1
|
Yang S, Palmquist KH, Nathan L, Pfeifer CR, Schultheiss PJ, Sharma A, Kam LC, Miller PW, Shyer AE, Rodrigues AR. Morphogens enable interacting supracellular phases that generate organ architecture. Science 2023; 382:eadg5579. [PMID: 37995219 DOI: 10.1126/science.adg5579] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
During vertebrate organogenesis, increases in morphological complexity are tightly coupled to morphogen expression. In this work, we studied how morphogens influence self-organizing processes at the collective or "supra"-cellular scale in avian skin. We made physical measurements across length scales, which revealed morphogen-enabled material property differences that were amplified at supracellular scales in comparison to cellular scales. At the supracellular scale, we found that fibroblast growth factor (FGF) promoted "solidification" of tissues, whereas bone morphogenetic protein (BMP) promoted fluidity and enhanced mechanical activity. Together, these effects created basement membrane-less compartments within mesenchymal tissue that were mechanically primed to drive avian skin tissue budding. Understanding this multiscale process requires the ability to distinguish between proximal effects of morphogens that occur at the cellular scale and their functional effects, which emerge at the supracellular scale.
Collapse
Affiliation(s)
- Sichen Yang
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Karl H Palmquist
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Levy Nathan
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Charlotte R Pfeifer
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Paula J Schultheiss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Pearson W Miller
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Amy E Shyer
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Alan R Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
2
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
3
|
Characterization of Embryonic Skin Transcriptome in Anser cygnoides at Three Feather Follicles Developmental Stages. G3-GENES GENOMES GENETICS 2020; 10:443-454. [PMID: 31792007 PMCID: PMC7003092 DOI: 10.1534/g3.119.400875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to enrich the Anser cygnoides genome and identify the gene expression profiles of primary and secondary feather follicles development, de novo transcriptome assembly of skin tissues was established by analyzing three developmental stages at embryonic day 14, 18, and 28 (E14, E18, E28). Sequencing output generated 436,730,608 clean reads from nine libraries and de novo assembled into 56,301 unigenes. There were 2,298, 9,423 and 12,559 unigenes showing differential expression in three stages respectively. Furthermore, differentially expressed genes (DEGs) were functionally classified according to genes ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and series-cluster analysis. Relevant specific GO terms such as epithelium development, regulation of keratinocyte proliferation, morphogenesis of an epithelium were identified. In all, 15,144 DEGs were clustered into eight profiles with distinct expression patterns and 2,424 DEGs were assigned to 198 KEGG pathways. Skin development related pathways (mitogen-activated protein kinase signaling pathway, extra-cellular matrix -receptor interaction, Wingless-type signaling pathway) and genes (delta like canonical Notch ligand 1, fibroblast growth factor 2, Snail family transcriptional repressor 2, bone morphogenetic protein 6, polo like kinase 1) were identified, and eight DEGs were selected to verify the reliability of transcriptome results by real-time quantitative PCR. The findings of this study will provide the key insights into the complicated molecular mechanism and breeding techniques underlying the developmental characteristics of skin and feather follicles in Anser cygnoides.
Collapse
|
4
|
Hu X, Zhang X, Liu Z, Li S, Zheng X, Nie Y, Tao Y, Zhou X, Wu W, Yang G, Zhao Q, Zhang Y, Xu Q, Mou C. Exploration of key regulators driving primary feather follicle induction in goose skin. Gene 2020; 731:144338. [PMID: 31923576 DOI: 10.1016/j.gene.2020.144338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
The primary feather follicles are universal skin appendages widely distributed in the skin of feathered birds. The morphogenesis and development of the primary feather follicles in goose skin remain largely unknown. Here, the induction of primary feather follicles in goose embryonic skin (pre-induction vs induction) was investigated by de novo transcriptome analyses to reveal 409 differentially expressed genes (DEGs). The DEGs were characterized to potentially regulate the de novo formation of feather follicle primordia consisting of placode (4 genes) and dermal condensate (12 genes), and the thickening of epidermis (5 genes) and dermal fibroblasts (17 genes), respectively. Further analyses enriched DEGs into GO terms represented as cell adhesion and KEGG pathways including Wnt and Hedgehog signaling pathways that are highly correlated with cell communication and molecular regulation. Six selected Wnt pathway genes were detected by qPCR with up-regulation in goose skin during the induction of primary feather follicles. The localization of WNT16, SFRP1 and FRZB by in situ hybridization showed weak expression in the primary feather primordia, whereas FZD1, LEF1 and DKK1 were expressed initially in the inter-follicular skin and feather follicle primordia, then mainly restricted in the feather primordia. The spatial-temporal expression patterns indicate that Wnt pathway genes DKK1, FZD1 and LEF1 are the important regulators functioned in the induction of primary feather follicle in goose skin. The dynamic molecular changes and specific gene expression patterns revealed in this report provide the general knowledge of primary feather follicle and skin development in waterfowl, and contribute to further understand the diversity of hair and feather development beyond the mouse and chicken models.
Collapse
Affiliation(s)
- Xuewen Hu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaokang Zhang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Zhiwei Liu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Shaomei Li
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xinting Zheng
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yangfan Nie
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yingfeng Tao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Xiaoliu Zhou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Wenqing Wu
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Ge Yang
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Qianqian Zhao
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Chunyan Mou
- Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China.
| |
Collapse
|
5
|
Ho WKW, Freem L, Zhao D, Painter KJ, Woolley TE, Gaffney EA, McGrew MJ, Tzika A, Milinkovitch MC, Schneider P, Drusko A, Matthäus F, Glover JD, Wells KL, Johansson JA, Davey MG, Sang HM, Clinton M, Headon DJ. Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biol 2019; 17:e3000132. [PMID: 30789897 PMCID: PMC6383868 DOI: 10.1371/journal.pbio.3000132] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 12/30/2022] Open
Abstract
Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.
Collapse
Affiliation(s)
- William K. W. Ho
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Freem
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Debiao Zhao
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin J. Painter
- School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Thomas E. Woolley
- School of Mathematics, Cardiff University, Cathays, Cardiff, United Kingdom
| | - Eamonn A. Gaffney
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Michael J. McGrew
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Athanasia Tzika
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Armin Drusko
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - Franziska Matthäus
- FIAS and Faculty of Biological Sciences, University of Frankfurt, Frankfurt, Germany
| | - James D. Glover
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty L. Wells
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeanette A. Johansson
- Cancer Research UK Edinburgh Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Megan G. Davey
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Clinton
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Denis J. Headon
- Roslin Institute Chicken Embryology, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
7
|
Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 2016; 591:393-402. [PMID: 27320726 DOI: 10.1016/j.gene.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs during feather and scale development and has produced a highly diverse, but manageable list of miRNA-mRNA duplexes for future validation experiments.
Collapse
|
8
|
Morgan BA. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect Med 2014; 4:a015180. [PMID: 24985131 PMCID: PMC4066645 DOI: 10.1101/cshperspect.a015180] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dermal papilla (DP) of the hair follicle is both a chemical and physical niche for epithelial progenitor cells that regenerate the cycling portion of the hair follicle and generate the hair shaft. Here, we review experiments that revealed the importance of the DP in regulating the characteristics of the hair shaft and frequency of hair follicle regeneration. More recent work showed that the size of this niche is dynamic and actively regulated and reduction in DP cell number per follicle is sufficient to cause hair thinning and loss. The formation of the DP during follicle neogenesis provides a context to contemplate the mechanisms that maintain DP size and the potential to exploit these processes for hair preservation or restoration.
Collapse
Affiliation(s)
- Bruce A Morgan
- Department of Dermatology, Harvard Medical School and Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02129
| |
Collapse
|
9
|
|
10
|
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26:11-21. [DOI: 10.1016/j.semcdb.2014.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
|
11
|
|
12
|
Chuong CM, Yeh CY, Jiang TX, Widelitz R. Module-based complexity formation: periodic patterning in feathers and hairs. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:97-112. [PMID: 23539312 PMCID: PMC3607644 DOI: 10.1002/wdev.74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells.
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| | - Chao-Yuan Yeh
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA,
| |
Collapse
|
13
|
Yue Z, Jiang TX, Wu P, Widelitz RB, Chuong CM. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae. Dev Biol 2012; 372:45-54. [PMID: 23000358 DOI: 10.1016/j.ydbio.2012.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 02/05/2023]
Abstract
In a feather, there are distinct morphologies along the proximal-distal axis. The proximal part is a cylindrical stalk (calamus), whereas the distal part has barb and barbule branches. Here we focus on what molecular signaling activity can modulate feather stem cells to generate these distinct morphologies. We demonstrate the drastic tissue remodeling during feather cycling which includes initiation, growth and resting phases. In the growth phase, epithelial components undergo progressive changes from the collar growth zone to the ramogenic zone, to maturing barb branches along the proximal-distal axis. Mesenchymal components also undergo progressive changes from the dermal papilla, to the collar mesenchyme, to the pulp along the proximal-distal axis. Over-expression of Spry4, a negative regulator of receptor tyrosine kinases, promotes barb branch formation at the expense of the epidermal collar. It even induces barb branches from the follicle sheath (equivalent to the outer root sheath in hair follicles). The results are feathers with expanded feather vane regions and small or missing proximal feather shafts (the calamus). Spry4 also expands the pulp region while reducing the size of dermal papillae, leading to a failure to regenerate. In contrast, over-expressing Fgf10 increases the size of the dermal papillae, expands collar epithelia and mesenchyme, but also prevents feather branch formation and feather keratin differentiation. These results suggest that coordinated Sprouty/FGF pathway activity at different stages is important to modulate feather epidermal stem cells to form distinct feather morphologies along the proximal-distal feather axis.
Collapse
Affiliation(s)
- Zhicao Yue
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, United States
| | | | | | | | | |
Collapse
|
14
|
Wells KL, Hadad Y, Ben-Avraham D, Hillel J, Cahaner A, Headon DJ. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens. BMC Genomics 2012; 13:257. [PMID: 22712610 PMCID: PMC3464622 DOI: 10.1186/1471-2164-13-257] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 06/19/2012] [Indexed: 11/13/2022] Open
Abstract
Background Scaleless (sc/sc) chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers), we mapped and identified the sc mutation. Results Through a cost-effective and labour-efficient SNP array mapping approach using DNA from sc/sc and sc/+ blood sample pools, we map the sc trait to chromosome 4 and show that a nonsense mutation in FGF20 is completely associated with the sc/sc phenotype. This mutation, common to all sc/sc individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. In situ hybridisation and quantitative RT-PCR studies reveal that FGF20 is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and sc alleles. Conclusions This work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to map genes based on genotyping of DNA samples from pooled whole blood. The identification of the sc mutation has important implications for the future breeding of this potentially useful trait for the poultry industry, and our genotyping assay can facilitate its rapid introgression into production lines.
Collapse
Affiliation(s)
- Kirsty L Wells
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Mou C, Pitel F, Gourichon D, Vignoles F, Tzika A, Tato P, Yu L, Burt DW, Bed'hom B, Tixier-Boichard M, Painter KJ, Headon DJ. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLoS Biol 2011; 9:e1001028. [PMID: 21423653 PMCID: PMC3057954 DOI: 10.1371/journal.pbio.1001028] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/01/2011] [Indexed: 12/04/2022] Open
Abstract
Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body.
Collapse
Affiliation(s)
- Chunyan Mou
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Frederique Pitel
- UMR INRA/ENVT Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, France
| | | | - Florence Vignoles
- UMR INRA/ENVT Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, France
| | - Athanasia Tzika
- Laboratory of Natural and Artificial Evolution, Department of Zoology and Animal Biology, Sciences III, Geneva, Switzerland
| | - Patricia Tato
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Le Yu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Dave W. Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin J. Painter
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Denis J. Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Lin CM, Jiang TX, Baker RE, Maini PK, Widelitz RB, Chuong CM. Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. Dev Biol 2009; 334:369-82. [PMID: 19647731 PMCID: PMC2811698 DOI: 10.1016/j.ydbio.2009.07.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 02/01/2023]
Abstract
A key issue in stem cell biology is the differentiation of homogeneous stem cells towards different fates which are also organized into desired configurations. Little is known about the mechanisms underlying the process of periodic patterning. Feather explants offer a fundamental and testable model in which multi-potential cells are organized into hexagonally arranged primordia and the spacing between primordia. Previous work explored roles of a Turing reaction-diffusion mechanism in establishing chemical patterns. Here we show that a continuum of feather patterns, ranging from stripes to spots, can be obtained when the level of p-ERK activity is adjusted with chemical inhibitors. The patterns are dose-dependent, tissue stage-dependent, and irreversible. Analyses show that ERK activity-dependent mesenchymal cell chemotaxis is essential for converting micro-signaling centers into stable feather primordia. A mathematical model based on short-range activation, long-range inhibition, and cell chemotaxis is developed and shown to simulate observed experimental results. This generic cell behavior model can be applied to model stem cell patterning behavior at large.
Collapse
Affiliation(s)
- Chih-Min Lin
- Department of Pathology, University of Southern California, Los Angeles, California 90033, USA
| | - Ting Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, California 90033, USA
| | - Ruth E. Baker
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK
| | - Philip K. Maini
- Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK
- Oxford Centre for Integrative Systems Biology, Department for Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Randall B. Widelitz
- Department of Pathology, University of Southern California, Los Angeles, California 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
17
|
Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D. BMP2 and BMP7 play antagonistic roles in feather induction. Development 2008; 135:2797-805. [PMID: 18635609 DOI: 10.1242/dev.018341] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Feathers, like hairs, first appear as primordia consisting of an epidermal placode associated with a dermal condensation that is necessary for the continuation of their differentiation. Previously, the BMPs have been proposed to inhibit skin appendage formation. We show that the function of specific BMPs during feather development is more complex. BMP2 and BMP7, which are expressed in both the epidermis and the dermis, are involved in an antagonistic fashion in regulating the formation of dermal condensations, and thus are both necessary for subsequent feather morphogenesis. BMP7 is expressed earlier and functions as a chemoattractant that recruits cells into the condensation, whereas BMP2 is expressed later, and leads to an arrest of cell migration, likely via its modulation of the EIIIA fibronectin domain and alpha4 integrin expression. Based on the observed cell proliferation, chemotaxis and the timing of BMP2 and BMP7 expression, we propose a mathematical model, a reaction-diffusion system, which not only simulates feather patterning, but which also can account for the negative effects of excess BMP2 or BMP7 on feather formation.
Collapse
Affiliation(s)
- Frederic Michon
- Equipe Ontogenèse et Cellules Souches du Tégument, Centre de Recherche INSERM UJF - U823, Institut Albert Bonniot, Site Santé, La Tronche, BP170, 38042 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
18
|
Houghton L, Lindon CM, Freeman A, Morgan BA. Abortive placode formation in the feather tract of the scaleless chicken embryo. Dev Dyn 2008; 236:3020-30. [PMID: 17948257 DOI: 10.1002/dvdy.21337] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The featherless phenotype of the scaleless mutant provides a model for delineating the process of feather follicle formation. Initial studies established that the mutation affects the epidermis and suggested that epidermis is unable to respond to signals from underlying dermis, or propagate a reciprocal signal. The work presented here demonstrates that scaleless epidermis does indeed respond to the initial inductive signals from dermis, as indicated by the localization of nuclear beta-catenin and transient focal expression of genes expressed in the placode of wild-type feather rudiments. In the sporadic "escaper" feathers that form in scaleless, expression of many genes associated with the progression of feather development is comparable to that in wild-type embryos. An exception is the ectodysplasin receptor gene Edar, which is expressed at lower levels in mutant feather buds. These observations suggest that the scaleless mutation impairs the locally augmented expression of Edar required to stabilize the placodal fate and sustain feather development.
Collapse
Affiliation(s)
- Leslie Houghton
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
19
|
Michon F, Charveron M, Dhouailly D. Dermal condensation formation in the chick embryo: requirement for integrin engagement and subsequent stabilization by a possible notch/integrin interaction. Dev Dyn 2007; 236:755-68. [PMID: 17279577 DOI: 10.1002/dvdy.21080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During embryonic development, feathers appear first as primordia consisting of an epidermal placode associated with a dermal condensation. When 7-day chick embryo dorsal skin fragments showing three rows of feather primordia are cultured, they undergo a complete reorganization, which involves the down-regulation of morphogenetic genes and dispersal of dermal fibroblasts, leading to the disappearance of primordia. This loss of organisation is followed by de novo differentiation events. We have used this model to study potential factors involved in the formation of dermal condensations. Activation of Integrins by extracellular Manganese or intracellular Calcium prevents the initial disappearance of the dermal condensations. New primordia formation occurs even after inhibition of the Notch pathway albeit with some fusion between primordia. In conclusion, dermal fibroblast migration requires beta1-Integrin whereas the stability of dermal condensations could depend on Notch/Integrin interaction.
Collapse
Affiliation(s)
- Frederic Michon
- Centre de Recherche INSERM-Institut Albert Bonniot U823, Ontogenesis and Stem Cell of the Tegument Team, Grenoble, France
| | | | | |
Collapse
|
20
|
Lin CM, Jiang TX, Widelitz RB, Chuong CM. Molecular signaling in feather morphogenesis. Curr Opin Cell Biol 2006; 18:730-41. [PMID: 17049829 PMCID: PMC4406286 DOI: 10.1016/j.ceb.2006.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/05/2006] [Indexed: 12/17/2022]
Abstract
The development and regeneration of feathers have gained much attention recently because of progress in the following areas. First, pattern formation. The exquisite spatial arrangement provides a simple model for decoding the rules of morphogenesis. Second, stem cell biology. In every molting, a few stem cells have to rebuild the entire epithelial organ, providing much to learn on how to regenerate an organ physiologically. Third, evolution and development ('Evo-Devo'). The discovery of feathered dinosaur fossils in China prompted enthusiastic inquiries about the origin and evolution of feathers. Progress has been made in elucidating feather morphogenesis in five successive phases: macro-patterning, micro-patterning, intra-bud morphogenesis, follicle morphogenesis and regenerative cycling.
Collapse
Affiliation(s)
- Chih-Min Lin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
21
|
Iwabuchi T, Goetinck PF. Syndecan-4 dependent FGF stimulation of mouse vibrissae growth. Mech Dev 2006; 123:831-41. [PMID: 16989989 DOI: 10.1016/j.mod.2006.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/13/2006] [Accepted: 08/05/2006] [Indexed: 12/25/2022]
Abstract
The development, maintenance and regeneration of epithelial appendages such as hairs or vibrissae depend on reciprocal interactions between the epidermal and the dermal components of the integument. Growth factors are among a number of signaling molecules that have been identified during these developmental events. Growth factors such as fibroblast growth factors (FGFs) bind cell surface heparan sulfate proteoglycans (HSPGs) on their heparan sulfate side chains and as such these proteoglycans act as co-receptors for FGF receptors (FGFRs) by forming a ternary signaling complex of HSPG, FGFR and FGF. The syndecans make up a family (syndecan-1-4) of transmembrane HSPGs. In the present study we examined the growth response of mouse vibrissae to HSPG-binding growth factors as a function of the presence or absence of syndecan-4 in an organ culture system. Syndecan-4 is expressed on keratinocytes that make up the inner root sheath of the vibrissa. Vibrissae from wild-type mice, but not from syndecan-4 null mice, displayed a statistically significant and dose-dependent growth response to FGF-1, FGF-2 and FGF-7. In contrast, a statistically significant growth response is seen in vibrissae from both wild-type and syndecan-4 null mice when the culture medium is supplemented with either hepatocyte growth factor (HGF) that binds to HSPG, insulin that does not bind to HSPG or 5% fetal bovine serum. The syndecan-4 dependent effect of FGF-1, -2 and -7 on the transcriptional activity of IRS expressed genes and of genes involved in cell proliferation reveals a number of different response patterns. In vivo, the vibrissae of syndecan-4 null mice are shorter and have a smaller diameter than those of wild-type mice and this phenotype may result from a suboptimal response to growth factors. Syndecan-1, which is expressed in the outer root sheath of the vibrissae shaft, does not influence the response of the vibrissae to FGF-1, -2 and -7 and the length and diameter of vibrissae of syndecan-1 null mice do not differ from those of wild-type mice.
Collapse
Affiliation(s)
- Tokuro Iwabuchi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
22
|
Song HK, Lee SH, Goetinck PF. FGF-2 signaling is sufficient to induce dermal condensations during feather development. Dev Dyn 2005; 231:741-9. [PMID: 15532057 DOI: 10.1002/dvdy.20243] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous report, we showed that fibroblast growth factor-2 (FGF-2) is a signal produced by epidermal placode cells during feather development and that this growth factor can induce feathers in scaleless mutant skins that fail to form feathers due to a defective epidermis (Song et al., [1996] Proc Natl Acad Sci USA 93:10246-10249). Here, we test whether FGF-2 is sufficient to induce dermal condensations, structures that normally form under the control of signals from the epidermal placode and are identified on the basis of aggregation of cells, the expression of FGF receptor-1 and bone morphogenetic protein-2 transcripts and the cessation of proliferation of the condensed cells. By using denuded 8-day scaleless dermis as a test system, we have established that FGF-2 is sufficient to induce dermal condensation. We suggest that the primary effect of FGF-2 is an increase in cellular density mediated through cell migration, followed by the expression of dermal condensation-specific genes and cessation of cell proliferation. The FGF-2 effect can be abolished by heparin, suggesting the involvement of heparan sulfate proteoglycans (HSPGs) in growth factor signaling. The spatiotemporal expression of syndecan-3 during feather development suggests that this cell-surface HSPG may be involved in the response of competent embryonic skin dermis to FGF-2.
Collapse
Affiliation(s)
- Hee-Kyung Song
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
23
|
Eames BF, Schneider RA. Quail-duck chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development. Development 2005; 132:1499-509. [PMID: 15728671 PMCID: PMC2835538 DOI: 10.1242/dev.01719] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The avian feather complex represents a vivid example of how a developmental module composed of highly integrated molecular and histogenic programs can become rapidly elaborated during the course of evolution. Mechanisms that facilitate this evolutionary diversification may involve the maintenance of plasticity in developmental processes that underlie feather morphogenesis. Feathers arise as discrete buds of mesenchyme and epithelium, which are two embryonic tissues that respectively form dermis and epidermis of the integument. Epithelial-mesenchymal signaling interactions generate feather buds that are neatly arrayed in space and time. The dermis provides spatiotemporal patterning information to the epidermis but precise cellular and molecular mechanisms for generating species-specific differences in feather pattern remain obscure. In the present study, we exploit the quail-duck chimeric system to test the extent to which the dermis regulates the expression of genes required for feather development. Quail and duck have distinct feather patterns and divergent growth rates, and we exchange pre-migratory neural crest cells destined to form the craniofacial dermis between them. We find that donor dermis induces host epidermis to form feather buds according to the spatial pattern and timetable of the donor species by altering the expression of members and targets of the Bone Morphogenetic Protein, Sonic Hedgehog and Delta/Notch pathways. Overall, we demonstrate that there is a great deal of spatiotemporal plasticity inherent in the molecular and histogenic programs of feather development, a property that may have played a generative and regulatory role throughout the evolution of birds.
Collapse
Affiliation(s)
- B. Frank Eames
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| | - Richard A. Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| |
Collapse
|
24
|
Sawyer RH, Rogers L, Washington L, Glenn TC, Knapp LW. Evolutionary origin of the feather epidermis. Dev Dyn 2005; 232:256-67. [PMID: 15637693 DOI: 10.1002/dvdy.20291] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The formation of scales and feathers in reptiles and birds has fascinated biologists for decades. How might the developmental processes involved in the evolution of the amniote ectoderm be interpreted to shed light on the evolution of integumental appendages? An Evo-Devo approach to this question is proving essential to understand the observation that there is homology between the transient embryonic layers covering the scale epidermis of alligators and birds and the epidermal cell populations of embryonic feather filaments. Whereas the embryonic layers of scutate scales are sloughed off at hatching, that their homologues persist in feathers demonstrates that the predecessors of birds took advantage of the ability of their ectoderm to generate embryonic layers by recruiting them to make the epidermis of the embryonic feather filament. Furthermore, observations on mutant chickens with altered scale and feather development (Abbott and Asmundson [1957] J. Hered. 18:63-70; Abbott [1965] Poult. Sci. 44:1347; Abbott [1967] Methods in developmental biology. New York: Thomas Y. Crowell) suggest that the ectodermal placodes of feathers, which direct the formation of unique dermal condensations and subsequently appendage outgrowth, provided the mechanism by which the developmental processes generating the embryonic layers diverged during evolution to support the morphogenesis of the epidermis of the primitive feather filament with its barb ridges.
Collapse
Affiliation(s)
- Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29802, USA.
| | | | | | | | | |
Collapse
|
25
|
Hornik C, Krishan K, Yusuf F, Scaal M, Brand-Saberi B. cDermo-1 misexpression induces dense dermis, feathers, and scales. Dev Biol 2005; 277:42-50. [PMID: 15572138 DOI: 10.1016/j.ydbio.2004.08.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 08/26/2004] [Accepted: 08/26/2004] [Indexed: 11/24/2022]
Abstract
Reciprocal epithelio-mesenchymal interactions between the prospective epidermis and the underlying dermis are the major driving forces in the development of skin appendages. Feather development is initiated by a still unknown signal from the dermis in feather-forming skin. The morphological response of the ectoderm to this signal is the formation of an epidermal placode, which signals back to the mesenchyme to induce dermal condensations. Together, epidermal and dermal components constitute the outgrowing feather bud. The bHLH transcription factor cDermo-1 is expressed in developing dermis and is the earliest known marker of prospective feather tracts. To test its function during feather development, we forced cDermo-1 expression in embryonic chicken dermis using a retroviral expression vector. In featherless (apteric) regions, cDermo-1 misexpression induced dense, thickened dermis normally observed in feathered skin (pterylae), and leads to the development of regularly spaced and normally shaped ectopic feather buds. In pterylae, cDermo-1 misexpression enhanced feather growth. In hindlimb skin, according to the local skin identity, misexpression of cDermo-1 induced ectopic scale formation. Thus, we show that forced cDermo-1 expression in developing dermis is sufficient to launch the developmental program leading to skin appendage formation. We propose a role of cDermo-1 at the initial stages of feather induction upstream of FGF10.
Collapse
Affiliation(s)
- Christoph Hornik
- Institute of Anatomy and Cell Biology II, Albert-Ludwigs-Universität, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, Widelitz RB, Jiang TX, Chuong CM. Evo-Devo of amniote integuments and appendages. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2004; 48:249-70. [PMID: 15272390 PMCID: PMC4386668 DOI: 10.1387/ijdb.041825pw] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian / reptile ancestors to go onto the land. Overlapping scales and production of beta-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode which maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis and the production of "chicken teeth". In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, University of Southern California, Los Angeles
| | - Lianhai Hou
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing
| | - Maksim Plikus
- Department of Pathology, University of Southern California, Los Angeles
| | - Michael Hughes
- Department of Pathology, University of Southern California, Los Angeles
| | - Jeffrey Scehnet
- Department of Pathology, University of Southern California, Los Angeles
| | - Sanong Suksaweang
- Department of Pathology, University of Southern California, Los Angeles
| | | | - Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles
- Corresponding author: Cheng-Ming Chuong, HMR 315B, Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA USA 90033, Tel: 323 442-1296, Fax: 323 442-3049,
| |
Collapse
|
27
|
Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I, Mikkola ML. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 2004; 131:4907-19. [PMID: 15371307 DOI: 10.1242/dev.01377] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Collapse
Affiliation(s)
- Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, PO Box 56 (Viikinkaari 9), University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prin F, Logan C, D'Souza D, Ensini M, Dhouailly D. Dorsal versus ventral scales and the dorsoventral patterning of chick foot epidermis. Dev Dyn 2004; 229:564-78. [PMID: 14991712 DOI: 10.1002/dvdy.20007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The dorsal and ventral scales of the chick foot can be distinguished morphologically and molecularly: the dorsal oblong overlapping scuta expressing both alpha and beta keratins, and the ventral roundish nonprotruding reticula expressing only alpha keratins. The question arises how En-1 and Lmx1, whose role in dorsoventral limb patterning has been well established, can affect skin morphogenesis, which occurs 8 to 12 days later. Forced expression of En-1 or of Lmx1 in the hindlimb have, respectively, as expected, a ventralizing or a dorsalizing effect on skin, leading to the formation of either reticula-type or scuta-type scales on both faces. In both cases, however, the scales are abnormal and even glabrous skin without any scales at all may form. The normal inductive interactions between dermis and epidermis are disturbed after En-1 or Lmx1 misexpression. Effectively, while Lmx1 endows the dermal precursors of the ventral region with scuta inducing ability, En-1 blocks the competence of the dorsal epidermis to build scuta.
Collapse
Affiliation(s)
- Fabrice Prin
- Equipe Biologie de la Différenciation Epithéliale, UMR CNRS 5538, LEDAC, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
29
|
KOBAYASHI K, FUKUNAGA S, TAKENOUCHI K, NAKAMURA F. Functional indispensability of fibronectin associated on the mesenchymal cell surface during the early period of feather development in the chick embryo in vitro. Anim Sci J 2004. [DOI: 10.1111/j.1740-0929.2004.00211.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Mandler M, Neubüser A. FGF signaling is required for initiation of feather placode development. Development 2004; 131:3333-43. [PMID: 15201222 DOI: 10.1242/dev.01203] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Morphogenesis of hairs and feathers is initiated by an as yet unknown dermal signal that induces placode formation in the overlying ectoderm. To determine whether FGF signals are required for this process we over-expressed soluble versions of FGFR1 or FGFR2 in the skin of chicken embryos. This produced a complete failure of feather formation prior to any morphological or molecular signs of placode development. We further show that Fgf10 is expressed in the dermis of nascent feather primordia, and that anti-FGF10 antibodies block feather placode development in skin explants. In addition we show that FGF10 can induce expression of positive and negative regulators of feather development and can induce its own expression under conditions of low BMP signaling. Together these results demonstrate that FGF signaling is required for the initiation of feather placode development and implicate FGF10 as an early dermal signal involved in this process.
Collapse
Affiliation(s)
- Markus Mandler
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
31
|
Yuhki M, Yamada M, Kawano M, Iwasato T, Itohara S, Yoshida H, Ogawa M, Mishina Y. BMPR1A signaling is necessary for hair follicle cycling and hair shaft differentiation in mice. Development 2004; 131:1825-33. [PMID: 15084466 DOI: 10.1242/dev.01079] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interactions between ectodermal and mesenchymal extracellular signaling pathways regulate hair follicle (HF) morphogenesis and hair cycling. Bone morphogenetic proteins (BMPs) are known to be important in hair follicle development by affecting the local cell fate modulation. To study the role of BMP signaling in the HF, we disrupted Bmpr1a, which encodes the BMP receptor type IA (BMPR1A) in an HF cell-specific manner, using the Cre/loxP system. We found that the differentiation of inner root sheath, but not outer root sheath, was severely impaired in mutant mice. The number of HFs was reduced in the dermis and subcutaneous tissue, and cycling epithelial cells were reduced in mutant mice HFs. Our results strongly suggest that BMPR1A signaling is essential for inner root sheath differentiation and is indispensable for HF renewal in adult skin.
Collapse
Affiliation(s)
- Munehiro Yuhki
- Laboratory for Cell Culture Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Harris MP, Linkhart BL, Fallon JF. Bmp7 mediates early signaling events during induction of chick epidermal organs. Dev Dyn 2004; 231:22-32. [PMID: 15305284 DOI: 10.1002/dvdy.20096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The induction and specification of a large number of vertebrate organs require reciprocal signaling between an epithelium and subjacent mesenchyme. In the formation of integumentary organs, the initial inductive signaling events leading to the formation of the organ primordia stem from the mesenchyme. However, the epithelium must have the capacity to respond to these signals. We demonstrate that bone morphogenetic protein 7 (Bmp7) is an early molecular marker for epidermal organ development during development of feathers and scales of the chick. Bmp7 is expressed broadly in the preplacode epidermis and subsequently becomes localized to the forming placodes of feathers and scales. An examination of Bmp7 expression in the scaleless mutant chicken integument indicates that Bmp7 expression in the epidermis is associated with the ability to form epidermal organs. We show that BMP7 function is necessary for the formation of epidermal placodes in both feather and scale forming epidermis. In addition, precocious expression of Bmp7 in the metatarsal epidermis of the Silkie mutant or treatment of the metatarsus with ectopic BMP7 protein results in feather development from scale forming integument. From these data, we propose that Bmp7 is necessary and sufficient, in a developmental context, to mediate the competence of an epithelium to respond to inductive signals from the underlying mesenchyme to form epidermal organs in the chick. We propose that regulation of Bmp7 in localized areas of the embryonic epidermis facilitates the development of regional formation of integumentary organs.
Collapse
Affiliation(s)
- Matthew P Harris
- Anatomy Department, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
33
|
Jiang TX, Widelitz RB, Shen WM, Will P, Wu DY, Lin CM, Jung HS, Chuong CM. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2004; 48:117-35. [PMID: 15272377 PMCID: PMC4386648 DOI: 10.1387/ijdb.041788tj] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to swarming robot navigation, reaching intelligent automata and representing a self-re-configurable type of control rather than a follow-the-instruction type of control.
Collapse
Affiliation(s)
- Ting-Xin Jiang
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | - Randall B. Widelitz
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | - Wei-Min Shen
- Computer Science Information Sciences Institute, University of Southern California, Los Angeles, California, USA
| | - Peter Will
- Computer Science Information Sciences Institute, University of Southern California, Los Angeles, California, USA
| | - Da-Yu Wu
- Department of Cellular and Neurobiology, University of Southern California, Los Angeles, California, USA
| | - Chih-Min Lin
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | - Han-Sung Jung
- Dept. of Oral Biology, Division in Histology, College of Dentistry, Yonsei University, Seoul, Korea
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Rouzankina I, Abate-Shen C, Niswander L. Dlx genes integrate positive and negative signals during feather bud development. Dev Biol 2004; 265:219-33. [PMID: 14697365 DOI: 10.1016/j.ydbio.2003.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the embryonic chicken skin, feather buds and the intervening interbud tissue form in a reiterated and sequential pattern that is dependent on interactions between the epidermis and dermis. Feather promoting and inhibiting signals such as fibroblast growth factors (FGF) and bone morphogenetic proteins (BMP), respectively, direct the formation of this periodic pattern. However, the transcription factors that mediate the response to these signals and transmit this information to downstream effector genes are largely unknown. Here we have explored the DLX transcription factors as candidate transcriptional mediators downstream of the described feather patterning signals. We show that several Dlx members are expressed in the dermis and epidermis of the developing feather buds and their expression is induced in embryonic chick skin by the ectopic activation of BMP and FGF signaling. Misexpression of Dlx in the chick skin leads to both feather loss and feather bud fusions, suggesting that DLX proteins play a negative as well as a positive role in feather development. Moreover, DLX regulates the expression of NCAM and tenascin, molecules that are important for feather bud initiation as well as bud outgrowth and morphogenesis. Our results suggest that DLX transcription factors serve to integrate and transduce feather patterning signals to downstream effector molecules.
Collapse
Affiliation(s)
- Iaroslava Rouzankina
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan-Kettering Institute and Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
35
|
Abstract
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
36
|
Bartels T. Variations in the morphology, distribution, and arrangement of feathers in domesticated birds. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:91-108. [PMID: 12949771 DOI: 10.1002/jez.b.28] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Domesticated birds exhibit a greater diversity in the morphology of their integument and its appendages than their wild ancestors. Many of these variations affect the appearance of a bird significantly and have been bred selectively by poultry and pigeon fanciers and aviculturists for the sake of visual appeal. Variations in feather distribution (e.g., feathering of legs and feet, featherless areas in normally feather-bearing skin) are widespread in chickens and pigeons. Variations in the number of feathers (e.g., increased number of tail feathers, lack of tail feathers) occur in certain pigeon and poultry breeds. Variations in feather length can affect certain body regions or the entire plumage. Variations in feather structure (e.g., silkiness, frilled feathering) can be found in exhibition poultry as well as in pet birds. Variations in feather arrangement (e.g., feather crests and vortices) occur in many domesticated bird species as a results of mutation and intense selective breeding. The causes of variations in the structure, distribution, length and arrangement of feathers is often unknown and opens a wide field for scientific research under various points of view (e.g., morphogenesis, pathogenesis, ethology, etc.). To that extent, variations in the morphology, distribution and arrangement of feathers in domesticated birds require also a concern for animal welfare because certain alleles responsible for integumentary variations in domesticated birds have pleiotropic effects, which often affect normal behaviour and viability.
Collapse
Affiliation(s)
- Thomas Bartels
- Institute for Avian Diseases, Department of Small Animal Medicine, University of Leipzig, Germany.
| |
Collapse
|
37
|
Sawyer RH, Knapp LW. Avian skin development and the evolutionary origin of feathers. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:57-72. [PMID: 12949769 DOI: 10.1002/jez.b.26] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The discovery of several dinosaurs with filamentous integumentary appendages of different morphologies has stimulated models for the evolutionary origin of feathers. In order to understand these models, knowledge of the development of the avian integument must be put into an evolutionary context. Thus, we present a review of avian scale and feather development, which summarizes the morphogenetic events involved, as well as the expression of the beta (beta) keratin multigene family that characterizes the epidermal appendages of reptiles and birds. First we review information on the evolution of the ectodermal epidermis and its beta (beta) keratins. Then we examine the morphogenesis of scutate scales and feathers including studies in which the extraembryonic ectoderm of the chorion is used to examine dermal induction. We also present studies on the scaleless (sc) mutant, and, because of the recent discovery of "four-winged" dinosaurs, we review earlier studies of a chicken strain, Silkie, that expresses ptilopody (pti), "feathered feet." We conclude that the ability of the ectodermal epidermis to generate discrete cell populations capable of forming functional structural elements consisting of specific members of the beta keratin multigene family was a plesiomorphic feature of the archosaurian ancestor of crocodilians and birds. Evidence suggests that the discrete epidermal lineages that make up the embryonic feather filament of extant birds are homologous with similar embryonic lineages of the developing scutate scales of birds and the scales of alligators. We believe that the early expression of conserved signaling modules in the embryonic skin of the avian ancestor led to the early morphogenesis of the embryonic feather filament, with its periderm, sheath, and barb ridge lineages forming the first protofeather. Invagination of the epidermis of the protofeather led to formation of the follicle providing for feather renewal and diversification. The observations that scale formation in birds involves an inhibition of feather formation coupled with observations on the feathered feet of the scaleless (High-line) and Silkie strains support the view that the ancestor of modern birds may have had feathered hind limbs similar to those recently discovered in nonavian dromaeosaurids. And finally, our recent observation on the bristles of the wild turkey beard raises the possibility that similar integumentary appendages may have adorned nonavian dinosaurs, and thus all filamentous integumentary appendages may not be homologous to modern feathers.
Collapse
Affiliation(s)
- Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
38
|
WIDELITZ RANDALLB, JIANG TINGXIN, YU MINGKE, SHEN TED, SHEN JENYEE, WU PING, YU ZHICAO, CHUONG CHENGMING. Molecular biology of feather morphogenesis: a testable model for evo-devo research. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:109-22. [PMID: 12949772 PMCID: PMC4382008 DOI: 10.1002/jez.b.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Darwin's theory describes the principles that are responsible for evolutionary change of organisms and their attributes. The actual mechanisms, however, need to be studied for each species and each organ separately. Here we have investigated the mechanisms underlying these principles in the avian feather. Feathers comprise one of the most complex and diverse epidermal organs as demonstrated by their shape, size, patterned arrangement and pigmentation. Variations can occur at several steps along each level of organization, leading to highly diverse forms and functions. Feathers develop gradually during ontogeny through a series of steps that may correspond to the evolutionary steps that were taken during the phylogeny from a reptilian ancestor to birds. These developmental steps include 1) the formation of feather tract fields on the skin surfaces; 2) periodic patterning of the individual feather primordia within the feather tract fields; 3) feather bud morphogenesis establishing anterio-posterior (along the cranio-caudal axis) and proximo-distal axes; 4) branching morphogenesis to create the rachis, barbs and barbules within a feather bud; and 5) gradual modulations of these basic morphological parameters within a single feather or across a feather tract. Thus, possibilities for variation in form and function of feathers occur at every developmental step. In this paper, principles guiding feather tract formation, distributions of individual feathers within the tracts and variations in feather forms are discussed at a cellular and molecular level.
Collapse
Affiliation(s)
- RANDALL B. WIDELITZ
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - TING XIN JIANG
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - MINGKE YU
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - TED SHEN
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - JEN-YEE SHEN
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - PING WU
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - ZHICAO YU
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - CHENG-MING CHUONG
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
39
|
Chuong CM, Wu P, Zhang FC, Xu X, Yu M, Widelitz RB, Jiang TX, Hou L. Adaptation to the sky: Defining the feather with integument fossils from mesozoic China and experimental evidence from molecular laboratories. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:42-56. [PMID: 12949768 PMCID: PMC4381994 DOI: 10.1002/jez.b.25] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for proximo-distal growth mode; 2) forming hierarchical branches of rachis, barbs, and barbules, with barbs formed by differential cell death and bilaterally or radially symmetric; 3) having a follicle structure, with mesenchyme core during development; 4) when mature, consisting of epithelia without mesenchyme core and with two sides of the vane facing the previous basal and supra-basal layers, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud --> barbs --> barbules --> rachis is presented, which is opposite to the old view of scale plate --> rachis --> barbs --> barbules (Regal, '75; Q Rev Biol 50:35).
Collapse
Affiliation(s)
- Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sorrell JM, Baber MA, Brinon L, Carrino DA, Seavolt M, Asselineau D, Caplan AI. Production of a monoclonal antibody, DF-5, that identifies cells at the epithelial-mesenchymal interface in normal human skin. APN/CD13 is an epithelial-mesenchymal marker in skin. Exp Dermatol 2003; 12:315-23. [PMID: 12823446 DOI: 10.1034/j.1600-0625.2003.120312.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial-mesenchymal interactions play a critical role in skin development and differentiation, and similar interactions may also regulate the day-to-day proliferation and differentiation events of the epidermis that occur in normal adult skin. This study was directed at identifying molecules that are selectively located at the dermal-epidermal junction in normal adult skin as they may be involved in regulating these homeostatic events. To this end, monoclonal antibodies were raised against the crude cell membrane fraction of cultured human dermal fibroblasts. Screening of antibodies that recognized cell surface antigen on cultured human dermal fibroblasts was followed by determining which of these antibodies selectively localized cells at sites of epithelial-mesenchymal interactions. Antibody DF-5 fit these criteria and was further characterized. This antibody was found to recognize the cell surface ectopeptidase aminopeptidase N (APN), a molecule homologous to the cluster differentiation antigen CD13. Antibody DF-5 and anti-CD13 antibodies both identified cells at sites of epithelial-mesenchymal interactions in fetal, neonatal, and adult human skin, and the APN/CD13 enzyme activity was also identified at these sites. A second ectopeptidase, dipeptidyl peptidase IV (DPPIV) or CD26, presented a significantly different immunohistochemical and histochemical pattern in skin samples, confirming the specificity of the APN/CD13 studies. The function of APN/CD13 in skin has yet to be determined. Its invariant localization at sites of epithelial-mesenchymal interactions argues for a role particular to this region. It may play a role in regulating the activity of neuropeptides or other signaling peptides that are released in this region of skin or it may have an as yet undefined role in mediating communication between dermal and epidermal cells.
Collapse
Affiliation(s)
- J Michael Sorrell
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106 USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The evolutionarily conserved Hox gene family of transcriptional regulators has originally been known for specifying positional identities along the longitudinal body axis of bilateral metazoans, including mouse and man. It is believed that subsequent to this archaic role, subsets of Hox genes have been co-opted for patterning functions in phylogenetically more recent structures, such as limbs and epithelial appendages. Among these, the hair follicle is of particular interest, as it is the only organ undergoing cyclical phases of regression and regeneration during the entire life span of an organism. Furthermore, the hair follicle is increasingly capturing the attention of developmental geneticists, as this abundantly available miniature organ mimics key aspects of embryonic patterning and, in addition, presents a model for studying organ renewal. The first Hox gene shown to play a universal role in hair follicle development is Hoxc13, as both Hoxc13-deficient and overexpressing mice exhibit severe hair growth and patterning defects. Differential gene expression analyses in the skin of these mutants, as well as in vitro DNA binding studies performed with potential targets for HOXC13 transcriptional regulation in human hair, identified genes encoding hair-specific keratins and keratin-associated proteins (KAPs) as major groups of presumptive Hoxc13 downstream effectors in the control of hair growth. The Hoxc13 mutant might thus serve as a paradigm for studying hair-specific roles of Hoxc13 and other members of this gene family, whose distinct spatio-temporally restricted expression patterns during hair development and cycling suggest discrete functions in follicular patterning and hair cycle control. The main conclusion from a discussion of these potential roles vis-à-vis current expression data in mouse and man, and from the perspective of the results obtained with the Hoxc13 transgenic models, is that members of the Hox family are likely to fulfill essential roles of great functional diversity in hair that require complex transcriptional control mechanisms to ensure proper spatio-temporal patterns of Hox gene expression at homeostatic levels.
Collapse
Affiliation(s)
- Alexander Awgulewitsch
- Departments of Medicine and Dermatology, and Hollings Cancer Center, Medical University of South Carolina, 96 Jonathan Lucas St., CSB 912, Charleston, SC 29425, USA.
| |
Collapse
|
42
|
Nishioka E, Tanaka T, Yoshida H, Matsumura K, Nishikawa S, Naito A, Inoue JI, Funasaka Y, Ichihashi M, Miyasaka M, Nishikawa SI. Mucosal addressin cell adhesion molecule 1 plays an unexpected role in the development of mouse guard hair. J Invest Dermatol 2002; 119:632-8. [PMID: 12230506 DOI: 10.1046/j.1523-1747.2002.01851.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first wave of coat hair development is initiated around embryonic day 14 in the mouse. Whereas ectodysplasin and ectodermal dysplasia receptor, tumor necrosis factor and tumor necrosis factor receptor family molecules, respectively, were identified to be signals triggering this process, not much was known regarding their downstream molecular targets. In this report, we show that mucosal addressin cell adhesion molecule 1 and intercellular adhesion molecule 1 are induced in the keratinocytes of the hair placode as a direct consequence of ectodermal dysplasia receptor signal, and tumor-necrosis-factor-receptor-associated factor 6 is involved in this mucosal addressin cell adhesion molecule 1 expression. Experiments using an in vitro culture of skin fragments demonstrated that ectodermal-dysplasia-receptor-induced mucosal addressin cell adhesion molecule 1 expression occurs at the initial phase of follicle development before involvement of Sonic hedgehog signal. Follicle development in this culture was also suppressed to some extent, though not completely, by addition of soluble mucosal addressin cell adhesion molecule 1/IgG-Fc chimeric protein, whereas monoclonal antibody that can inhibit mucosal addressin cell adhesion molecule 1 interaction with integrin alpha4beta7 had no effect on this process. These results demonstrated for the first time that the structural proteins, mucosal addressin cell adhesion molecule 1 and intercellular adhesion molecule 1, are induced by ectodermal dysplasia receptor signal and suggested the potential involvement of mucosal addressin cell adhesion molecule 1 in the morphogenesis of follicular keratinocytes.
Collapse
Affiliation(s)
- Eri Nishioka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tao H, Yoshimoto Y, Yoshioka H, Nohno T, Noji S, Ohuchi H. FGF10 is a mesenchymally derived stimulator for epidermal development in the chick embryonic skin. Mech Dev 2002; 116:39-49. [PMID: 12128204 DOI: 10.1016/s0925-4773(02)00131-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of avian cutaneous appendages, feathers and scales, is known to arise from the epithelial-mesenchymal interaction. Here we show that FGF10 is associated with this developmental process as an early signal from mesenchymal cells underlying nascent cutaneous placodes. Expression of Fgf10 was detected in the mesenchymal cells underneath the developing placodes. Forced expression of Fgf10 in the femoral skin suppressed expression of Shh and a zinc finger gene snail-related (cSnR), while induced expression of Bmp2 in the interbud region, resulting in thickening of the epidermal layer. Furthermore, forced expression of Fgf10 in the foot skin caused marked ingrowings of the epidermis. The cells in the epidermal ingrowings expressed beta-catenin, proliferating cell nuclear antigen, and an epidermal stem cell marker p63. These results support the idea that FGF10 is a mesenchymally derived stimulator of epidermal development through crosstalk with bone morphogenetic protein (BMP), beta-catenin, and other signaling pathways.
Collapse
Affiliation(s)
- Hirotaka Tao
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Clinical conditions causing hair loss, such as androgenetic alopecia, alopecia areata, and scarring alopecia, can be psychologically devastating to individuals and are the target of a multimillion dollar pharmaceutical industry. The importance of the hair follicle in skin biology, however, does not rest solely with its ability to produce hair. Hair follicles are self-renewing and contain reservoirs of multipotent stem cells that are capable of regenerating the epidermis and are thought to be utilized in wound healing. Hair follicles are also the sites of origin of many neoplasias, including some basal cell carcinomas and pilomatricoma. These diseases result from inappropriate activation of signaling pathways that regulate hair follicle morphogenesis. Identification of the signaling molecules and pathways operating in developing and postnatal, cycling, hair follicles is therefore vital to our understanding of pathogenic states in the skin and may ultimately permit the development of novel therapies for skin tumors as well as for hair loss disease. The purpose of this review is to summarize recent progress in our understanding of the molecular mechanisms regulating hair follicle formation, and to discuss ways in which this information may eventually be utilized in the clinic.
Collapse
Affiliation(s)
- Sarah E Millar
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
45
|
Scaal M, Pröls F, Füchtbauer EM, Patel K, Hornik C, Köhler T, Christ B, Brand-Saberi B. BMPs induce dermal markers and ectopic feather tracts. Mech Dev 2002; 110:51-60. [PMID: 11744368 DOI: 10.1016/s0925-4773(01)00552-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is known to be involved in multiple inductive events during embryogenesis including the development of amniote skin. Here, we demonstrate that early application of BMP-2 to the lateral trunk of chick embryos induces the formation of dense dermis, which is competent to participate in feather development. We show that BMPs induce the dermis markers Msx-1 and cDermo-1 and lead to dermal proliferation, to expression of beta-catenin, and eventually to the formation of ectopic feather tracts in originally featherless regions of chick skin. Moreover, we present a detailed analysis of cDermo-1 expression during early feather development. The data implicate that cDermo-1 is located downstream of BMP in a signaling pathway that leads to condensation of dermal cells. The roles of BMP and cDermo-1 during development of dermis and feather primordia are discussed.
Collapse
Affiliation(s)
- Martin Scaal
- Institute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dohrmann CE, Noramly S, Raftery LA, Morgan BA. Opposing effects on TSC-22 expression by BMP and receptor tyrosine kinase signals in the developing feather tract. Dev Dyn 2002; 223:85-95. [PMID: 11803572 DOI: 10.1002/dvdy.1236] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
TSC-22 (transforming growth factor-beta-stimulated clone 22) belongs to a family of leucine zipper transcription factors that includes sequences from invertebrates and vertebrates. The single Drosophila family member, encoded by the bunched gene, serves to integrate opposing bone morphogenic protein (BMP) and epidermal growth factor (EGF) signals during oogenesis. Similarly, mammalian TSC-22 expression is regulated by several families of secreted signaling molecules in cultured cells. Here, we show that chick TSC-22 is dynamically expressed in the condensing feather bud, as well as in many tissues of the chick embryo. BMP-2/4, previously shown to inhibit bud development, repress TSC-22 expression during feather bud formation in vivo. Noggin, a BMP antagonist, promotes TSC-22 expression. EGF, TGF-alpha, and fibroblast growth factor all promote both feather bud development and TSC-22 expression; each can promote ectopic feather buds that are regularly spaced between existing feather buds. Thus, TSC-22 is a candidate to integrate small imbalances in receptor tyrosine kinase and BMP signaling during feather tract development to generate stable and reproducible morphogenetic responses.
Collapse
Affiliation(s)
- Cord E Dohrmann
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
47
|
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105:533-45. [PMID: 11371349 DOI: 10.1016/s0092-8674(01)00336-1] [Citation(s) in RCA: 1063] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta-Catenin is an essential molecule in Wnt/wingless signaling, which controls decisive steps in embryogenesis. To study the role of beta-catenin in skin development, we introduced a conditional mutation of the gene in the epidermis and hair follicles using Cre/loxP technology. When beta-catenin is mutated during embryogenesis, formation of placodes that generate hair follicles is blocked. We show that beta-catenin is required genetically downstream of tabby/downless and upstream of bmp and shh in placode formation. If beta-catenin is deleted after hair follicles have formed, hair is completely lost after the first hair cycle. Further analysis demonstrates that beta-catenin is essential for fate decisions of skin stem cells: in the absence of beta-catenin, stem cells fail to differentiate into follicular keratinocytes, but instead adopt an epidermal fate.
Collapse
Affiliation(s)
- J Huelsken
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13092, Berlin, Germany
| | | | | | | | | |
Collapse
|
48
|
Olivera-Martinez I, Thélu J, Teillet MA, Dhouailly D. Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech Dev 2001; 100:233-44. [PMID: 11165480 DOI: 10.1016/s0925-4773(00)00540-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the origin and nature of the signals responsible for specification of the dermatomal lineage, excised axial organs in 2-day-old chick embryos were replaced by grafts of the dorsal neural tube, or the ventral neural tube plus the notochord, or aggregates of cells engineered to produce Sonic hedgehog (Shh), Noggin, BMP-2, Wnt-1, or Wnt-3a. By E10, grafts of the ventral neural tube plus notochord or of cells producing Shh led to differentiation of cartilage and muscles, and an impaired dermis derived from already segmented somites. In contrast, grafts of the dorsal neural tube, or of cells producing Wnt-1, triggered the formation of a feather-inducing dermis. These results show that the dermatome inducer is produced by the dorsal neural tube. The signal can be Wnt-1 itself, or can be mediated, or at least mimicked by Wnt-1.
Collapse
Affiliation(s)
- I Olivera-Martinez
- Equipe Biologie de la Différenciation Epithéliale, UMR Centre National de la Recherche Scientifique (CNRS) 5538, LEDAC, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
49
|
Chuong CM, Chodankar R, Widelitz RB, Jiang TX. Evo-devo of feathers and scales: building complex epithelial appendages. Curr Opin Genet Dev 2000; 10:449-56. [PMID: 11023302 PMCID: PMC4386666 DOI: 10.1016/s0959-437x(00)00111-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C M Chuong
- Department of Pathology, School of Medicine, University od Southern California, Los Angeles 90033, USA.
| | | | | | | |
Collapse
|
50
|
Ohuchi H, Kimura S, Watamoto M, Itoh N. Involvement of fibroblast growth factor (FGF)18-FGF8 signaling in specification of left-right asymmetry and brain and limb development of the chick embryo. Mech Dev 2000; 95:55-66. [PMID: 10906450 DOI: 10.1016/s0925-4773(00)00331-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.
Collapse
Affiliation(s)
- H Ohuchi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, 606-8501, Kyoto, Japan.
| | | | | | | |
Collapse
|