1
|
Lemmens B, Hegarat N, Akopyan K, Sala-Gaston J, Bartek J, Hochegger H, Lindqvist A. DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation. Mol Cell 2018; 71:117-128.e3. [PMID: 30008317 PMCID: PMC6039720 DOI: 10.1016/j.molcel.2018.05.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022]
Abstract
To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joan Sala-Gaston
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK.
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Uchiyama M, Terunuma J, Hanaoka F. The Protein Level of Rev1, a TLS Polymerase in Fission Yeast, Is Strictly Regulated during the Cell Cycle and after DNA Damage. PLoS One 2015; 10:e0130000. [PMID: 26147350 PMCID: PMC4493104 DOI: 10.1371/journal.pone.0130000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis provides an alternative DNA replication mechanism when template DNA is damaged. In fission yeast, Eso1 (polη), Kpa1/DinB (polκ), Rev1, and Polζ (a complex of Rev3 and Rev7) have been identified as translesion synthesis polymerases. The enzymatic characteristics and protein-protein interactions of these polymerases have been intensively characterized; however, how these proteins are regulated during the cell cycle remains unclear. Therefore, we examined the cell cycle oscillation of translesion polymerases. Interestingly, the protein levels of Rev1 peaked during G1 phase and then decreased dramatically at the entry of S phase; this regulation was dependent on the proteasome. Temperature-sensitive proteasome mutants, such as mts2-U31 and mts3-U32, stabilized Rev1 protein when the temperature was shifted to the restrictive condition. In addition, deletion of pop1 or pop2, subunits of SCF ubiquitin ligase complexes, upregulated Rev1 protein levels. Besides these effects during the cell cycle, we also observed upregulation of Rev1 protein upon DNA damage. This upregulation was abolished when rad3, a checkpoint protein, was deleted or when the Rev1 promoter was replaced with a constitutive promoter. From these results, we hypothesize that translesion DNA synthesis is strictly controlled through Rev1 protein levels in order to avoid unwanted mutagenesis.
Collapse
Affiliation(s)
- Masashi Uchiyama
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Junko Terunuma
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Fumio Hanaoka
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes. SCIENCE CHINA-LIFE SCIENCES 2014; 57:482-7. [PMID: 24699916 DOI: 10.1007/s11427-014-4631-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 10/25/2022]
Abstract
Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.
Collapse
|
4
|
Chen S, Qu X, Wan P, Li QW, Wang Z, Guo F, Bai L, Hu Z, Tan W, Li J. Norcantharidin inhibits pre-replicative complexes assembly of HepG2 cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:665-82. [PMID: 23711148 DOI: 10.1142/s0192415x13500468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Norcantharidin (NCTD) is currently used for anticancer therapy but the exact mechanism of action remains unknown. Pre-replicative complexes (pre-RCs) are essential for cell DNA replication and highly related to malignant proliferation. Here, we examined the inhibitory effect of NCTD on pre-RC components in HepG2 cells. We showed that NCTD induced degradation of Cdc6 and Mcm2 in a dose-dependent manner. Under 100 μM NCTD concentration, about 70% of Cdc6 and 50% of Mcm2 were degraded. In addition, the nuclear translocation of Mcm6 was inhibited by NCTD. Further studies aiming at G1 synchronous cells showed that, NCTD reduced the chromatin-bound Cdc6, Mcm2 and Mcm6. Moreover, the cells were blocked from entering the S phase and accumulated at the G1 phase when released synchronously into the cell cycle. Consistently, the DNA replication was inhibited by NCTD. Finally, the combination NCTD with Cdc6 depletion lead to more severe cytotoxicity (88%) than NCTD (52%) and Cdc6 depletion (39%) alone. A synergic cytotoxicity was observed between Cdc6 depletion and NCTD. In conclusion, our results demonstrate that NCTD inhibits pre-RC assembly; subsequently blocks the G1 to S transition; and inhibits DNA replication in HepG2 cells. Pre-RCs are an intriguing target for cancer therapy, which merits further investigations for anticancer development.
Collapse
Affiliation(s)
- Sansan Chen
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
6
|
Pan X, Lei B, Zhou N, Feng B, Yao W, Zhao X, Yu Y, Lu H. Identification of novel genes involved in DNA damage response by screening a genome-wide Schizosaccharomyces pombe deletion library. BMC Genomics 2012; 13:662. [PMID: 23173672 PMCID: PMC3536581 DOI: 10.1186/1471-2164-13-662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 10/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA damage response (DDR) plays pivotal roles in maintaining genome integrity and stability. An effective DDR requires the involvement of hundreds of genes that compose a complicated network. Because DDR is highly conserved in evolution, studies in lower eukaryotes can provide valuable information to elucidate the mechanism in higher organisms. Fission yeast (Schizosaccharomyces pombe) has emerged as an excellent model for DDR research in recent years. To identify novel genes involved in DDR, we screened a genome-wide S. pombe haploid deletion library against six different DNA damage reagents. The library covered 90.5% of the nonessential genes of S. pombe. RESULTS We have identified 52 genes that were actively involved in DDR. Among the 52 genes, 20 genes were linked to DDR for the first time. Flow cytometry analysis of the repair defective mutants revealed that most of them exhibited a defect in cell cycle progression, and some caused genome instability. Microarray analysis and genetic complementation assays were carried out to characterize 6 of the novel DDR genes in more detail. Data suggested that SPBC2A9.02 and SPAC27D7.08c were required for efficient DNA replication initiation because they interacted genetically with DNA replication initiation proteins Abp1 and Abp2. In addition, deletion of sgf73+, meu29+, sec65+ or pab1+ caused improper cytokinesis and DNA re-replication, which contributed to the diploidization in the mutants. CONCLUSIONS A genome-wide screen of genes involved in DDR emphasized the key role of cell cycle control in the DDR network. Characterization of novel genes identified in the screen helps to elucidate the mechanism of the DDR network and provides valuable clues for understanding genome stability in higher eukaryotes.
Collapse
Affiliation(s)
- Xian Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Sun J, Kong D. DNA replication origins, ORC/DNA interaction, and assembly of pre-replication complex in eukaryotes. Acta Biochim Biophys Sin (Shanghai) 2010; 42:433-9. [PMID: 20705581 DOI: 10.1093/abbs/gmq048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chromosomal DNA replication in eukaryotic cells is highly complicated and sophisticatedly regulated. Owing to its large size, a typical eukaryotic genome contains hundreds to tens of thousands of initiation sites called DNA replication origins where DNA synthesis takes place. Multiple initiation sites remove the constraint of a genome size because only a certain amount of DNA can be replicated from a single origin in a limited time. The activation of these multiple origins must be coordinated so that each segment of chromosomal DNA is precisely duplicated only once per cell cycle. Although DNA replication is a vital process for cell growth and its mechanism is highly conserved, recent studies also reveal significant diversity in origin structure, assembly of pre-replication complex (pre-RC) and regulation of replication initiation along evolutionary lines. The DNA replication origins in the fission yeast Schizosaccharomyces pombe are found to contain a second essential element that is bound by Sap1 protein besides the essential origin recognition complex-binding site. Sap1 is recently demonstrated to be a novel replication initiation protein that plays an essential role in loading the initiation protein Cdc18 to origins and thus directly participates in pre-RC formation. In this review, we summarize the recent advance in understanding how DNA replication origins are organized, how pre-RC is assembled and how DNA replication is initiated and regulated in yeast and metazoans.
Collapse
Affiliation(s)
- Jingya Sun
- Department of Environmental Science, Zhejiang Ocean University, Zhoushan City, China
| | | |
Collapse
|
8
|
Abstract
The replication-associated protein (Rep) of geminiviruses, single-stranded DNA viruses of higher plants, is essential for virus replication. Since these viruses do not encode their own polymerases, Rep induces differentiated plant cells to reenter the cell cycle by interacting with the plant homologues of retinoblastoma proteins in order to activate the host DNA synthesis machinery. We have used fission yeast (Schizosaccharomyces pombe) as a model organism to analyze the impact of ectopically expressed African cassava mosaic virus Rep protein on the cell division cycle in closer detail. Upon expression, Rep showed its characteristic DNA cleavage activity, and about 10% of the cells exhibited morphological changes. They were elongated threefold, on average, and possessed a single but enlarged and less compact nucleus in comparison to noninduced or vector-only control cells. Flow cytometry of Rep-expressing cultures revealed a distinct subpopulation of Rep protein-containing cells with aberrant morphology. The other 90% of the cells were indistinguishable from control cells, and no Rep was detectable. Rep-expressing cells exhibited DNA contents beyond 2C, indicating ongoing replication without intervening mitosis. Because a second open reading frame (ORF), AC4, is present within the Rep gene, the role of AC4 was examined by destroying its start codon within the AC1 ORF. The results confirmed that Rep is necessary and sufficient to induce rereplication in fission yeast. The unique potential of this well-investigated model for dissecting the cell cycle control by geminiviral proteins is discussed.
Collapse
|
9
|
Atanassova N, Grainge I. Biochemical characterization of the minichromosome maintenance (MCM) protein of the crenarchaeote Aeropyrum pernix and its interactions with the origin recognition complex (ORC) proteins. Biochemistry 2009; 47:13362-70. [PMID: 19053250 DOI: 10.1021/bi801479s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Replication in archaea is carried out by proteins that are homologues of eukaryotic counterparts. However, the archaeal systems tend to be much simpler with fewer different genes encoding the core functions than in eukaryotic counterparts. In many archaea, there is a single minichromosome maintenance (MCM) homologue, presumed to be the replicative helicase and between one and three origin recognition complex (ORC) homologues involved in binding to the replication origins. Here we describe the cloning and characterization of the MCM protein from the crenarchaeote Aeropyrum pernix. Like other eukaryotic and archaeal MCM proteins, it is found to be an ATP-dependent DNA helicase, and the putative active site residues involved in ATP binding and hydrolysis are confirmed by mutation. Deletion of the N-terminal 256 amino acids yielded a protein with higher ATPase activity in the absence of DNA and retained robust helicase activity. Interactions with the ORC proteins of A. pernix were examined, and it was found that both ORC homologues could inhibit the helicase activity of MCM. Further it was found that ORC2 could autophosphorylate in the presence of ATP and more remarkably could phosphorylate MCM in a species-specific manner.
Collapse
Affiliation(s)
- Neli Atanassova
- Cancer Research UK Clare Hall Laboratories, The London Research Institute, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3LD, UK
| | | |
Collapse
|
10
|
Mickle KL, Oliva A, Huberman JA, Leatherwood J. Checkpoint effects and telomere amplification during DNA re-replication in fission yeast. BMC Mol Biol 2007; 8:119. [PMID: 18154680 PMCID: PMC2265721 DOI: 10.1186/1471-2199-8-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 12/21/2007] [Indexed: 11/26/2022] Open
Abstract
Background Although much is known about molecular mechanisms that prevent re-initiation of DNA replication on newly replicated DNA during a single cell cycle, knowledge is sparse regarding the regions that are most susceptible to re-replication when those mechanisms are bypassed and regarding the extents to which checkpoint pathways modulate re-replication. We used microarrays to learn more about these issues in wild-type and checkpoint-mutant cells of the fission yeast, Schizosaccharomyces pombe. Results We found that over-expressing a non-phosphorylatable form of the replication-initiation protein, Cdc18 (known as Cdc6 in other eukaryotes), drove re-replication of DNA sequences genome-wide, rather than forcing high level amplification of just a few sequences. Moderate variations in extents of re-replication generated regions spanning hundreds of kilobases that were amplified (or not) ~2-fold more (or less) than average. However, these regions showed little correlation with replication origins used during S phase. The extents and locations of amplified regions in cells deleted for the checkpoint genes encoding Rad3 (ortholog of human ATR and budding yeast Mec1) and Cds1 (ortholog of human Chk2 and budding yeast Rad53) were similar to those in wild-type cells. Relatively minor but distinct effects, including increased re-replication of heterochromatic regions, were found specifically in cells lacking Rad3. These might be due to Cds1-independent roles for Rad3 in regulating re-replication and/or due to the fact that cells lacking Rad3 continued to divide during re-replication, unlike wild-type cells or cells lacking Cds1. In both wild-type and checkpoint-mutant cells, regions near telomeres were particularly susceptible to re-replication. Highly re-replicated telomere-proximal regions (50–100 kb) were, in each case, followed by some of the least re-replicated DNA in the genome. Conclusion The origins used, and the extent of replication fork progression, during re-replication are largely independent of the replication and DNA-damage checkpoint pathways mediated by Cds1 and Rad3. The fission yeast pattern of telomere-proximal amplification adjacent to a region of under-replication has also been seen in the distantly-related budding yeast, which suggests that subtelomeric sequences may be a promising place to look for DNA re-replication in other organisms.
Collapse
Affiliation(s)
- Katie L Mickle
- Department of Microbiology and Molecular Genetics, SUNY at Stony Brook, Stony Brook, New York 11794-5222, USA.
| | | | | | | |
Collapse
|
11
|
Cdc18 enforces long-term maintenance of the S phase checkpoint by anchoring the Rad3-Rad26 complex to chromatin. Mol Cell 2007; 26:553-63. [PMID: 17531813 DOI: 10.1016/j.molcel.2007.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/26/2007] [Accepted: 04/20/2007] [Indexed: 01/11/2023]
Abstract
DNA replication is initiated by recruitment of Cdc18 to origins. During S phase, CDK-dependent destruction of Cdc18 occurs. We show that when DNA replication stalls, Cdc18 persists in a chromatin-bound complex including the checkpoint kinases Rad3 and Rad26. Rad26 directly binds Cdc18 and is required for Rad3 recruitment to chromatin. Depletion of Cdc18 when DNA replication is stalled leads to release of Rad3 and Rad26 from chromatin and entry into an aberrant mitosis even though replication intermediates can still be detected. These findings indicate that Cdc18 plays a pivotal role in checkpoint maintenance by anchoring the Rad3-Rad26 complex to chromatin. Cdc18 persistence during DNA-replication arrest requires the S phase checkpoint that inhibits the S phase CDK. We propose that S phase arrest activates the S phase checkpoint blocking mitosis onset and inhibiting Cdc18 degradation, and that the stabilized Cdc18, in turn, anchors Rad3 to chromatin to ensure long-term checkpoint maintenance.
Collapse
|
12
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
13
|
Speck C, Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 2007; 282:11705-14. [PMID: 17314092 PMCID: PMC3033201 DOI: 10.1074/jbc.m700399200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication, as with all macromolecular synthesis steps, is controlled in part at the level of initiation. Although the origin recognition complex (ORC) binds to origins of DNA replication, it does not solely determine their location. To initiate DNA replication ORC requires Cdc6 to target initiation to specific DNA sequences in chromosomes and with Cdt1 loads the ring-shaped mini-chromosome maintenance (MCM) 2-7 DNA helicase component onto DNA. ORC and Cdc6 combine to form a ring-shaped complex that contains six AAA+ subunits. ORC and Cdc6 ATPase mutants are defective in MCM loading, and ORC ATPase mutants have reduced activity in ORC x Cdc6 x DNA complex formation. Here we analyzed the role of the Cdc6 ATPase on ORC x Cdc6 complex stability in the presence or absence of specific DNA sequences. Cdc6 ATPase is activated by ORC, regulates ORC x Cdc6 complex stability, and is suppressed by origin DNA. Mutations in the conserved origin A element, and to a lesser extent mutations in the B1 and B2 elements, induce Cdc6 ATPase activity and prevent stable ORC x Cdc6 formation. By analyzing ORC x Cdc6 complex stability on various DNAs, we demonstrated that specific DNA sequences control the rate of Cdc6 ATPase, which in turn controls the rate of Cdc6 dissociation from the ORC x Cdc6 x DNA complex. We propose a mechanism explaining how Cdc6 ATPase activity promotes origin DNA sequence specificity; on DNA that lacks origin activity, Cdc6 ATPase promotes dissociation of Cdc6, whereas origin DNA down-regulates Cdc6 ATPase resulting in a stable ORC x Cdc6 x DNA complex, which can then promote MCM loading. This model has relevance for origin specificity in higher eukaryotes.
Collapse
Affiliation(s)
- Christian Speck
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
14
|
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 2006; 119:124-31. [PMID: 16371652 PMCID: PMC1582148 DOI: 10.1242/jcs.02703] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here, we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint-gene mutations. Instead, when cells competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus, studies in fission yeast are likely to prove helpful in understanding the pathways that lead from replication stress and inappropriate mitosis to cell death in mammalian cells.
Collapse
Affiliation(s)
| | - Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoinkawahara-machi, Sakyo-ku, Kyoto 606-8507, Japan
| | - William C Burhans
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Authors for correspondence (e-mail: , )
| | - Joel A Huberman
- Department of Cancer Genetics and
- Authors for correspondence (e-mail: , )
| |
Collapse
|
15
|
Locovei AM, Spiga MG, Tanaka K, Murakami Y, D'Urso G. The CENP-B homolog, Abp1, interacts with the initiation protein Cdc23 (MCM10) and is required for efficient DNA replication in fission yeast. Cell Div 2006; 1:27. [PMID: 17112379 PMCID: PMC1664554 DOI: 10.1186/1747-1028-1-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/17/2006] [Indexed: 11/10/2022] Open
Abstract
Abp1, and the closely related Cbh1 and Cbh2 are homologous to the human centromere-binding protein CENP-B that has been implicated in the assembly of centromeric heterochromatin. Fission yeast cells lacking Abp1 show an increase in mini-chromosome instability suggesting that Abp1 is important for chromosome segregation and/or DNA synthesis. Here we show that Abp1 interacts with the DNA replication protein Cdc23 (MCM10) in a two-hybrid assay, and that the Deltaabp1 mutant displays a synthetic phenotype with a cdc23 temperature-sensitive mutant. Moreover, genetic interactions were also observed between abp1+ and four additional DNA replication initiation genes cdc18+, cdc21+, orc1+, and orc2+. Interestingly, we find that S phase is delayed in cells deleted for abp1+ when released from a G1 block. However, no delay is observed when cells are released from an early S phase arrest induced by hydroxyurea suggesting that Abp1 functions prior to, or coincident with, the initiation of DNA replication.
Collapse
Affiliation(s)
- Alexandra M Locovei
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| | - Maria-Grazia Spiga
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| | - Katsunori Tanaka
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Shimane, Japan
| | - Yota Murakami
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gennaro D'Urso
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, P.O. Box 016189, Miami, FL, 33101, USA
| |
Collapse
|
16
|
Callegari AJ, Kelly TJ. UV irradiation induces a postreplication DNA damage checkpoint. Proc Natl Acad Sci U S A 2006; 103:15877-82. [PMID: 17043220 PMCID: PMC1613229 DOI: 10.1073/pnas.0607343103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic cells irradiated with high doses of UV exhibit cell-cycle responses referred to as G(1)/S, intraS, and G(2)/M checkpoints. After a moderate UV dose that approximates sunlight exposure and is lethal to fission yeast checkpoint mutants, we found unexpectedly that these cell-cycle responses do not occur. Instead, cells at all stages of the cell cycle carry lesions into S phase and delay cell-cycle progression for hours after the completion of bulk DNA synthesis. Both DNA replication and the checkpoint kinase, Chk1, are required to generate this cell-cycle response. UV-irradiation of Deltachk1 cells causes chromosome damage and loss of viability only after cells have replicated irradiated DNA and entered mitosis. These data suggest that an important physiological role of the cell-cycle response to UV is to provide time for postreplication repair.
Collapse
Affiliation(s)
- A. John Callegari
- *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J. Kelly
- *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Kumar R, Singh J. A truncated derivative of nmt 1 promoter exhibits temperature-dependent induction of gene expression in Schizosaccharomyces pombe. Yeast 2006; 23:55-65. [PMID: 16408319 DOI: 10.1002/yea.1343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Despite increasing exploitation of Schizosaccharomyces pombe as a model system there is a lack of convenient vectors for research and application. Expression with the commonly used promoter, nmt 1, requires a laborious regime involving the removal of repressor, thiamine, from a growing culture and further growth for 18 h to achieve maximum expression, thus underlining the need for more user-friendly promoters. We report here the isolation and characterization of a truncated derivative of the nmt 1 promoter having novel induction characteristics: it is induced by shift of growth temperature from 36 degrees C to 25 degrees C, achieving maximum expression within 3 h. Similar features of expression were observed with the reporter genes GFP and beta-galactosidase, a native gene, cdc 18, and a commercially important foreign therapeutic protein, streptokinase. The new promoter element offers additional advantages, such as lack of deleterious effect on cell viability and potential ability to express toxic proteins. These features make the new promoter a potentially better alternative to nmt 1, both as a research tool and for expression of commercially important proteins in Sz. pombe, and suggest the possibility of using similar approaches to design promoters with novel and useful properties.
Collapse
Affiliation(s)
- Raj Kumar
- Institute of Microbial Technology, Sector 39A, Chandigarh-160036, India
| | | |
Collapse
|
19
|
Archambault V, Ikui AE, Drapkin BJ, Cross FR. Disruption of mechanisms that prevent rereplication triggers a DNA damage response. Mol Cell Biol 2005; 25:6707-21. [PMID: 16024805 PMCID: PMC1190345 DOI: 10.1128/mcb.25.15.6707-6721.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotes replicate DNA once and only once per cell cycle due to multiple, partially overlapping mechanisms efficiently preventing reinitiation. The consequences of reinitiation are unknown. Here we show that the induction of rereplication by mutations in components of the prereplicative complex (origin recognition complex [ORC], Cdc6, and minichromosome maintenance proteins) causes a cell cycle arrest with activated Rad53, a large-budded morphology, and an undivided nucleus. Combining a mutation disrupting the Clb5-Orc6 interaction (ORC6-rxl) and a mutation stabilizing Cdc6 (CDC6(Delta)NT) causes a cell cycle delay with a similar phenotype, although this background is only partially compromised for rereplication control and does not exhibit overreplication detectable by fluorescence-activated cell sorting. We conducted a systematic screen that identified genetic requirements for the viability of these cells. ORC6-rxl CDC6(Delta)NT cells depend heavily on genes required for the DNA damage response and for double-strand-break repair by homologous recombination. Our results implicate an Mre11-Mec1-dependent pathway in limiting the extent of rereplication.
Collapse
Affiliation(s)
- Vincent Archambault
- The Rockefeller University, 1230 York Ave., Box 237, New York, NY 10021, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Developmentally regulated gene amplification serves to increase the number of templates for transcription, yielding greatly increased protein and/or RNA product for gene(s) at the amplified loci. It is observed with genes that are very actively transcribed and during narrow windows of developmental time where copious amounts of those particular gene products are required. Amplification results from repeated firing of origins at a few genomic loci, while the rest of the genome either does not replicate, or replicates to a lesser extent. As such, amplification is a striking exception to the once-and-only-once rule of DNA replication and may be informative as to that mechanism. Drosophila amplifies eggshell (chorion) genes in the follicle cells of the ovary to allow for rapid eggshell synthesis. Sciara amplifies multiple genes in larval salivary gland cells that encode proteins secreted in the saliva for the pupal case. Finally, Tetrahymena amplifies its rRNA genes several thousand-fold in the creation of the transcriptionally active macronucleus. Due to the ease of molecular and genetic analysis with these systems, the study of origin regulation has advanced rapidly. Comparisons reveal an evolutionarily conserved trans-regulatory apparatus and a similar organization of sequence-specific cis-regulatory replicator and origin elements. The studies indicate a regulatory role for chromatin structure and transcriptionally active genes near the origins.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
21
|
Abstract
Eukaryotic genomes are replicated from large numbers of replication origins distributed on multiple chromosomes. The activity of these origins must be coordinated so that the entire genome is efficiently and accurately replicated yet no region of the genome is ever replicated more than once. The past decade has seen significant advances in understanding how the initiation of DNA replication is regulated by key cell-cycle regulators, including the cyclin dependent kinases (CDKs) and the anaphase promoting complex/cyclosome (APC/C). The assembly of essential prereplicative complexes (pre-RCs) at origins only occurs when CDK activity is low and APC/C activity is high. Origin firing, however, can only occur when the APC/C is inactivated and CDKs become active. This two step mechanism ensures that no origin can fire more than once in a cell cycle. In all eukaryotes tested, CDKs can contribute to the inhibition of pre-RC assembly. This inhibition is characterised both by high degrees of redundancy and evolutionary plasticity. Geminin plays a crucial role in inhibiting licensing in metazoans and, like cyclins, is inactivated by the APC/C. Strategies involved in preventing re-replication in different organisms will be discussed.
Collapse
Affiliation(s)
- John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
22
|
Machida YJ, Dutta A. Cellular Checkpoint Mechanisms Monitoring Proper Initiation of DNA Replication. J Biol Chem 2005; 280:6253-6. [PMID: 15591064 DOI: 10.1074/jbc.r400037200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
23
|
Karakaidos P, Taraviras S, Vassiliou LV, Zacharatos P, Kastrinakis NG, Kougiou D, Kouloukoussa M, Nishitani H, Papavassiliou AG, Lygerou Z, Gorgoulis VG. Overexpression of the replication licensing regulators hCdt1 and hCdc6 characterizes a subset of non-small-cell lung carcinomas: synergistic effect with mutant p53 on tumor growth and chromosomal instability--evidence of E2F-1 transcriptional control over hCdt1. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1351-65. [PMID: 15466399 PMCID: PMC1618634 DOI: 10.1016/s0002-9440(10)63393-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Replication licensing ensures once per cell cycle replication and is essential for genome stability. Overexpression of two key licensing factors, Cdc6 and Cdt1, leads to overreplication and chromosomal instability (CIN) in lower eukaryotes and recently in human cell lines. In this report, we analyzed hCdt1, hCdc6, and hGeminin, the hCdt1 inhibitor expression, in a series of non-small-cell lung carcinomas, and investigated for putative relations with G(1)/S phase regulators, tumor kinetics, and ploidy. This is the first study of these fundamental licensing elements in primary human lung carcinomas. We herein demonstrate elevated levels (more than fourfold) of hCdt1 and hCdc6 in 43% and 50% of neoplasms, respectively, whereas aberrant expression of hGeminin was observed in 49% of cases (underexpression, 12%; overexpression, 37%). hCdt1 expression positively correlated with hCdc6 and E2F-1 levels (P = 0.001 and P = 0.048, respectively). Supportive of the observed link between E2F-1 and hCdt1, we provide evidence that E2F-1 up-regulates the hCdt1 promoter in cultured mammalian cells. Interestingly, hGeminin overexpression was statistically related to increased hCdt1 levels (P = 0.025). Regarding the kinetic and ploidy status of hCdt1- and/or hCdc6-overexpressing tumors, p53-mutant cases exhibited significantly increased tumor growth values (Growth Index; GI) and aneuploidy/CIN compared to those bearing intact p53 (P = 0.008 for GI, P = 0.001 for CIN). The significance of these results was underscored by the fact that the latter parameters were independent of p53 within the hCdt1-hCdc6 normally expressing cases. Cumulatively, the above suggest a synergistic effect between hCdt1-hCdc6 overexpression and mutant-p53 over tumor growth and CIN in non-small-cell lung carcinomas.
Collapse
Affiliation(s)
- Panagiotis Karakaidos
- Department of Histology and Embryology, Molecular Carcinogenesis Group, School of Medicine, Univerity of Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wilmes GM, Archambault V, Austin RJ, Jacobson MD, Bell SP, Cross FR. Interaction of the S-phase cyclin Clb5 with an "RXL" docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev 2004; 18:981-91. [PMID: 15105375 PMCID: PMC406289 DOI: 10.1101/gad.1202304] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cyclin-dependent kinases are critical regulators of eukaryotic DNA replication. We show that the S-phase cyclin Clb5 binds stably and directly to the origin recognition complex (ORC). This interaction is mediated by an "RXL" target sequence, or "Cy" motif, in the Orc6 subunit that is recognized by the "hydrophobic patch" region on Clb5. The Clb5-Orc6 interaction requires replication initiation, and is maintained throughout the remainder of S phase and into M phase. Eliminating the Clb5-Orc6 interaction has no effect on initiation of replication but instead sensitizes cells to lethal overreplication. We propose that Clb5 binding to ORC provides an origin-localized replication control switch that specifically prevents reinitiation at replicated origins.
Collapse
Affiliation(s)
- Gwendolyn M Wilmes
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
26
|
Kong D, DePamphilis ML. Site-specific ORC binding, pre-replication complex assembly and DNA synthesis at Schizosaccharomyces pombe replication origins. EMBO J 2002; 21:5567-76. [PMID: 12374757 PMCID: PMC129078 DOI: 10.1093/emboj/cdf546] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies have shown that the Schizo saccharomyces pombe Orc4 subunit is solely responsible for in vitro binding of origin recognition complex (ORC) to specific AT-rich sites within S.pombe replication origins. Using ARS3001, a S.pombe replication origin consisting of four genetically required sites, we show that, in situ as well as in vitro, Orc4 binds strongly to the Delta3 site, weakly to the Delta6 site and not at all to the remaining sequences. In situ, the footprint over Delta3 is extended during G(1) phase, but only when Cdc18 is present and Mcm proteins are bound to chromatin. Moreover, this footprint extends into the adjacent Delta2 site, where leading strand DNA synthesis begins. Therefore, we conclude that ARS3001 consists of a single primary ORC binding site that assembles a pre-replication complex and initiates DNA synthesis, plus an additional novel origin element (Delta9) that neither binds ORC nor functions as a centromere, but does bind an as yet unidentified protein throughout the cell cycle. Schizosaccharomyces pombe may be an appropriate paradigm for the complex origins found in the metazoa.
Collapse
Affiliation(s)
- Daochun Kong
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
27
|
Abstract
To maintain genome integrity in eukaryotes, DNA must be duplicated precisely once before cell division occurs. A process called replication licensing ensures that chromosomes are replicated only once per cell cycle. Its control has been uncovered by the discovery of the CDKs (cyclin dependent kinases) as master regulators of the cell cycle and the initiator proteins of DNA replication, such as the Origin Recognition Complex (ORC), Cdc6/18, Cdt1 and the MCM complex. At the end of mitosis, the MCM complex is loaded on to chromatin with the aid of ORC, Cdc6/18 and Cdt1, and chromatin becomes licensed for replication. CDKs, together with the Cdc7 kinase, trigger the initiation of replication, recruiting the DNA replicating enzymes on sites of replication. The activated MCM complex appears to play a key role in the DNA unwinding step, acting as a replicating helicase and moves along with the replication fork, at the same time bringing the origins to the unlicensed state. The cycling of CDK activity in the cell cycle separates the two states of replication origins, the licensed state in G1-phase and the unlicensed state for the rest of the cell cycle. Only when CDK drops at the completion of mitosis, is the restriction on licensing relieved and a new round of replication is allowed. Such a CDK-regulated licensing control is conserved from yeast to higher eukaryotes, and ensures that DNA replication takes place only once in a cycle. Xenopus laevis and mammalian cells have an additional system to control licensing. Geminin, whose degradation at the end of mitosis is essential for a new round of licensing, has been shown to bind Cdt1 and negatively regulate it, providing a new insight into the regulation of DNA replication in higher eukaryotes.
Collapse
Affiliation(s)
- Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.
| | | |
Collapse
|
28
|
Takahashi N, Tsutsumi S, Tsuchiya T, Stillman B, Mizushima T. Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro. J Biol Chem 2002; 277:16033-40. [PMID: 11827963 DOI: 10.1074/jbc.m108615200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc6p is a key regulator of the cell cycle in eukaryotes and is a member of the AAA(+) (ATPases associated with a variety of cellular activities) family of proteins. In this family of proteins, the sensor 1 and sensor 2 regions are important for their function and ATPase activity. Here, site-directed mutagenesis has been used to examine the role of these regions of Saccharomyces cerevisiae Cdc6p in controlling the cell cycle progression and initiation of DNA replication. Two important amino acid residues (Asn(263) in sensor 1 and Arg(332) in sensor 2) were identified as key residues for Cdc6p function in vivo. Cells expressing mutant Cdc6p (N263A or R332E) grew slowly and accumulated in the S phase. In cells expressing mutant Cdc6p, loading of the minichromosome maintenance (MCM) complex of proteins was decreased, suggesting that the slow progression of S phase in these cells was due to inefficient MCM loading on chromatin. Purified wild type Cdc6p but not mutant Cdc6p (N263A and R332E) caused the structural modification of origin recognition complex proteins. These results are consistent with the idea that Cdc6p uses its ATPase activity to change the conformation of origin recognition complex, and then together they recruit the MCM complex.
Collapse
Affiliation(s)
- Naoko Takahashi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
29
|
Nishitani H, Taraviras S, Lygerou Z, Nishimoto T. The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 2001; 276:44905-11. [PMID: 11555648 DOI: 10.1074/jbc.m105406200] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-phase onset is controlled, so that it occurs only once every cell cycle. DNA is licensed for replication after mitosis in G(1), and passage through S-phase removes the license to replicate. In fission yeast, Cdc6/18 and Cdt1, two factors required for licensing, are central to ensuring that replication occurs once per cell cycle. We show that the human Cdt1 homologue (hCdt1), a nuclear protein, is present only during G(1). After S-phase onset, hCdt1 levels decrease, and it is hardly detected in cells in early S-phase or G(2). hCdt1 can associate with the DNA replication inhibitor Geminin, however these two proteins are mostly expressed at different cell cycle stages. hCdt1 mRNA, in contrast to hCdt1 protein, is expressed in S-phase-arrested cells, and its levels do not change dramatically during a cell cycle, suggesting that proteolytic rather than transcriptional controls ensure the timely accumulation of hCdt1. Consistent with this view, proteasome inhibitors stabilize hCdt1 in S-phase. In contrast, hCdc6/18 levels are constant through most of the cell cycle and are only low for a brief period at the end of mitosis. These results suggest that the presence of active hCdt1 may be crucial for determining when licensing is legitimate in human cells.
Collapse
Affiliation(s)
- H Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
30
|
Gopalakrishnan V, Simancek P, Houchens C, Snaith HA, Frattini MG, Sazer S, Kelly TJ. Redundant control of rereplication in fission yeast. Proc Natl Acad Sci U S A 2001; 98:13114-9. [PMID: 11606752 PMCID: PMC60833 DOI: 10.1073/pnas.221467598] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The initiation of DNA replication at replication origins in eukaryotic cells is tightly controlled to ensure that the genome is duplicated only once each cell cycle. We present evidence that in fission yeast, independent regulation of two essential components of the initiation complex, Cdc18 and Cdt1, contributes to the prevention of reinitiation of DNA replication. Cdc18 is negatively controlled by cyclin-dependent kinase (CDK) phosphorylation, but low level expression of a mutant form of Cdc18 lacking CDK phosphorylation sites (Cdc18(CDK)) is not sufficient to induce rereplication. Similar to Cdc18, Cdt1 is expressed periodically in the cell cycle, accumulating in the nucleus in G(1) and declining in G(2). When Cdt1 is expressed constitutively from an ectopic promoter, it accumulates in the nucleus throughout the cell cycle but does not promote reinitiation. However, constitutive expression of Cdt1, together with Cdc18(CDK), is sufficient to induce extra rounds of DNA replication in the absence of mitosis. Significantly greater levels of rereplication can be induced by coexpression of Cdc18(CDK) and a Cdt1 mutant lacking a conserved C-terminal motif. In contrast, uncontrolled DNA replication does not occur when either mutant protein is expressed in the absence of the other. Constitutive expression of wild-type or mutant Cdt1 also leads to an increase in the levels of Cdc18(CDK), possibly as a result of increased protein stability. Our data are consistent with the hypothesis that control of rereplication depends on a redundant mechanism in which negative regulation of Cdt1 functions in parallel with the negative regulation of Cdc18.
Collapse
Affiliation(s)
- V Gopalakrishnan
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ramos GB, de Almeida Engler J, Ferreira PC, Hemerly AS. DNA replication in plants: characterization of a cdc6 homologue from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:2239-2240. [PMID: 11604464 DOI: 10.1093/jexbot/52.364.2239] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cdc6 is a key regulator of DNA replication in eukaryotes. In this work, the expression pattern of an Arabidopsis cdc6 homologue is characterized by RT-PCR and in situ hybridization. The data suggest that cdc6At expression is cell cycle regulated. During development, high cdc6At mRNA levels are found in regular cycling cells. In addition, cdc6At expression is also observed in cells that are probably undergoing endoreduplication, suggesting a possible role of Cdc6At in this process in plants.
Collapse
Affiliation(s)
- G B Ramos
- Departamento de Bioquímica Médica, ICB, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
32
|
Ng SS, Anderson M, White S, McInerny CJ. mik1(+) G1-S transcription regulates mitotic entry in fission yeast. FEBS Lett 2001; 503:131-4. [PMID: 11513869 DOI: 10.1016/s0014-5793(01)02720-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the fission yeast Schizosaccharomyces pombe Mik1p, in combination with Wee1p, is an important inhibitor of mitosis through direct phosphorylation of Cdc2p. Here we present the observation that mik1(+) is transcribed during G1- and S-phase in normally dividing cells. mik1(+) transcription is regulated by the MCB-DSC1 system, which controls expression of other genes at the G1-S interval. mik1(+) is shown to be an important target of MCB-DSC1 as it is epistatic for the mitotic delay phenotype displayed in cdc10-C4 cells, which are mutated in a component of DSC1. The mitotic delay in cdc10-C4 cells is bypassed by cdc2-1w, suggesting that mik1(+) acts directly on cdc2(+), with no checkpoint function involved. Thus, mik1(+) represents a new type of MCB-DSC1 regulated gene in fission yeast, whose gene product is exclusively expressed during G1- and S-phase to prevent premature mitosis during this cell cycle stage.
Collapse
Affiliation(s)
- S S Ng
- Division of Biochemistry and Molecular Biology, Institute of Biological and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
33
|
Uchiyama M, Griffiths D, Arai K, Masai H. Essential role of Sna41/Cdc45 in loading of DNA polymerase alpha onto minichromosome maintenance proteins in fission yeast. J Biol Chem 2001; 276:26189-96. [PMID: 11344166 DOI: 10.1074/jbc.m100007200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Assembly of replication complexes at the replication origins is strictly regulated. Cdc45p is known to be a part of the active replication complexes. In Xenopus egg extracts, Cdc45p was shown to be required for loading of DNA polymerase alpha onto chromatin. The fission yeast cdc45 homologue was identified as a suppressor for nda4 and named sna41. Nevertheless, it is not known how Cdc45p facilitates loading of DNA polymerase alpha onto chromatin, particularly to prereplicative complexes. To gain novel insight into the function of this protein in fission yeast, we characterized the fission yeast Cdc45 homologue, Sna41p. We have constructed C-terminally epitope-tagged Sna41p and Pol alpha p and replaced the endogenous genes with the corresponding tagged genes. Analyses of protein-protein interactions in vivo by the use of these tagged strains revealed the following: Sna41p interacts with Pol alpha p throughout the cell cycle, whereas it interacts with Mis5p/Mcm6p in the chromatin fractions at the G(1)-S boundary through S phase. In an initiation-defective sna41 mutant, sna41(goa1), interaction of Pol alpha p with Mis5p is not observed, although Pol alpha p loading onto the chromatin that occurs before G(1) START is not affected. These results show that fission yeast Sna41p facilitates the loading of Pol alpha p onto minichromosome maintenance proteins. Our results are consistent with a model in which loading of Pol alpha p onto replication origins occurs through two steps, namely, loading onto chromatin at preSTART and association with prereplicative complexes at G(1)-S through Sna41p, which interacts with minichromosome maintenance proteins in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- M Uchiyama
- Department of Molecular and Developmental Biology, Institute for Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
34
|
Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 2001; 411:1068-73. [PMID: 11429609 DOI: 10.1038/35082600] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stable propagation of genetic information requires that the entire genome of an organism be faithfully replicated once and only once each cell cycle. In eukaryotes, this replication is initiated at hundreds to thousands of replication origins distributed over the genome, each of which must be prohibited from re-initiating DNA replication within every cell cycle. How cells prevent re-initiation has been a long-standing question in cell biology. In several eukaryotes, cyclin-dependent kinases (CDKs) have been implicated in promoting the block to re-initiation, but exactly how they perform this function is unclear. Here we show that B-type CDKs in Saccharomyces cerevisiae prevent re-initiation through multiple overlapping mechanisms, including phosphorylation of the origin recognition complex (ORC), downregulation of Cdc6 activity, and nuclear exclusion of the Mcm2-7 complex. Only when all three inhibitory pathways are disrupted do origins re-initiate DNA replication in G2/M cells. These studies show that each of these three independent mechanisms of regulation is functionally important.
Collapse
Affiliation(s)
- V Q Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0414, USA
| | | | | |
Collapse
|
35
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
36
|
Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20:8602-12. [PMID: 11046155 PMCID: PMC102165 DOI: 10.1128/mcb.20.22.8602-8612.2000] [Citation(s) in RCA: 758] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence obtained from studies with yeast and Xenopus indicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G(1) and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.
Collapse
Affiliation(s)
- J Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
37
|
Wu K, Chen A, Pan ZQ. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J Biol Chem 2000; 275:32317-24. [PMID: 10921923 DOI: 10.1074/jbc.m004847200] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF(HOS/beta)(-TRCP)-ROC1 to support the ubiquitination of phosphorylated IkappaBalpha. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.
Collapse
Affiliation(s)
- K Wu
- Derald H. Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | |
Collapse
|
38
|
Mizushima T, Takahashi N, Stillman B. Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev 2000. [DOI: 10.1101/gad.14.13.1631] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An interaction between the origin recognition complex (ORC) and Cdc6p is the first and a key step in the initiation of chromosomal DNA replication. We describe the assembly of an origin-dependent complex containing ORC and Cdc6p from Saccharomyces cerevisiae. Cdc6p increases the DNA binding specificity of ORC by inhibiting non-specific DNA binding of ORC. Cdc6p induces a concomitant change in the conformation of ORC and mutations in the Cdc6p Walker A and Walker B motifs, or ATP-γ-S inhibited these activities of Cdc6p. These data suggest that Cdc6p modifies ORC function at DNA replication origins. On the basis of these results in yeast, we propose that Cdc6p may be an essential determinant of origin specificity in metazoan species.
Collapse
|
39
|
Mizushima T, Takahashi N, Stillman B. Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev 2000; 14:1631-41. [PMID: 10887157 PMCID: PMC316732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
An interaction between the origin recognition complex (ORC) and Cdc6p is the first and a key step in the initiation of chromosomal DNA replication. We describe the assembly of an origin-dependent complex containing ORC and Cdc6p from Saccharomyces cerevisiae. Cdc6p increases the DNA binding specificity of ORC by inhibiting non-specific DNA binding of ORC. Cdc6p induces a concomitant change in the conformation of ORC and mutations in the Cdc6p Walker A and Walker B motifs, or ATP-gamma-S inhibited these activities of Cdc6p. These data suggest that Cdc6p modifies ORC function at DNA replication origins. On the basis of these results in yeast, we propose that Cdc6p may be an essential determinant of origin specificity in metazoan species.
Collapse
Affiliation(s)
- T Mizushima
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- T Humphrey
- Radiation and Genome Stability Unit, Medical Research Council, Harwell, Oxfordshire OX11 ORD, Didcot, UK
| |
Collapse
|
41
|
Nishitani H, Lygerou Z, Nishimoto T, Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 2000; 404:625-8. [PMID: 10766248 DOI: 10.1038/35007110] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To maintain genome stability in eukaryotic cells, DNA is licensed for replication only after the cell has completed mitosis, ensuring that DNA synthesis (S phase) occurs once every cell cycle. This licensing control is thought to require the protein Cdc6 (Cdc18 in fission yeast) as a mediator for association of minichromosome maintenance (MCM) proteins with chromatin. The control is overridden in fission yeast by overexpressing Cdc18 (ref. 11) which leads to continued DNA synthesis in the absence of mitosis. Other factors acting in this control have been postulated and we have used a re-replication assay to identify Cdt1 (ref. 14) as one such factor. Cdt1 cooperates with Cdc18 to promote DNA replication, interacts with Cdc18, is located in the nucleus, and its concentration peaks as cells finish mitosis and proceed to S phase. Both Cdc18 and Cdt1 are required to load the MCM protein Cdc21 onto chromatin at the end of mitosis and this is necessary to initiate DNA replication. Genes related to Cdt1 have been found in Metazoa and plants (A. Whitaker, I. Roysman and T. Orr-Weaver, personal communication), suggesting that the cooperation of Cdc6/Cdc18 with Cdt1 to load MCM proteins onto chromatin may be a generally conserved feature of DNA licensing in eukaryotes.
Collapse
|
42
|
Kearsey SE, Montgomery S, Labib K, Lindner K. Chromatin binding of the fission yeast replication factor mcm4 occurs during anaphase and requires ORC and cdc18. EMBO J 2000; 19:1681-90. [PMID: 10747035 PMCID: PMC310236 DOI: 10.1093/emboj/19.7.1681] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Revised: 02/09/2000] [Accepted: 02/09/2000] [Indexed: 11/13/2022] Open
Abstract
We describe an in situ technique for studying the chromatin binding of proteins in the fission yeast Schizosaccharomyces pombe. After tagging the protein of interest with green fluorescent protein (GFP), chromatin-associated protein is detected by GFP fluorescence following cell permeabilization and washing with a non-ionic detergent. Cell morphology and nuclear structure are preserved in this procedure, allowing structures such as the mitotic spindle to be detected by indirect immunofluorescence. Cell cycle changes in the chromatin association of proteins can therefore be determined from individual cells in asynchronous cultures. We have applied this method to the DNA replication factor mcm4/cdc21, and find that chromatin association occurs during anaphase B, significantly earlier than is the case in budding yeast. Binding of mcm4 to chromatin requires orc1 and cdc18 (homologous to Cdc6 in budding yeast). Release of mcm4 from chromatin occurs during S phase and requires DNA replication. Upon overexpressing cdc18, we show that mcm4 is required for re-replication of the genome in the absence of mitosis and is associated with chromatin in cells undergoing re-replication.
Collapse
Affiliation(s)
- S E Kearsey
- Department of Zoology, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
43
|
Calzada A, Sánchez M, Sánchez E, Bueno A. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J Biol Chem 2000; 275:9734-41. [PMID: 10734126 DOI: 10.1074/jbc.275.13.9734] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Cdc6 protein is necessary for the formation of prereplicative complexes that are a prerequisite for firing origins during DNA replication in the S phase. In budding yeast, the presence of Cdc6 protein is normally restricted to the G(1) phase of the cell cycle, at least partly because of its proteolytic degradation in the late G(1)/early S phase. Here we show that a Cdc28-dependent mechanism targets p57(CDC6) for degradation in mitotic-arrested budding yeast cells. Consistent with this observation, Cdc6-7 and Cdc6-8 proteins, mutants lacking Cdc28 phosphorylation sites, are stabilized relative to wild-type Cdc6. Our data also suggest a correlation between the absence of Cdc28/Clb kinase activity and Cdc6 protein stabilization, because a drop in Cdc28/Clb-associated kinase activity allows mitotic-arrested cells to accumulate Cdc6 protein. Finally, we also show that cdc28 temperature-sensitive G(1) mutants accumulate Cdc6 protein because of a post-transcriptional mechanism. Our data suggest that budding yeast cells target Cdc6 for degradation through a Cdc28-dependent mechanism in each cell cycle.
Collapse
Affiliation(s)
- A Calzada
- Instituto de Microbiología-Bioquímica/Centro de Investigación del Cáncer, Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Consejo Superior de Investigaciones Científicas/Universidad de Salamancas, Spain
| | | | | | | |
Collapse
|
44
|
Drury LS, Perkins G, Diffley JF. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr Biol 2000; 10:231-40. [PMID: 10712901 DOI: 10.1016/s0960-9822(00)00355-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.
Collapse
Affiliation(s)
- L S Drury
- ICRF Clare Hall Laboratories, South Mimms, EN6 3LD, UK
| | | | | |
Collapse
|
45
|
Yan Z, Fedorov SA, Mumby MC, Williams RS. PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol 2000; 20:1021-9. [PMID: 10629059 PMCID: PMC85219 DOI: 10.1128/mcb.20.3.1021-1029.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of DNA replication in eukaryotes is dependent on the activity of protein phosphatase 2A (PP2A), but specific phosphoprotein substrates pertinent to this requirement have not been identified. A novel regulatory subunit of PP2A, termed PR48, was identified by a yeast two-hybrid screen of a human placental cDNA library, using human Cdc6, an essential component of prereplicative complexes, as bait. PR48 binds specifically to an amino-terminal segment of Cdc6 and forms functional holoenzyme complexes with A and C subunits of PP2A. PR48 localizes to the nucleus of mammalian cells, and its forced overexpression perturbs cell cycle progression, causing a G(1) arrest. These results suggest that dephosphorylation of Cdc6 by PP2A, mediated by a specific interaction with PR48, is a regulatory event controlling initiation of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Z Yan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
46
|
Berger C, Strub A, Staib C, Lepke M, Zisimopoulou P, Hoehn K, Nanda I, Schmid M, Grummt F. Identification and characterization of a mouse homolog to yeast Cdc6p. CYTOGENETICS AND CELL GENETICS 1999; 86:307-16. [PMID: 10575231 DOI: 10.1159/000015324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Periodic expression of the Cdc6 protein is essential for the entry of budding yeast cells into S phase, and also for participating in checkpoint controls that ensure that DNA replication is completed before mitosis is initiated. We have identified a mouse protein closely related to Cdc6p (MmCdc6p) as well as to its human and Xenopus homologs. The gene coding for MmCdc6p (Cdc6) is located at band D on murine chromosome 11. Analysis of its genomic region revealed that the 13-kb Cdc6 gene is divided into 12 exons by 11 introns. MmCdc6p has putative cyclin-dependent phosphorylation sites, a destruction box, nuclear localization signals, a nucleotide triphosphate-binding motif, and a potential leucine zipper. None of these consensus motifs except the leucine-zipper and the destruction box overlaps an intron. Expression of MmCdc6 mRNA and protein is suppressed in mouse NIH3T3 fibroblasts made quiescent by serum starvation. Upon replenishment of the medium, transcript and protein levels increase during progression through G(1), peaking as cells enter S phase. MmCdc6p is phosphorylated in vitro by cdk1/cyclin B, cdk4/cyclin D, cdk2/cyclin E, and cdk2/cyclin A, respectively at serine-residues. In vivo however, phosphorylation of MmCdc6p is carried out by cdk2/cyclin A at serine-residues exclusively. Conservation of structures among members of the Cdc6-related proteins suggests that these proteins play a key role in the regulation of DNA replication during the cell cycle in all eukaryotes. These results strongly suggest, that Cdc6p plays an important role in cell cycle regulation and replication licensing.
Collapse
Affiliation(s)
- C Berger
- Institute of Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- S L Forsburg
- MBVL, The Salk Institute, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Herbig U, Marlar CA, Fanning E. The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. Mol Biol Cell 1999; 10:2631-45. [PMID: 10436018 PMCID: PMC25495 DOI: 10.1091/mbc.10.8.2631] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Cdc6 protein of budding yeast and its homologues in other species play an essential role in the initiation of DNA replication. A cDNA encoding a human homologue of Cdc6 (HsCdc6) has been cloned and expressed as a fusion protein in a soluble and functionally active form. The purified protein bound specifically to ATP and slowly hydrolyzed it, whereas HsCdc6 mutants containing amino acid substitutions in the Walker A or B motifs were defective. The mutant proteins retained the ability to bind HsOrc1 and HsCdc6 but displayed aberrant conformations in the presence of nucleotides. Microinjection of either mutant protein into human cells in G1 inhibited DNA replication, suggesting that ATP binding and hydrolysis by HsCdc6 are essential for DNA replication.
Collapse
Affiliation(s)
- U Herbig
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
49
|
Sánchez M, Calzada A, Bueno A. Functionally homologous DNA replication genes in fission and budding yeast. J Cell Sci 1999; 112 ( Pt 14):2381-90. [PMID: 10381393 DOI: 10.1242/jcs.112.14.2381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cdc18(+) gene of the fission yeast Schizosaccharomyces pombe is involved in the initiation of DNA replication as well as in coupling the S phase to mitosis. In this work, we show that the Saccharomyces cerevisiae CDC6 gene complements cdc18-K46 ts and cdc18 deletion mutant S. pombe strains. The budding yeast gene suppresses both the initiation and the checkpoint defects associated with the lack of cdc18(+). The Cdc6 protein interacts in vivo with Cdc2 kinase complexes. Interestingly, Cdc6 is an in vitro substrate for Cdc13/Cdc2 and Cig1/Cdc2, but not for Cig2/Cdc2-associated kinases. Overexpression of Cdc6 in fission yeast induces multiple rounds of S-phase in the absence of mitosis and cell division. This CDC6-dependent continuous DNA synthesis phenotype is independent of the presence of a functional cdc18(+) gene product and, significantly, requires only Cig2/Cdc2-associated kinase activity. Finally, these S. pombe over-replicating cells do not require any protein synthesis other than that of Cdc6. Our data strongly suggest that CDC6 and cdc18(+) are functional homologues and also support the idea that controls restricting genome duplication diverge in fission and budding yeast.
Collapse
Affiliation(s)
- M Sánchez
- Instituto de Microbiología-Bioquímica/Centro de Investigación del Cáncer, Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, CSIC/Universidad de Salamanca, Spain
| | | | | |
Collapse
|
50
|
DeRyckere D, Smith CL, Martin GS. The role of nucleotide binding and hydrolysis in the function of the fission yeast cdc18(+) gene product. Genetics 1999; 151:1445-57. [PMID: 10101168 PMCID: PMC1460557 DOI: 10.1093/genetics/151.4.1445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fission yeast cdc18(+) gene is required for both initiation of DNA replication and the mitotic checkpoint that normally inhibits mitosis in the absence of DNA replication. The cdc18(+) gene product contains conserved Walker A and B box motifs. Studies of other ATPases have shown that these motifs are required for nucleotide binding and hydrolysis, respectively. We have observed that mutant strains in which either of these motifs is disrupted are inviable. The effects of these mutations were examined by determining the phenotypes of mutant strains following depletion of complementing wild-type Cdc18. In both synchronous and asynchronous cultures, the nucleotide-hydrolysis motif mutant (DE286AA) arrests with a 1C-2C DNA content, and thus exhibits no obvious defects in entry into S phase or in the mitotic checkpoint. In contrast, in cultures synchronized by hydroxyurea arrest and release, the nucleotide-binding motif mutant (K205A) exhibits the null phenotype, with 1C and <1C DNA content, indicating a block in entry into S phase and loss of checkpoint control. In asynchronous cultures this mutant exhibits a mixed phenotype: a percentage of the population displays the null phenotype, while the remaining fraction arrests with a 2C DNA content. Thus, the phenotype exhibited by the K205A mutant is dependent on the cell-cycle position at which wild-type Cdc18 is depleted. These data indicate that both nucleotide binding and hydrolysis are required for Cdc18 function. In addition, the difference in the phenotypes exhibited by the nucleotide-binding and hydrolysis motif mutants is consistent with a two-step model for Cdc18 function in which nucleotide binding and hydrolysis are required for distinct aspects of Cdc18 function that may be executed at different points in the cell cycle.
Collapse
Affiliation(s)
- D DeRyckere
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|