1
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Dubey S, Mishra N, Shelke R, Varma AK. Mutations at proximal cysteine residues in PML impair ATO binding by destabilizing the RBCC domain. FEBS J 2024; 291:1422-1438. [PMID: 38129745 DOI: 10.1111/febs.17041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the fusion gene promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) and is conventionally treated with arsenic trioxide (ATO). ATO binds directly to the RING finger, B-box, coiled-coil (RBCC) domain of PML and initiates degradation of the fusion oncoprotein PML-RARA. However, the mutational hotspot at C212-S220 disrupts ATO binding, leading to drug resistance in APL. Therefore, structural consequences of these point mutations in PML that remain uncertain require comprehensive analysis. In this study, we investigated the structure-based ensemble properties of the promyelocytic leukemia-RING-B-box-coiled-coil (PML-RBCC) domains and ATO-resistant mutations. Oligomeric studies reveal that PML-RBCC wild-type and mutants C212R, S214L, A216T, L217F, and S220G predominantly form tetramers, whereas mutants C213R, A216V, L218P, and D219H tend to form dimers. The stability of the dimeric mutants was lower, exhibiting a melting temperature (Tm) reduction of 30 °C compared with the tetrameric mutants and wild-type PML protein. Furthermore, the exposed surface of the C213R mutation rendered it more prone to protease digestion than that of the C212R mutation. The spectroscopic analysis highlighted ATO-induced structural alterations in S214L, A216V, and D219H mutants, in contrast to C213R, L217F, and L218P mutations. Moreover, the computational analysis revealed that the ATO-resistant mutations C213R, A216V, L217F, and L218P caused changes in the size, shape, and flexibility of the PML-RBCC wild-type protein. The mutations C213R, A216V, L217F, and L218P destabilize the wild-type protein structure due to the adaptation of distinct conformational changes. In addition, these mutations disrupt several hydrogen bonds, including interactions involving C212, C213, and C215, which are essential for ATO binding. The local and global structural features induced by these mutations provide mechanistic insight into ATO resistance and APL pathogenesis.
Collapse
Affiliation(s)
- Suchita Dubey
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Neha Mishra
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohan Shelke
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Lettin L, Erbay B, Blair GE. Viruses and Cajal Bodies: A Critical Cellular Target in Virus Infection? Viruses 2023; 15:2311. [PMID: 38140552 PMCID: PMC10747631 DOI: 10.3390/v15122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Nuclear bodies (NBs) are dynamic structures present in eukaryotic cell nuclei. They are not bounded by membranes and are often considered biomolecular condensates, defined structurally and functionally by the localisation of core components. Nuclear architecture can be reorganised during normal cellular processes such as the cell cycle as well as in response to cellular stress. Many plant and animal viruses target their proteins to NBs, in some cases triggering their structural disruption and redistribution. Although not all such interactions have been well characterised, subversion of NBs and their functions may form a key part of the life cycle of eukaryotic viruses that require the nucleus for their replication. This review will focus on Cajal bodies (CBs) and the viruses that target them. Since CBs are dynamic structures, other NBs (principally nucleoli and promyelocytic leukaemia, PML and bodies), whose components interact with CBs, will also be considered. As well as providing important insights into key virus-host cell interactions, studies on Cajal and associated NBs may identify novel cellular targets for development of antiviral compounds.
Collapse
Affiliation(s)
- Lucy Lettin
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| | - Bilgi Erbay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
- Moleküler Biyoloji ve Genetik Bölümü, Fen Fakültesi, Van Yuzuncu Yil University, Van 65140, Türkiye
| | - G. Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK (B.E.)
| |
Collapse
|
4
|
Bregnard TA, Fairchild D, Erlandsen H, Semenova IV, Szczepaniak R, Ahmed A, Weller SK, Korzhnev DM, Bezsonova I. Conformational exchange at a C 2H 2 zinc-binding site facilitates redox sensing by the PML protein. Structure 2023; 31:1086-1099.e6. [PMID: 37473756 PMCID: PMC10528520 DOI: 10.1016/j.str.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The promyelocytic leukemia protein, PML, plays a vital role in the cellular response to oxidative stress; however, the molecular mechanism of its action remains poorly understood. Here, we identify redox-sensitive sites of PML. A molecule of PML is cysteine-rich and contains three zinc-binding domains including RING, B-box1, and B-box2. Using in vitro assays, we have compared the sensitivity of the isolated RING and B-box1 domains and shown that B-box1 is more sensitive to oxidation. NMR studies of PML dynamics showed that one of the Zn-coordination sites within the B-box1 undergoes significant conformational exchange, revealing a hotspot for exposure of reactive cysteines. In agreement with the in vitro data, enhancement of the B-box1 Zn-coordination dynamics led to more efficient recruitment of PML into PML nuclear bodies in cells. Overall, our results suggest that the increased sensitivity of B-box1 to oxidative stress makes this domain an important redox-sensing component of PML.
Collapse
Affiliation(s)
- Thomas A Bregnard
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment, UCONN, Storrs, CT 06269, USA
| | - Irina V Semenova
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Renata Szczepaniak
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Affrin Ahmed
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06032, USA.
| |
Collapse
|
5
|
Effects of arsenic on the topology and solubility of promyelocytic leukemia (PML)-nuclear bodies. PLoS One 2022; 17:e0268835. [PMID: 35594310 PMCID: PMC9122205 DOI: 10.1371/journal.pone.0268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Promyelocytic leukemia (PML) proteins are involved in the pathogenesis of acute promyelocytic leukemia (APL). Trivalent arsenic (As3+) is known to cure APL by binding to cysteine residues of PML and enhance the degradation of PML-retinoic acid receptor α (RARα), a t(15;17) gene translocation product in APL cells, and restore PML-nuclear bodies (NBs). The size, number, and shape of PML-NBs vary among cell types and during cell division. However, topological changes of PML-NBs in As3+-exposed cells have not been well-documented. We report that As3+-induced solubility shift underlies rapid SUMOylation of PML and late agglomeration of PML-NBs. Most PML-NBs were toroidal and granular dot-like in GFPPML-transduced CHO-K1 and HEK293 cells, respectively. Exposure to As3+ and antimony (Sb3+) greatly reduced the solubility of PML and enhanced SUMOylation within 2 h in the absence of changes in the number and size of PML-NBs. However, the prolonged exposure to As3+ and Sb3+ resulted in agglomeration of PML-NBs. Exposure to bismuth (Bi3+), another Group 15 element, did not induce any of these changes. ML792, a SUMO activation inhibitor, reduced the number of PML-NBs and increased the size of the NBs, but had little effect on the As3+-induced solubility change of PML. These results warrant the importance of As3+- or Sb3+-induced solubility shift of PML for the regulation intranuclear dynamics of PML-NBs.
Collapse
|
6
|
SUMOylation regulates the number and size of promyelocytic leukemia-nuclear bodies (PML-NBs) and arsenic perturbs SUMO dynamics on PML by insolubilizing PML in THP-1 cells. Arch Toxicol 2022; 96:545-558. [PMID: 35001170 DOI: 10.1007/s00204-021-03195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 11/02/2022]
Abstract
The functional roles of protein modification by small ubiquitin-like modifier (SUMO) proteins are not well understood compared to ubiquitination. Promyelocytic leukemia (PML) proteins are good substrates for SUMOylation, and PML-nuclear bodies (PML-NBs) may function as a platform for the PML SUMOylation. PML proteins are rapidly modified both with SUMO2/3 and SUMO1 after exposure to arsenite (As3+) and SUMOylated PML are further ubiquitinated and degraded by proteasomes. However, effects of As3+ on SUMO dynamics on PML-NBs are not well investigated. In the present study, we report that (1) the number and size of PML-NBs were regulated by SUMO E1-activating enzyme, (2) SUMO2/3 co-localized with PML irrespective of As3+ exposure and was restricted to PML-nuclear bodies (PML-NBs) via covalent binding in response to As3+, and (3) As3+-induced biochemical changes in PML were not modulated by ubiquitin-proteasome system (UPS) in THP-1 cells. Undifferentiated and differentiated THP-1 cells responded to As3+ similarly and PML proteins were changed from the detergent soluble to the insoluble form and further SUMOylated with SUMO2/3 and SUMO1. ML792, a SUMO E1 inhibitor, decreased the number of PML-NBs and reciprocally increased the size irrespective of exposure to As3+, which itself slightly decrease both the number and size of PML-NBs. TAK243, a ubiquitin E1 inhibitor, did not change the PML-NBs, while SUMOylated proteins accumulated in the TAK243-exposed cells. Proteasome inhibitors did not change the As3+-induced SUMOylation levels of PML. Co-localization and further restriction of SUMO2/3 to PML-NBs were confirmed by PML-transfected CHO-K1 cells. Collectively, SUMOylation regulates PML-NBs and As3+ restricts SUMO dynamics on PML by changing its solubility.
Collapse
|
7
|
Wan T, Li X, Li Y. The role of TRIM family proteins in autophagy, pyroptosis, and diabetes mellitus. Cell Biol Int 2021; 45:913-926. [PMID: 33438267 DOI: 10.1002/cbin.11550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 01/22/2023]
Abstract
The ubiquitin-proteasome system, which is one of the systems for cell protein homeostasis and degradation, happens through the ordered and coordinated action of three types of enzymes, E1 ubiquitin-activating enzyme, E2 ubiquitin-carrier enzyme, E3 ubiquitin-protein ligase. Tripartite motif-containing (TRIM) family proteins are the richest subfamily of really interesting new gene E3 ubiquitin ligases, which play a critical role not only in many biological processes, including proliferation, apoptosis, pyroptosis, innate immunity, and autophagy, but also many diseases like cancer, diabetes mellitus, and neurodegenerative disease. Increasing evidence suggests that TRIM family proteins play a vital role in modulating autophagy, pyroptosis, and diabetes mellitus. The aim of this review is to discuss the role of TRIM proteins in the regulation of autophagy, pyroptosis, diabetes mellitus, and diabetic complications.
Collapse
Affiliation(s)
- Tingting Wan
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiudan Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci 2021; 268:118985. [PMID: 33412211 DOI: 10.1016/j.lfs.2020.118985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
The tripartite motif (TRIM) family is defined by the presence of a Really Interesting New Gene (RING) domain, one or two B-box motifs and a coiled-coil region. TRIM proteins play key roles in many biological processes, including innate immunity, tumorigenesis, cell differentiation and ontogenetic development. Alterations in TRIM gene and protein levels frequently emerge in a wide range of tumors and affect tumor progression. As canonical E3 ubiquitin ligases, TRIM proteins participate in ubiquitin-dependent proteolysis of prominent components of the p53, NF-κB and PI3K/AKT signaling pathways. The occurrence of ubiquitylation events induced by TRIM proteins sustains internal balance between tumor suppressive and tumor promoting genes. In this review, we summarized the diverse mechanism of TRIM proteins responsible for the most common malignancy, lung cancer. Furthermore, we also discussed recent progress in both the diagnosis and therapeutics of tumors contributed by TRIM proteins.
Collapse
Affiliation(s)
- Weihua Zhan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China.
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
PML nuclear body biogenesis and oligomerization-driven leukemogenesis. BLOOD SCIENCE 2020; 2:7-10. [PMID: 35399865 PMCID: PMC8975047 DOI: 10.1097/bs9.0000000000000034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/26/2022] Open
Abstract
PML nuclear bodies (NBs), which are increasingly recognized as the central hub of many cellular signaling events, are superassembled spherical complexes with diameters of 0.1–2 μm. Recent studies reveal that RING tetramerization and B1-box polymerization are key factors to the overall PML NBs assembly. The productive RBCC oligomerization allows subsequent PML biogenesis steps, including the PML auto-sumoylation and partners recruitment via SUMO–SIM interactions. In promyelocytic leukemia, the oncoprotein PML/RARα (P/R) inhibits PML NBs assembly and leads to a full-fledged leukemogenesis. In this review, we review the recent progress in PML and acute promyelocytic leukemia fields, highlighting the protein oligomerization as an important direction of future targeted therapy.
Collapse
|
10
|
Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, Cheng N, Zeng L, Zhang H, Cai X, Chen SJ, Chen Z, Meng G. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nat Commun 2019; 10:3789. [PMID: 31439836 PMCID: PMC6706441 DOI: 10.1038/s41467-019-11746-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
ProMyelocyticLeukemia (PML) protein can polymerize into a mega-Dalton nuclear assembly of 0.1-2 μm in diameter. The mechanism of PML nuclear body biogenesis remains elusive. Here, PMLRBCC is successfully purified. The gel filtration and ultracentrifugation analysis suggest a previously unrecognized sequential oligomerization mechanism via PML monomer, dimer, tetramer and N-mer. Consistently, PML B1-box structure (2.0 Å) and SAXS characterization reveal an unexpected networking by W157-, F158- and SD1-interfaces. Structure-based perturbations in these B1 interfaces not only impair oligomerization in vitro but also abolish PML sumoylation and nuclear body biogenesis in HeLaPml-/- cell. More importantly, as demonstrated by in vivo study using transgenic mice, PML-RARα (PR) F158E precludes leukemogenesis. In addition, single cell RNA sequencing analysis shows that B1 oligomerization is an important regulator in PML-RARα-driven transactivation. Altogether, these results not only define a previously unrecognized B1-box oligomerization in PML, but also highlight oligomerization as an important factor in carcinogenesis.
Collapse
MESH Headings
- Animals
- Carcinogenesis
- Gene Knockout Techniques
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/ultrastructure
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Promyelocytic Leukemia Protein/ultrastructure
- Protein Domains/genetics
- Protein Multimerization
- Retinoic Acid Receptor alpha/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/ultrastructure
- Scattering, Small Angle
- Sequence Analysis, RNA
- Single-Cell Analysis
- Sumoylation
- X-Ray Diffraction
Collapse
Grants
- Shanghai Municipal Education Commission
- National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by research grants 81770142, 81370620, 81570120, 31070645, 81800144, 31800642 from National Natural Science Foundation of China, a research grant 20152504 from “Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support”, “The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institute of Higher Learning”, a research grant 11JC1407200 from SMSTC, a research grant 12ZZ109 from SME, “Program for New Century Excellent Talents in University (NCET-10-9571).
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhiming Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Nuo Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hao Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xun Cai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
11
|
Wang P, Benhenda S, Wu H, Lallemand-Breitenbach V, Zhen T, Jollivet F, Peres L, Li Y, Chen SJ, Chen Z, de Thé H, Meng G. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun 2018; 9:1277. [PMID: 29599493 PMCID: PMC5876331 DOI: 10.1038/s41467-018-03498-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2018] [Indexed: 12/02/2022] Open
Abstract
ProMyelocyticLeukemia nuclear bodies (PML NBs) are stress-regulated domains directly implicated in acute promyelocytic leukemia eradication. Most TRIM family members bind ubiquitin E2s and many acquire ligase activity upon RING dimerization. In contrast, PML binds UBC9, the SUMO E2 enzyme. Here, using X-ray crystallography and SAXS characterization, we demonstrate that PML RING tetramerizes through highly conserved PML-specific sequences, which are required for NB assembly and PML sumoylation. Conserved residues implicated in RING dimerization of other TRIMs also contribute to PML tetramer stability. Wild-type PML rescues the ability of some RING mutants to form NBs as well as their sumoylation. Impaired RING tetramerization abolishes PML/RARA-driven leukemogenesis in vivo and arsenic-induced differentiation ex vivo. Our studies thus identify RING tetramerization as a key step in the NB macro-molecular scaffolding. They suggest that higher order RING interactions allow efficient UBC9 recruitment and thus change the biochemical nature of TRIM-facilitated post-translational modifications. Promyelocytic leukemia protein (PML) is a scaffolding protein that organizes PML nuclear bodies. Here the authors present the tetrameric crystal structure of the PML RING domain and show that RING tetramerization is functionally important for nuclear body formation and PML sumoylation.
Collapse
Affiliation(s)
- Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shirine Benhenda
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Valérie Lallemand-Breitenbach
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.,Collège de France, Paris Sciences Lettres research university, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Tao Zhen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Florence Jollivet
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Laurent Peres
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China
| | - Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China. .,Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China. .,Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Hugues de Thé
- University Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Equipe labellisée LNCC, Hôpital St. Louis 1, Paris, 75475, France. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China. .,Collège de France, Paris Sciences Lettres research university, 11 place Marcelin Berthelot, 75005, Paris, France. .,Service de Biochimie, Hôpital St. Louis, Assistance Publique Hôpitaux de Paris, Paris, 75475, France.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China. .,Laboratoire International Associé, Hematology and Cancer, RuiJin Hospital, INSERM and CNRS, Shanghai, China.
| |
Collapse
|
12
|
Lång A, Eriksson J, Schink KO, Lång E, Blicher P, Połeć A, Brech A, Dalhus B, Bøe SO. Visualization of PML nuclear import complexes reveals FG-repeat nucleoporins at cargo retrieval sites. Nucleus 2017; 8:404-420. [PMID: 28402725 DOI: 10.1080/19491034.2017.1306161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Selective nuclear import in eukaryotic cells involves sequential interactions between nuclear import receptors and phenylalanine-glycine (FG)-repeat nucleoporins. Traditionally, binding of cargoes to import receptors is perceived as a nuclear pore complex independent event, while interactions between import complexes and nucleoporins are thought to take place at the nuclear pores. However, studies have shown that nucleoporins are mobile and not static within the nuclear pores, suggesting that they may become engaged in nuclear import before nuclear pore entry. Here we have studied post-mitotic nuclear import of the tumor suppressor protein PML. Since this protein forms nuclear compartments called PML bodies that persist during mitosis, the assembly of putative PML import complexes can be visualized on the surface of these protein aggregates as the cell progress from an import inactive state in mitosis to an import active state in G1. We show that these post-mitotic cytoplasmic PML bodies incorporate a multitude of peripheral nucleoporins, but not scaffold or nuclear basket nucleoporins, in a manner that depends on FG-repeats, the KPNB1 import receptor, and the PML nuclear localization signal. The study suggests that nucleoporins have the ability to target certain nuclear cargo proteins in a nuclear pore-uncoupled state, before nuclear pore entry.
Collapse
Affiliation(s)
- Anna Lång
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway.,b Institute of Clinical Medicine , University of Oslo , Oslo , Norway
| | - Jens Eriksson
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Kay Oliver Schink
- c Department of Molecular Cell Biology, Institute for Cancer Research and Centre for Cancer Biomedicine , Oslo University Hospital , Oslo , Norway
| | - Emma Lång
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Pernille Blicher
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Anna Połeć
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Andreas Brech
- c Department of Molecular Cell Biology, Institute for Cancer Research and Centre for Cancer Biomedicine , Oslo University Hospital , Oslo , Norway
| | - Bjørn Dalhus
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Stig Ove Bøe
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
13
|
RFPL3 and CBP synergistically upregulate hTERT activity and promote lung cancer growth. Oncotarget 2016; 6:27130-45. [PMID: 26318425 PMCID: PMC4694978 DOI: 10.18632/oncotarget.4825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/30/2015] [Indexed: 12/27/2022] Open
Abstract
hTERT is the key component of telomerase and its overactivation contributes to maintaining telomere length and cell immortalization. Previously, we identified RFPL3 as a new transcription activator of hTERT in lung cancers. However, the exact mechanism of RFPL3 in mediating hTERT activation and its associated signal regulatory network remain unclear. In this study, we found that RFPL3 colocalized and interacted directly with CBP in the nucleus of lung cancer cells. Immunohistochemical analysis of tissue microarrays of lung cancers revealed the simultaneous overexpression of both RFPL3 and CBP predicted relatively poor prognosis. Furthermore, we confirmed their synergistic stimulation on hTERT expression and tumor cell growth. The binding of RFPL3 to hTERT promoter was reduced markedly when CBP was knocked down by its specific siRNA or suppressed by its inhibitor in lung cancer cells with stable overexpression of RFPL3. When one of the two proteins RFPL3 and CBP was upregulated or downregulated, whereas the another remains unchanged, hTERT expression and telomerase activity were activated or repressed accordingly. In the meantime, the growth of lung cancer cells was also promoted or attenuated accordingly. Furthermore, we also found that RFPL3 coordinated with CBP to upregulate hTERT through the CBP-induced acetylation of RFPL3 protein and their co-anchoring at hTERT promoter region. Collectively, our results reveal a new mechanism of hTERT regulation in lung cancer cells and suggest the RFPL3/CBP/hTERT signaling pathway may be a new targets for lung cancer treatment.
Collapse
|
14
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
15
|
Tomar D, Singh R. TRIM family proteins: emerging class of RING E3 ligases as regulator of NF-κB pathway. Biol Cell 2014; 107:22-40. [DOI: 10.1111/boc.201400046] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology; School of Biological Sciences and Biotechnology; Indian Institute of Advanced Research; Gandhinagar India
| | - Rajesh Singh
- Department of Biochemistry; Faculty of Science; The M.S. University of Baroda; Vadodara 390 002 Gujarat India
| |
Collapse
|
16
|
Uchil PD, Pawliczek T, Reynolds TD, Ding S, Hinz A, Munro JB, Huang F, Floyd RW, Yang H, Hamilton WL, Bewersdorf J, Xiong Y, Calderwood DA, Mothes W. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. J Cell Sci 2014; 127:3928-42. [PMID: 25015296 DOI: 10.1242/jcs.143537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Tobias Pawliczek
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Tracy D Reynolds
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Siyuan Ding
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Angelika Hinz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - James B Munro
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Fang Huang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert W Floyd
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Haitao Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - William L Hamilton
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA Departments of Pharmacology and Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
17
|
|
18
|
Crocco CD, Botto JF. BBX proteins in green plants: insights into their evolution, structure, feature and functional diversification. Gene 2013; 531:44-52. [PMID: 23988504 DOI: 10.1016/j.gene.2013.08.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 08/02/2013] [Accepted: 08/10/2013] [Indexed: 12/11/2022]
Abstract
The B-box domain is conserved in a large number of proteins involved in cell growth control, differentiation and transcriptional regulation among animal and plant species. In Arabidopsis thaliana, some works have found that B-box proteins (BBX) play central developmental functions in flowering, light and abiotic stress signaling. Despite the functional importance of this protein family, evolutionary and structural relationships of BBX proteins have not been extensively investigated in the plant kingdom. Using a phylogenetic approach, we conducted a comprehensive evolutionary analysis of the BBX protein family in twelve plant species (four green algae, one moss, one lycophyte, three monocots and three dicots). The analysis classified 214 BBX proteins into five structure groups, which evolved independently at early stages of green plant evolution. We showed that the B-box consensus sequences of each structure groups retained a common and conserved domain topology. Furthermore, we identified seven novel motifs specific to each structure group and a valine-proline (VP) pair conserved at the C-terminus domain in some BBX proteins suggesting that they are required for protein-protein interactions. As it has been documented in mammalian systems, we also found monopartite and bipartite amino acid sequences at the C-terminus domain that could function as nuclear localization signals (NLSs). The five BBX structure groups evolved constrained by the conservation of amino acid sequences in the two B-boxes, but radiating variation into NLSs and novel motifs of each structural group. We suggest that these features are the functional basis for the BBX protein diversity in green plants.
Collapse
Affiliation(s)
- Carlos D Crocco
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
| | | |
Collapse
|
19
|
Batty EC, Jensen K, Freemont PS. PML nuclear bodies and other TRIM-defined subcellular compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:39-58. [PMID: 23630999 DOI: 10.1007/978-1-4614-5398-7_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tripartite motif (TRIM) proteins are defined by their possession of a RING, B-box and predicted coiled coil (RBCC) domain. The coiled-coil region facilitates the oligomerisation of TRIMs and contributes to the formation of high molecular weight complexes that show interesting subcellular compartmentalisations and structures. TRIM protein compartments include both nuclear and cytoplasmic filaments and aggregates (bodies), as well as diffuse subcellular distributions. TRIM 19, otherwise known as promyelocytic leukaemia (PML) protein forms nuclear aggregates termed PML nuclear bodies (PML NBs), at which a number of functionally diverse proteins transiently or covalently associate. PML NBs are therefore implicated in a wide variety of cellular functions such as transcriptional regulation, viral response, apoptosis and nuclear protein storage.
Collapse
Affiliation(s)
- Elizabeth C Batty
- Macromolecular Structure and Function Group, Division of Molecular Biosciences, Imperial College London, South Kensington, London, UK
| | | | | |
Collapse
|
20
|
Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood 2011; 118:1600-9. [DOI: 10.1182/blood-2011-01-329433] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractArsenic trioxide (As2O3) is a highly effective treatment for patients with refractory/relapsed acute promyelocytic leukemia (APL), but resistance to As2O3 has recently been seen. In the present study, we report the findings that 2 of 15 patients with refractory/relapsed APL treated with As2O3 were clinically As2O3 resistant. Leukemia cells from these 2 patients harbored missense mutations in promyelocytic leukemia gene–retinoic acid receptor-α gene (PML-RARA) transcripts, resulting in amino acid substitutions of A216V and L218P in the PML B2 domain. When wild-type or mutated PML-RARA (PR-WT and PR-B/L-mut, respectively) were overexpressed in HeLa cells, immunoblotting showed SUMOylated and/or oligomerized protein bands in PR-WT but not in PR-B/L-mut after As2O3 treatment. Protein-localization analysis indicated that PR-WT in the soluble fraction was transferred to the insoluble fraction after treatment with As2O3, but PR-B/L-mut was stably detected in fractions both with and without As2O3. Immunofluorescent microscopy analysis showed PR-WT localization as a microgranular pattern in the cytoplasm without As2O3 and as a macrogranular pattern with As2O3. PR-B/L-mut was diffusely observed in the cytoplasm with and without As2O3. Nearly identical localization patterns were observed in patients' primary cells. Therefore, B2 domain mutations may play an important role in aberrant molecular responses to As2O3 and may be critical for As2O3 resistance in APL.
Collapse
|
21
|
Chen SJ, Zhou GB, Zhang XW, Mao JH, de Thé H, Chen Z. From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood 2011; 117:6425-37. [PMID: 21422471 PMCID: PMC3123014 DOI: 10.1182/blood-2010-11-283598] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 03/11/2011] [Indexed: 12/29/2022] Open
Abstract
Arsenic had been used in treating malignancies from the 18th to mid-20th century. In the past 3 decades, arsenic was revived and shown to be able to induce complete remission and to achieve, when combined with all-trans retinoic acid and chemotherapy, a 5-year overall survival of 90% in patients with acute promyelocytic leukemia driven by the t(15;17) translocation-generated promyelocytic leukemia-retinoic acid receptor α (PML-RARα) fusion. Molecularly, arsenic binds thiol residues and induces the formation of reactive oxygen species, thus affecting numerous signaling pathways. Interestingly, arsenic directly binds the C3HC4 zinc finger motif in the RBCC domain of PML and PML-RARα, induces their homodimerization and multimerization, and enhances their interaction with the SUMO E2 conjugase Ubc9, facilitating subsequent sumoylation/ubiquitination and proteasomal degradation. Arsenic-caused intermolecular disulfide formation in PML also contributes to PML-multimerization. All-trans retinoic acid, which targets PML-RARα for degradation through its RARα moiety, synergizes with arsenic in eliminating leukemia-initiating cells. Arsenic perturbs a number of proteins involved in other hematologic malignancies, including chronic myeloid leukemia and adult T-cell leukemia/lymphoma, whereby it may bring new therapeutic benefits. The successful revival of arsenic in acute promyelocytic leukemia, together with modern mechanistic studies, has thus allowed a new paradigm to emerge in translational medicine.
Collapse
Affiliation(s)
- Sai-Juan Chen
- Shanghai Institute of Hematology and State Key Laboratory for Medical Genomics, Rui Jin Hospital/Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai, China
| | | | | | | | | | | |
Collapse
|
22
|
Salomoni P, Betts-Henderson J. The role of PML in the nervous system. Mol Neurobiol 2010; 43:114-23. [PMID: 21161613 DOI: 10.1007/s12035-010-8156-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 11/24/2010] [Indexed: 11/25/2022]
Abstract
The promyeloctic leukemia protein PML is a tumor suppressor that was originally identified due to its involvement in the (15;17) translocation of acute promyelocytic leukemia. While the majority of early research has focused upon the role of PML in the pathogenesis of leukemia, more recent evidence has identified important roles for PML in tissues outside the hemopoietic system, including the central nervous system (CNS). Here, we review recent literature on the role of PML in the CNS, with particular focus on the processes of neurodevelopment and neurodegeneration, and propose new lines of investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
23
|
Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de Thé H, Chen SJ, Chen Z. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010; 328:240-3. [PMID: 20378816 DOI: 10.1126/science.1183424] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lang M, Jegou T, Chung I, Richter K, Münch S, Udvarhelyi A, Cremer C, Hemmerich P, Engelhardt J, Hell SW, Rippe K. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:392-400. [PMID: 20130140 DOI: 10.1242/jcs.053496] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) are mobile subnuclear organelles formed by PML and Sp100 protein. They have been reported to have a role in transcription, DNA replication and repair, telomere lengthening, cell cycle control and tumor suppression. We have conducted high-resolution 4Pi fluorescence laser-scanning microscopy studies complemented with correlative electron microscopy and investigations of the accessibility of the PML-NB subcompartment. During interphase PML-NBs adopt a spherical organization characterized by the assembly of PML and Sp100 proteins into patches within a 50- to 100-nm-thick shell. This spherical shell of PML and Sp100 imposes little constraint to the exchange of components between the PML-NB interior and the nucleoplasm. Post-translational SUMO modifications, telomere repeats and heterochromatin protein 1 were found to localize in characteristic patterns with respect to PML and Sp100. From our findings, we derived a model that explains how the three-dimensional organization of PML-NBs serves to concentrate different biological activities while allowing for an efficient exchange of components.
Collapse
Affiliation(s)
- Marion Lang
- Division of High Resolution Optical Microscopy, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sivaramakrishnan G, Sun Y, Rajmohan R, Lin VCL. B30.2/SPRY domain in tripartite motif-containing 22 is essential for the formation of distinct nuclear bodies. FEBS Lett 2009; 583:2093-9. [PMID: 19481078 DOI: 10.1016/j.febslet.2009.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/23/2009] [Accepted: 05/18/2009] [Indexed: 01/14/2023]
Abstract
Tripartite motif-containing 22 (TRIM22) is an important antiviral protein that forms distinct nuclear bodies (NB) in many cell types. This study aims to identify functional domains/residues for TRIM22's nuclear localization and NB formation. Deletion of the really-interesting-new-gene (RING) domain, which is essential for its antiviral property, abolished TRIM22 NB formation. However, mutation of two critical residues Cys15 and Cys18 to alanine in the RING domain, did not affect NB formation notably. Although the deletion of the putative bipartite nuclear localization signal (NLS) abolished TRIM22 localization and NB formation, the B30.2/SplA and ryanodine receptor (SPRY) domain, and residues 491-494 specifically are also essential for nuclear localization and NB formation.
Collapse
|
26
|
Wu Q, Hu H, Lan J, Emenari C, Wang Z, Chang KS, Huang H, Yao X. PML3 Orchestrates the Nuclear Dynamics and Function of TIP60. J Biol Chem 2009; 284:8747-59. [PMID: 19150978 DOI: 10.1074/jbc.m807590200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is a major component to govern the PML nuclear body (NB) assembly and function. Although it is well defined that PML NB is a site recruiting sumoylated proteins, the mechanism by which PML protein regulates the process remains unclear. Here we show that PML3, a specific PML isoform, interacts with and recruits TIP60 to PML NBs. Our biochemical characterization demonstrates that PML3 physically interacts with TIP60 via its N-terminal 364 amino acids. Importantly, this portion of TIP60 is sufficient to target to the PML NBs, suggesting that PML3-TIP60 interaction is sufficient for targeting TIP60 to the NBs. The PML3-TIP60 interaction is specific, since the region of TIP60 binding is not conserved in other PML isoforms. The physical interaction between PML3 and TIP60 protects TIP60 from Mdm2-mediated degradation, suggesting that PML3 competes with MDM2 for binding to TIP60. Fluorescence recovery after photobleaching analysis indicates that the PML3-TIP60 interaction modulates the nuclear body distribution and mobility of TIP60. Conversely, the distribution and mobility of TIP60 are perturbed in PML3-deficient cells, accompanied by aberrations in DNA damage-repairing response. Thus, PML3 orchestrates the distribution, dynamics, and function of TIP60. Our findings suggest a novel regulatory mechanism by which the PML3 and TIP60 tumor suppressors cooperate to ensure genomic stability.
Collapse
Affiliation(s)
- Quan Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform II that is predicted as a protein interaction site by bioinformatic analysis. J Gen Virol 2009; 90:95-104. [DOI: 10.1099/vir.0.005512-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Datta S, Johansson H, Hettiarachchi C, Irigoyen ML, Desai M, Rubio V, Holm M. LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. THE PLANT CELL 2008; 20:2324-38. [PMID: 18796637 PMCID: PMC2570732 DOI: 10.1105/tpc.108.061747] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
B-box containing proteins play an important role in light signaling in plants. Here, we identify LIGHT-REGULATED ZINC FINGER1/SALT TOLERANCE HOMOLOG3 (STH3), a B-box encoding gene that genetically interacts with two key regulators of light signaling, ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). STH3 physically interacts with HY5 in vivo and shows a COP1-dependent localization to nuclear speckles when coexpressed with COP1 in plant cells. A T-DNA insertion mutant, sth3, is hyposensitive to high fluence blue, red, and far-red light and has elongated hypocotyls under short days. Analyses of double mutants between sth3, sth2, and hy5 suggest that they have partially overlapping functions. Interestingly, functional assays in protoplasts suggest that STH3 can activate transcription both independently and together with STH2 through the G-box promoter element. Furthermore, sth3 suppresses the cop1 hypocotyl phenotype in the dark as well as the anthocyanin accumulation in the light. Finally, COP1 ubiquitinates STH3 in vitro, suggesting that STH3 is regulated by COP1. In conclusion, we have identified STH3 as a positive regulator of photomorphogenesis acting in concert with STH2 and HY5, while also being a target of COP1-mediated ubiquitination.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Cell and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Salomoni P, Ferguson BJ, Wyllie AH, Rich T. New insights into the role of PML in tumour suppression. Cell Res 2008; 18:622-40. [PMID: 18504460 DOI: 10.1038/cr.2008.58] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a subnuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation.
Collapse
Affiliation(s)
- P Salomoni
- MRC Toxicology Unit, Lancaster Road Box 138, Leicester, LE 9HN, UK.
| | | | | | | |
Collapse
|
30
|
Borden KLB. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2145-54. [PMID: 18616965 DOI: 10.1016/j.bbamcr.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 12/26/2022]
Abstract
The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of "PML-ology" are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H4M 1J6.
| |
Collapse
|
31
|
Hennig J, Bresell A, Sandberg M, Hennig KD, Wahren-Herlenius M, Persson B, Sunnerhagen M. The Fellowship of the RING: The RING–B-Box Linker Region Interacts with the RING in TRIM21/Ro52, Contains a Native Autoantigenic Epitope in Sjögren Syndrome, and is an Integral and Conserved Region in TRIM Proteins. J Mol Biol 2008; 377:431-49. [DOI: 10.1016/j.jmb.2008.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/14/2007] [Accepted: 01/02/2008] [Indexed: 11/17/2022]
|
32
|
Yap MW, Dodding MP, Stoye JP. Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol 2006; 80:4061-7. [PMID: 16571822 PMCID: PMC1440439 DOI: 10.1128/jvi.80.8.4061-4067.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/25/2006] [Indexed: 11/20/2022] Open
Abstract
The Trim5alpha protein from several primates restricts retroviruses in a capsid (CA)-dependent manner. In owl monkeys, the B30.2 domain of Trim5 has been replaced by cyclophilin A (CypA) following a retrotransposition. Restriction of human immunodeficiency virus type 1 (HIV-1) by the resulting Trim5-CypA fusion protein depends on CA binding to CypA, suggesting both that the B30.2 domain might be involved in CA binding and that the tripartite RING motif, B-BOX, and coiled coil (RBCC) motif domain can function independently of the B30.2 domain in restriction. To investigate the potential of RBCCs from other Trims to participate in restricting HIV-1, CypA was fused to the RBCC of Trim1, Trim18, and Trim19 and tested for restriction. Despite low identity within the RBCC domain, all fusion proteins were found to restrict HIV-1 but not the nonbinding G89V mutant, indicating that the overall structure of RBCC and not its primary sequence was important for the restriction function. The critical interaction between CA and Trim-CypA appears to take place soon after viral entry. Quantitative PCR analysis of viral reverse transcriptase products revealed that the different fusion proteins block HIV-1 at two distinct stages of its life cycle, either prior to reverse transcription or just before integration. With Trim1 and Trim18, this timing is dependent on the length of the Trim component of the fusion protein. These observations suggest that restriction factor binding can have different mechanistic consequences.
Collapse
Affiliation(s)
- Melvyn W Yap
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
33
|
Diaz-Griffero F, Li X, Javanbakht H, Song B, Welikala S, Stremlau M, Sodroski J. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 2006; 349:300-15. [PMID: 16472833 DOI: 10.1016/j.virol.2005.12.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 11/30/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
TRIM5alpha and TRIMCyp are retroviral restriction factors that, like other members of the tripartite motif (TRIM) family, contain RING, B-box 2 and coiled-coil domains. We found that both proteins are rapidly turned over, with half-lives of 50-60 min. Polyubiquitylation and rapid degradation of TRIM5alpha depended upon intact RING and B-box 2 domains. A chimera consisting of monkey TRIM5alpha with a RING domain of human TRIM21 exhibited a half-life of 210 min, yet potently restricted human immunodeficiency virus; therefore, rapid turnover of TRIM5alpha is not required for its antiretroviral activity. TRIM5alpha forms cytoplasmic bodies that contain other polyubiquitylated proteins, heat shock proteins and dynein, and thus resemble aggresome precursors. Consistent with this interpretation, proteasomal inhibitors triggered the formation of TRIM5alpha(rh)-containing aggresomes in a microtubule-dependent manner. Thus, TRIM5alpha levels in the cell are maintained by continuous synthesis and rapid proteasome-mediated degradation, imbalances in which result in the formation of pre-aggresomal cytoplasmic bodies.
Collapse
Affiliation(s)
- Felipe Diaz-Griffero
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Ottosson L, Hennig J, Espinosa A, Brauner S, Wahren-Herlenius M, Sunnerhagen M. Structural, functional and immunologic characterization of folded subdomains in the Ro52 protein targeted in Sjögren's syndrome. Mol Immunol 2006; 43:588-98. [PMID: 15916807 DOI: 10.1016/j.molimm.2005.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Ro52, one of the major autoantigens in the rheumatic disease Sjögren's syndrome (SS), belongs to the tripartite motif (TRIM) or RING-B-box-coiled-coil (RBCC) protein family, thus comprising an N-terminal RING, followed by a B-box and a coiled-coil region. Several different proteomic functions have been suggested for Ro52, including DNA binding, protein interactions and Zn(2+)-binding. To analyze the presence and/or absence of these functions and, in particular, map those to different subregions, the modular composition of the Ro52 protein was experimentally characterized. Two structured parts of Ro52 were identified, corresponding to the RING-B-box and the coiled-coil regions, respectively. Secondary structure analysis by circular dichroism (CD) spectroscopy indicated that the two subregions are independently structured. The entire RING-B-box region displayed Zn(2+)-dependent stabilization against proteolysis in the presence of Zn2+, indicating functional Zn(2+)-binding sites in both the RING and the B-box. However, no stabilization with DNA was detected, irrespective of Zn(2+), thus suggesting that the RING-B-box region does not bind DNA. Oligomerization of the coiled-coil was investigated by analytical ultracentrifugation and in a mammalian two-hybrid system. Both methods show weak homodimer affinity, in parity with other coiled-coil domains involved in regulatory interactions. The C-terminal B30.2 region was rapidly degraded both during cellular expression and refolding, indicating a less stable structure. Immunologic analysis of the stable protein regions with sera from patients with Sjögren's syndrome shows that immunodominant epitopes to a large extent are localized in the structurally stable parts of Ro52. The results form a basis for further Ro52 functional studies on the proteome level.
Collapse
Affiliation(s)
- Lars Ottosson
- Rheumatology Unit, Department of Medicine, CMM L8:04, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Datta S, Hettiarachchi GHCM, Deng XW, Holm M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. THE PLANT CELL 2006; 18:70-84. [PMID: 16339850 PMCID: PMC1323485 DOI: 10.1105/tpc.105.038182] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is an E3 ubiquitin ligase that represses photomorphogenesis in the dark. Therefore, proteins interacting with COP1 could be important regulators of light-dependent development. Here, we identify CONSTANS-LIKE3 (COL3) as a novel interaction partner of COP1. A green fluorescent protein-COL3 fusion protein colocalizes with COP1 to nuclear speckles when transiently expressed in plant cells. This localization requires the B-box domains in COL3, indicating a novel function of this domain. A loss-of-function col3 mutant has longer hypocotyls in red light and in short days. Unlike constans, the col3 mutant flowers early and shows a reduced number of lateral branches in short days. The mutant also exhibits reduced formation of lateral roots. The col3 mutation partially suppresses the cop1 and deetiolated1 (det1) mutations in the dark, suggesting that COL3 acts downstream of both of these repressors. However, the col3 mutation exerts opposing effects on cop1 and det1 in terms of lateral roots and anthocyanin accumulation, suggesting that COL3 also has activities that are independent of COP1 and DET1. In conclusion, we have identified COL3 as a positive regulator of photomorphogenesis that acts downstream of COP1 but can promote lateral root development independently of COP1 and also function as a daylength-sensitive regulator of shoot branching.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Cell and Molecular Biology, Gothenburg University, Sweden
| | | | | | | |
Collapse
|
36
|
Nisole S, Stoye JP, Saïb A. TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 2005; 3:799-808. [PMID: 16175175 DOI: 10.1038/nrmicro1248] [Citation(s) in RCA: 576] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the tripartite motif (TRIM) protein family are involved in various cellular processes, including cell proliferation, differentiation, development, oncogenesis and apoptosis. Some TRIM proteins display antiviral properties, targeting retroviruses in particular. The potential activity of TRIM19, better known as promyelocytic leukaemia protein, against several viruses has been well documented and, recently, TRIM5alpha has been identified as the factor responsible for the previously described Lv1 and Ref1 antiretroviral activities. There is also evidence indicating that other TRIM proteins can influence viral replication. These findings are reviewed here, and the possibility that TRIMs represent a new and widespread class of antiviral proteins involved in innate immunity is also considered.
Collapse
Affiliation(s)
- Sébastien Nisole
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7151, Université Paris 7, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris cedex 10, France.
| | | | | |
Collapse
|
37
|
Hennig J, Ottosson L, Andrésen C, Horvath L, Kuchroo VK, Broo K, Wahren-Herlenius M, Sunnerhagen M. Structural Organization and Zn2+-dependent Subdomain Interactions Involving Autoantigenic Epitopes in the Ring-B-box-Coiled-coil (RBCC) Region of Ro52. J Biol Chem 2005; 280:33250-61. [PMID: 15964842 DOI: 10.1074/jbc.m503066200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ro52 is one of the major autoantigens targeted in the autoimmune disease Sjögren syndrome. By sequence similarity, Ro52 belongs to the RING-B-box-coiled-coil (RBCC) protein family. Disease-related antibodies bind Ro52 in a conformation-dependent way both in the coiled-coil region and in the Zn2+-binding Ring-B-box region. Primarily associated with Sjögren syndrome, Ro52 autoantibodies directed to a specific, partially structured epitope in the coiled-coil region may also induce a congenital heart block in the fetus of pregnant Ro52-positive mothers. To improve our understanding of the pathogenic effects of autoantibody binding to the Zn2+-binding region, a multianalytical mapping of its structural, biophysical, and antigenic properties is presented. Structure content and ligand binding of subregions, dissected by peptide synthesis and subcloning, were analyzed by fluorescence and circular dichroism spectroscopy. A novel matrix-assisted laser desorption ionization time-of-flight mass spectrometry strategy for time-resolved proteolysis experiments of large protein domains was developed to facilitate analysis and to help resolve the tertiary arrangement of the entire RBCC subregion. The linker region between the RING and B-box motifs is crucial for full folding, and Zn2+ affinity of the RING-B-box region is further protected in the entire RBCC region and appears to interact with the coiled-coil region. Murine monoclonal antibodies raised toward the RING-B-box region were primarily directed toward the linker, further supporting a highly functional role for the linker in a cellular environment. Taken together with our previous analysis of autoantigenic epitopes in the coiled-coil region, localization of autoantigenic epitopes in Ro52 appears closely related to molecular functionalities.
Collapse
Affiliation(s)
- Janosch Hennig
- Molecular Biotechnology, IFM, Campus Valla, Linköping University, S-581 83 Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Beech SJ, Lethbridge KJ, Killick N, McGlincy N, Leppard KN. Isoforms of the promyelocytic leukemia protein differ in their effects on ND10 organization. Exp Cell Res 2005; 307:109-17. [PMID: 15922731 DOI: 10.1016/j.yexcr.2005.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/21/2004] [Accepted: 03/14/2005] [Indexed: 11/27/2022]
Abstract
The PML protein is a defining constituent of subnuclear structures known as ND10. PML is expressed as a series of primary sequence isoforms through alternative RNA processing. Expression of each of six distinct PML isoforms that differed in their C-terminal domains caused reproducible differences in the number, size, and shape of ND10 in both transformed cell lines and diploid fibroblasts. In each case, PML from the endogenous genes was reorganized to participate with the exogenously expressed PML in the new configuration of ND10. Variation in ND10 number is known to occur during the cell cycle; however, the cell cycle distribution of the transfected cells that displayed these altered ND10 was similar for all six PML isoforms. Given our findings, the precise level of expression of the different PML isoforms under particular physiological conditions will be an important determinant of ND10 organization and function and is a potential point of regulation of PML/ND10 function.
Collapse
Affiliation(s)
- Stephanie J Beech
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | | | | | | | | |
Collapse
|
39
|
D'Souza J, Hendricks M, Le Guyader S, Subburaju S, Grunewald B, Scholich K, Jesuthasan S. Formation of the retinotectal projection requires Esrom, an ortholog of PAM (protein associated with Myc). Development 2004; 132:247-56. [PMID: 15590740 DOI: 10.1242/dev.01578] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visual system development is dependent on correct interpretation of cues that direct growth cone migration and axon branching. Mutations in the zebrafish esrom gene disrupt bundling and targeting of retinal axons, and also cause ectopic arborization. By positional cloning, we establish that esrom encodes a very large protein orthologous to PAM (protein associated with Myc)/Highwire/RPM-1. Unlike motoneurons in Drosophila highwire mutants, retinal axons in esrom mutants do not arborize excessively, indicating that Esrom has different functions in the vertebrate visual system. We show here that Esrom has E3 ligase activity and modulates the amount of phosphorylated Tuberin, a tumor suppressor, in growth cones. These data identify a mediator of signal transduction in retinal growth cones, which is required for topographic map formation.
Collapse
Affiliation(s)
- Jasmine D'Souza
- Developmental Neurobiology Group, Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Rep. of Singapore
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Li Y, Qi X, Yuan W, Ai J, Zhu C, Cao L, Yang H, Liu F, Wu X, Liu M. TRIM45, a novel human RBCC/TRIM protein, inhibits transcriptional activities of ElK-1 and AP-1. Biochem Biophys Res Commun 2004; 323:9-16. [PMID: 15351693 DOI: 10.1016/j.bbrc.2004.08.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 10/26/2022]
Abstract
The tripartite motif (TRIM) proteins play important roles in a variety of cellular functions including cell proliferation, differentiation, development, oncogenesis, and apoptosis. In this study, we report the identification and characterization of the human tripartite motif-containing protein 45 (TRIM45), a novel member of the TRIM family, from a human embryonic heart cDNA library. TRIM45 has a predicted 580 amino acid open reading frame, encoding a putative 64-kDa protein. The N-terminal region harbors a RING finger, two B-boxes, and a predicted alpha-helical coiled-coil domain, which together form the RBCC/TRIM motif found in a large family of proteins, whereas the C-terminal region contains a filamin-type immunoglobulin (IG-FLMN) domain. Northern blot analysis indicates that TRIM45 is expressed in a variety of human adult and embryonic tissues. In the cell, TRIM45 protein is expressed both in cytoplasm and in cell nucleus. Overexpression of TRIM45 in COS-7 cells inhibits the transcriptional activities of ElK-1 and AP-1. These results suggest that TRIM45 may act as a new transcriptional repressor in mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Yuequn Wang
- The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang G, Wang G, Wang S, Li Q, Ouyang G, Peng X. Applying proteomic methodologies to analyze the effect of hexamethylene bisacetamide (HMBA) on proliferation and differentiation of human gastric carcinoma BGC-823 cells. Int J Biochem Cell Biol 2004; 36:1613-23. [PMID: 15147739 DOI: 10.1016/j.biocel.2004.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 01/12/2004] [Accepted: 01/14/2004] [Indexed: 11/29/2022]
Abstract
Human gastric carcinoma BGC-823 cells underwent morphological differentiation and cell cycle arrest in vitro when treated with 5mM hexamethylene bisacetamide (HMBA) for 48h. To further understand the mechanism of HMBA-induced differentiation, proteomic methodologies were applied to screen and identify altered proteins involved in the commitment of BGC-823 cells to differentiate. Five distinct altered proteins were acquired by two-dimensional (2-D) PAGE and were consequently identified as ras-related protein rab-35 (Rab-35), splice truncated isoform of transmembrane protease, serine 3 (serine TADG-12), regulator of G-protein signaling 1 (RGS1), ret finger protein-like 1 (RFPL1) and F-actin capping protein alpha-3 subunit (GSG3) by analysis of mass spectrograph. Of the five proteins, serine TADG-12 down-regulated under the detectable level after HMBA treatment, Rab-35, RGS1 and RFPL1 sharply up-regulated within the HMBA-induced BGC-823 cells, and GSG3, appearing in both treated and untreated cells, remarkably increased within BGC-823 cells after HMBA stimulation. Our results implicate that the molecular mechanism of BGC-823 cell differentiation in response to HMBA may involved in complex processes including a signaling network linking vesicle transport, actin cytoskeleton remodeling except for morphology differentiation, cell cycle G1 arrest.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Biology, Center for Proteomics, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Uchida D, Hatakeyama S, Matsushima A, Han H, Ishido S, Hotta H, Kudoh J, Shimizu N, Doucas V, Nakayama KI, Kuroda N, Matsumoto M. AIRE functions as an E3 ubiquitin ligase. J Exp Med 2004; 199:167-72. [PMID: 14734522 PMCID: PMC2211764 DOI: 10.1084/jem.20031291] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 08/18/2003] [Indexed: 01/29/2023] Open
Abstract
Autoimmune regulator (AIRE) gene mutation is responsible for the development of autoimmune-polyendocrinopathy-candidiasis ectodermal dystrophy, an organ-specific autoimmune disease with monogenic autosomal recessive inheritance. AIRE is predominantly expressed in medullary epithelial cells of the thymus and is considered to play important roles in the establishment of self-tolerance. AIRE contains two plant homeodomain (PHD) domains, and the novel role of PHD as an E3 ubiquitin (Ub) ligase has just emerged. Here we show that the first PHD (PHD1) of AIRE mediates E3 ligase activity. The significance of this finding was underscored by the fact that disease-causing missense mutations in the PHD1 (C311Y and P326Q) abolished its E3 ligase activity. These results add a novel enzymatic function for AIRE and suggest an indispensable role of the Ub proteasome pathway in the establishment of self-tolerance, in which AIRE is involved.
Collapse
Affiliation(s)
- Daisuke Uchida
- Division of Molecular Immunology, Institute for Enzyme Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Antolini F, Lo Bello M, Sette M. Purified promyelocytic leukemia coiled-coil aggregates as a tetramer displaying low alpha-helical content. Protein Expr Purif 2003; 29:94-102. [PMID: 12729730 DOI: 10.1016/s1046-5928(03)00004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The promyelocytic leukemia (PML) gene is involved in the 15/17 chromosomal translocation of acute promyelocytic leukemia (APL). It encodes a nuclear phosphoprotein containing an alpha-helical coiled-coil domain with four heptad repeats. The heptad repeats consist of four clusters of hydrophobic amino acids that mediate in vivo the complex formation between PML and other PML molecules or PML-RARalpha mutant protein. In this report, we show the production of PML coiled-coil (fragment 223-360) as a fusion protein, its solubilization by the combined action of two different detergents, and its purification with affinity chromatography after column proteolytic cleavage. The FPLC chromatograms of the purified coiled-coils, carried out under non-denaturing conditions, show that the peptide elutes only in the presence of Sarkosyl detergent (conc. 0.1%) and, under these conditions, elutes as a tetrameric complex. This confirms the evidence from in vivo experiments that this region is responsible for protein complex formation. The HPLC analyses show the presence of a single peak eluting under highly hydrophobic conditions, indicating the high hydrophobicity of the peptide in accordance with the primary sequence analysis. Finally, the purified peptide was structurally characterized by means of circular dichroism (CD) measurements that were carried out with low Sarkosyl concentration (0.003%). The CD spectra indicate a low alpha-helical content (13.5%) with respect to predictions based on the primary sequence analysis (PSI-PRED, SS-PRO, and J-PRED), suggesting that the alpha-helix content could be modulated by coiled-coil surrounding domains and/or by other post-translational modifications, even if the effect of the Sarkosyl on the peptide secondary structure cannot be excluded.
Collapse
Affiliation(s)
- Francesco Antolini
- Department of Internal Medicine, Applied Biochemistry and Clinical Chemistry section, Via del Giochetto s.n.c., 06100 Perugia, Italy.
| | | | | |
Collapse
|
44
|
Kawasaki A, Matsumura I, Kataoka Y, Takigawa E, Nakajima K, Kanakura Y. Opposing effects of PML and PML/RAR alpha on STAT3 activity. Blood 2003; 101:3668-73. [PMID: 12506013 DOI: 10.1182/blood-2002-08-2474] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promyelocytic leukemia protein PML acts as a tumor suppressor, whereas its chimeric mutant promyelocytic leukemia/retinoic acid receptor alpha (PML/RAR alpha) causes acute promyelocytic leukemia (APL). Because PML has been shown to form transcription-regulatory complexes with various molecules, we speculated that PML and/or PML/RAR alpha might affect signal transducer and activator of transcription 3 (STAT3) activity, which plays a crucial role in granulocyte colony-stimulating factor (G-CSF)-induced growth and survival of myeloid cells. In luciferase assays, PML inhibited STAT3 activity in NIH3T3, 293T, HepG2, and 32D cells. PML formed a complex with STAT3 through B-box and COOH terminal regions in vitro and in vivo, thereby inhibiting its DNA binding activity. Although PML/RAR alpha did not interact with STAT3, it dissociated PML from STAT3 and restored its activity suppressed by PML. To assess the biologic significance of these findings, we introduced PML and PML/RAR alpha into interleukin-3 (IL-3)-dependent Ba/F3 cells expressing the chimeric receptor composed of extracellular domain of G-CSF-R and cytoplasmic domain of gp130, in which gp130-mediated growth is essentially dependent on STAT3 activity. Neither PML nor PML/RAR alpha affected IL-3-dependent growth of these clones. By contrast, gp130-mediated growth was abrogated by PML, whereas it was enhanced by PML/RAR alpha. These results reveal new functions of PML and PML/RAR alpha and suggest that dysregulated STAT3 activity by PML/RAR alpha may participate in the pathogenesis of APL.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Binding, Competitive
- Carcinoma, Hepatocellular/pathology
- Cell Line/drug effects
- DNA, Complementary/genetics
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/physiology
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Humans
- Kidney/cytology
- Kidney/embryology
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/metabolism
- Liver Neoplasms/pathology
- Macromolecular Substances
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/pharmacology
- Neoplasm Proteins/physiology
- Nuclear Proteins
- Oncogene Proteins, Fusion/pharmacology
- Promyelocytic Leukemia Protein
- Protein Binding
- Protein Interaction Mapping
- Recombinant Fusion Proteins/metabolism
- STAT3 Transcription Factor
- Trans-Activators/antagonists & inhibitors
- Trans-Activators/physiology
- Transcription Factors/pharmacology
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Akira Kawasaki
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Eskiw CH, Bazett-Jones DP. The promyelocytic leukemia nuclear body: sites of activity? Biochem Cell Biol 2003; 80:301-10. [PMID: 12123283 DOI: 10.1139/o02-079] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The promyelocytic leukemia (PML) nuclear body is one of many subnuclear domains in the eukaryotic cell nucleus. It has received much attention in the past few years because it accumulates the promyelocytic leukemia protein called PML. This protein is implicated in many nuclear events and is found as a fusion with the retinoic acid receptor RARalpha in leukemic cells. The importance of PML bodies in cell differentiation and growth is implicated in acute promyelocitic leukemia cells, which do not contain PML bodies. Treatment of patients with drugs that reverse the disease phenotype also causes PML bodies to reform. In this review, we discuss the structure, composition, and dynamics that may provide insights into the function of PML bodies. We also discuss the repsonse of PML bodies to cellular stresses, such as virus infection and heat shock. We interpret the changes that occur as evidence for a role of these structures in gene transcription. We also examine the role of the posttranslational modification. SUMO-1 addition, in directing proteins to this nuclear body. Characterization of the mobility of PML body associated proteins further supports a role in specific nuclear events, rather than the bodies resulting from random accumulations of proteins.
Collapse
Affiliation(s)
- Christopher H Eskiw
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
46
|
Strudwick S, Borden KLB. Finding a role for PML in APL pathogenesis: a critical assessment of potential PML activities. Leukemia 2002; 16:1906-17. [PMID: 12357342 DOI: 10.1038/sj.leu.2402724] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 04/02/2002] [Indexed: 01/10/2023]
Abstract
In normal mammalian cells the promyelocytic leukemia protein (PML) is primarily localized in multiprotein nuclear complexes called PML nuclear bodies. However, both PML and PML nuclear bodies are disrupted in acute promyelocytic leukemia (APL). The treatment of APL patients with all-trans retinoic acid (ATRA) results in clinical remission associated with blast cell differentiation and reformation of the PML nuclear bodies. These observations imply that the structural integrity of the PML nuclear body is critically important for normal cellular functions. Indeed, PML protein is a negative growth regulator capable of causing growth arrest in the G(1) phase of the cell cycle, transformation suppression, senescence and apoptosis. These PML-mediated, physiological effects can be readily demonstrated. However, a discrete biochemical and molecular model of PML function has yet to be defined. Upon first assessment of the current PML literature there appears to be a seemingly endless list of potential PML partner proteins implicating PML in a variety of regulatory mechanisms at every level of gene expression. The purpose of this review is to simplify this confusing field of research by using strict criteria to deduce which models of PML body function are well supported.
Collapse
Affiliation(s)
- S Strudwick
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, New York 10029, USA
| | | |
Collapse
|
47
|
Borden KLB. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 2002; 22:5259-69. [PMID: 12101223 PMCID: PMC133952 DOI: 10.1128/mcb.22.15.5259-5269.2002] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Katherine L B Borden
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York University, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
48
|
Peng H, Feldman I, Rauscher FJ. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol 2002; 320:629-44. [PMID: 12096914 DOI: 10.1016/s0022-2836(02)00477-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The RING-B box-coiled-coil (RBCC) motif (also re-named recently as the tripartite motif (TRIM)) is a widely distributed motif that is hypothesized to be a protein-protein interface. The RBCC/TRIM domain of the corepressor KAP-1 is both necessary and sufficient to interact directly with the transcription repressor KRAB domain. Each subdomain of the KAP-1-RBCC contributes directly to the oligomerization and/or ligand recognition. Little is known about the function or the natural binding ligands for the RBCC/TRIM domain of the other TIF family members. In order to investigate whether hetero-oligomerization might be a biological regulatory mechanism, we have evaluated the hetero-oligomerization potential of the TIF family members including KAP-1, TIF1alpha, TIF1gamma, and the RBCC/TRIM family members including PML1, and MID1. We have reconstituted and characterized the oligomerization for these proteins using baculovirus and mammalian expression systems by biochemical approaches. Our data indicate that the RBCC/TRIM domains of KAP-1, TIF1alpha and TIF1gamma exist in a homo-oligomeric state. However, there is little cross-talk between KAP-1 and other TIF family members, suggesting that a high degree of specificity for oligomerization interface and ligand recognition is intrinsically built into the RBCC/TRIM domain of KAP-1. Finally, we demonstrate that TIF1alpha interacts with TIF1gamma and the coiled-coil region of TIF1gamma is necessary for this interaction. The hetero-oligomerization between TIF1alpha and TIF1gamma implies a potential regulatory mechanism for transcriptional regulation.
Collapse
Affiliation(s)
- Hongzhuang Peng
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
49
|
Noureddine MA, Donaldson TD, Thacker SA, Duronio RJ. Drosophila Roc1a encodes a RING-H2 protein with a unique function in processing the Hh signal transducer Ci by the SCF E3 ubiquitin ligase. Dev Cell 2002; 2:757-70. [PMID: 12062088 DOI: 10.1016/s1534-5807(02)00164-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Substrate specificity of SCF E3 ubiquitin ligases is thought to be determined by the F box protein subunit. Another component of SCF complexes is provided by members of the Roc1/Rbx1/Hrt1 gene family, which encode RING-H2 proteins. Drosophila contains three members of this gene family. We show that Roc1a mutant cells fail to proliferate. Further, while the F box protein Slimb is required for Cubitus interruptus (Ci) and Armadillo/beta-catenin (Arm) proteolysis, Roc1a mutant cells hyperaccumulate Ci but not Arm. This suggests that Slimb and Roc1a function in the same SCF complex to target Ci but that a different RING-H2 protein acts with Slimb to target Arm. Consequently, the identity of the Roc subunit may contribute to the selection of substrates by metazoan SCF complexes.
Collapse
Affiliation(s)
- Maher A Noureddine
- Department of Biology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The emerging field of nuclear eIF research has yielded many surprises and led to the dissolution of some dogmatic/ideological viewpoints of the place of translation in the regulation of gene expression. Eukaryotic initiation factors (eIFs) are classically defined by their cytoplasmic location and ability to regulate the initiation phase of protein synthesis. For instance, in the cytoplasm, the m7G cap-binding protein eIF4E plays a distinct role in cap-dependent translation initiation. Disruption of eIF4E's regulatory function drastically effects cell growth and may lead to oncogenic transformation. A growing number of studies indicate that many eIFs, including a substantial fraction of eIF4E, are found in the nucleus. Indeed, nuclear eIF4E participates in a variety of important RNA-processing events including the nucleocytoplasmic transport of specific, growth regulatory mRNAs. Although unexpected, it is possible that some eIFs regulate protein synthesis within the nucleus. This review will focus on the novel, nuclear functions of eIF4E and how they contribute to eIF4E's growth-activating and oncogenic properties. Both the cytoplasmic and nuclear functions of eIF4E appear to be dependent on its intrinsic ability to bind to the 5' m7G cap of mRNA. For example, Promyelocytic Leukemia Protein (PML) potentially acts as a negative regulator of nuclear eIF4E function by decreasing eIF4E's affinity for the m7G cap. Therefore, eIF4E protein is flexible enough to utilize a common biochemical activity, such as m7G cap binding, to participate in divergent processes in different cellular compartments.
Collapse
Affiliation(s)
- Stephen Strudwick
- Structural Biology Program, Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|