the timing of cell division, principally by regulating the activity of the FtsZ protein. However, the question of how cells establish and maintain a specific and uniform diameter is, by far, much more difficult to answer. Mutations associated with the elongation complex often alter cell width, though it is not clear how. Some evidence suggests that diameter is strongly influenced by events during cell division. In addition, surprising new observations show that the bacterial cell wall is more highly malleable than previously believed and that cells can alter and restore their shapes by relying only on internal mechanisms.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA.
| |
Collapse
|
24
|
The caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J Bacteriol 2010; 192:4847-58. [PMID: 20693330 DOI: 10.1128/jb.00607-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division in Caulobacter crescentus involves constriction and fission of the inner membrane (IM) followed about 20 min later by fission of the outer membrane (OM) and daughter cell separation. In contrast to Escherichia coli, the Caulobacter Tol-Pal complex is essential. Cryo-electron microscopy images of the Caulobacter cell envelope exhibited outer membrane disruption, and cells failed to complete cell division in TolA, TolB, or Pal mutant strains. In wild-type cells, components of the Tol-Pal complex localize to the division plane in early predivisional cells and remain predominantly at the new pole of swarmer and stalked progeny upon completion of division. The Tol-Pal complex is required to maintain the position of the transmembrane TipN polar marker, and indirectly the PleC histidine kinase, at the cell pole, but it is not required for the polar maintenance of other transmembrane and membrane-associated polar proteins tested. Coimmunoprecipitation experiments show that both TolA and Pal interact directly or indirectly with TipN. We propose that disruption of the trans-envelope Tol-Pal complex releases TipN from its subcellular position. The Caulobacter Tol-Pal complex is thus a key component of cell envelope structure and function, mediating OM constriction at the final step of cell division as well as the positioning of a protein localization factor.
Collapse
|
25
|
Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 2010; 74:13-41. [PMID: 20197497 DOI: 10.1128/mmbr.00040-09] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Caulobacter crescentus is an aquatic Gram-negative alphaproteobacterium that undergoes multiple changes in cell shape, organelle production, subcellular distribution of proteins, and intracellular signaling throughout its life cycle. Over 40 years of research has been dedicated to this organism and its developmental life cycles. Here we review a portion of many developmental processes, with particular emphasis on how multiple processes are integrated and coordinated both spatially and temporally. While much has been discovered about Caulobacter crescentus development, areas of potential future research are also highlighted.
Collapse
|
26
|
Goley ED, Comolli LR, Fero KE, Downing KH, Shapiro L. DipM links peptidoglycan remodelling to outer membrane organization in Caulobacter. Mol Microbiol 2010; 77:56-73. [PMID: 20497504 DOI: 10.1111/j.1365-2958.2010.07222.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell division in Gram-negative organisms requires coordinated invagination of the multilayered cell envelope such that each daughter receives an intact inner membrane, peptidoglycan (PG) layer and outer membrane (OM). Here, we identify DipM, a putative LytM endopeptidase in Caulobacter crescentus, and show that it plays a critical role in maintaining cell envelope architecture during growth and division. DipM localized to the division site in an FtsZ-dependent manner via its PG-binding LysM domains. Although not essential for viability, DeltadipM cells exhibited gross morphological defects, including cell widening and filamentation, indicating a role in cell shape maintenance and division that we show requires its LytM domain. Strikingly, cells lacking DipM also showed OM blebbing at the division site, at cell poles and along the cell body. Cryo electron tomography of sacculi isolated from cells depleted of DipM revealed marked thickening of the PG as compared to wild type, which we hypothesize leads to loss of trans-envelope contacts between components of the Tol-Pal complex. We conclude that DipM is required for normal envelope invagination during division and to maintain a sacculus of constant thickness that allows for maintenance of OM connections throughout the cell envelope.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Bacterial cell division is orchestrated by a tubulin homologue, FtsZ, which polymerizes to form a ring-like structure that is both a scaffold for the assembly of the bacterial cytokinetic machinery and, at least in part, a source of the energy for constriction. FtsZ assembly is tightly regulated, and a diverse repertoire of accessory proteins contributes to the formation of a functional division machine that is responsive to cell cycle status and environmental stress. In this Review, we describe the interaction of these proteins with FtsZ and discuss recent advances in our understanding of Z ring assembly.
Collapse
|
28
|
Möll A, Thanbichler M. FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol Microbiol 2009; 72:1037-53. [PMID: 19400794 DOI: 10.1111/j.1365-2958.2009.06706.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In bacteria, cytokinesis is mediated by a ring-shaped multiprotein complex, called divisome. While some of its components are widely conserved, others are restricted to certain bacterial lineages. FtsN is the last essential cell division protein to localize to the division septum in Escherichia coli and is poorly conserved outside the enteric bacteria. We have identified a homologue of FtsN in the alpha-proteobacterium Caulobacter crescentus and show that it is essential for cell division. C. crescentus FtsN is recruited to the divisome significantly after cell division initiates and remains associated with the new cell poles after cytokinesis is finished. All determinants necessary for localization and function are located in a largely unstructured periplasmic segment of the protein. Its conserved SPOR-domain, by contrast, is dispensable for cytokinesis, although it supports targeting of FtsN to the division site. Interestingly, the SPOR-domain is recruited to the division plane when produced in isolated form and retains its localization potential in a heterologous host background. Searching for proteins that share the characteristic features of FtsN from E. coli and C. crescentus, we identified FtsN-like cell division proteins in beta- and delta-proteobacteria, suggesting that FtsN is widespread among bacteria, albeit highly variable at the sequence level.
Collapse
Affiliation(s)
- Andrea Möll
- Independent Junior Research Group Prokaryotic Cell Biology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 1, 35043 Marburg, Germany
| | | |
Collapse
|
29
|
Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2008; 54:1-101. [PMID: 18929067 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
|
30
|
Goley ED, Iniesta AA, Shapiro L. Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 2008; 120:3501-7. [PMID: 17928306 DOI: 10.1242/jcs.005967] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular reproduction in all organisms requires temporal and spatial coordination of crucial events, notably DNA replication, chromosome segregation and cytokinesis. Recent studies on the dimorphic bacterium Caulobacter crescentus (Caulobacter) highlight mechanisms by which positional information is integrated with temporal modes of cell cycle regulation. Caulobacter cell division is inherently asymmetric, yielding progeny with different fates: stalked cells and swarmer cells. Cell type determinants in stalked progeny promote entry into S phase, whereas swarmer progeny remain in G1 phase. Moreover, initiation of DNA replication is allowed only once per cell cycle. This finite window of opportunity is imposed by coordinating spatially constrained proteolysis of CtrA, an inhibitor of DNA replication initiation, with forward progression of the cell cycle. Positional cues are equally important in coordinating movement of the chromosome with cell division site selection in Caulobacter. The chromosome is specifically and dynamically localized over the course of the cell cycle. As the duplicated chromosomes are partitioned, factors that restrict assembly of the cell division protein FtsZ associate with a chromosomal locus near the origin, ensuring that the division site is located towards the middle of the cell.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | | | | |
Collapse
|
31
|
Li Z, Trimble MJ, Brun YV, Jensen GJ. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 2007; 26:4694-708. [PMID: 17948052 DOI: 10.1038/sj.emboj.7601895] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
In prokaryotes, FtsZ (the filamentous temperature sensitive protein Z) is a nearly ubiquitous GTPase that localizes in a ring at the leading edge of constricting plasma membranes during cell division. Here we report electron cryotomographic reconstructions of dividing Caulobacter crescentus cells wherein individual arc-like filaments were resolved just underneath the inner membrane at constriction sites. The filaments' position, orientation, time of appearance, and resistance to A22 all suggested that they were FtsZ. Predictable changes in the number, length, and distribution of filaments in cells where the expression levels and stability of FtsZ were altered supported that conclusion. In contrast to the thick, closed-ring-like structure suggested by fluorescence light microscopy, throughout the constriction process the Z-ring was seen here to consist of just a few short (approximately 100 nm) filaments spaced erratically near the division site. Additional densities connecting filaments to the cell wall, occasional straight segments, and abrupt kinks were also seen. An 'iterative pinching' model is proposed wherein FtsZ itself generates the force that constricts the membrane in a GTP-hydrolysis-driven cycle of polymerization, membrane attachment, conformational change, depolymerization, and nucleotide exchange.
Collapse
Affiliation(s)
- Zhuo Li
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Proper placement of the cell division site in some rod-shaped bacteria requires two different negative regulatory systems, nucleoid occlusion and the Min proteins. Caulobacter crescentus lacks these systems, but recent work has uncovered a novel regulator that achieves the same goals.
Collapse
|
33
|
Abstract
In recent years it has been shown that bacteria contain a number of cytoskeletal structures. The bacterial cytoplasmic elements include homologs of the three major types of eukaryotic cytoskeletal proteins (actin, tubulin, and intermediate filament proteins) and a fourth group, the MinD-ParA group, that appears to be unique to bacteria. The cytoskeletal structures play important roles in cell division, cell polarity, cell shape regulation, plasmid partition, and other functions. The proteins self-assemble into filamentous structures in vitro and form intracellular ordered structures in vivo. In addition, there are a number of filamentous bacterial elements that may turn out to be cytoskeletal in nature. This review attempts to summarize and integrate the in vivo and in vitro aspects of these systems and to evaluate the probable future directions of this active research field.
Collapse
Affiliation(s)
- Yu-Ling Shih
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032, USA
| | | |
Collapse
|
34
|
Osawa M, Erickson HP. FtsZ from divergent foreign bacteria can function for cell division in Escherichia coli. J Bacteriol 2006; 188:7132-40. [PMID: 17015652 PMCID: PMC1636228 DOI: 10.1128/jb.00647-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/01/2006] [Indexed: 11/20/2022] Open
Abstract
FtsZs from Mycoplasma pulmonis (MpuFtsZ) and Bacillus subtilis (BsFtsZ) are only 46% and 53% identical in amino acid sequence to FtsZ from Escherichia coli (EcFtsZ). In the present study we show that MpuFtsZ and BsFtsZ can function for cell division in E. coli provided we make two modifications. First, we replaced their C-terminal tails with that from E. coli, giving the foreign FtsZ the binding site for E. coli FtsA and ZipA. Second, we selected for mutations in the E. coli genome that facilitated division by the foreign FtsZs. These suppressor strains arose at a relatively high frequency of 10(-3) to 10(-5), suggesting that they involve loss-of-function mutations in multigene pathways. These pathways may be negative regulators of FtsZ or structural pathways that facilitate division by slightly defective FtsZ. Related suppressor strains were obtained for EcFtsZ containing certain point mutations or insertions of yellow fluorescent protein. The ability of highly divergent FtsZs to function for division in E. coli is consistent with a two-part mechanism. FtsZ assembles the Z ring, and perhaps generates the constriction force, through self interactions; the downstream division proteins remodel the peptidoglycan wall by interacting with each other and the wall. The C-terminal peptide of FtsZ, which binds FtsA, provides the link between FtsZ assembly and peptidoglycan remodeling.
Collapse
Affiliation(s)
- Masaki Osawa
- Department Cell Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
35
|
Del Sol R, Mullins JGL, Grantcharova N, Flärdh K, Dyson P. Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 2006; 188:1540-50. [PMID: 16452438 PMCID: PMC1367258 DOI: 10.1128/jb.188.4.1540-1550.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of the crgA gene of Streptomyces coelicolor represents a novel family of small proteins. A single orthologous gene is located close to the origin of replication of all fully sequenced actinomycete genomes and borders a conserved gene cluster implicated in cell growth and division. In S. coelicolor, CrgA is important for coordinating growth and cell division in sporogenic hyphae. In this study, we demonstrate that CrgA is an integral membrane protein whose peak expression is coordinated with the onset of development of aerial hyphae. The protein localizes to discrete foci away from growing hyphal tips. Upon overexpression, CrgA localizes to apical syncytial cells of aerial hyphae and inhibits the formation of productive cytokinetic rings of the bacterial tubulin homolog FtsZ, leading to proteolytic turnover of this major cell division determinant. In the absence of known prokaryotic cell division inhibitors in actinomycetes, CrgA may have an important conserved function influencing Z-ring formation in these bacteria.
Collapse
Affiliation(s)
- Ricardo Del Sol
- Institute of Life Science, School of Medicine, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Harry E, Monahan L, Thompson L. Bacterial cell division: the mechanism and its precison. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:27-94. [PMID: 17098054 DOI: 10.1016/s0074-7696(06)53002-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.
Collapse
Affiliation(s)
- Elizabeth Harry
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
37
|
Dye NA, Pincus Z, Theriot JA, Shapiro L, Gitai Z. Two independent spiral structures control cell shape in Caulobacter. Proc Natl Acad Sci U S A 2005; 102:18608-13. [PMID: 16344481 PMCID: PMC1317941 DOI: 10.1073/pnas.0507708102] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin homolog MreB contributes to bacterial cell shape. Here, we explore the role of the coexpressed MreC protein in Caulobacter and show that it forms a periplasmic spiral that is out of phase with the cytoplasmic MreB spiral. Both mreB and mreC are essential, and depletion of either protein results in a similar cell shape defect. MreB forms dynamic spirals in MreC-depleted cells, and MreC localizes helically in the presence of the MreB-inhibitor A22, indicating that each protein can form a spiral independently of the other. We show that the peptidoglycan transpeptidase Pbp2 also forms a helical pattern that partially colocalizes with MreC but not MreB. Perturbing either MreB (with A22) or MreC (with depletion) causes GFP-Pbp2 to mislocalize to the division plane, indicating that each is necessary but not sufficient to generate a helical Pbp2 pattern. We show that it is the division process that draws Pbp2 to midcell in the absence of MreB's regulation, because cells depleted of the tubulin homolog FtsZ maintain a helical Pbp2 localization in the presence of A22. By developing and employing a previously uncharacterized computational method for quantitating shape variance, we find that a FtsZ depletion can also partially rescue the A22-induced shape deformation. We conclude that MreB and MreC form spatially distinct and independently localized spirals and propose that MreB inhibits division plane localization of Pbp2, whereas MreC promotes lengthwise localization of Pbp2; together these two mechanism ensure a helical localization of Pbp2 and, thereby, the maintenance of proper cell morphology in Caulobacter.
Collapse
Affiliation(s)
- Natalie A Dye
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
38
|
Muir RE, Easter J, Gober JW. The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus. Microbiology (Reading) 2005; 151:3699-3711. [PMID: 16272391 DOI: 10.1099/mic.0.28174-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The FliX/FlbD-dependent temporal transcription of late flagellar genes inCaulobacter crescentusrequires the assembly of an early, class II-encoded flagellar structure. Class II flagellar-mutant strains exhibit a delay in the completion of cell division, with the accumulation of filamentous cells in culture. It is shown here that this cell-division defect is attributable to an arrest in the final stages of cell separation. Normal cell morphology could be restored in class II mutants by gain-of-function alleles of FliX or FlbD, suggesting that the timely completion of cell division requires thesetrans-acting factors. In synchronized cultures, inhibition of cell division by depleting FtsZ resulted in normal initial expression of the late, FlbD-dependentfliKgene; however, the cell cycle-regulated cessation of transcription was delayed, indicating that cell division may be required to negatively regulate FlbD activity. Interestingly, prolonged depletion of FtsZ resulted in an eventual loss of FlbD activity that could be bypassed by a constitutive mutant of FlbD, but not of FliX, suggesting the possible existence of a second cell cycle-dependent pathway for FlbD activation.
Collapse
Affiliation(s)
- Rachel E Muir
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Jesse Easter
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - James W Gober
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
39
|
El-Kafafi ES, Mukherjee S, El-Shami M, Putaux JL, Block M, Pignot-Paintrand I, Lerbs-Mache S, Falconet D. The plastid division proteins, FtsZ1 and FtsZ2, differ in their biochemical properties and sub-plastidial localization. Biochem J 2005; 387:669-76. [PMID: 15601251 PMCID: PMC1134996 DOI: 10.1042/bj20041281] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/06/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022]
Abstract
Plastid division in higher plants is morphologically similar to bacterial cell division, with a process termed binary fission involving constriction of the envelope membranes. FtsZ proteins involved in bacterial division are also present in higher plants, in which the ftsZ genes belong to two distinct families: ftsZ1 and ftsZ2. However, the roles of the corresponding proteins FtsZ1 and FtsZ2 in plastid division have not been determined. Here we show that the expression of plant FtsZ1 and FtsZ2 in bacteria has different effects on cell division, and that distinct protein domains are involved in the process. We have studied the assembly of purified FtsZ1 and FtsZ2 using a chemical cross-linking approach followed by PAGE and electron microscopy analyses of the resulting polymers. This has revealed that FtsZ1 is capable of forming long rod-shaped polymers and rings similar to the bacterial FtsZ structures, whereas FtsZ2 does not form any organized polymer. Moreover, using purified sub-plastidial fractions, we show that both proteins are present in the stroma, and that a subset of FtsZ2 is tightly bound to the purified envelope membranes. These results indicate that FtsZ2 has a localization pattern distinct from that of FtsZ1, which can be related to distinct properties of the proteins. From the results presented here, we propose a model for the sequential topological localization and functions of green plant FtsZ1 and FtsZ2 in chloroplast division.
Collapse
Affiliation(s)
- El-Sayed El-Kafafi
- *Laboratoire de Génétique Moléculaire des Plantes, UMR 5575, CNRS-Université Joseph Fourier, BP 53, 38041 Grenoble, Cedex, France
| | - Sunil Mukherjee
- *Laboratoire de Génétique Moléculaire des Plantes, UMR 5575, CNRS-Université Joseph Fourier, BP 53, 38041 Grenoble, Cedex, France
| | - Mahmoud El-Shami
- *Laboratoire de Génétique Moléculaire des Plantes, UMR 5575, CNRS-Université Joseph Fourier, BP 53, 38041 Grenoble, Cedex, France
| | - Jean-Luc Putaux
- †Centre de Recherches sur les Macromolécules Végétales (affiliated with the Université Joseph Fourier), UPR 5301-CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Maryse A. Block
- ‡Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS–CEA–Université Joseph Fourier–INRA, CEA-Grenoble, DRDC-PCV, 17 rue des martyrs, 38054 Grenoble Cedex, France
| | - Isabelle Pignot-Paintrand
- †Centre de Recherches sur les Macromolécules Végétales (affiliated with the Université Joseph Fourier), UPR 5301-CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Silva Lerbs-Mache
- *Laboratoire de Génétique Moléculaire des Plantes, UMR 5575, CNRS-Université Joseph Fourier, BP 53, 38041 Grenoble, Cedex, France
| | - Denis Falconet
- *Laboratoire de Génétique Moléculaire des Plantes, UMR 5575, CNRS-Université Joseph Fourier, BP 53, 38041 Grenoble, Cedex, France
| |
Collapse
|
40
|
Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L. MreB Actin-Mediated Segregation of a Specific Region of a Bacterial Chromosome. Cell 2005; 120:329-41. [PMID: 15707892 DOI: 10.1016/j.cell.2005.01.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/22/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Faithful chromosome segregation is an essential component of cell division in all organisms. The eukaryotic mitotic machinery uses the cytoskeleton to move specific chromosomal regions. To investigate the potential role of the actin-like MreB protein in bacterial chromosome segregation, we first demonstrate that MreB is the direct target of the small molecule A22. We then demonstrate that A22 completely blocks the movement of newly replicated loci near the origin of replication but has no qualitative or quantitative effect on the segregation of other loci if added after origin segregation. MreB selectively interacts, directly or indirectly, with origin-proximal regions of the chromosome, arguing that the origin-proximal region segregates via an MreB-dependent mechanism not used by the rest of the chromosome.
Collapse
Affiliation(s)
- Zemer Gitai
- Department of Developmental Biology, Beckman Center, School of Medicine, Stanford University, California 94305, USA.
| | | | | | | | | |
Collapse
|
41
|
Martin ME, Trimble MJ, Brun YV. Cell cycle-dependent abundance, stability and localization of FtsA and FtsQ in Caulobacter crescentus. Mol Microbiol 2004; 54:60-74. [PMID: 15458405 DOI: 10.1111/j.1365-2958.2004.04251.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coordination between cell division and DNA replication is ensured by checkpoints that act through proteins required for cell division. Following a block in DNA replication, transcription of the cell division progression genes ftsA and ftsQ is prevented in Caulobacter crescentus. One requirement for this checkpoint is that FtsA and/or FtsQ should be limiting for division in the next cell cycle. We show that the number of FtsA and FtsQ molecules fluctuates such that their concentration is low in swarmer and stalked cells, peaks in pre-divisional cells, and then dramatically decreases after cell division. Despite constitutive expression from an inducible promoter, FtsA and FtsQ levels still vary during the cell cycle, and the half-life of FtsA increases from 13 min in swarmer cells to 55 min in stalked cell types, confirming cell type-specific degradation. The post-division degradation of FtsA and FtsQ in swarmer cells reduces their concentration to 7% and 10% of their maximal level, respectively, strongly suggesting that de novo synthesis of both proteins is required for each division cycle. The localization of FtsA and FtsQ is also cell type-specific. FtsA and FtsQ are recruited to the midcell during a short period in late pre-divisional cells, consistent with the demonstrated requirement of FtsA for late stages of cell division. As previously reported for FtsZ, constitutive expression of FtsA causes cell division defects. These results indicate that the tight control of FtsA, and probably FtsQ, by cell cycle transcription, proteolysis, and localization are critical for optimal cell division and the coordination of cell division with the DNA replication cycle.
Collapse
Affiliation(s)
- Miriam E Martin
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN 47405, USA
| | | | | |
Collapse
|
42
|
Gitai Z, Dye N, Shapiro L. An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 2004; 101:8643-8. [PMID: 15159537 PMCID: PMC423248 DOI: 10.1073/pnas.0402638101] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Achieving proper polarity is essential for cellular function. In bacteria, cell polarity has been observed by using both morphological and molecular markers; however, no general regulators of bacterial cell polarity have been identified. Here we investigate the effect on cell polarity of two cytoskeletal elements previously implicated in cell shape determination. We find that the actin-like MreB protein mediates global cell polarity in Caulobacter crescentus, although the intermediate filament-like CreS protein influences cell shape without affecting cell polarity. MreB is organized in an axial spiral that is dynamically rearranged during the cell cycle, and MreB dynamics may be critical for the determination of cell polarity. By examining depletion and overexpression strains, we demonstrate that MreB is required both for the polar localization of the chromosomal origin sequence and the dynamic localization of regulatory proteins to the correct cell pole. We propose that the molecular polarity inherent in an actin-like filament is translated into a mechanism for directing global cell polarity.
Collapse
Affiliation(s)
- Zemer Gitai
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
43
|
Abstract
Caulobacter crescentus has a dimorphic life cycle composed of a motile stage and a sessile stage. In the sessile stage, C. crescentus is often found tightly attached to a surface through its adhesive holdfast. In this study, we examined the contribution of growth and external structures to the attachment of C. crescentus to abiotic surfaces. We show that the holdfast is essential but not sufficient for optimal attachment. Rather, adhesion in C. crescentus is a complex developmental process. We found that the attachment of C. crescentus to surfaces is cell cycle regulated and that growth or energy or both are essential for this process. The initial stage of attachment occurs in swarmer cells and is facilitated by flagellar motility and pili. Our results suggest that strong attachment is mediated by the synthesis of a holdfast as the swarmer cell differentiates into a stalked cell.
Collapse
Affiliation(s)
- Diane Bodenmiller
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
44
|
Lo T, van Der Schalie E, Werner T, Brun YV, Din N. A temperature-sensitive mutation in the dnaE gene of Caulobacter crescentus that prevents initiation of DNA replication but not ongoing elongation of DNA. J Bacteriol 2004; 186:1205-12. [PMID: 14762018 PMCID: PMC344199 DOI: 10.1128/jb.186.4.1205-1212.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen for cell division cycle mutants of Caulobacter crescentus identified a temperature-sensitive DNA replication mutant. Genetic complementation experiments revealed a mutation within the dnaE gene, encoding the alpha-catalytic subunit of DNA polymerase III holoenzyme. Sequencing of the temperature-sensitive dnaE allele indicated a single base pair substitution resulting in a change from valine to glutamic acid within the C-terminal portion of the protein. This mutation lies in a region of the DnaE protein shown in Escherichia coli, to be important in interactions with other essential DNA replication proteins. Using DNA replication assays and fluorescence flow cytometry, we show that the observed block in DNA synthesis in the Caulobacter dnaE mutant strain occurs at the initiation stage of replication and that there is also a partial block of DNA elongation.
Collapse
Affiliation(s)
- Teresa Lo
- Department of Biology, Loyola College, Baltimore, Maryland 21210, USA
| | | | | | | | | |
Collapse
|
45
|
Ausmees N, Jacobs-Wagner C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 2004; 57:225-47. [PMID: 14527278 DOI: 10.1146/annurev.micro.57.030502.091006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dimorphic and intrinsically asymmetric bacterium Caulobacter crescentus has become an important model organism to study the bacterial cell cycle, cell polarity, and polar differentiation. A multifaceted regulatory network orchestrates the precise coordination between the development of polar organelles and the cell cycle. One master response regulator, CtrA, directly controls the initiation of chromosome replication as well as several aspects of polar morphogenesis and cell division. CtrA activity is temporally and spatially regulated by multiple partially redundant control mechanisms, such as transcription, phosphorylation, and targeted proteolysis. A multicomponent signal transduction network upstream CtrA, containing histidine kinases CckA, PleC, DivJ, and DivL and the essential response regulator DivK, contributes to the control of CtrA activity in response to cell cycle and developmental cues. An intriguing feature of this signaling network is the dynamic cell cycle-dependent polar localization of its components, which is believed to have a novel regulatory function.
Collapse
Affiliation(s)
- Nora Ausmees
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | |
Collapse
|
46
|
Romberg L, Levin PA. Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 2004; 57:125-54. [PMID: 14527275 PMCID: PMC5517307 DOI: 10.1146/annurev.micro.57.012903.074300] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FtsZ is a prokaryotic tubulin homolog that assembles into a ring at the future site of cell division. The resulting "Z ring" forms the framework for the division apparatus, and its assembly is regulated throughout the bacterial cell cycle. A highly dynamic structure, the Z ring exhibits continual subunit turnover and the ability to rapidly assemble, disassemble, and, under certain circumstances, relocalize. These in vivo properties are ultimately due to FtsZ's capacity for guanosine triphosphate (GTP)-dependent, reversible polymerization. FtsZ polymer stability appears to be fine-tuned such that subtle changes in its assembly kinetics result in large changes in the Z ring structure. Thus, regulatory proteins that modulate FtsZ's assembly dynamics can cause the ring to rapidly remodel in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Laura Romberg
- Institute for Cellular and Chemical Biology, Harvard Medical School, SGM 604, 250 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
47
|
Abstract
Bacteria exhibit a high degree of intracellular organization, both in the timing of essential processes and in the placement of the chromosome, the division site, and individual structural and regulatory proteins. We examine the temporal and spatial regulation of the Caulobacter cell cycle, bacterial chromosome segregation and cytokinesis, and Bacillus subtilis sporulation. Mechanisms that control timing of cell cycle and developmental events include transcriptional cascades, regulated phosphorylation and proteolysis of signal transduction proteins, transient genetic asymmetry, and intercellular communication. Surprisingly, many signal transduction proteins are dynamically localized to specific subcellular addresses during the cell division cycle and sporulation, and proper localization is essential for their function. The Min proteins that govern division site selection in Escherichia coli may be the first example of a system that generates positional information de novo.
Collapse
Affiliation(s)
- Kathleen R Ryan
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| | | |
Collapse
|
48
|
Quardokus EM, Brun YV. Cell cycle timing and developmental checkpoints in Caulobacter crescentus. Curr Opin Microbiol 2003; 6:541-9. [PMID: 14662348 DOI: 10.1016/j.mib.2003.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Development in Caulobacter reflects a level of complexity once thought only to exist in eukaryotic cells. The cell cycle and development are not isolated from each other, but are interdependent processes. Checkpoints are in place to ensure that both cell cycle and developmental processes are completed accurately before the next stage is initiated. The timing of these processes is regulated by signal transduction networks that integrate signals from DNA replication, cell division and development. These signal transduction networks achieve precise timing of the cell cycle and development by regulating temporal gene expression, and protein activity by dynamic spatial localization within the cell and timed proteolysis.
Collapse
Affiliation(s)
- Ellen M Quardokus
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | | |
Collapse
|
49
|
Abstract
In free-living eubacteria an external shell of peptidoglycan opposes internal hydrostatic pressure and prevents membrane rupture and death. At the same time, this wall imposes on each cell a shape. Because shape is both stable and heritable, as is the ability of many organisms to execute defined morphological transformations, cells must actively choose from among a large repertoire of available shapes. How they do so has been debated for decades, but recently experiment has begun to catch up with theory. Two discoveries are particularly informative. First, specific protein assemblies, nucleated by FtsZ, MreB or Mbl, appear to act as internal scaffolds that influence cell shape, perhaps by correctly localizing synthetic enzymes. Second, defects in cell shape are correlated with the presence of inappropriately placed, metabolically inert patches of peptidoglycan. When combined with what we know about mutants affecting cellular morphology, these observations suggest that bacteria may fabricate specific shapes by directing the synthesis of two kinds of cell wall: a long-lived, rigid framework that defines overall topology, and a metabolically plastic peptidoglycan whose shape is directed by internal scaffolds.
Collapse
Affiliation(s)
- Kevin D Young
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks 58202-9037, USA.
| |
Collapse
|
50
|
Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci U S A 2003; 100:8235-40. [PMID: 12824468 PMCID: PMC166212 DOI: 10.1073/pnas.1433105100] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asymmetric cell division in Caulobacter crescentus yields daughter cells that have different cell fates. Compartmentalization of the predivisional cell is a critical event in the establishment of the differential distribution of regulatory factors that specify cell fate. To determine when during the cell cycle the cytoplasm is compartmentalized so that cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, we designed a fluorescence loss in photobleaching assay. Individual cells containing enhanced GFP were exposed to a bleaching laser pulse tightly focused at one cell pole. In compartmentalized cells, fluorescence disappears only in the compartment receiving the bleaching beam; in noncompartmentalized cells, fluorescence disappears from the entire cell. In a 135-min cell cycle, the cells were compartmentalized 18 +/- 5 min before the progeny cells separated. Clearance of the 22000 CtrA master transcriptional regulator molecules from the stalked portion of the predivisional cell is a controlling element of Caulobacter asymmetry. Monitoring of a fluorescent marker for CtrA showed that the differential degradation of CtrA in the nascent stalk cell compartment occurs only after the cytoplasm is compartmentalized.
Collapse
Affiliation(s)
- Ellen M. Judd
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - Kathleen R. Ryan
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - W. E. Moerner
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|