1
|
Gurney M, Mangaonkar AA, Lasho T, Finke C, Al-Kali A, Gangat N, Shah MV, Alkhateeb HB, Tefferi A, Sallman D, Xie Z, Viswanatha D, Reichard K, Al Ali N, Komrokji R, Padron E, Patnaik MM. Somatic TP53 single nucleotide variants, indels and copy number alterations in chronic myelomonocytic leukemia (CMML). Leukemia 2023; 37:1753-1756. [PMID: 37422593 DOI: 10.1038/s41375-023-01964-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Affiliation(s)
- Mark Gurney
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Terra Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Christy Finke
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Mithun V Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - David Sallman
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kaaren Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Najla Al Ali
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
2
|
Siti Mariam I, Norhidayah R, Zulaikha AB, Nazihah MY, Rosline H, Kausar GA, Sarina S, Azlan H, Ankathil R. Differential prognostic impact of stratified additional chromosome abnormalities on disease progression among Malaysian chronic myeloid leukemia patients undergoing treatment with imatinib mesylate. Front Oncol 2022; 12:720845. [PMID: 36003793 PMCID: PMC9393706 DOI: 10.3389/fonc.2022.720845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of additional chromosome abnormalities (ACAs) in chronic myeloid leukemia (CML) patients during treatment with a tyrosine kinase inhibitor (TKI) regime is generally associated with resistance to treatment and a sign of disease progression to accelerated phase or blast phase. We report the type, frequency, and differential prognostic impact of stratified ACAs with treatment response in 251 Malaysian CML patients undergoing TKI therapy. ACAs were observed in 40 patients (15.9%) of which 7 patients (17.5%) showed ACAs at time of initial diagnosis whereas 33 patients (82.5%) showed ACAs during the course of IM treatment. In order to assess the prognostic significance, we stratified the CML patients with ACAs into four groups, group 1 (+8/+Ph), group 2 (hypodiploidy), group 3 (structural/complex abnormalities); group 4 (high-risk complex abnormalities), and followed up the disease outcome of patients. Group 1 and group 2 relatively showed good prognosis while patients in group 3 and group 4 had progressed or transformed to AP or blast phase with a median survival rate of 12 months after progression. Novel ACAs consisting of rearrangements involving chromosome 11 and chromosome 12 were found to lead to myeloid BP while ACAs involving the deletion of 7q or monosomy 7 led toward a lymphoid blast phase. There was no evidence of group 2 abnormalities (hypodiploidy) contributing to disease progression. Compared to group 1 abnormalities, CML patients with group 3 and group 4 abnormalities showed a higher risk for disease progression. We conclude that the stratification based on individual ACAs has a differential prognostic impact and might be a potential novel risk predictive system to prognosticate and guide the treatment of CML patients at diagnosis and during treatment.
Collapse
Affiliation(s)
- Ismail Siti Mariam
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ramli Norhidayah
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abu Bakar Zulaikha
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Yunus Nazihah
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hassan Rosline
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ghazali Anis Kausar
- Unit of Biostatstics and Research Methodology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Sulong Sarina
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Ravindran Ankathil,
| |
Collapse
|
3
|
Kaempferol sensitizes tumor necrosis factor-related apoptosis-inducing ligand-resistance chronic myelogenous leukemia cells to apoptosis. Mol Biol Rep 2021; 49:19-29. [PMID: 34820749 DOI: 10.1007/s11033-021-06778-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL, an apoptosis-inducing cytokine, has attracted much attention in the treatment of cancer for its selective toxicity to malignant rather than normal cells. However, the apoptosis-inducing ability of TRAIL is weaker than expected primarily due to cancer cell resistance. As one of the dietary flavonoids, kaempferol, has been shown to be antiproliferative and might have a protective effect against TRAIL resistance, particularly for hematologic malignancies. METHODS AND RESULTS Here, we studied the potential of kaempferol to enhance the TRAIL-induced cytotoxicity and apoptosis in human chronic myelogenous leukemia (CML) cell line K-562, as well as the expression of specific genes with impact on TRAIL signal regulation. Analysis of flowcytometry data showed that treatment with kaempferol did enhance sensitivity of CML cells to pro-apoptotic effects of anti-TRAIL antibody. Although the gene expression levels were heterogeneous, cFLIP, cIAP1 and cIAP2 expression were generally downregulated where co-treatment of kaempferol and TRAIL was employed and these effects appeared to be dose-dependent. We further demonstrated that the expression of death receptors 4 and 5 tended to increase subsequent to the combination treatment. CONCLUSIONS Consequently, it is reasonable to conclude that sensitization of chronic leukemia cells to TRAIL by kaempferol in vitro should be considered as a way of focusing clinical attention on leukemia therapy.
Collapse
|
4
|
Wang L, Li L, Chen R, Huang X, Ye X. Understanding and Monitoring Chronic Myeloid Leukemia Blast Crisis: How to Better Manage Patients. Cancer Manag Res 2021; 13:4987-5000. [PMID: 34188552 PMCID: PMC8236273 DOI: 10.2147/cmar.s314343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic myeloid leukemia (CML) is triggered primarily by the t(9;22) (q34.13; q11.23) translocation. This reciprocal chromosomal translocation leads to the formation of the BCR-ABL fusion gene. Patients in the chronic phase (CP) experience a good curative effect with tyrosine kinase inhibitors. However, cases are treatment refractory, with a dismal prognosis, when the disease has progressed to the accelerated phase (AP) or blast phase (BP). Until now, few reports have provided a comprehensive description of the mechanisms involved at different molecular levels. Indeed, the underlying pathogenesis of CML evolution comprises genetic aberrations, chromosomal translocations (except for the Philadelphia chromosome), telomere biology, and epigenetic anomalies. Herein, we provide knowledge of the biology responsible for blast transformation of CML at several levels, such as genetics, telomere biology, and epigenetic anomalies. Because of the limited treatment options available and poor outcomes, only the therapeutic response is monitored regularly, which involves BCR-ABL transcript level assessment and immunologic surveillance, with the optimal treatment strategy for patients in CP adapted to evaluate disease recurrence or progression. Overall, selecting optimal treatment endpoints to predict survival and successful TFR improves the quality of life of patients. Thus, identifying risk factors and developing risk-adapted therapeutic options may contribute to a better outcome for advanced-phase patients.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Program in Clinical Medicine, School of Medicine of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Li Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Rongrong Chen
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Program in Clinical Medicine, School of Medicine of Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Mechanisms of Disease Progression and Resistance to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia: An Update. Int J Mol Sci 2019; 20:ijms20246141. [PMID: 31817512 PMCID: PMC6940932 DOI: 10.3390/ijms20246141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of the BCR-ABL1 fusion gene, which encodes a constitutive active tyrosine kinase considered to be the pathogenic driver capable of initiating and maintaining the disease. Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, some patients may not respond (primary resistance) or may relapse after an initial response (secondary resistance). In a small proportion of cases, development of resistance is accompanied or shortly followed by progression from chronic to blastic phase (BP), characterized by a dismal prognosis. Evolution from CP into BP is a multifactorial and probably multistep phenomenon. Increase in BCR-ABL1 transcript levels is thought to promote the onset of secondary chromosomal or genetic defects, induce differentiation arrest, perturb RNA transcription, editing and translation that together with epigenetic and metabolic changes may ultimately lead to the expansion of highly proliferating, differentiation-arrested malignant cells. A multitude of studies over the past two decades have investigated the mechanisms underlying the closely intertwined phenomena of drug resistance and disease progression. Here, we provide an update on what is currently known on the mechanisms underlying progression and present the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence.
Collapse
|
6
|
Nayak RC, Hegde S, Althoff MJ, Wellendorf AM, Mohmoud F, Perentesis J, Reina-Campos M, Reynaud D, Zheng Y, Diaz-Meco MT, Moscat J, Cancelas JA. The signaling axis atypical protein kinase C λ/ι-Satb2 mediates leukemic transformation of B-cell progenitors. Nat Commun 2019; 10:46. [PMID: 30610188 PMCID: PMC6320370 DOI: 10.1038/s41467-018-07846-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Epigenetically regulated transcriptional plasticity has been proposed as a mechanism of differentiation arrest and resistance to therapy. BCR-ABL leukemias result from leukemic stem cell/progenitor transformation and represent an opportunity to identify epigenetic progress contributing to lineage leukemogenesis. Primary human and murine BCR-ABL+ leukemic progenitors have increased activation of Cdc42 and the downstream atypical protein kinase C (aPKC). While the isoform aPKCζ behaves as a leukemic suppressor, aPKCλ/ι is critically required for oncogenic progenitor proliferation, survival, and B-cell differentiation arrest, but not for normal B-cell lineage differentiation. In vitro and in vivo B-cell transformation by BCR-ABL requires the downregulation of key genes in the B-cell differentiation program through an aPKC λ/ι-Erk dependent Etv5/Satb2 chromatin repressive signaling complex. Genetic or pharmacological targeting of aPKC impairs human oncogenic addicted leukemias. Therefore, the aPKCλ/ι-SATB2 signaling cascade is required for leukemic BCR-ABL+ B-cell progenitor transformation and is amenable to non-tyrosine kinase inhibition. The upstream pathways regulating leukemic transcriptional plasticity for differentiation arrest and resistance to therapy are unclear. Here the authors show that aPKC λ/ι-controls leukemic B-cell precursor differentiation arrest trough RAC/MEK/ERK/SATB2 epigenetic repression
Collapse
Affiliation(s)
- R C Nayak
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - S Hegde
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.,Hoxworth Blood Center, University of Cincinnati, 3130 Highland Ave., Cincinnati, OH, 45267, USA
| | - M J Althoff
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.,Hoxworth Blood Center, University of Cincinnati, 3130 Highland Ave., Cincinnati, OH, 45267, USA.,Graduate Program of Cancer & Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - A M Wellendorf
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - F Mohmoud
- Graduate Program of Cancer & Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - J Perentesis
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - M Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - D Reynaud
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Y Zheng
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - M T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - J Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - J A Cancelas
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA. .,Hoxworth Blood Center, University of Cincinnati, 3130 Highland Ave., Cincinnati, OH, 45267, USA. .,Graduate Program of Cancer & Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
7
|
DeFilipp Z, Khoury HJ. Management of advanced-phase chronic myeloid leukemia. Curr Hematol Malig Rep 2016; 10:173-81. [PMID: 25929768 DOI: 10.1007/s11899-015-0249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The management of chronic myeloid leukemia (CML) in accelerated or blast phase (advanced phase) remains a significant challenge despite the introduction of very effective tyrosine kinase inhibitors (TKIs). The biology of advanced-phase CML is complex and engages several pathways that are not optimally targeted by TKIs. Allogeneic stem cell transplantation remains the only potentially curative therapy, but the effectiveness of this conventional approach is limited. New strategies are required to improve the outlook for these patients.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Road NE C5010, Atlanta, GA, 30322, USA,
| | | |
Collapse
|
8
|
Giotopoulos G, van der Weyden L, Osaki H, Rust AG, Gallipoli P, Meduri E, Horton SJ, Chan WI, Foster D, Prinjha RK, Pimanda JE, Tenen DG, Vassiliou GS, Koschmieder S, Adams DJ, Huntly BJP. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression. J Exp Med 2015; 212:1551-69. [PMID: 26304963 PMCID: PMC4577832 DOI: 10.1084/jem.20141661] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/28/2015] [Indexed: 12/14/2022] Open
Abstract
The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease.
Collapse
MESH Headings
- Animals
- DNA Transposable Elements
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic
- Genes, myb
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/genetics
- Leukemia, Experimental/mortality
- Leukemia, Experimental/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice, Transgenic
- Molecular Targeted Therapy/methods
- Mutagenesis, Insertional
- Mutation
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor C/genetics
Collapse
Affiliation(s)
- George Giotopoulos
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hikari Osaki
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK Tumour Profiling Unit, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, England, UK
| | - Paolo Gallipoli
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Eshwar Meduri
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Sarah J Horton
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Wai-In Chan
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Donna Foster
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| | - Rab K Prinjha
- Epinova DPU, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, England, UK
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore 119077 Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, England, UK
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Brian J P Huntly
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, England, UK
| |
Collapse
|
9
|
Liu YC, Hsiao HH, Yang WC, Liu TC, Chang CS, Yang MY, Lin PM, Hsu JF, Lee CP, Lin SF. MDM2 promoter polymorphism and p53 codon 72 polymorphism in chronic myeloid leukemia: the association between MDM2 promoter genotype and disease susceptibility, age of onset, and blast-free survival in chronic phase patients receiving imatinib. Mol Carcinog 2013; 53:951-9. [PMID: 23818300 DOI: 10.1002/mc.22061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 01/17/2023]
Abstract
The genetic or functional inactivation of the p53 pathway plays an important role with regards to disease progression from the chronic phase (CP) to blast phase (BP) and imatinib treatment response in chronic myeloid leukemia (CML). Two functional single nucleotide polymorphisms (SNPs), p53 R72P and MDM2 SNP309, are associated with alternation of p53 activity, however the association regarding CML susceptibility and BP transformation under imatinib treatment is unclear. The MDM2 SNP309 genotype was determined by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing from 116 CML patients, including 104 in the CP at diagnosis, and 162 healthy Taiwanese controls. The p53 R72P polymorphism was examined in all CML patients. The SNP309 G/G genotype was associated with an increased risk of CML susceptibility (OR: 1.82, 95% CI: 1.03-3.22, P = 0.037), and an earlier age of disease onset (log-rank P = 0.005) compared with the T/T + T/G genotypes. Higher MDM2 mRNA expression was found in G/G genotype compared with T/T (P = 0.034) and T/T + T/G (P = 0.056) genotypes. No associations were found between the p53 R72P genotypes and clinical parameters and survival outcomes. Among 62 CP patients receiving imatinib as first-line therapy, the G/G genotype was associated with a shorter blast-free survival (log-rank P = 0.048) and more clonal evolution compared with the T/T + T/G genotypes. In patients with advanced diseases at diagnosis, the G/G genotype was associated with a poor overall survival (log-rank P = 0.006). Closely monitoring CML patients harboring the G/G genotype and further large-scale studies are warranted.
Collapse
Affiliation(s)
- Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Skorski T. Genetic mechanisms of chronic myeloid leukemia blastic transformation. Curr Hematol Malig Rep 2012; 7:87-93. [PMID: 22328017 DOI: 10.1007/s11899-012-0114-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The BCR-ABL1 oncogenic tyrosine kinase can transform pluripotent hematopoietic stem cells and initiate chronic myeloid leukemia in chronic phase (CML-CP), a myeloproliferative disorder characterized by excessive accumulation of mature myeloid cells. Patients in CML-CP usually respond to treatment with ABL1 tyrosine kinase inhibitors (TKIs) such as imatinib, though some patients who respond initially may become resistant later. CML-CP leukemia stem cells (LSCs) are intrinsically insensitive to TKIs and thus survive in the long term. These LSCs or their progeny may at some stage acquire additional genetic changes that cause the leukemia to transform further, from CML-CP to a more advanced phase, which has been subclassified as either accelerated phase (CML-AP) or blastic phase (CML-BP). CML-BP is characterized by a major clonal expansion of immature progenitors, which have either myeloid or lymphoid features. CML-BP responds poorly to treatment and is usually fatal. This review discusses the role of genomic instability leading to blastic transformation of CML and proposes some novel therapeutic approaches.
Collapse
Affiliation(s)
- Tomasz Skorski
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
11
|
Forced expression of cyclin-dependent kinase 6 confers resistance of pro-B acute lymphocytic leukemia to Gleevec treatment. Mol Cell Biol 2011; 31:2566-76. [PMID: 21536647 DOI: 10.1128/mcb.01349-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gene encoding c-ABL, a nonreceptor protein tyrosine kinase, is involved in a chromosomal translocation resulting in expression of a BCR-Abl fusion protein that causes most chronic myelogenous and some acute lymphocytic leukemias (CML and ALL) in humans. The Abelson murine leukemia virus (A-MuLV) expresses an alternative form of c-Abl, v-Abl, that transforms murine pro-B cells, resulting in acute leukemia and providing an experimental model for human disease. Gleevec (STI571) inhibits the Abl kinase and has shown great utility against CML and ALL in humans, although its usefulness is limited by acquired resistance. Since STI571 is active against A-MuLV-transformed cells in vitro, we performed a retroviral cDNA library screen for genes that confer resistance to apoptosis induced by STI571. We found that forced expression of Cdk6 promotes continued cell division and decreased apoptosis of leukemic cells. We then determined that the transcription factor E2A negatively regulates Cdk6 transcription in leukemic pro-B cells and that the v-Abl kinase stimulates Cdk6 expression via an extracellular signal-regulated kinase 1-dependent pathway. Finally, we show that the cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor PD0332991 can act synergistically with STI571 to enhance leukemic cell death, suggesting a potential role for CDK6 inhibitors in the treatment of STI571-resistant CML or ALL.
Collapse
|
12
|
Perrotti D, Harb JG. BCR-ABL1 kinase-dependent alteration of mRNA metabolism: potential alternatives for therapeutic intervention. Leuk Lymphoma 2011; 52 Suppl 1:30-44. [PMID: 21299458 DOI: 10.3109/10428194.2010.546914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of first- and second-generation tyrosine kinase inhibitors (TKIs) significantly improves prognosis for patients with early chronic phase chronic myeloid leukemia (CML) and efficiently counteracts leukemia in most patients with CML bearing a disease characterized by the expression of BCR-ABL1 mutants. However, the so-called 'tinib' TKIs (e.g. imatinib, nilotinib, dasatinib, and bosutinib) are both ineffective in patients who undergo blastic transformation and unable to eradicate CML at the stem cell level. This raises a few important questions. Is BCR-ABL1 expression and/or activity essential for blastic transformation? Is blastic transformation the result of genetic or epigenetic events that occur at the stem cell level which only become apparent in the granulocyte-macrophage progenitor (GMP) cell pool, or does it arise directly at the GMP level? As altered mRNA metabolism contributes to the phenotype of blast crisis CML progenitors (decreased translation of tumor suppressor genes and transcription factors essential for terminal differentiation and increased translation of anti-apoptotic genes), one attractive concept is to restore levels of these essential molecules to their normal levels. In this review, we discuss the mechanisms by which mRNA processing, translation, and degradation are deregulated in BCR-ABL1 myeloid blast crisis CML progenitors, and present encouraging results from studies with pharmacologic inhibitors which support their inclusion in the clinic.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Depatment of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
13
|
Abstract
MicroRNA miR-125b has been implicated in several kinds of leukemia. The chromosomal translocation t(2;11)(p21;q23) found in patients with myelodysplasia and acute myeloid leukemia leads to an overexpression of miR-125b of up to 90-fold normal. Moreover, miR-125b is also up-regulated in patients with B-cell acute lymphoblastic leukemia carrying the t(11;14)(q24;q32) translocation. To decipher the presumed oncogenic mechanism of miR-125b, we used transplantation experiments in mice. All mice transplanted with fetal liver cells ectopically expressing miR-125b showed an increase in white blood cell count, in particular in neutrophils and monocytes, associated with a macrocytic anemia. Among these mice, half died of B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, or a myeloproliferative neoplasm, suggesting an important role for miR-125b in early hematopoiesis. Furthermore, coexpression of miR-125b and the BCR-ABL fusion gene in transplanted cells accelerated the development of leukemia in mice, compared with control mice expressing only BCR-ABL, suggesting that miR-125b confers a proliferative advantage to the leukemic cells. Thus, we show that overexpression of miR-125b is sufficient both to shorten the latency of BCR-ABL-induced leukemia and to independently induce leukemia in a mouse model.
Collapse
Affiliation(s)
- Marina Bousquet
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Marian H. Harris
- Department of Pathology, Children's Hospital Boston, Boston, MA, 02115; and
| | - Beiyan Zhou
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Harvey F. Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02138
| |
Collapse
|
14
|
Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010; 120:2254-64. [PMID: 20592475 DOI: 10.1172/jci41246] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The BCR-ABL1 oncoprotein transforms pluripotent HSCs and initiates chronic myeloid leukemia (CML). Patients with early phase (also known as chronic phase [CP]) disease usually respond to treatment with ABL tyrosine kinase inhibitors (TKIs), although some patients who respond initially later become resistant. In most patients, TKIs reduce the leukemia cell load substantially, but the cells from which the leukemia cells are derived during CP (so-called leukemia stem cells [LSCs]) are intrinsically insensitive to TKIs and survive long term. LSCs or their progeny can acquire additional genetic and/or epigenetic changes that cause the leukemia to transform from CP to a more advanced phase, which has been subclassified as either accelerated phase or blastic phase disease. The latter responds poorly to treatment and is usually fatal. Here, we discuss what is known about the molecular mechanisms leading to blastic transformation of CML and propose some novel therapeutic approaches.
Collapse
Affiliation(s)
- Danilo Perrotti
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 41230, USA.
| | | | | | | |
Collapse
|
15
|
Jabbour E, Fava C, Kantarjian H. Advances in the biology and therapy of patients with chronic myeloid leukaemia. Best Pract Res Clin Haematol 2009; 22:395-407. [PMID: 19959090 DOI: 10.1016/j.beha.2009.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic myelogenous leukaemia (CML) is a progressive and often fatal haematopoietic neoplasm. The Bcr-Abl tyrosine kinase inhibitor imatinib mesylate represented a major therapeutic advance over conventional CML therapy, with more than 90% of patients obtaining complete haematologic response and 70-80% of patients achieving a complete cytogenetic response. Resistance to imatinib represents a clinical challenge and is often a result of point mutations causing a conformation change in Bcr-Abl, which impairs imatinib binding. Novel targeted agents designed to overcome imatinib resistance include dasatinib, nilotinib, bosutinib and others. Other approaches are exploring combination therapy, with agents affecting different oncogenic pathways and immune modulation. Herein, we review some of these targeted therapies, particularly those for which clinical data are already available.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, The University of Texas, Unit 428, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | |
Collapse
|
16
|
Kawasaki Y, Hirabayashi Y, Kaneko T, Kanno J, Kodama Y, Matsushima Y, Ogawa Y, Saitoh M, Sekita K, Uchida O, Umemura T, Yoon BI, Inoue T. Benzene-induced hematopoietic neoplasms including myeloid leukemia in Trp53-deficient C57BL/6 and C3H/He mice. Toxicol Sci 2009; 110:293-306. [PMID: 19478238 DOI: 10.1093/toxsci/kfp107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This research focused on three major questions regarding benzene-induced hematopoietic neoplasms (HPNs). First, why are HPNs induced equivocally and at only threshold level with low-dose benzene exposure despite the significant genotoxicity of benzene even at low doses both in experiments and in epidemiology? Second, why is there no linear increase in incidence at high-dose exposure despite a lower acute toxicity (LD(50) > 1000 mg/kg body weight; WHO, 2003, Benzene in drinking-water. Background document for development of WHO Guidelines for Drinking-Water Quality)? Third, why are particular acute myeloid leukemias (AMLs) not commonly observed in mice, although AMLs are frequently observed in human cases of occupational exposure to benzene? In this study, we hypothesized that the threshold-like equivocal induction of HPNs at low-dose benzene exposure is based on DNA repair potential in wild-type mice and that the limited increase in HPNs at a high-dose exposure is due to excessive apoptosis in wild-type mice. To determine whether Trp53 deficiency satisfies the above hypotheses by eliminating or reducing DNA repair and by allowing cells to escape apoptosis, we evaluated the incidence of benzene-induced HPNs in Trp53-deficient C57BL/6 mice with specific regard to AMLs. We also used C3H/He mice, AML prone, with Trp53 deficiency to explore whether a higher incidence of AMLs on benzene exposure might explain the above human-murine differences. As a result, heterozygous Trp53-deficient mice of both strains showed a nonthreshold response of the incidence of HPNs at the lower dose, whereas both strains showed an increasing HPN incidence up to 100% with increasing benzene exposure dose, including AMLs, that developed 38% of heterozygous Trp53-deficient C3H/He mice compared to only 9% of wild-type mice exposed to the high dose. The detection of AMLs in heterozygous Trp53-deficient mice, even in the C57BL/6 strain, implies that benzene may be a potent inducer of AMLs also in mice with some strain differences.
Collapse
Affiliation(s)
- Yasushi Kawasaki
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jabbour E, Cortes J, Kantarjian H. Treatment selection after imatinib resistance in chronic myeloid leukemia. Target Oncol 2009; 4:3-10. [PMID: 19343297 DOI: 10.1007/s11523-008-0100-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/30/2008] [Indexed: 02/03/2023]
Abstract
Chronic myeloid leukemia (CML) is a progressive and often fatal malignancy of the blood. The harbinger of CML is a chromosomal translocation that results in the synthesis of the BCR-ABL fusion protein, a constitutively active tyrosine kinase. The advent of imatinib, an inhibitor targeted specifically for BCR-ABL, represented a significant medical advance in CML therapy. However, patients with CML can exhibit varying responses to first-line treatment with imatinib. While most patients respond to treatment, some may experience a loss of response or require treatment discontinuation due to toxicity. Frequent monitoring for resistance or intolerance is a requirement for recognition of suboptimal response. Mutational analysis of the patient's BCR-ABL alleles is also informative and may be predictive of a response to therapy. Published physician guidelines have highlighted these recommendations, but it is not clear if these guidelines are universally followed. One option in patients showing poor response to standard-dose imatinib of 400 mg is to escalate the dose. However, this option should be reserved for patients with minimal disease burden. Clinically available options mainly include second-generation tyrosine kinase inhibitors, such as dasatinib and nilotinib. Allogenic stem cell transplantations (for eligible patients) also should be considered. The disease and patient characteristics at the time of imatinib failure should be evaluated before choosing second-line therapy to optimize the therapeutic benefit without unnecessary delay.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Wong JC, Le Beau MM, Shannon K. Tumor suppressor gene inactivation in myeloid malignancies. Best Pract Res Clin Haematol 2008; 21:601-14. [DOI: 10.1016/j.beha.2008.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Jabbour E, El Ahdab S, Cortes J, Kantarjian H. Nilotinib: a novel Bcr-Abl tyrosine kinase inhibitor for the treatment of leukemias. Expert Opin Investig Drugs 2008; 17:1127-1136. [PMID: 18549348 DOI: 10.1517/13543784.17.7.1127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The successful introduction of the tyrosine kinase inhibitors has initiated a new era in the management of chronic myeloid leukemia (CML). Imatinib mesilate therapy has significantly improved the prognosis of CML. A minority of patients in chronic-phase CML--and more patients in advanced phases--are resistant to imatinib, or develop resistance during treatment. This is attributed, in 40-50% of cases, to the development of mutations in the Bcr-Abl tyrosine kinase domain that impair imatinib binding. Nilotinib (Tasigna) is a novel potent selective oral kinase inhibitor. Preclinical and clinical investigations demonstrate that nilotinib effectively overcomes imatinib resistance, and has induced high rates of hematologic and cytogenetic responses in CML post imatinib failure.
Collapse
Affiliation(s)
- Elias Jabbour
- The University of Texas, MD Anderson Cancer Center, Department of Leukemia, Unit 428, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
20
|
BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress. Leukemia 2008; 22:1969-72. [PMID: 18401418 DOI: 10.1038/leu.2008.78] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis. Blood 2008; 111:4771-9. [PMID: 18227349 DOI: 10.1182/blood-2007-08-105072] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The c-Myb gene encodes a transcription factor required for proliferation and survival of normal myeloid progenitors and leukemic blast cells. Targeting of c-Myb by antisense oligodeoxynucleotides has suggested that myeloid leukemia blasts (including chronic myelogenous leukemia [CML]-blast crisis cells) rely on c-Myb expression more than normal progenitors, but a genetic approach to assess the requirement of c-Myb by p210(BCR/ABL)-transformed hematopoietic progenitors has not been taken. We show here that loss of a c-Myb allele had modest effects (20%-28% decrease) on colony formation of nontransduced progenitors, while the effect on p210(BCR/ABL)-expressing Lin(-) Sca-1(+) and Lin(-) Sca-1(+)Kit(+) cells was more pronounced (50%-80% decrease). Using a model of CML-blast crisis, mice (n = 14) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/w) marrow cells developed leukemia rapidly and had a median survival of 26 days, while only 67% of mice (n = 12) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/d) marrow cells died of leukemia with a median survival of 96 days. p210(BCR/ABL)-transduced c-Myb(w/w) and c-Myb(w/d) marrow progenitors expressed similar levels of the c-Myb-regulated genes c-Myc and cyclin B1, while those of Bcl-2 were reduced. However, ectopic Bcl-2 expression did not enhance colony formation of p210(BCR/ABL)-transduced c-Myb(w/d) Lin(-)Sca-1(+)Kit(+) cells. Together, these studies support the requirement of c-Myb for p210(BCR/ABL)-dependent leukemogenesis.
Collapse
|
22
|
Chang JS, Santhanam R, Trotta R, Neviani P, Eiring AM, Briercheck E, Ronchetti M, Roy DC, Calabretta B, Caligiuri MA, Perrotti D. High levels of the BCR/ABL oncoprotein are required for the MAPK-hnRNP-E2 dependent suppression of C/EBPalpha-driven myeloid differentiation. Blood 2007; 110:994-1003. [PMID: 17475908 PMCID: PMC1924762 DOI: 10.1182/blood-2007-03-078303] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/24/2007] [Indexed: 12/21/2022] Open
Abstract
The inability of myeloid chronic myelogenous leukemia blast crisis (CML-BC) progenitors to undergo neutrophil differentiation depends on suppression of C/EBPalpha expression through the translation inhibitory activity of the RNA-binding protein hnRNP-E2. Here we show that "oncogene dosage" is a determinant factor for suppression of differentiation in CML-BC. In fact, high levels of p210-BCR/ABL are required for enhanced hnRNP-E2 expression, which depends on phosphorylation of hnRNP-E2 serines 173, 189, and 272 and threonine 213 by the BCR/ABL-activated MAPK(ERK1/2). Serine/threonine to alanine substitution abolishes hnRNP-E2 phosphorylation and markedly decreases its stability in BCR/ABL-expressing myeloid precursors. Similarly, pharmacologic inhibition of MAPK(ERK1/2) activity decreases hnRNP-E2 binding to the 5'UTR of C/EBPalpha mRNA by impairing hnRNP-E2 phosphorylation and stability. This, in turn, restores in vitro and/or in vivo C/EBPalpha expression and G-CSF-driven neutrophilic maturation of differentiation-arrested BCR/ABL(+) cell lines, primary CML-BC(CD34+) patient cells and lineage-negative mouse bone marrow cells expressing high levels of p210-BCR/ABL. Thus, increased BCR/ABL oncogenic tyrosine kinase activity is essential for suppression of myeloid differentiation of CML-BC progenitors as it is required for sustained activation of the MAPK(ERK1/2)-hnRNP-E2-C/EBPalpha differentiation-inhibitory pathway. Furthermore, these findings suggest the inclusion of clinically relevant MAPK inhibitors in the therapy of CML-BC.
Collapse
MESH Headings
- Animals
- Blast Crisis/drug therapy
- Blast Crisis/metabolism
- Blast Crisis/pathology
- CCAAT-Enhancer-Binding Protein-alpha/biosynthesis
- Cell Differentiation/drug effects
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/biosynthesis
- Gene Expression Regulation, Leukemic/drug effects
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Neutrophils/metabolism
- Neutrophils/pathology
- Phosphorylation/drug effects
Collapse
Affiliation(s)
- Ji Suk Chang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 23240, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Perrotti D, Neviani P. From mRNA metabolism to cancer therapy: chronic myelogenous leukemia shows the way. Clin Cancer Res 2007; 13:1638-42. [PMID: 17363515 DOI: 10.1158/1078-0432.ccr-06-2320] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Altered mRNA metabolism is a feature of many cancers including blast crisis chronic myelogenous leukemia. Indeed, loss of function of many tumor suppressors regulating cell proliferation, survival, and differentiation results from aberrant mRNA processing, nuclear export, and/or translation. Here, we summarize the effects of increased BCR/ABL oncogenic activity on the expression and function of RNA binding proteins (e.g., FUS, hnRNP A1, hnRNP E2, hnRNP K, and La/SSB) with posttranscriptional and translational regulatory activities and their importance for the phenotype of BCR/ABL-transformed hematopoietic progenitors. We also provide evidence that these studies not only advance our understanding on the molecular mechanisms contributing to tumor/leukemia emergence, maintenance, and/or progression but they also serve for the identification of novel molecular targets useful for the development of alternative therapies for imatinib-resistant and blast crisis chronic myelogenous leukemia and, perhaps, for other cancers characterized by similar alterations in the mRNA metabolism.
Collapse
MESH Headings
- Animals
- Autoantigens/physiology
- CCAAT-Enhancer-Binding Proteins/physiology
- CELF1 Protein
- Chromosomal Proteins, Non-Histone/physiology
- DNA-Binding Proteins
- Heterogeneous-Nuclear Ribonucleoprotein K
- Heterogeneous-Nuclear Ribonucleoproteins/physiology
- Histone Chaperones
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Models, Biological
- Neoplasms/metabolism
- Neoplasms/therapy
- Peptide Fragments/physiology
- Phosphoprotein Phosphatases/physiology
- Proto-Oncogene Proteins c-mdm2/physiology
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Receptors, Granulocyte Colony-Stimulating Factor/physiology
- Ribonucleoproteins/physiology
- Signal Transduction
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Danilo Perrotti
- The Molecular Biology and Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43240, USA.
| | | |
Collapse
|
24
|
Yoshida K, Hirabayashi Y, Wada S, Watanabe F, Watanabe K, Aizawa S, Inoue T. p53 (TRP53) Deficiency-Mediated Antiapoptosis Escape after 5 Gy X Irradiation Still Induces Stem Cell Leukemia in C3H/He Mice: Comparison between Whole-Body Assay and Bone Marrow Transplantation (BMT) Assay. Radiat Res 2007; 167:703-10. [PMID: 17523849 DOI: 10.1667/rr0820.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/08/2006] [Indexed: 11/03/2022]
Abstract
Mice exposed to a lethal dose of radiation were repopulated with heterozygous p53(+/-) (TRP53(+/-)) bone marrow cells and then exposed to doses of 1, 3 and 5 Gy 1 month later. This resulted in the transplanted bone marrow-specific diseases other than competitively induced nonhematopoietic neoplasms. Interestingly, the present study showed a high frequency of stem cell leukemia, i.e., leukemias characterized by a lack of differentiation due also to p53 deficiency, even after 5 Gy irradiation. The frequencies of stem cell leukemias (and those of total hematopoietic malignancies) were 16% (24%) at 1 Gy and 45% (75%) at 3 Gy. Furthermore, markedly high incidences of stem cell leukemias were observed at 5 Gy in p53(+/-) mice, i.e., 87% (100%) in the transplantation assay and 60% (83.3%) in the whole-body assay, whereas a conventional whole-body assay induced only 14% in wild-type mice. The high incidence of stem cell leukemias observed in this study using heterozygous p53-deficient mice agrees with results of a previous study of homozygous p53-deficient mice and is consistent with the high frequency of loss of heterozygosity in the p53 wild-type allele observed in leukemias. This suggests that the target cells for radiation-induced stem cell leukemias may be p53-deficient hematopoietic stem cells.
Collapse
Affiliation(s)
- Kazuko Yoshida
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Role of Src kinases in acute lymphoblastic leukaemia has been recently demonstrated in leukaemia mouse model. Retained activation of Src kinases by the BCR-ABL oncoprotein in leukaemic cells following inhibition of BCR-ABL kinase activity by imatinib indicates that Src activation by BCR-ABL is independent of BCR-ABL kinase activity and provides an explanation for reduced effectiveness of the BCR-ABL kinase activity inhibitors in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Simultaneous inhibition of kinase activity of both BCR-ABL and Src kinases results in long-term survival of mice with acute lymphoblastic leukaemia. Leukaemic stem cells exist in acute lymphoblastic leukaemia, and complete eradication of this group of cells would provide a curative therapy for this disease.
Collapse
Affiliation(s)
- Shaoguang Li
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
26
|
The clinical challenge of imatinib resistance in chronic myeloid leukemia: emerging strategies with new targeted agents. Target Oncol 2006. [DOI: 10.1007/s11523-006-0032-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Abstract
The participation of Src kinases in the induction of BCR-ABL-induced B cell acute lymphoblastic leukaemia (B-ALL), but not chronic myeloid leukaemia (CML), demonstrates cell type-specific signalling in Philadelphia chromosome-positive (Ph+) leukaemias. Different therapeutic strategies are therefore needed for B-ALL and CML. Activation of Src kinases is independent of BCR-ABL kinase activity for activation. Thus, Src kinases provide a mechanism for resistance to the BCR-ABL kinase inhibitors and potential targets for B-ALL therapy. Simultaneous targeting of both BCR-ABL and Src kinases may benefit human B-ALL patients. Leukaemic stem cells may exist in Ph+ B-ALL, and eradication of this group of cells would provide a curative method for this disease.
Collapse
Affiliation(s)
- Shaoguang Li
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| |
Collapse
|
28
|
Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A, Willis AE, Roy DC, Caligiuri MA, Marcucci G, Perrotti D. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood 2006; 107:2507-16. [PMID: 16293596 PMCID: PMC1895740 DOI: 10.1182/blood-2005-09-3732] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 11/02/2005] [Indexed: 12/31/2022] Open
Abstract
Altered mRNA translation is one of the effects exerted by the BCR/ABL oncoprotein in the blast crisis phase of chronic myelogenous leukemia (CML). Here, we report that in BCR/ABL+ cell lines and in patient-derived CML blast crisis mononuclear and CD34+ cells, p210(BCR/ABL) increases expression and activity of the transcriptional-inducer and translational-regulator heterogeneous nuclear ribonucleoprotein K (hnRNP K or HNRPK) in a dose- and kinase-dependent manner through the activation of the MAPK(ERK1/2) pathway. Furthermore, HNRPK down-regulation and interference with HNRPK translation-but not transcription-regulatory activity impairs cytokine-independent proliferation, clonogenic potential, and in vivo leukemogenic activity of BCR/ABL-expressing myeloid 32Dcl3 and/or primary CD34+ CML-BC patient cells. Mechanistically, we demonstrate that decreased internal ribosome entry site (IRES)-dependent Myc mRNA translation accounts for the phenotypic changes induced by inhibition of the BCR/ABL-ERK-dependent HNRPK translation-regulatory function. Accordingly, MYC protein but not mRNA levels are increased in the CD34+ fraction of patients with CML in accelerated and blastic phase but not in chronic phase CML patients and in the CD34+ fraction of marrow cells from healthy donors. Thus, BCR/ABL-dependent enhancement of HNRPK translation-regulation is important for BCR/ABL leukemogenesis and, perhaps, it might contribute to blast crisis transformation.
Collapse
Affiliation(s)
- Mario Notari
- Human Cancer Genetics Program, The Ohio State University Medical Center, Columbus, OH 43240, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Strnad M, Brajusković G, Strelić N, Zivanović BT, Tukić L, Stamatović D. Expression of Bcl-2 protein and the amplification of c-myc gene in patients with chronic myeloid leukemia. VOJNOSANIT PREGL 2006; 63:364-9. [PMID: 16683403 DOI: 10.2298/vsp0604364s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background/Aim. Chronic myeloid leukemia (CML) represents a malignant myeloproliferative disease developed out of pluripotent hematopoietic stem cell that contains the fusion bcr-abl gene. Disorders that occur in the process of apoptosis represent one of the possible molecular mechanisms that bring about the disease progress. The aim of our study was to carry out the analysis of the presence of the amplification of the cmyc oncogene, as well as the analysis of the changes in the expression of Bcl-2 in the patients with CML. Methods. Our study included 25 patients with CML (18 in chronic phase, 7 in blast transformation). Using an immunohistochemical alkaline phosphatase-anti-alkaline phosphatase (APAAP) method, we analyzed the expression of cell death protein in the mononuclear bone marrow cells of 25 CML patients. By a differential PCR (polymerase chain reaction) method, we followed the presence of amplified c-myc gene in mononuclear peripheral blood cells. Results. The level of the expression of Bcl-2 protein was considerably higher in the bone marrow samples of the patients undergoing blast transformation of the disease. The amplification of c-myc gene was detected in 30% of the patients in blast transformation of the disease. Conclusion. The expression of Bcl-2 protein and the amplification of c-myc gene are in correlation with the disease progression.
Collapse
Affiliation(s)
- Milica Strnad
- Vojnomedicinska akademija, CPSM, Institut za patologiju, Beograd.
| | | | | | | | | | | |
Collapse
|
30
|
Perrotti D, Turturro F, Neviani P. BCR/ABL, mRNA translation and apoptosis. Cell Death Differ 2005; 12:534-40. [PMID: 15846378 DOI: 10.1038/sj.cdd.4401606] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
31
|
Abstract
The ability of oncogenic proteins to regulate the rate of translation of specific mRNA subsets may be a rapid and efficient mechanism to modulate the levels and, in many cases, the activity of the corresponding proteins. In the past few years, we have identified several RNA binding proteins with translation regulatory activity whose expression is markedly activated in the blast crisis of chronic myelogenous leukemia, which represents the most malignant disease stage. Perturbation of the activity of some RNA binding proteins suppresses the leukemogenic potential of BCR/ABL-expressing cells. Most importantly, we have identified some of the targets of these RNA binding proteins. Two of these targets, c/ebp alpha and mdm2 mRNAs, are directly relevant for the altered differentiation and survival of leukemic cells. The identification of mRNA targets translationally regulated by RNA binding proteins overexpressed in tumor cells may lead to the development of therapeutic strategies aimed at modulating the translation rate of specific mRNAs.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210, USA.
| | | |
Collapse
|
32
|
Abstract
Chronic myelogenous leukemia (CML) evolves from a chronic phase characterized by the Philadelphia chromosome as the sole genetic abnormality into blast crisis, which is often associated with additional chromosomal and molecular secondary changes. Although the pathogenic effects of most CML blast crisis secondary changes are still poorly understood, ample evidence suggests that the phenotype of CML blast crisis cells (enhanced proliferation and survival, differentiation arrest) depends on cooperation of BCR/ABL with genes dysregulated during disease progression. Most genetic abnormalities of CML blast crisis have a direct or indirect effect on p53 or Rb (or both) gene activity, which are primarily required for cell proliferation and survival, but not differentiation. Thus, the differentiation arrest of CML blast crisis cells is a secondary consequence of these abnormalities or is caused by dysregulation of differentiation-regulatory genes (ie, C/EBPalpha). Validation of the critical role of certain secondary changes (ie, loss of p53 or C/EBPalpha function) in murine models of CML blast crisis and in in vitro assays of BCR/ABL transformation of human hematopoietic progenitors might lead to the development of novel therapies based on targeting BCR/ABL and inhibiting or restoring the gene activity gained or lost during disease progression (ie, p53 or C/EBPalpha).
Collapse
Affiliation(s)
- Bruno Calabretta
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
33
|
Abstract
Although most solid tumors contain inactivating mutations of the p53 tumor suppressor, hematological malignancies do not contain frequent alterations in the p53 gene (<20%). How these tumors arise in the presence of a super tumor suppressor like p53 remains to be elucidated. Given the number of downstream effectors of p53, it is likely that critical targets of p53 are inactivated in leukemia, bypassing the requirement for p53 gene mutations in these tumors. This review describes new biochemical and transcriptional activities of p53 as well as the status of p53 in acute myelogenous leukemia and chronic myelogenous leukemia.
Collapse
Affiliation(s)
- Anita Boyapati
- Division of Oncovirology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
34
|
Feller SM, Tuchscherer G, Voss J. High affinity molecules disrupting GRB2 protein complexes as a therapeutic strategy for chronic myelogenous leukaemia. Leuk Lymphoma 2003; 44:411-27. [PMID: 12688310 DOI: 10.1080/1042819021000037930] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chronic myelogenous leukaemia (CML) is one of the most intensively studied human malignancies. It has been the focus of major efforts to develop potent drugs for several decades, but until recently cure rates remained low. A breakthrough in CML therapy was very likely accomplished with the clinical introduction of STI-571 [imatinib mesylate; Gleevec (USA); Glivec (other countries)] in 2000/2001. Despite the hope that STI-571 has generated for many CML patients, development of resistance to this drug is already apparent in some cases, especially if the CML is diagnosed in its later stages. Therefore, novel drugs which can be used alone or in combination with STI-571 are highly desirable. This review briefly summarises the current understanding and therapy of CML and then discusses in more detail basic laboratory research that attempts to target Grb2, an adaptor protein known to directly interact with the Bcr portion of the Bcr-Abl fusion protein. Blocking the binding of Grb2 to the GDP-releasing protein SoS is well known to abrogate the activation of the GTPase Ras, a major driving force of the central mitogenic (MAP kinase) pathway. Additional Grb2 effector proteins may also contribute to the proliferation-inhibiting effects observed upon uncoupling Grb2 from its downstream signalling system. Since Grb2 is a known signal transducer for several major human oncogenes, this approach may have applications for a wider range of human cancers.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Drug Design
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/therapeutic use
- Fatty Acids, Unsaturated/pharmacology
- Forecasting
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- GRB2 Adaptor Protein
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Macromolecular Substances
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Peptide Fragments/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Piperazines/administration & dosage
- Piperazines/therapeutic use
- Protein Binding/drug effects
- Proteins/antagonists & inhibitors
- Proteins/chemistry
- Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/therapeutic use
- Signal Transduction/drug effects
- Son of Sevenless Proteins/physiology
- Structure-Activity Relationship
- Transcription Factors/physiology
- ras Proteins/antagonists & inhibitors
- src Homology Domains
Collapse
Affiliation(s)
- Stephan M Feller
- Cell Signalling Group, Molecular Oncology Laboratory, Cancer Research UK, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. stephan.feller@.cancer.org.uk
| | | | | |
Collapse
|
35
|
Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C, Santilli G, Byrom MW, Goldoni S, Ford LP, Caligiuri MA, Maraia RJ, Perrotti D, Calabretta B. BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 2003; 3:145-60. [PMID: 12620409 DOI: 10.1016/s1535-6108(03)00020-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In a BCR/ABL-expressing myeloid precursor cell line, p53 levels were markedly downmodulated. Expression of MDM2, the negative regulator of p53, was upregulated in a tyrosine kinase-dependent manner in growth factor-independent BCR/ABL-expressing cells, and in accelerated phase and blast crisis CML samples. Increased MDM2 expression was associated with enhanced mdm2 mRNA translation, which required the interaction of the La antigen with mdm2 5' UTR. Expression of MDM2 correlated with that of La and was suppressed by La siRNAs and by a dominant negative La mutant, which also enhanced the susceptibility to drug-induced apoptosis of BCR/ABL-transformed cells. By contrast, La overexpression led to increased MDM2 levels and enhanced resistance to apoptosis. Thus, La-dependent activation of mdm2 translation might represent an important molecular mechanism involved in BCR/ABL leukemogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Autoantigens
- Blotting, Northern
- Blotting, Western
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/physiology
- GRB2 Adaptor Protein
- Growth Substances/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Nuclear Proteins
- Protein Biosynthesis
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-mdm2
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- SS-B Antigen
Collapse
Affiliation(s)
- Rossana Trotta
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Skorski T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 2002; 21:8591-604. [PMID: 12476306 DOI: 10.1038/sj.onc.1206087] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BCR/ABL regulates cell proliferation, apoptosis, differentiation and adhesion. In addition, BCR/ABL can induce resistance to cytostatic drugs and irradiation by modulation of DNA repair mechanisms, cell cycle checkpoints and Bcl-2 protein family members. Upon DNA damage BCR/ABL not only enhances reparation of DNA lesions (e.g. homologous recombination repair), but also prolongs activation of cell cycle checkpoints (e.g. G2/M) providing more time for repair of otherwise lethal lesions. Moreover, by modification of anti-apoptotic members of the Bcl-2 family (e.g. upregulation of Bcl-x(L)) BCR/ABL provides a cytoplasmic 'umbrella' protecting mitochondria from the 'rain' of apoptotic signals coming from the damaged DNA in the nucleus, thus preventing release of cytochrome c and activation of caspases. The unrepaired and/or aberrantly repaired (but not lethal) DNA lesions resulting from spontaneous and/or drug-induced damage can accumulate in BCR/ABL-transformed cells leading to genomic instability and malignant progression of the disease. Inhibition of BCR/ABL kinase activity by STI571 (Gleevec, imatinib mesylate) reverses drug resistance and, in combination with standard chemotherapeutics can exert strong anti-leukemia effect.
Collapse
Affiliation(s)
- Tomasz Skorski
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, PA 19122, USA.
| |
Collapse
|
37
|
Yoshida K, Aizawa S, Watanabe K, Hirabayashi Y, Inoue T. Stem-cell leukemia: p53 deficiency mediated suppression of leukemic differentiation in C3H/He myeloid leukemia. Leuk Res 2002; 26:1085-92. [PMID: 12443880 DOI: 10.1016/s0145-2126(02)00032-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C3H/He mice produce myeloid leukemias after whole body irradiation of 1-3Gy as compared with non-irradiated controls that produce fewer than 1% of leukemia [Radiatiton Research 127 (1991) 146]. Thus, p53-deficient C57BL/6 strain, a malignant lymphoma prone, was crossed back into C3H/He strain. Lethally irradiated wild-type mice to which p53-deficient bone marrow cells were transplanted (transplantation assay) showed dramatic change in the propensity of leukemia of myeloid lineages, the cells lacking CD3, Thy1.2, sIgM, B220, Mac-1, Gr-1, but being positive for c-Kit and CD44. Furthermore, transplanted mice subjected to 3Gy irradiation gave rise to a faster development of leukemia and a higher frequency of double-lineage leukemias than the non-irradiated control.
Collapse
Affiliation(s)
- Kazuko Yoshida
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Chibashi, Japan.
| | | | | | | | | |
Collapse
|
38
|
Błasiak J, Gloc E, Młynarski W, Drzewoski J, Skórski T. Amifostine differentially modulates DNA damage evoked by idarubicin in normal and leukemic cells. Leuk Res 2002; 26:1093-6. [PMID: 12443881 DOI: 10.1016/s0145-2126(02)00051-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human lymphocytes, p53 protein-deficient acute promyelocytic leukemia cell line HL-60, murine pro-B lymphoid cell line BaF3 and its TEL/ABL-transformed clone cells were exposed to idarubicin with and without pre-treatment with amifostine. Idarubicin at 0.5-5 microM evoked DNA damage measured by the Comet assay. Amifostine at 14 mM decreased DNA-damaging effect of idarubicin in human lymphocytes and BaF3 cells, but increased the effect in TEL/ABL-transformed cells. Amifostine had no influence on the action of idarubicin in HL-60 cells. Our results suggest that the reaction of the cell to DNA damage may contribute to its diverse response to amifostine combined with anticancer drugs and that p53 and fusion tyrosine kinases may be involved in this diversity.
Collapse
Affiliation(s)
- Janusz Błasiak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | | | | | | |
Collapse
|
39
|
Shet AS, Jahagirdar BN, Verfaillie CM. Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 2002; 16:1402-11. [PMID: 12145676 DOI: 10.1038/sj.leu.2402577] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Accepted: 08/31/2001] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML), characterized by the BCR-ABL gene rearrangement, has been extensively studied. Significant progress has been made in the area of BCR-ABL-mediated intracellular signaling, which has led to a better understanding of BCR-ABL-mediated clinical features in chronic phase CML. Disease progression and blast crisis CML is associated with characteristic non-random cytogenetic and molecular events. These can be viewed as increased oncogenic activity or loss of tumor suppressor activity. However, what causes transformation and disease progression to blast crisis is only poorly understood. This is in part due to the lack of a good in vivo model of chronic phase CML even though animal models developed over the last few years have started to provide insights into blast crisis development. Thus, additional in vitro and in vivo studies will be needed to provide a complete understanding of the contribution of BCR-ABL and other genes to disease progression and to improve therapeutic approaches for blast crisis CML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Differentiation
- Chromosome Aberrations
- DNA Repair
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, Tumor Suppressor
- Hematopoietic Stem Cells/pathology
- Humans
- Immunologic Surveillance
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Models, Animal
- Models, Biological
- Neoplastic Stem Cells/pathology
- Oncogenes
- Signal Transduction
Collapse
Affiliation(s)
- A S Shet
- Stem Cell Institute and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
40
|
Ban N, Yoshida K, Aizawa S, Wada S, Kai M. Cytogenetic analysis of radiation-induced leukemia in Trp53-deficient C3H/He mice. Radiat Res 2002; 158:69-77. [PMID: 12071805 DOI: 10.1667/0033-7587(2002)158[0069:caoril]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
C3H/He mice develop acute myeloid leukemia (AML) after whole-body irradiation, but the strain becomes highly susceptible to stem cell leukemia (SCL) when a null mutation is introduced into the Trp53 gene. To examine the etiology of SCL and the influence of chromosomal instability on leukemogenesis, 12 SCLs and two AMLs arising from Trp53-deficient C3H/He mice were investigated cytogenetically. Each SCL demonstrated cell-to-cell variation in the number and structural integrity of their chromosomes, indicating chromosomal instability. Typical deletion of chromosome 2 was observed in the two AML cases, while most SCL cells did not display this aberration. Deletions and rearrangements of chromosome 11 were noticeable in SCLs from Trp53 heterozygotes but not in AMLs. Analysis of loss of heterozygosity revealed that aberrations involving chromosome 11 in SCLs resulted in loss of the wild-type Trp53 allele. These results suggest that loss of Trp53 function triggers the tumorigenic process leading toward SCL through the induction of chromosomal instability, and that SCL and AML are distinct varieties of leukemia.
Collapse
Affiliation(s)
- Nobuhiko Ban
- Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Notsuharu, Oita-gun, Oita 870-1201, Japan.
| | | | | | | | | |
Collapse
|
41
|
Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 2002; 99:4531-9. [PMID: 12036885 DOI: 10.1182/blood.v99.12.4531] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BCR/ABL oncogenic tyrosine kinase activates STAT5, which plays an important role in leukemogenesis. The downstream effectors of the BCR/ABL-->STAT5 pathway remain poorly defined. We show here that expression of the antiapoptotic protein A1, a member of the Bcl-2 family, and the serine/threonine kinase pim-1 are enhanced by BCR/ABL. This up-regulation requires activation of STAT5 by the signaling from SH3+SH2 domains of BCR/ABL. Enhanced expression of A1 and pim-1 played a key role in the BCR/ABL-mediated cell protection from apoptosis. In addition, pim-1 promoted proliferation of the BCR/ABL-transformed cells. Both A1 and pim-1 were required to induce interleukin 3-independent cell growth, inhibit activation of caspase 3, and stimulate cell cycle progression. Moreover, simultaneous up-regulation of both A1 and pim-1 was essential for in vitro transformation and in vivo leukemogenesis mediated by BCR/ABL. These data indicate that induction of A1 and pim-1 expression may play a critical role in the BCR/ABL-dependent transformation.
Collapse
|
42
|
Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, Fishel R, Skorski T. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 2002; 22:4189-201. [PMID: 12024032 PMCID: PMC133854 DOI: 10.1128/mcb.22.12.4189-4201.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fusion tyrosine kinases (FTKs) such as BCR/ABL, TEL/ABL, TEL/JAK2, TEL/PDGF beta R, TEL/TRKC(L), and NPM/ALK arise from reciprocal chromosomal translocations and cause acute and chronic leukemias and non-Hodgkin's lymphoma. FTK-transformed cells displayed drug resistance against the cytostatic drugs cisplatin and mitomycin C. These cells were not protected from drug-mediated DNA damage, implicating activation of the mechanisms preventing DNA damage-induced apoptosis. Various FTKs, except TEL/TRKC(L), can activate STAT5, which may be required to induce drug resistance. We show that STAT5 is essential for FTK-dependent upregulation of RAD51, which plays a central role in homology-dependent recombinational repair (HRR) of DNA double-strand breaks (DSBs). Elevated levels of Rad51 contributed to the induction of drug resistance and facilitation of the HRR in FTK-transformed cells. In addition, expression of antiapoptotic protein Bcl-xL was enhanced in cells transformed by the FTKs able to activate STAT5. Moreover, cells transformed by all examined FTKs displayed G(2)/M delay upon drug treatment. Individually, elevated levels of Rad51, Bcl-xL, or G(2)/M delay were responsible for induction of a modest drug resistance. Interestingly, combination of these three factors in nontransformed cells induced drug resistance of a magnitude similar to that observed in cells expressing FTKs activating STAT5. Thus, we postulate that RAD51-dependent facilitation of DSB repair, antiapoptotic activity of Bcl-xL, and delay in progression through the G(2)/M phase work in concert to induce drug resistance in FTK-positive leukemias and lymphomas.
Collapse
Affiliation(s)
- Artur Slupianek
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Over the last decade, a growing number of tumor suppressor genes have been discovered to play a role in tumorigenesis. Mutations of p53 have been found in hematological malignant diseases, but the frequency of these alterations is much lower than in solid tumors. These mutations occur especially as hematopoietic abnormalities become more malignant such as going from the chronic phase to the blast crisis of chronic myeloid leukemia. A broad spectrum of tumor suppressor gene alterations do occur in hematological malignancies, especially structural alterations of p15(INK4A), p15(INK4B) and p14(ARF) in acute lymphoblastic leukemia as well as methylation of these genes in several myeloproliferative disorders. Tumor suppressor genes are altered via different mechanisms, including deletions and point mutations, which may result in an inactive or dominant negative protein. Methylation of the promoter of the tumor suppressor gene can blunt its expression. Chimeric proteins formed by chromosomal translocations (i.e. AML1-ETO, PML-RARalpha, PLZF-RARalpha) can produce a dominant negative transcription factor that can decrease expression of tumor suppressor genes. This review provides an overview of the current knowledge about the involvement of tumor suppressor genes in hematopoietic malignancies including those involved in cell cycle control, apoptosis and transcriptional control.
Collapse
Affiliation(s)
- Utz Krug
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California, CA 90048, USA.
| | | | | |
Collapse
|
44
|
Abstract
Oncogenic tyrosine kinases (OTKs) are involved in the induction of many types of tumour, including haematological malignancies and cancers of the breast, prostate, colon and lung. Neoplastic cells that express OTKs are usually resistant to apoptosis that is induced by DNA-damaging agents, such as cytostatic drugs and irradiation, and they display genomic instability. So, what are the mechanisms involved, and what is the potential for overcoming OTK-mediated resistance in the clinic?
Collapse
Affiliation(s)
- Tomasz Skorski
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| |
Collapse
|
45
|
Keeshan K, Mills KI, Cotter TG, McKenna SL. Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia 2001; 15:1823-33. [PMID: 11753601 DOI: 10.1038/sj.leu.2402309] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2001] [Accepted: 08/09/2001] [Indexed: 11/08/2022]
Abstract
A characteristic feature of chronic myeloid leukaemia (CML) is the inevitable advancement from a treatable chronic phase to a fatal, drug-resistant stage referred to as blast crisis. The molecular mechanisms responsible for this disease transition remain unknown. As increased expression of Bcr-Abl has been associated with blast crisis CML, we have established transfectants in 32D cells that express low and high levels of Bcr-Abl, and assessed their drug sensitivity. Cells with high Bcr-Abl expression levels are resistant to conventional cytotoxic drugs, and also require higher levels of STI571 (an inhibitor of Bcr-Abl), to induce cell death. Co-treatment with cytotoxic drugs and STI571 increased the sensitivity of the drug-resistant cells. Despite the drug-resistant phenotype, high Bcr-Abl levels concomitantly increased the expression of p53, p21, Bax and down-regulated Bcl-2. These cells maintain a survival advantage irrespective of a reduced proportion of cycling cells and the pro-apoptotic shift in gene expression. In addition, the level of Bcr-Abl expression (high or low) does not alter the growth factor independence and elevated Bcl-xL expression observed. Our study indicates that drug resistance can be primarily attained by increased Bcr-Abl expression, and highlights the potential of therapy which combines STI571 with conventional cytotoxic drugs.
Collapse
Affiliation(s)
- K Keeshan
- Department of Biochemistry, University College Cork, Ireland
| | | | | | | |
Collapse
|
46
|
Abstract
The Ph chromosome has been genetically linked to CML and ALL. Its chimeric fusion gene product, BCR-ABL, can generate leukemia in mice. This review will discuss selected model systems developed to study BCR-ABL induced leukemia and focuses on what we have learned about the human disease from these models. Five main experimental approaches will be discussed including: (i) Reconstitution of mice with bone marrow cells retrovirally transduced with BCR-ABL; (ii) Transgenic mice expressing BCR-ABL; (iii) Knock-in mice with BCR-ABL expression driven from the endogenous bcr locus; (iv) Development of CML-like disease in mice with loss of function mutations in heterologous genes; and (v) ES in vitro hematopoietic differentiation coupled with regulated BCR-ABL expression.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Cell Differentiation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genetic Linkage
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- Retroviridae/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- S Wong
- Molecular Biology Institute, University of California, Los Angeles, California, CA 90095-1662, USA
| | | |
Collapse
|
47
|
Abstract
Models of chronic myeloid leukemia (CML) have proven invaluable for furthering our understanding of the molecular pathophysiology of this disease. Xenotransplantation of primary human CML cells into immunodeficient mice allows investigation into the nature of the most primitive repopulating cells in this leukemia, but the system is limited by variability and difficulty with experimental manipulation. Accordingly, a large effort has been invested in developing models of CML through expression of the BCR/ABL oncogene in the hematopoietic system of laboratory mice. Despite numerous attempts, an accurate transgenic mouse model of CML has not been produced, possibly because of the toxicity of BCR/ABL. Conditional transgenic mice are a promising new approach to this problem. A more successful strategy is retroviral transduction of BCR/ABL into mouse bone marrow in vitro, followed by transplantation into syngeneic or immunodeficient recipient mice. Recipients of marrow transduced with p210 BCR/ABL develop a fatal myeloproliferative illness that closely resembles human CML. This model is being used to define the signaling pathways required for leukemogenesis by BCR/ABL, and for developing new therapeutic approaches.
Collapse
Affiliation(s)
- R A Van Etten
- The Center for Blood Research and Department of Genetics, Harvard Medical School, Boston MA 02115, USA.
| |
Collapse
|
48
|
Abstract
Multistep carcinogenesis is exemplified by chronic myeloid leukemia with clinical manifestation consisting of a chronic phase and blast crisis. Pathological generation of BCR-ABL (breakpoint cluster region-Abelson) results in growth promotion, differentiation, resistance to apoptosis, and defect in DNA repair in targeted blood cells. Domains in BCR and ABL sequences work in concert to elicit a variety of leukemogenic signals including Ras, STAT5 (signal transducer and activator of transcription-5), Myc, cyclin D1, P13 (phosphatidylinositol 3-kinase), RIN1 (Ras interaction/interference), and activation of actin cytoskeleton. However, the mechanism of differentiation of transformed cells is poorly understood. A mutator phenotype of BCR-ABL could explain the transformation to blast crisis. The aim of this review is to integrate molecular and biological information on BCR, ABL, and BCR-ABL and to focus on how signaling from those molecules mirrors the biological phenotypes of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Blast Crisis/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Disease Progression
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Leukemic
- Genes, abl
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Accelerated Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/genetics
- Mice
- Mice, Knockout
- Models, Biological
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins/chemistry
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phenotype
- Philadelphia Chromosome
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-abl/chemistry
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/physiology
- Proto-Oncogene Proteins c-bcr
- Rats
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
49
|
Di Bacco A, Keeshan K, McKenna SL, Cotter TG. Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist 2001; 5:405-15. [PMID: 11040277 DOI: 10.1634/theoncologist.5-5-405] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a disease of the hematopoietic system, characterized by the presence of the Bcr-Abl oncoprotein. The main characteristics of this disease include adhesion independence, growth factor independence, and resistance to apoptosis. Loss or mutation of the tumor suppressor gene, p53, is one of the most frequent secondary mutations in CML blast crisis. The transition between chronic phase and blast crisis is associated with increased resistance to apoptosis correlating with poor prognosis. This review focuses on the involvement of these two oncoproteins in the development and progression of the apoptotic-resistant phenotype in CML.
Collapse
Affiliation(s)
- A Di Bacco
- Tumour Biology Laboratory, Department of Biochemistry, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
50
|
Weisberg E, Griffin JD. Mechanisms of resistance imatinib (STI571) in preclinical models and in leukemia patients. Drug Resist Updat 2001; 4:22-8. [PMID: 11512149 DOI: 10.1054/drup.2001.0180] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tyrosine kinase inhibitor imatinib (STI571, Glivec) blocks the activity of the BCR/ABL oncogene and induces hematologic remissions in the majority of patients with chronic myeloid leukemia (CML). Glivec is an aminopyrimidine derivative that interacts with the ATP-binding site within the kinase domain of ABL and several other tyrosine kinases, including c-KIT, PDGF beta receptor, and ARG. The compound is currently in phase III clinical trials. Although patients with chronic phase CML have been found to develop drug resistance only rarely so far, patients in more advanced phases of the leukemia develop resistance frequently. The available information on Glivec resistance will be reviewed.
Collapse
Affiliation(s)
- E Weisberg
- Department of Adult Oncology, Dana-Farber Cancer Institute, and Departments of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|