1
|
Villasante CM, Deng X, Cohen JE, Hudspeth AJ. Nanomechanics of wild-type and mutant dimers of the inner-ear tip-link protein protocadherin 15. Proc Natl Acad Sci U S A 2024; 121:e2404829121. [PMID: 39298473 PMCID: PMC11459131 DOI: 10.1073/pnas.2404829121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024] Open
Abstract
Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 (PCDH15) and a dimer of cadherin 23, all of which are stabilized by Ca2+ binding. Using a high-speed optical trap to examine dimeric PCDH15, we find that the protein's mechanical properties are sensitive to Ca2+ and that the molecule exhibits limited unfolding at a physiological Ca2+ concentration. PCDH15 can therefore modulate its stiffness without undergoing large unfolding events under physiological conditions. The experimentally determined stiffness of PCDH15 accords with published values for the stiffness of the gating spring, the mechanical element that controls the opening of mechanotransduction channels. When PCDH15 exhibits a point mutation, V507D, associated with nonsyndromic hearing loss, unfolding events occur more frequently under tension and refolding events occur less often than for the wild-type protein. Our results suggest that the maintenance of appropriate tension in the gating spring is critical to the appropriate transmission of force to transduction channels, and hence to hearing.
Collapse
Affiliation(s)
- Camila M. Villasante
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY10065
| | - Xinyue Deng
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY10065
| | - Joel E. Cohen
- Laboratory of Populations, The Rockefeller University, New York, NY10065
- Earth Institute, Columbia University, New York, NY10027
- Department of Statistics, Columbia University, New York, NY10027
- Department of Statistics, University of Chicago, Chicago, IL60637
| | - A. J. Hudspeth
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Hussain S, Sedlacek M, Cui R, Zhang-Hooks W, Bergles D, Bum-Shin J, Kindt KS, Kachar B. Spontaneous calcium transients in hair cell stereocilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607658. [PMID: 39185174 PMCID: PMC11343103 DOI: 10.1101/2024.08.12.607658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The hair bundle of auditory and vestibular hair cells converts mechanical stimuli into electrical signals through mechanoelectrical transduction (MET). The MET apparatus is built around a tip link that connects neighboring stereocilia that are aligned in the direction of mechanosensitivity of the hair bundle. Upon stimulation, the MET channel complex responds to changes in tip-link tension and allows a cation influx into the cell. Ca2+ influx in stereocilia has been used as a signature of MET activity. Using genetically encoded Ca2+ sensors (GCaMP3, GCaMP6s) and high-performance fluorescence confocal microscopy, we detect spontaneous Ca2+ transients in individual stereocilia in developing and fully formed hair bundles. We demonstrate that this activity is abolished by MET channel blockers and thus likely originates from putative MET channels. We observe Ca2+ transients in the stereocilia of mice in tissue explants as well as in vivo in zebrafish hair cells, indicating this activity is functionally conserved. Within stereocilia, the origin of Ca2+ transients is not limited to the canonical MET site at the stereocilia tip but is also present along the stereocilia length. Remarkably, we also observe these Ca2+ transients in the microvilli-like structures on the hair cell surface in the early stages of bundle development, prior to the onset of MET. Ca2+ transients are also present in the tallest rows of stereocilia in auditory hair cells, structures not traditionally thought to contain MET channels. We hypothesize that this newly described activity may reflect stochastic and spontaneous MET channel opening. Localization of these transients to other regions of the stereocilia indicates the presence of a pool of channels or channel precursors. Our work provides insights into MET channel assembly, maturation, function, and turnover.
Collapse
Affiliation(s)
- Saman Hussain
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miloslav Sedlacek
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Zhang-Hooks
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dwight Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jung Bum-Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Katie S. Kindt
- Laboratory of Cellular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wang Y, Jin P, Kumar A, Jan L, Cheng Y, Jan YN, Zhang Y. Nonlinear compliance of NompC gating spring and its implication in mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599842. [PMID: 38979198 PMCID: PMC11230213 DOI: 10.1101/2024.06.20.599842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cytoskeleton-tethered mechanosensitive channels (MSCs) utilize compliant proteins or protein domains called gating springs to convert mechanical stimuli into electric signals, enabling sound and touch sensation and proprioception. The mechanical properties of these gating springs, however, remain elusive. Here, we explored the mechanical properties of the homotetrameric NompC complex containing long ankyrin-repeat domains (ARDs). We developed a toehold-mediated strand displacement approach to tether single membrane proteins, allowing us to exert force on them and precisely measure their absolute extension using optical tweezers. Our findings revealed that each ARD has a low stiffness of ~0.7 pN/nm and begins to unfold stepwise at ~7 pN, leading to nonlinear compliance. Our calculations indicate that this nonlinear compliance may help regulate NompC's sensitivity, dynamic range, and kinetics to detect mechanical stimuli. Overall, our research highlights the importance of a compliant and unfolding-refolding gating spring in facilitating a graded response of MSC ion transduction across a wide spectrum of mechanical stimuli.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Jin
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Lily Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yuh-Nung Jan
- Department of Physiology, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Pedro De-la-Torre, Wen H, Brower J, Martínez-Pérez K, Narui Y, Yeh F, Hale E, Ivanchenko MV, Corey DP, Sotomayor M, Indzhykulian AA. Elasticity and Thermal Stability are Key Determinants of Hearing Rescue by Mini-Protocadherin-15 Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599132. [PMID: 38948700 PMCID: PMC11212938 DOI: 10.1101/2024.06.16.599132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Protocadherin-15 is a core protein component of inner-ear hair-cell tip links pulling on transduction channels essential for hearing and balance. Protocadherin-15 defects can result in non-syndromic deafness or Usher syndrome type 1F (USH1F) with hearing loss, balance deficits, and progressive blindness. Three rationally engineered shortened versions of protocadherin-15 (mini-PCDH15s) amenable for gene therapy have been used to rescue function in USH1F mouse models. Two can successfully or partially rescue hearing, while another one fails. Here we show that despite varying levels of hearing rescue, all three mini-PCDH15 versions can rescue hair-cell mechanotransduction. Negative-stain electron microscopy shows that all three versions form dimers like the wild-type protein, while crystal structures of some engineered fragments show that these can properly fold and bind calcium ions essential for function. In contrast, simulations predict distinct elasticities and nano differential scanning fluorimetry shows differences in melting temperature measurements. Our data suggest that elasticity and thermal stability are key determinants of sustained hearing rescue by mini-PCDH15s.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Haosheng Wen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Karina Martínez-Pérez
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Biology Program, Department of Basic Sciences, Universidad del Atlántico, Cra 30 # 8-49, Puerto Colombia, 081007, Colombia
| | - Yoshie Narui
- Center for Electron Microscopy and Analysis, The Ohio State University, 1275-1305 Kinnear Road, Columbus, OH, USA
| | - Frank Yeh
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| | - Maryna V. Ivanchenko
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
- Biophysics Program, The Ohio State University, 484 W. 12th Avenue, Columbus, OH, USA
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, USA
- Speech and Hearing Biosciences and Technology graduate program, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Maraslioglu-Sperber A, Blanc F, Heller S. Murine cochlear damage models in the context of hair cell regeneration research. Hear Res 2024; 447:109021. [PMID: 38703432 DOI: 10.1016/j.heares.2024.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fabian Blanc
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Otolaryngology - Head & Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Li N, Liu S, Zhao D, Du H, Xi Y, Wei X, Liu Q, Müller U, Lu Q, Xiong W, Xu Z. Disruption of Cdh23 exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability. Proc Natl Acad Sci U S A 2024; 121:e2309656121. [PMID: 38408254 PMCID: PMC10927504 DOI: 10.1073/pnas.2309656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024] Open
Abstract
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing102206, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
7
|
Villasante CM, Deng X, Cohen JE, Hudspeth AJ. Nanomechanics of wild-type and mutant dimers of the tip-link protein protocadherin 15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562769. [PMID: 37905108 PMCID: PMC10614884 DOI: 10.1101/2023.10.17.562769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 and a dimer of cadherin 23, all of which are stabilized by Ca2+ binding. Using a high-speed optical trap to examine dimeric PCDH15, we find that the protein's configuration is sensitive to Ca2+ and that the molecule exhibits limited unfolding at a physiological Ca2+ concentration. PCDH15 can therefore modulate its stiffness without undergoing large unfolding events in physiological Ca2+ conditions. The experimentally determined stiffness of PCDH15 accords with published values for the stiffness of the gating spring, the mechanical element that controls the opening of mechanotransduction channels. When PCDH15 has a point mutation, V507D, associated with non-syndromic hearing loss, unfolding events occur more frequently under tension and refolding events occur less often than in the wild-type protein. Our results suggest that the maintenance of appropriate tension in the gating spring is critical to the appropriate transmission of force to transduction channels, and hence to hearing.
Collapse
Affiliation(s)
- Camila M Villasante
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Xinyue Deng
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Joel E Cohen
- Laboratory of Populations, The Rockefeller University, New York, NY 10065 USA
- Earth Institute and Department of Statistics, Columbia University, New York, NY 10027 USA
- Department of Statistics, University of Chicago, Chicago, IL 60637 USA
| | - A J Hudspeth
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065 USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
8
|
Wagner EL, Im JS, Sala S, Nakahata MI, Imbery TE, Li S, Chen D, Nimchuk K, Noy Y, Archer DW, Xu W, Hashisaki G, Avraham KB, Oakes PW, Shin JB. Repair of noise-induced damage to stereocilia F-actin cores is facilitated by XIRP2 and its novel mechanosensor domain. eLife 2023; 12:e72681. [PMID: 37294664 PMCID: PMC10259482 DOI: 10.7554/elife.72681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 05/17/2023] [Indexed: 06/11/2023] Open
Abstract
Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as 'gaps' in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.
Collapse
Affiliation(s)
- Elizabeth L Wagner
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biochemistry & Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Jun-Sub Im
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Stefano Sala
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| | - Maura I Nakahata
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Terence E Imbery
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Otolaryngology-Head & Neck Surgery, University of VirginiaCharlottesvilleUnited States
| | - Sihan Li
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biochemistry & Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Daniel Chen
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Katherine Nimchuk
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - David W Archer
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) Core, University of VirginiaCharlottesvilleUnited States
| | - George Hashisaki
- Department of Otolaryngology-Head & Neck Surgery, University of VirginiaCharlottesvilleUnited States
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biochemistry & Molecular Genetics, University of VirginiaCharlottesvilleUnited States
- Department of Otolaryngology-Head & Neck Surgery, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
9
|
Beiza-Canelo N, Moulle H, Pujol T, Panier T, Migault G, Le Goc G, Tapie P, Desprat N, Straka H, Debrégeas G, Bormuth V. Magnetic actuation of otoliths allows behavioral and brain-wide neuronal exploration of vestibulo-motor processing in larval zebrafish. Curr Biol 2023:S0960-9822(23)00621-8. [PMID: 37285844 DOI: 10.1016/j.cub.2023.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
The vestibular system in the inner ear plays a central role in sensorimotor control by informing the brain about the orientation and acceleration of the head. However, most experiments in neurophysiology are performed using head-fixed configurations, depriving animals of vestibular inputs. To overcome this limitation, we decorated the utricular otolith of the vestibular system in larval zebrafish with paramagnetic nanoparticles. This procedure effectively endowed the animal with magneto-sensitive capacities: applied magnetic field gradients induced forces on the otoliths, resulting in robust behavioral responses comparable to those evoked by rotating the animal by up to 25°. We recorded the whole-brain neuronal response to this fictive motion stimulation using light-sheet functional imaging. Experiments performed in unilaterally injected fish revealed the activation of a commissural inhibition between the brain hemispheres. This magnetic-based stimulation technique for larval zebrafish opens new perspectives to functionally dissect the neural circuits underlying vestibular processing and to develop multisensory virtual environments, including vestibular feedback.
Collapse
Affiliation(s)
- Natalia Beiza-Canelo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Hippolyte Moulle
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Thomas Pujol
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Thomas Panier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Plateforme d'Imagerie, 75005 Paris, France
| | - Geoffrey Migault
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Guillaume Le Goc
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Pierre Tapie
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Nicolas Desprat
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; Université Paris Diderot, 10 Rue Alice Domon et Leonie Duquet, 75013 Paris, France
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Grosshadernerstr. 2, 82152 Planegg, Germany
| | - Georges Debrégeas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France
| | - Volker Bormuth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), 75005 Paris, France.
| |
Collapse
|
10
|
The tetraspan LHFPL5 is critical to establish maximal force sensitivity of the mechanotransduction channel of cochlear hair cells. Cell Rep 2023; 42:112245. [PMID: 36917610 DOI: 10.1016/j.celrep.2023.112245] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
The mechanoelectrical transduction (MET) channel of cochlear hair cells is gated by the tip link, but the mechanisms that establish the exquisite force sensitivity of this MET channel are not known. Here, we show that the tetraspan lipoma HMGIC fusion partner-like 5 (LHFPL5) directly couples the tip link to the MET channel. Disruption of these interactions severely perturbs MET. Notably, the N-terminal cytoplasmic domain of LHFPL5 binds to an amphipathic helix in TMC1, a critical gating domain conserved between different MET channels. Mutations in the amphipathic helix of TMC1 or in the N-terminus of LHFPL5 that perturb interactions of LHFPL5 with the amphipathic helix affect channel responses to mechanical force. We conclude that LHFPL5 couples the tip link to the MET channel and that channel gating depends on a structural element in TMC1 that is evolutionarily conserved between MET channels. Overall, our findings support a tether model for transduction channel gating by the tip link.
Collapse
|
11
|
Calcium signaling and genetic rare diseases: An auditory perspective. Cell Calcium 2023; 110:102702. [PMID: 36791536 DOI: 10.1016/j.ceca.2023.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Deafness is a highly heterogeneous disorder which stems, for 50%, from genetic origins. Sensory transduction relies mainly on sensory hair cells of the cochlea, in the inner ear. Calcium is key for the function of these cells and acts as a fundamental signal transduction. Its homeostasis depends on three factors: the calcium influx, through the mechanotransduction channel at the apical pole of the hair cell as well as the voltage-gated calcium channel at the base of the cells; the calcium buffering via Ca2+-binding proteins in the cytoplasm, but also in organelles such as mitochondria and the reticulum endoplasmic mitochondria-associated membranes with specialized proteins; and the calcium extrusion through the Ca-ATPase pump, located all over the plasma membrane. In addition, the synaptic transmission to the central nervous system is also controlled by calcium. Genetic studies of inherited deafness have tremendously helped understand the underlying molecular pathways of calcium signaling. In this review, we discuss these different factors in light of the associated genetic diseases (syndromic and non-syndromic deafness) and the causative genes.
Collapse
|
12
|
Anastasios G, Magioula G, Konstantinos K, Ioannis A. Noise and Health: Review. Indian J Otolaryngol Head Neck Surg 2022; 74:5482-5491. [PMID: 36742745 PMCID: PMC9895353 DOI: 10.1007/s12070-021-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Noise in human societies is unavoidable, but it tends to become a modern epidemic that induces various detrimental effects to several organs and functions in humans. Increased cardiovascular danger, anxiety and sleep disturbance are just few of these effects. It is noteworthy that children, even neonates and their developing organism are especially vulnerable to noise-related health problems. Noise is measured with special noise-meters. These devices express results in decibels by transforming random noise to a continuous sound. This sound is characterized by equivalent acoustic energy to the random noise for a defined time interval. Human auditory apparatus is principally endangered by acute noises but also by chronic noise exposure, in the context of both occupational and recreational activities. Various mechanisms are implicated in the pathogenesis of noise-induced hearing loss that can cause either temporary or permanent damage. Among them, emphasis is given to the impairment by free radicals and inflammatory mediators, to the activation of apoptotic molecular pathways, but also to glutamate excitotoxicity. A hidden hearing loss, synaptopathy, is attributed to the latter. The irreversible nature of hearing loss, as well as the idiosyncratic sensitivity of individuals, imposes the necessity of early diagnosis of auditory impairment by noise. Super high frequency audiograms, otoacoustic emissions and electrophysiological examinations can address diagnosis. Thankfully, there is extensive research on acoustic trauma therapeutic approaches. However, until we succeed in regenerating the sensory organ of hearing, chronic noise-induced hearing loss cannot be treated. Thus, it is fundamental that society protects people from noise, by laws and regulations.
Collapse
Affiliation(s)
- Goulioumis Anastasios
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | | | - Kourelis Konstantinos
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | - Athanasopoulos Ioannis
- Department of Otorhinolaryngology, Pediatric Center of “Iatriko Athinon” Hospital, Athens, Greece
| |
Collapse
|
13
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell 2022; 57:2204-2220.e6. [PMID: 36113482 PMCID: PMC9529990 DOI: 10.1016/j.devcel.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Aminoglycosides (AGs) are potent antibiotics that are capable of treating a wide variety of life-threatening infections; however, they are ototoxic and cause irreversible damage to cochlear hair cells. Despite substantial progress, little is known about the molecular pathways critical for hair cell function and survival that are affected by AG exposure. We demonstrate here that gentamicin, a representative AG antibiotic, binds to and within minutes triggers translocation of RIPOR2 in murine hair cells from stereocilia to the pericuticular area. Then, by interacting with a central autophagy component, GABARAP, RIPOR2 affects autophagy activation. Reducing the expression of RIPOR2 or GABARAP completely prevents AG-induced hair cell death and subsequent hearing loss in mice. Additionally, abolishing the expression of PINK1 or Parkin, two key mitochondrial autophagy proteins, prevents hair cell death and subsequent hearing loss caused by AG. In summary, our study demonstrates that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Ballesteros A, Swartz KJ. Regulation of membrane homeostasis by TMC1 mechanoelectrical transduction channels is essential for hearing. SCIENCE ADVANCES 2022; 8:eabm5550. [PMID: 35921424 PMCID: PMC9348795 DOI: 10.1126/sciadv.abm5550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The mechanoelectrical transduction (MET) channel in auditory hair cells converts sound into electrical signals, enabling hearing. Transmembrane-like channel 1 and 2 (TMC1 and TMC2) are implicated in forming the pore of the MET channel. Here, we demonstrate that inhibition of MET channels, breakage of the tip links required for MET, or buffering of intracellular Ca... induces pronounced phosphatidylserine externalization, membrane blebbing, and ectosome release at the hair cell sensory organelle, culminating in the loss of TMC1. Membrane homeostasis triggered by MET channel inhibition requires Tmc1 but not Tmc2, and three deafness-causing mutations in Tmc1 cause constitutive phosphatidylserine externalization that correlates with deafness phenotype. Our results suggest that, in addition to forming the pore of the MET channel, TMC1 is a critical regulator of membrane homeostasis in hair cells, and that Tmc1-related hearing loss may involve alterations in membrane homeostasis.
Collapse
|
16
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
17
|
Kim GS, Wang T, Sayyid ZN, Fuhriman J, Jones SM, Cheng AG. Repair of surviving hair cells in the damaged mouse utricle. Proc Natl Acad Sci U S A 2022; 119:e2116973119. [PMID: 35380897 PMCID: PMC9169652 DOI: 10.1073/pnas.2116973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.
Collapse
Affiliation(s)
- Grace S. Kim
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Tian Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Zahra N. Sayyid
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Jessica Fuhriman
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583
| | - Alan G. Cheng
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
18
|
Abstract
Sound-induced mechanical stimuli are detected by elaborate mechanosensory transduction (MT) machinery in highly specialized hair cells of the inner ear. Genetic studies of inherited deafness in the past decades have uncovered several molecular constituents of the MT complex, and intense debate has surrounded the molecular identity of the pore-forming subunits. How the MT components function in concert in response to physical stimulation is not fully understood. In this review, we summarize and discuss multiple lines of evidence supporting the hypothesis that transmembrane channel-like 1 is a long-sought MT channel subunit. We also review specific roles of other components of the MT complex, including protocadherin 15, cadherin 23, lipoma HMGIC fusion partner-like 5, transmembrane inner ear, calcium and integrin-binding family member 2, and ankyrins. Based on these recent advances, we propose a unifying theory of hair cell MT that may reconcile most of the functional discoveries obtained to date. Finally, we discuss key questions that need to be addressed for a comprehensive understanding of hair cell MT at molecular and atomic levels.
Collapse
Affiliation(s)
- Wang Zheng
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
19
|
Mulhall EM, Ward A, Yang D, Koussa MA, Corey DP, Wong WP. Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection. Nat Commun 2021; 12:849. [PMID: 33558532 PMCID: PMC7870652 DOI: 10.1038/s41467-021-21033-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/08/2021] [Indexed: 01/11/2023] Open
Abstract
The conversion of auditory and vestibular stimuli into electrical signals is initiated by force transmitted to a mechanotransduction channel through the tip link, a double stranded protein filament held together by two adhesion bonds in the middle. Although thought to form a relatively static structure, the dynamics of the tip-link connection has not been measured. Here, we biophysically characterize the strength of the tip-link connection at single-molecule resolution. We show that a single tip-link bond is more mechanically stable relative to classic cadherins, and our data indicate that the double stranded tip-link connection is stabilized by single strand rebinding facilitated by strong cis-dimerization domains. The measured lifetime of seconds suggests the tip-link is far more dynamic than previously thought. We also show how Ca2+ alters tip-link lifetime through elastic modulation and reveal the mechanical phenotype of a hereditary deafness mutation. Together, these data show how the tip link is likely to function during mechanical stimuli.
Collapse
Affiliation(s)
- Eric M Mulhall
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard University, Cambridge, MA, USA
| | - Andrew Ward
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mounir A Koussa
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard University, Cambridge, MA, USA
| | - David P Corey
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
20
|
Carlton AJ, Halford J, Underhill A, Jeng J, Avenarius MR, Gilbert ML, Ceriani F, Ebisine K, Brown SDM, Bowl MR, Barr‐Gillespie PG, Marcotti W. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol 2021; 599:1173-1198. [PMID: 33151556 PMCID: PMC7898316 DOI: 10.1113/jp280670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.
Collapse
Affiliation(s)
- Adam J. Carlton
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Julia Halford
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
| | - Anna Underhill
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Matthew R. Avenarius
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: Department of Pathology Wexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Merle L. Gilbert
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: US Army Medical Department Activity‐KoreaCamp HumphreysRepublic of Korea
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Steve D. M. Brown
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
| | - Michael R. Bowl
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
- Present address: UCL Ear InstituteUniversity College LondonLondonUK
| | - Peter G. Barr‐Gillespie
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandORUSA
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
21
|
Fast recovery of disrupted tip links induced by mechanical displacement of hair bundles. Proc Natl Acad Sci U S A 2020; 117:30722-30727. [PMID: 33199645 PMCID: PMC7720144 DOI: 10.1073/pnas.2016858117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Each of the sensory receptors responsible for hearing or balance—a hair cell—has a mechanosensitive hair bundle. Mechanical stimuli pull upon molecular filaments—the tip links—that open ionic channels in the hair bundle. Loud sounds can damage hearing by breaking the tip links; recovery by replacement of the constituent proteins then requires several hours. We disrupted the tip links in vitro by removing the calcium ions that stabilize them, and then monitored the electrical response or stiffness of hair bundles to determine whether the links could recover. We found that tip links recovered within seconds if their ends were brought back into contact. This form of repair might occur in normal ears to restore sensitivity after damage. Hearing and balance rely on the capacity of mechanically sensitive hair bundles to transduce vibrations into electrical signals that are forwarded to the brain. Hair bundles possess tip links that interconnect the mechanosensitive stereocilia and convey force to the transduction channels. A dimer of dimers, each of these links comprises two molecules of protocadherin 15 (PCDH15) joined to two of cadherin 23 (CDH23). The “handshake” that conjoins the four molecules can be disrupted in vivo by intense stimulation and in vitro by exposure to Ca2+ chelators. Using hair bundles from the rat’s cochlea and the bullfrog’s sacculus, we observed that extensive recovery of mechanoelectrical transduction, hair bundle stiffness, and spontaneous bundle oscillation can occur within seconds after Ca2+ chelation, especially if hair bundles are deflected toward their short edges. Investigating the phenomenon in a two-compartment ionic environment that mimics natural conditions, we combined iontophoretic application of a Ca2+ chelator to selectively disrupt the tip links of individual frog hair bundles with displacement clamping to control hair bundle motion and measure forces. Our observations suggest that, after the normal Ca2+ concentration has been restored, mechanical stimulation facilitates the reconstitution of functional tip links.
Collapse
|
22
|
Tan J, Kaiserman D, O'Leary SJ, Bird PI. Increased susceptibility to acoustic trauma in a mouse model of non-syndromic sensorineural deafness, DFNB91. Eur J Neurosci 2020; 53:1638-1651. [PMID: 33073422 DOI: 10.1111/ejn.15011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022]
Abstract
Inactivating mutations of SERPINB6 in humans result in progressive hearing loss starting in early adulthood (DFNB91). We have previously shown that C57BL/6J mice lacking the orthologous gene, Serpinb6a, exhibit progressive hearing loss, which is associated with progressive loss of distinct cell types in the organ of Corti beginning with outer hair cells (OHCs). However, deafness in these animals occurs much earlier than expected, possibly because C57BL/6J mice also carry an age-related hearing loss mutation in the cadherin 23 gene (Cdh23ahl ) that causes late onset hearing loss. The CBA/CaH strain of mice does not carry Cdh23ah/ahl and may represent a better model of the human DFNB91 patients. Here, we show that transfer of the mutant Serpinb6a allele onto the Cdh23 normal CBA/CaH background markedly delays onset of hearing loss, more closely phenocopying DFNB91, without altering the pattern of cellular loss. Young, pre-symptomatic mice of this genotype exposed to acoustic trauma exhibit permanent hearing loss, compared to controls, associated with the disappearance of OHCs. We conclude that Serpinb6 helps to maintain hearing by protecting hair cells from stress.
Collapse
Affiliation(s)
- Justin Tan
- Department of Otolaryngology, University of Melbourne, East Melbourne, Vic., Australia
| | - Dion Kaiserman
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Vic., Australia
| | - Stephen J O'Leary
- Department of Otolaryngology, University of Melbourne, East Melbourne, Vic., Australia
| | - Phillip I Bird
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Vic., Australia
| |
Collapse
|
23
|
Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception. Proc Natl Acad Sci U S A 2020; 117:24837-24848. [PMID: 32963095 PMCID: PMC7547225 DOI: 10.1073/pnas.1920444117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
When sound vibrations reach the inner ear, fine protein filaments called “tip links” stretch and open cochlear hair-cell mechanosensitive channels that trigger sensory perception. Similarly, vestibular hair cells use tip links to sense mechanical stimuli produced by head motions. Tip links are formed by cadherin-23 and protocadherin-15, two large proteins involved in hearing loss and balance disorders. Here we present multiple structures, models, and simulations that depict the lower end of the tip link, including the complete protocadherin-15 ectodomain. These models show an essential connection between cadherin-23 and protocadherin-15 with dual molecular “handshakes” and various protein sites that are mutated in inherited deafness. The simulations also reveal how the tip link responds to force to mediate hearing and balance sensing. The vertebrate inner ear, responsible for hearing and balance, is able to sense minute mechanical stimuli originating from an extraordinarily broad range of sound frequencies and intensities or from head movements. Integral to these processes is the tip-link protein complex, which conveys force to open the inner-ear transduction channels that mediate sensory perception. Protocadherin-15 and cadherin-23, two atypically large cadherins with 11 and 27 extracellular cadherin (EC) repeats, are involved in deafness and balance disorders and assemble as parallel homodimers that interact to form the tip link. Here we report the X-ray crystal structure of a protocadherin-15 + cadherin-23 heterotetrameric complex at 2.9-Å resolution, depicting a parallel homodimer of protocadherin-15 EC1-3 molecules forming an antiparallel complex with two cadherin-23 EC1-2 molecules. In addition, we report structures for 10 protocadherin-15 fragments used to build complete high-resolution models of the monomeric protocadherin-15 ectodomain. Molecular dynamics simulations and validated crystal contacts are used to propose models for the complete extracellular protocadherin-15 parallel homodimer and the tip-link bond. Steered molecular dynamics simulations of these models suggest conditions in which a structurally diverse and multimodal protocadherin-15 ectodomain can act as a stiff or soft gating spring. These results reveal the structural determinants of tip-link–mediated inner-ear sensory perception and elucidate protocadherin-15’s structural and adhesive properties relevant in disease.
Collapse
|
24
|
Cunningham CL, Qiu X, Wu Z, Zhao B, Peng G, Kim YH, Lauer A, Müller U. TMIE Defines Pore and Gating Properties of the Mechanotransduction Channel of Mammalian Cochlear Hair Cells. Neuron 2020; 107:126-143.e8. [PMID: 32343945 PMCID: PMC7351599 DOI: 10.1016/j.neuron.2020.03.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022]
Abstract
TMC1 and TMC2 (TMC1/2) have been proposed to form the pore of the mechanotransduction channel of cochlear hair cells. Here, we show that TMC1/2 cannot form mechanotransduction channels in cochlear hair cells without TMIE. TMIE binds to TMC1/2, and a TMIE mutation that perturbs TMC1/2 binding abolishes mechanotransduction. N-terminal TMIE deletions affect the response of the mechanotransduction channel to mechanical force. Similar to mechanically gated TREK channels, the C-terminal cytoplasmic TMIE domain contains charged amino acids that mediate binding to phospholipids, including PIP2. TMIE point mutations in the C terminus that are linked to deafness disrupt phospholipid binding, sensitize the channel to PIP2 depletion from hair cells, and alter the channel's unitary conductance and ion selectivity. We conclude that TMIE is a subunit of the cochlear mechanotransduction channel and that channel function is regulated by a phospholipid-sensing domain in TMIE with similarity to those in other mechanically gated ion channels.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zizhen Wu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology - Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Guihong Peng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye-Hyun Kim
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda Lauer
- Department of Otolaryngology - HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Ballesteros A, Swartz KJ. Dextran Labeling and Uptake in Live and Functional Murine Cochlear Hair Cells. J Vis Exp 2020. [PMID: 32090986 PMCID: PMC11384666 DOI: 10.3791/60769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The hair cell mechanotransduction (MET) channel plays an important role in hearing. However, the molecular identity and structural information of MET remain unknown. Electrophysiological studies of hair cells revealed that the MET channel has a large conductance and is permeable to relatively large fluorescent cationic molecules, including some styryl dyes and Texas Red-labeled aminoglycoside antibiotics. In this protocol, we describe a method to visualize and evaluate the uptake of fluorescent dextrans in hair cells of the organ of Corti explants that can be used to assay for functional MET channels. We found that 3 kDa Texas Red-labeled dextran specifically labels functional auditory hair cells after 1-2 h incubation. In particular, 3 kDa dextran labels the two shorter stereocilia rows and accumulates in the cell body in a diffuse pattern when functional MET channels are present. An additional vesicle-like pattern of labeling was observed in the cell body of hair cells and surrounding supporting cells. Our data suggest that 3 kDa Texas-Red dextran can be used to visualize and study two pathways for cellular dye uptake; a hair cell-specific entry route through functional MET channels and endocytosis, a pattern also available to larger dextran.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health;
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| |
Collapse
|
26
|
Themann CL, Masterson EA. Occupational noise exposure: A review of its effects, epidemiology, and impact with recommendations for reducing its burden. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3879. [PMID: 31795665 DOI: 10.1121/1.5134465] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exposure to hazardous noise is one of the most common occupational risks, both in the U.S. and worldwide. Repeated overexposure to noise at or above 85 dBA can cause permanent hearing loss, tinnitus, and difficulty understanding speech in noise. It is also associated with cardiovascular disease, depression, balance problems, and lower income. About 22 million U.S. workers are currently exposed to hazardous occupational noise. Approximately 33% of working-age adults with a history of occupational noise exposure have audiometric evidence of noise-induced hearing damage, and 16% of noise-exposed workers have material hearing impairment. While the Mining, Construction, and Manufacturing sectors typically have the highest prevalence of noise exposure and hearing loss, there are noise-exposed workers in every sector and every sector has workers with hearing loss. Noise-induced hearing loss is preventable. Increased understanding of the biological processes underlying noise damage may lead to protective pharmacologic or genetic therapies. For now, an integrated public health approach that (1) emphasizes noise control over reliance on hearing protection, (2) illustrates the full impact of hearing loss on quality of life, and (3) challenges the cultural acceptance of loud noise can substantially reduce the impact of noise on worker health.
Collapse
Affiliation(s)
- Christa L Themann
- National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS C-27, Cincinnati, Ohio 45226, USA
| | - Elizabeth A Masterson
- National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, MS C-27, Cincinnati, Ohio 45226, USA
| |
Collapse
|
27
|
The Development of Cooperative Channels Explains the Maturation of Hair Cell's Mechanotransduction. Biophys J 2019; 117:1536-1548. [PMID: 31585704 PMCID: PMC6817549 DOI: 10.1016/j.bpj.2019.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Hearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechanoelectrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell, depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities and then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.
Collapse
|
28
|
Barth FG. Mechanics to pre-process information for the fine tuning of mechanoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:661-686. [PMID: 31270587 PMCID: PMC6726712 DOI: 10.1007/s00359-019-01355-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022]
Abstract
Non-nervous auxiliary structures play a significant role in sensory biology. They filter the stimulus and transform it in a way that fits the animal's needs, thereby contributing to the avoidance of the central nervous system's overload with meaningless stimuli and a corresponding processing task. The present review deals with mechanoreceptors mainly of invertebrates and some remarkable recent findings stressing the role of mechanics as an important source of sensor adaptedness, outstanding performance, and diversity. Instead of organizing the review along the types of stimulus energy (force) taken up by the sensors, processes associated with a few basic and seemingly simple mechanical principles like lever systems, viscoelasticity, resonance, traveling waves, and impedance matching are taken as the guideline. As will be seen, nature makes surprisingly competent use of such "simple mechanics".
Collapse
Affiliation(s)
- Friedrich G Barth
- Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Abstract
Hearing and balance rely on the transduction of mechanical stimuli arising from sound waves or head movements into electrochemical signals. This archetypal mechanoelectrical transduction process occurs in the hair-cell stereocilia of the inner ear, which experience continuous oscillations driven by undulations in the endolymph in which they are immersed. The filamentous structures called tip links, formed by an intertwined thread composed of an heterotypic complex of cadherin 23 and protocadherin 15 ectodomain dimers, connect each stereocilium to the tip of the lower sterocilium, and must maintain their integrity against continuous stimulatory deflections. By using single molecule force spectroscopy, here we demonstrate that in contrast to the case of classical cadherins, tip-link cadherins are mechanoresilient structures even at the exceptionally low Ca2+ concentration of the endolymph. We also show that the D101G deafness point mutation in cadherin 23, which affects a Ca2+ coordination site, exhibits an altered mechanical phenotype at the physiological Ca2+ concentration. Our results show a remarkable case of functional adaptation of a protein’s nanomechanics to extremely low Ca2+ concentrations and pave the way to a full understanding of the mechanotransduction mechanism mediated by auditory cadherins.
Collapse
|
30
|
Wagner EL, Shin JB. Mechanisms of Hair Cell Damage and Repair. Trends Neurosci 2019; 42:414-424. [PMID: 30992136 DOI: 10.1016/j.tins.2019.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 01/22/2023]
Abstract
Sensory hair cells of the inner ear are exposed to continuous mechanical stress, causing damage over time. The maintenance of hair cells is further challenged by damage from a variety of other ototoxic factors, including loud noise, aging, genetic defects, and ototoxic drugs. This damage can manifest in many forms, from dysfunction of the hair cell mechanotransduction complex to loss of specialized ribbon synapses, and may even result in hair cell death. Given that mammalian hair cells do not regenerate, the repair of hair cell damage is important for continued auditory function throughout life. Here, we discuss how several key hair cell structures can be damaged, and what is known about how they are repaired.
Collapse
Affiliation(s)
- Elizabeth L Wagner
- Department of Neuroscience, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
31
|
Abstract
A new mechanism that contributes to control of hearing sensitivity is described here. We show that an accessory structure in the hearing organ, the tectorial membrane, affects the function of inner ear sensory cells by storing calcium ions. When the calcium store is depleted, by brief exposure to rock concert-level sounds or by the introduction of calcium chelators, the sound-evoked responses of the sensory cells decrease. Upon restoration of tectorial membrane calcium, sensory cell function returns. This previously unknown mechanism contributes to explaining the temporary numbness in the ear that follows from listening to sounds that are too loud, a phenomenon that most people experience at some point in their lives. When sound stimulates the stereocilia on the sensory cells in the hearing organ, Ca2+ ions flow through mechanically gated ion channels. This Ca2+ influx is thought to be important for ensuring that the mechanically gated channels operate within their most sensitive response region, setting the fraction of channels open at rest, and possibly for the continued maintenance of stereocilia. Since the extracellular Ca2+ concentration will affect the amount of Ca2+ entering during stimulation, it is important to determine the level of the ion close to the sensory cells. Using fluorescence imaging and fluorescence correlation spectroscopy, we measured the Ca2+ concentration near guinea pig stereocilia in situ. Surprisingly, we found that an acellular accessory structure close to the stereocilia, the tectorial membrane, had much higher Ca2+ than the surrounding fluid. Loud sounds depleted Ca2+ from the tectorial membrane, and Ca2+ manipulations had large effects on hair cell function. Hence, the tectorial membrane contributes to control of hearing sensitivity by influencing the ionic environment around the stereocilia.
Collapse
|
32
|
Bortolozzi M, Mammano F. PMCA2 pump mutations and hereditary deafness. Neurosci Lett 2019; 663:18-24. [PMID: 29452611 DOI: 10.1016/j.neulet.2017.09.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 01/21/2023]
Abstract
Hair cells of the inner ear detect sound stimuli, inertial or gravitational forces by deflection of their apical stereocilia. A small number of stereociliary cation-selective mechanotransduction (MET) channels admit K+ and Ca2+ ions into the cytoplasm promoting hair cell membrane depolarization and, consequently, neurotransmitter release at the cell basolateral pole. Ca2+ influx into the stereocilia compartment is counteracted by the unusual w/a splicing variant of plasma-membrane calcium-pump isoform 2 (PMCA2) which, unlike other PMCA2 variants, increases only marginally its activity in response to a rapid variation of the cytoplasmic free Ca2+ concentration ([Ca2+]c). Missense mutations of PMCA2w/a cause deafness and loss of balance in humans. Mouse models in which the pump is genetically ablated or mutated show hearing and balance impairment, which correlates with defects in homeostatic regulation of stereociliary [Ca2+]c, decreased sensitivity of mechanotransduction channels to hair bundle displacement and progressive degeneration of the organ of Corti. These results highlight a critical role played by the PMCA2w/a pump in the control of hair cell function and survival, and provide mechanistic insight into the etiology of deafness and vestibular disorders.
Collapse
Affiliation(s)
- Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; CNR Institute of Protein Biochemistry, Naples, Italy.
| | - Fabio Mammano
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
33
|
Mahendrasingam S, Furness DN. Ultrastructural localization of the likely mechanoelectrical transduction channel protein, transmembrane-like channel 1 (TMC1) during development of cochlear hair cells. Sci Rep 2019; 9:1274. [PMID: 30718571 PMCID: PMC6362151 DOI: 10.1038/s41598-018-37563-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/05/2018] [Indexed: 01/27/2023] Open
Abstract
Transmembrane channel like protein 1 (TMC1) is likely to be a pore-forming subunit of the transduction channel of cochlear hair cells that is mechanically gated by tension on tip links in the stereocilia bundle. To localise TMC1 precisely, we labelled mice cochleae of different ages using custom-made polyclonal antibodies to TMC1 for light and transmission electron microscopy (TEM). Immunofluorescence revealed stereocilia labelling at P9 but not at P3 in apical hair cells. Immunogold labelling for TEM confirmed that labelling was absent at P3, and showed weak labelling at P6 with no stereocilia tip labelling, increasing at P9, with specific tip labelling on shorter stereocilia and some throughout the bundle. At P12 and P21, labelling was refined mostly to stereocilia tips. Quantification showed that labelling overall reached maximum by P12, labelling per tip was relatively constant from P9 to P21, but percent tips labelled was reduced from 16% to 8%. Tmc1−/− showed no labelling. Thus TMC1 occurs at the lower end of the tip link, supporting its presence in the MET complex and likely the channel. Tip localisation from P9 onwards coincides with lipoma HMGIC fusion partner-like 5 (LHFPL5), a protein that may be involved in acquiring/maintaining TMC1 localisation.
Collapse
Affiliation(s)
| | - David N Furness
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
34
|
Bai H, Wang X, Gao X, Bing J, Wang W, Zhang X, Xi C, Jiang L, Zhang X, Han Z, Zeng S, Xu J. Study of the Mechanisms by Which Aminoglycoside Damage Is Prevented in Chick Embryonic Hair Cells. J Assoc Res Otolaryngol 2018; 20:21-35. [PMID: 30341698 DOI: 10.1007/s10162-018-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/21/2018] [Indexed: 11/27/2022] Open
Abstract
A major side effect of aminoglycoside antibiotics is mammalian hair cell death. It is thus intriguing that embryonic chick hair cells treated with aminoglycosides at embryonic day (E) 12 are insensitive to ototoxicity. To exclude some unknown factors in vivo that might be involved in preventing aminoglycoside damage to embryonic hair cells, we first cultured chick embryonic basilar papilla (BP) with an aminoglycoside antibiotic in vitro. The results indicated that the hair cells were almost intact at E12 and E14 and were only moderately damaged in most parts of the BP at E16 and E18. Generally, hair cells residing in the approximate and abneural regions were more susceptible to streptomycin damage. After incubation with gentamicin-conjugated Texas Red (GTTR), which is typically used to trace the entry route of aminoglycosides, GTTR fluorescence was not remarkable in hair cells at E12, was weak at E14, but was relatively strong in the proximal part of BP at E18. This result indicates that the amounts of GTTR that entered the hair cells are related to the degrees of aminoglycoside damage. The study further showed that the fluorescence intensity of GTTR decreased to a low level at E14 to E18 after disruption of mechanotransduction machinery, suggesting that the aminoglycoside entry into hair cells was mainly through mechanotransduction channels. In addition, most of the entered GTTR was not found to be colocalized with mitochondria even at E18. This finding provides another reason to explain why embryonic chick hair cells are insensitive to aminoglycoside damage.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xi Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Weiqian Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xuebo Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zhongming Han
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China.
| | - Jincao Xu
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
35
|
Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb Perspect Biol 2018; 10:a029280. [PMID: 28847902 PMCID: PMC6008173 DOI: 10.1101/cshperspect.a029280] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cadherins form a large family of proteins often involved in calcium-dependent cellular adhesion. Although classical members of the family can provide a physical bond between cells, a subset of special cadherins use their extracellular domains to interlink apical specializations of single epithelial sensory cells. Two of these cadherins, cadherin-23 (CDH23) and protocadherin-15 (PCDH15), form extracellular "tip link" filaments that connect apical bundles of stereocilia on hair cells essential for inner-ear mechanotransduction. As these bundles deflect in response to mechanical stimuli from sound or head movements, tip links gate hair-cell mechanosensitive channels to initiate sensory perception. Here, we review the unusual and diverse structural properties of these tip-link cadherins and the functional significance of their deafness-related missense mutations. Based on the structural features of CDH23 and PCDH15, we discuss the elasticity of tip links and models that bridge the gap between the nanomechanics of cadherins and the micromechanics of hair-cell bundles during inner-ear mechanotransduction.
Collapse
Affiliation(s)
- Avinash Jaiganesh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Yoshie Narui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Raul Araya-Secchi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
36
|
Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea. Histochem Cell Biol 2018; 150:281-289. [PMID: 29862415 DOI: 10.1007/s00418-018-1683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
Abstract
Aminoglycoside ototoxicity results in permanent loss of the sensory hair cells in the mammalian cochlea. It usually begins at the basal turn causing high-frequency hearing loss. Here we describe previously unreported resistance of hair cells to neomycin ototoxicity in the extreme basal (hook) region of the developing cochlea of the C57BL/6 mouse. Organ of Corti explants from mice at postnatal day 3 were incubated (37 °C, 5% CO2) in normal culture medium for 19.5 h prior to and after exposure to neomycin (1 mM, 3 h). To study neomycin uptake in the hair cells, cochlear explants were incubated with Neomycin Texas-red (NTR) conjugate. As expected, exposure to neomycin significantly reduced the survival of inner (IHC) and outer hair cells (OHC). IHC survival rate was high in the apical segment and low in the basal segment. OHC were well preserved in the apical and hook regions, with substantial OHC loss in the basal segment. The NTR uptake study demonstrated that the high survival rate in the extreme basal turn OHC was associated with low NTR uptake. Treatment with a calcium chelator (BAPTA), which disrupts the opening of mechanoelectrical (MET) transduction channels, abolished or reduced NTR uptake in the hair cells throughout the cochlea. This confirmed the essential role of MET channels in neomycin uptake and implied that the transduction channels could be impaired in the hook region of the developing mouse cochlea, possibly as a result of the cadherin 23 mutation responsible for the progressive deafness in C57BL/6 mice.
Collapse
|
37
|
El Damaty A, Rosenstengel C, Matthes M, Baldauf J, Dziemba O, Hosemann W, Schroeder HWS. A New Score to Predict the Risk of Hearing Impairment After Microvascular Decompression for Hemifacial Spasm. Neurosurgery 2018; 81:834-843. [PMID: 28973677 DOI: 10.1093/neuros/nyx111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intraoperative monitoring of brainstem auditory evoked potentials (BAEPs) has been implemented to reduce the risk of hearing impairment during microvascular decompression for hemifacial spasm. OBJECTIVE To evaluate intraoperative monitoring of BAEPs during microvascular decompression in patients with hemifacial spasm for predicting the risk of hearing impairment after surgery. METHODS This prospective study included 100 patients. BAEPs were recorded for all patients. We established a scoring system for the changes in wave I amplitude, I-III interpeak latency, and wave V amplitude and latency. For each change, total points were calculated, and a score out of 6 was assigned to every patient. We classified the patients based on the points scored into 3 risk groups: low-risk (0-3), medium-risk (4-5), and high-risk (6). Further, the correlation between the score and the hearing outcome was evaluated to detect the incidence and degree of hearing impairment. RESULTS Eighty-seven patients scored 0 to 3, 10 scored 4 to 5, and 3 scored 6. The degree of hearing impairment was proportionate to the score recorded at the end of surgery, and patients in the low-risk group showed no impairment; medium-risk group, deterioration of maximum 2 grades according to World Health Organization classification of hearing impairment; and high-risk group, deterioration of 3 to 4 grades. CONCLUSION Intraoperative monitoring of BAEPs evaluated through our scoring system was valuable in predicting hearing impairment after surgery.
Collapse
Affiliation(s)
- Ahmed El Damaty
- Department of Neurosurgery, Cairo University, Cairo, Egypt.,Department of Neurosurgery, Greifswald University Medicine, Greifswald, Germany
| | | | - Marc Matthes
- Department of Neurosurgery, Greifswald University Medicine, Greifswald, Germany
| | - Joerg Baldauf
- Department of Neurosurgery, Greifswald University Medicine, Greifswald, Germany
| | - Oliver Dziemba
- Department of ENT, Head and Neck Surgery, Greifswald University of Medicine, Greifswald, Germany
| | - Werner Hosemann
- Department of ENT, Head and Neck Surgery, Greifswald University of Medicine, Greifswald, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, Greifswald University Medicine, Greifswald, Germany
| |
Collapse
|
38
|
Narui Y, Sotomayor M. Tuning Inner-Ear Tip-Link Affinity Through Alternatively Spliced Variants of Protocadherin-15. Biochemistry 2018; 57:1702-1710. [PMID: 29443515 DOI: 10.1021/acs.biochem.7b01075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human hearing relies upon the tip-to-tip interaction of two nonclassical cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23). Together, these proteins form a filament called the tip link that connects neighboring stereocilia of mechanosensitive hair cells. As sound waves enter the cochlea, the stereocilia deflect and tension is applied to the tip link, opening nearby transduction channels. Disruption of the tip link by loud sound or calcium chelators eliminates transduction currents and illustrates that tip-link integrity is critical for mechanosensing. Tip-link remodeling after disruption is a dynamic process, which can lead to the formation of atypical complexes that incorporate alternatively spliced variants of PCDH15. These variants are categorized into six groups (N1-N6) based upon differences in the first two extracellular cadherin (EC) repeats. Here, we characterized the two N-terminal EC repeats of all PCDH15 variants (pcdh15(N1) to pcdh15(N6)) and combined these variants to test complex formation. We solved the crystal structure of a new complex composed of CDH23 EC1-2 (cdh23) and pcdh15(N2) at 2.3 Å resolution and compared it to the canonical cdh23-pcdh15(N1) complex. While there were subtle structural differences, the binding affinity between cdh23 and pcdh15(N2) is ∼6 times weaker than cdh23 and pcdh15(N1) as determined by surface plasmon resonance analysis. Steered molecular dynamics simulations predict that the unbinding force of the cdh23-pcdh15(N2) complex can be lower than the canonical tip link. Our results demonstrate that alternative heterophilic tip-link structures form stable protein-protein interactions in vitro and suggest that homophilic PCDH15-PCDH15 tip links form through the interaction of additional EC repeats.
Collapse
Affiliation(s)
- Yoshie Narui
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
39
|
Choudhary D, Kumar A, Magliery TJ, Sotomayor M. Using thermal scanning assays to test protein-protein interactions of inner-ear cadherins. PLoS One 2017; 12:e0189546. [PMID: 29261728 PMCID: PMC5736220 DOI: 10.1371/journal.pone.0189546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Protein-protein interactions play a crucial role in biological processes such as cell-cell adhesion, immune system-pathogen interactions, and sensory perception. Understanding the structural determinants of protein-protein complex formation and obtaining quantitative estimates of their dissociation constant (KD) are essential for the study of these interactions and for the discovery of new therapeutics. At the same time, it is equally important to characterize protein-protein interactions in a high-throughput fashion. Here, we use a modified thermal scanning assay to test interactions of wild type (WT) and mutant variants of N-terminal fragments (EC1+2) of cadherin-23 and protocadherin-15, two proteins essential for inner-ear mechanotransduction. An environmentally sensitive fluorescent dye (SYPRO orange) is used to monitor melting temperature (Tm) shifts of protocadherin-15 EC1+2 (pcdh15) in the presence of increasing concentrations of cadherin-23 EC1+2 (cdh23). These Tm shifts are absent when we use proteins containing deafness-related missense mutations known to disrupt cdh23 binding to pcdh15, and are increased for some rationally designed mutants expected to enhance binding. In addition, surface plasmon resonance binding experiments were used to test if the Tm shifts correlated with changes in binding affinity. We used this approach to find a double mutation (cdh23(T15E)- pcdh15(G16D)) that enhances binding affinity of the cadherin complex by 1.98 kJ/mol, roughly two-fold that of the WT complex. We suggest that the thermal scanning methodology can be used in high-throughput format to quickly compare binding affinities (KD from nM up to 100 μM) for some heterodimeric protein complexes and to screen small molecule libraries to find protein-protein interaction inhibitors and enhancers.
Collapse
Affiliation(s)
- Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Anusha Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
40
|
Tompkins N, Spinelli KJ, Choi D, Barr-Gillespie PG. A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophys J 2017; 113:1868-1881. [PMID: 29045880 DOI: 10.1016/j.bpj.2017.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022] Open
Abstract
Tip links are thought to gate the mechanically sensitive transduction channels of hair cells, but how they form during development and regeneration remains mysterious. In particular, it is unclear how tip links are strung between stereocilia so that they are oriented parallel to a single axis; why their polarity is uniform despite their constituent molecules' intrinsic asymmetry; and why only a single tip link is present at each tip-link position. We present here a series of simple rules that reasonably explain why these phenomena occur. In particular, our model relies on each of the two ends of the tip link having distinct Ca2+-dependent stability and being connected to different motor complexes. A simulation employing these rules allowed us to explore the parameter space for the model, demonstrating the importance of the feedback between transduction channels and angled links, links that are 60° off-axis with respect to mature tip links. We tested this key aspect of the model by examining angled links in chick cochlea hair cells. As implied by the assumptions used to generate the model, we found that angled links were stabilized if there was no tip link at the tip of the upper stereocilium, and appeared when transduction channels were blocked. The model thus plausibly explains how tip-link formation and pruning can occur.
Collapse
Affiliation(s)
- Nathan Tompkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kateri J Spinelli
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Dongseok Choi
- School of Public Health, Oregon Health and Science University, Portland, Oregon; Graduate School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
41
|
Powers RE, Gaudet R, Sotomayor M. A Partial Calcium-Free Linker Confers Flexibility to Inner-Ear Protocadherin-15. Structure 2017; 25:482-495. [PMID: 28238533 DOI: 10.1016/j.str.2017.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
Tip links of the inner ear are protein filaments essential for hearing and balance. Two atypical cadherins, cadherin-23 and protocadherin-15, interact in a Ca2+-dependent manner to form tip links. The largely unknown structure and mechanics of these proteins are integral to understanding how tip links pull on ion channels to initiate sensory perception. Protocadherin-15 has 11 extracellular cadherin (EC) repeats. Its EC3-4 linker lacks several of the canonical Ca2+-binding residues, and contains an aspartate-to-alanine polymorphism (D414A) under positive selection in East Asian populations. We present structures of protocadherin-15 EC3-5 featuring two Ca2+-binding linker regions: canonical EC4-5 linker binding three Ca2+ ions, and non-canonical EC3-4 linker binding only two Ca2+ ions. Our structures and biochemical assays reveal little difference between the D414 and D414A variants. Simulations predict that the partial Ca2+-free EC3-4 linker exhibits increased flexural flexibility without compromised mechanical strength, providing insight into the dynamics of tip links and other atypical cadherins.
Collapse
Affiliation(s)
- Robert E Powers
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Biophysics Graduate Program, Harvard University, Boston, MA 02115, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
42
|
Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave. Sci Rep 2016; 6:31754. [PMID: 27531021 PMCID: PMC4987642 DOI: 10.1038/srep31754] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/25/2016] [Indexed: 11/08/2022] Open
Abstract
The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis.
Collapse
|
43
|
Tang PC, Smith KM, Watson GM. Repair of traumatized mammalian hair cells via sea anemone repair proteins. ACTA ACUST UNITED AC 2016; 219:2265-70. [PMID: 27489215 DOI: 10.1242/jeb.135459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Glen M Watson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| |
Collapse
|
44
|
Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3-GENES GENOMES GENETICS 2016; 6:2225-35. [PMID: 27207957 PMCID: PMC4938675 DOI: 10.1534/g3.116.030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hair cells possess a single primary cilium, called the kinocilium, early in development. While the kinocilium is lost in auditory hair cells of most species it is maintained in vestibular hair cells. It has generally been believed that the primary role of the kinocilium and cilia-associated genes in hair cells is in the establishment of the polarity of actin-based stereocilia, the hair cell mechanotransduction apparatus. Through genetic screening and testing of candidate genes in zebrafish (Danio rerio) we have found that mutations in multiple cilia genes implicated in intraflagellar transport (dync2h1, wdr35, ift88, and traf3ip), and the ciliary transition zone (cc2d2a, mks1, and cep290) lead to resistance to aminoglycoside-induced hair cell death. These genes appear to have differing roles in hair cells, as mutations in intraflagellar transport genes, but not transition zone genes, lead to defects in kinocilia formation and processes dependent upon hair cell mechanotransduction activity. These mutants highlight a novel role of cilia-associated genes in hair cells, and provide powerful tools for further study.
Collapse
|
45
|
Hsu CJ, Chen YS, Shau WY, Yeh TH, Lee SY, Lin-Shiau SY. Impact of Activities OF NA+,K+-Atpase and CA2+-Atpase in the Cochlear Lateral Wall on Recovery from Noise-Induced Temporary Threshold Shift. Ann Otol Rhinol Laryngol 2016; 111:842-9. [PMID: 12296342 DOI: 10.1177/000348940211100915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was designed to investigate the relationship between the noise-induced temporary threshold shift (TTS) and the specific activities of sodium potassium adenosine triphosphatase (Na+,K+-ATPase) and calcium adenosine triphosphatase (Ca2+-ATPase) in the cochlear lateral wall. The specific activities of these enzymes were quantified by microcolorimetric assay. Changes in auditory brain stem response (ABR) thresholds were compared with the quantitative alterations of the specific activities of Na+,K+-ATPase and Ca2+-ATPase in the cochlear lateral wall of guinea pigs with a noise-induced TTS. In the majority of those noise-exposed ears with complete recovery of ABR thresholds, the specific activities of both enzymes returned to at least 70% of the mean specific activity of the control group. Although other factors may be involved, reversible inactivation of Na+,K+-ATPase and Ca2+-ATPase in the cochlear lateral wall may be one component of the TTS. Our present findings could drive further studies on the molecular basis of noise-induced hearing loss.
Collapse
Affiliation(s)
- Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Chun KY, Son YJ, Han CS. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs. ACS NANO 2016; 10:4550-4558. [PMID: 27054270 DOI: 10.1021/acsnano.6b00582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).
Collapse
Affiliation(s)
- Kyoung-Yong Chun
- Development Group for Creative Research Engineers of Convergence Mechanical System, School of Mechanical Engineering, College of Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Young Jun Son
- School of Mechanical Engineering, College of Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Chang-Soo Han
- Development Group for Creative Research Engineers of Convergence Mechanical System, School of Mechanical Engineering, College of Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
- School of Mechanical Engineering, College of Engineering, Korea University , Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| |
Collapse
|
47
|
Bortolozzi M, Mammano F. PMCA2w/a Splice Variant: A Key Regulator of Hair Cell Mechano-transduction Machinery. REGULATION OF CA2+-ATPASES,V-ATPASES AND F-ATPASES 2016:27-45. [DOI: 10.1007/978-3-319-24780-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
48
|
Thirumala P, Meigh K, Dasyam N, Shankar P, Sarma KRK, Sarma DRK, Habeych M, Crammond D, Balzer J. The incidence of high-frequency hearing loss after microvascular decompression for trigeminal neuralgia, glossopharyngeal neuralgia, or geniculate neuralgia. J Neurosurg 2015; 123:1500-6. [DOI: 10.3171/2014.10.jns141101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The primary aim of this study was to evaluate the incidence and discuss the pathogenesis of high-frequency hearing loss (HFHL) after microvascular decompression (MVD) for trigeminal neuralgia (TGN), glossopharyngeal neuralgia (GPN), or geniculate neuralgia (GN).
METHODS
The authors analyzed preoperative and postoperative audiogram data and brainstem auditory evoked potentials (BAEPs) from 93 patients with TGN, 6 patients with GPN, and 8 patients with GN who underwent MVD. Differences in pure tone audiometry > 10 dB at frequencies of 0.25, 0.5, 1, 2, 4, and 8 kHz were calculated preoperatively and postoperatively for both the ipsilateral and the contralateral sides. Intraoperative monitoring records were analyzed and compared with the incidence of HFHL, which was defined as a change in pure tone audiometry > 10 dB at frequencies of 4 and 8 kHz.
RESULTS
The incidence of HFHL was 30.84% on the side ipsilateral to the surgery and 20.56% on the contralateral side. Of the 47 patients with HFHL, 20 had conductive hearing loss, and 2 experienced nonserviceable hearing loss after the surgery. The incidences of HFHL on the ipsilateral side at 4 and 8 kHz were 17.76% and 25.23%, respectively, and 8.41% and 15.89%, respectively, on the contralateral side. As the audiometric frequency increased, the number of patients with hearing loss increased. No significant postoperative difference was found between patients with and without HFHL in intraoperative BAEP waveforms. Sex, age, and affected side were not associated with an increase in the incidence of hearing loss.
CONCLUSIONS
High-frequency hearing loss occurred after MVD for TGN, GPN, or GN, and the greatest incidence occurred on the ipsilateral side. This hearing loss may be a result of drill-induced noise and/or transient loss of cerebrospinal fluid during the course of the procedure. Changes in intraoperative BAEP waveforms were not useful in predicting HFHL after MVD. Repeated postoperative audiological examinations may be useful in assessing the prognosis of HFHL.
Collapse
Affiliation(s)
| | - Kristin Meigh
- 3Schools of Emergency Medicine and Medicine, University of Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hwang P, Chou SW, Chen Z, McDermott BM. The Stereociliary Paracrystal Is a Dynamic Cytoskeletal Scaffold In Vivo. Cell Rep 2015; 13:1287-1294. [PMID: 26549442 DOI: 10.1016/j.celrep.2015.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/30/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022] Open
Abstract
Permanency of mechanosensory stereocilia may be the consequence of low protein turnover or rapid protein renewal. Here, we devise a system, using optical techniques in live zebrafish, to distinguish between these mechanisms. We demonstrate that the stereocilium's abundant actin cross-linker fascin 2b exchanges, without bias or a phosphointermediate, orders of magnitude faster (t1/2 of 76.3 s) than any other known hair bundle protein. To establish the logic of fascin 2b's exchange, we examine whether filamentous actin is dynamic and detect substantial β-actin exchange within the stereocilium's paracrystal (t1/2 of 4.08 hr). We propose that fascin 2b's behavior may enable cross-linking at fast timescales of stereocilia vibration while noninstructively facilitating the slower process of actin exchange. Furthermore, tip protein myosin XVa fully exchanges in hours (t1/2 of 11.6 hr), indicating that delivery of myosin-associated cargo occurs in mature stereocilia. These findings suggest that stereocilia permanency is underpinned by vibrant protein exchange.
Collapse
Affiliation(s)
- Philsang Hwang
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shih-Wei Chou
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zongwei Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
50
|
Li H, Kachelmeier A, Furness DN, Steyger PS. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells. Front Cell Neurosci 2015; 9:130. [PMID: 25926770 PMCID: PMC4396448 DOI: 10.3389/fncel.2015.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/20/2015] [Indexed: 12/03/2022] Open
Abstract
Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs). Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy. Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR) for 30 min prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses (ABRs) before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET) channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy. We found wide-band noise (WBN) levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS. These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic synergy.
Collapse
Affiliation(s)
- Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| | | | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|