1
|
A Novel cis Regulatory Element Regulates Human XIST in a CTCF-Dependent Manner. Mol Cell Biol 2021; 41:e0038220. [PMID: 34060915 DOI: 10.1128/mcb.00382-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The long noncoding RNA XIST is the master regulator for the process of X chromosome inactivation (XCI) in mammalian females. Here, we report the existence of a hitherto-uncharacterized cis regulatory element (cRE) within the first exon of human XIST, which determines the transcriptional status of XIST during the initiation and maintenance phases of XCI. In the initiation phase, pluripotency factors bind to this cRE and keep XIST repressed. In the maintenance phase of XCI, the cRE is enriched for CTCF, which activates XIST transcription. By employing a CRISPR-dCas9-KRAB-based interference strategy, we demonstrate that binding of CTCF to the newly identified cRE is critical for regulating XIST in a YY1-dependent manner. Collectively, our study uncovers the combinatorial effect of multiple transcriptional regulators influencing XIST expression during the initiation and maintenance phases of XCI.
Collapse
|
2
|
The methylation and telomere landscape in two families of marsupials with different rates of chromosome evolution. Chromosome Res 2018; 26:317-332. [PMID: 30539406 DOI: 10.1007/s10577-018-9593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023]
Abstract
Two marsupial families exemplify divergent rates of karyotypic change. The Dasyurid family has an extremely conserved karyotype. In contrast, there is significant chromosomal variation within the Macropodidae family, best exemplified by members of the genus Petrogale (rock-wallabies). Both families are also distinguished by their telomere landscape (length and epigenetics), with the dasyurids having a unique telomere length dimorphism not observed in other marsupials and hypothesised to be regulated in a parent-of-origin fashion. Previous work has shown that proximal ends of chromosomes are enriched in cytosine methylation in dasyurids, but that the chromosomes of a macropod, the tammar wallaby, have DNA methylation enrichment of pericentric regions. Using a combination of telomere and 5-methylcytosine immunofluorescence staining, we investigated the telomere landscape of four dasyurid and three Petrogale species. As part of this study, we also further examined the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, using epigenetic modifications known to differentiate the active maternal X chromosome, including 5-methylcytosine methylation and histone modifications H3K4me2, H3K9ac and H4Kac. Our results give further support to the parent-of-origin hypothesis for the regulation of telomere length dimorphism in dasyurids, where the paternally derived X chromosome in females was associated with long telomeres and the maternally derived with short telomeres. In contrast to the tammar wallaby, rock-wallabies demonstrated a similar 5-methylcytosine staining pattern across all chromosomes to that of dasyurids, suggesting that DNA methylation of telomeric regions is not responsible for differences in the rates of chromosome evolution between these two families.
Collapse
|
3
|
The Methylome of Vertebrate Sex Chromosomes. Genes (Basel) 2018; 9:genes9050230. [PMID: 29723955 PMCID: PMC5977170 DOI: 10.3390/genes9050230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
DNA methylation is a key epigenetic modification in vertebrate genomes known to be involved in the regulation of gene expression, X chromosome inactivation, genomic imprinting, chromatin structure, and control of transposable elements. DNA methylation is common to all eukaryote genomes, but we still lack a complete understanding of the variation in DNA methylation patterns on sex chromosomes and between the sexes in diverse species. To better understand sex chromosome DNA methylation patterns between different amniote vertebrates, we review literature that has analyzed the genome-wide distribution of DNA methylation in mammals and birds. In each system, we focus on DNA methylation patterns on the autosomes versus the sex chromosomes.
Collapse
|
4
|
Weird mammals provide insights into the evolution of mammalian sex chromosomes and dosage compensation. J Genet 2016; 94:567-74. [PMID: 26690510 DOI: 10.1007/s12041-015-0572-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The deep divergence of mammalian groups 166 and 190 million years ago (MYA) provide genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. With encouragement from the founder of the field, Mary Lyon, techniques in cytogenetics and molecular biology were progressively adapted to characterize the sex chromosomes of kangaroos and other marsupials, platypus and echidna-and weird rodent species. Comparative gene mapping reveals the process of sex chromosome evolution from their inception 190 MYA (they are autosomal in platypus) to their inevitable end (the Y has disappeared in two rodent lineages). Our X and Y are relatively young, getting their start with the evolution of the sex-determining SRY gene, which triggered progressive degradation of the Y chromosome. Even more recently, sex chromosomes of placental mammals fused with an autosomal region which now makes up most of the Y. Exploration of gene activity patterns over four decades showed that dosage compensation via X-chromosome inactivation is unique to therian mammals, and that this whole chromosome control process is different in marsupials and absent in monotremes and reptiles, and birds. These differences can be exploited to deduce how mammalian sex chromosomes and epigenetic silencing evolved.
Collapse
|
5
|
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17:756-770. [DOI: 10.1038/nrm.2016.126] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
7
|
The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials. Semin Cell Dev Biol 2016; 56:117-121. [PMID: 26806635 DOI: 10.1016/j.semcdb.2016.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 11/22/2022]
Abstract
Marsupials and monotremes represent evolutionarily divergent lineages from the majority of extant mammals which are eutherian, or placental, mammals. Monotremes possess multiple X and Y chromosomes that appear to have arisen independently of eutherian and marsupial sex chromosomes. Dosage compensation of X-linked genes occurs in monotremes on a gene-by-gene basis, rather than through chromosome-wide silencing, as is the case in eutherians and marsupials. Specifically, studies in the platypus have shown that for any given X-linked gene, a specific proportion of nuclei within a cell population will silence one locus, with the percentage of cells undergoing inactivation at that locus being highly gene-specific. Hence, it is perhaps not surprising that the expression level of X-linked genes in female platypus is almost double that in males. This is in contrast to the situation in marsupials where one of the two X chromosomes is inactivated in females by the long non-coding RNA RSX, a functional analogue of the eutherian XIST. However, marsupial X chromosome inactivation differs from that seen in eutherians in that it is exclusively the paternal X chromosome that is silenced. In addition, marsupials appear to have globally upregulated X-linked gene expression in both sexes, thus balancing their expression levels with those of the autosomes, a process initially proposed by Ohno in 1967 as being a fundamental component of the X chromosome dosage compensation mechanism but which may not have evolved in eutherians.
Collapse
|
8
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
9
|
Genome-wide histone state profiling of fibroblasts from the opossum, Monodelphis domestica, identifies the first marsupial-specific imprinted gene. BMC Genomics 2014; 15:89. [PMID: 24484454 PMCID: PMC3912494 DOI: 10.1186/1471-2164-15-89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background Imprinted genes have been extensively documented in eutherian mammals and found to exhibit significant interspecific variation in the suites of genes that are imprinted and in their regulation between tissues and developmental stages. Much less is known about imprinted loci in metatherian (marsupial) mammals, wherein studies have been limited to a small number of genes previously known to be imprinted in eutherians. We describe the first ab initio search for imprinted marsupial genes, in fibroblasts from the opossum, Monodelphis domestica, based on a genome-wide ChIP-seq strategy to identify promoters that are simultaneously marked by mutually exclusive, transcriptionally opposing histone modifications. Results We identified a novel imprinted gene (Meis1) and two additional monoallelically expressed genes, one of which (Cstb) showed allele-specific, but non-imprinted expression. Imprinted vs. allele-specific expression could not be resolved for the third monoallelically expressed gene (Rpl17). Transcriptionally opposing histone modifications H3K4me3, H3K9Ac, and H3K9me3 were found at the promoters of all three genes, but differential DNA methylation was not detected at CpG islands at any of these promoters. Conclusions In generating the first genome-wide histone modification profiles for a marsupial, we identified the first gene that is imprinted in a marsupial but not in eutherian mammals. This outcome demonstrates the practicality of an ab initio discovery strategy and implicates histone modification, but not differential DNA methylation, as a conserved mechanism for marking imprinted genes in all therian mammals. Our findings suggest that marsupials use multiple epigenetic mechanisms for imprinting and support the concept that lineage-specific selective forces can produce sets of imprinted genes that differ between metatherian and eutherian lines.
Collapse
|
10
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
11
|
Sado T, Brockdorff N. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110325. [PMID: 23166390 DOI: 10.1098/rstb.2011.0325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In female mammals, one of the two X chromosomes becomes genetically silenced to compensate for dosage imbalance of X-linked genes between XX females and XY males. X chromosome inactivation (X-inactivation) is a classical model for epigenetic gene regulation in mammals and has been studied for half a century. In the last two decades, efforts have been focused on the X inactive-specific transcript (Xist) locus, discovered to be the master regulator of X-inactivation. The Xist gene produces a non-coding RNA that functions as the primary switch for X-inactivation, coating the X chromosome from which it is transcribed in cis. Significant progress has been made towards understanding how Xist is regulated at the onset of X-inactivation, but our understanding of the molecular basis of silencing mediated by Xist RNA has progressed more slowly. A picture has, however, begun to emerge, and new tools and resources hold out the promise of further advances to come. Here, we provide an overview of the current state of our knowledge, what is known about Xist RNA and how it may trigger chromosome silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
12
|
Abstract
Marsupial and eutherian mammals inactivate one X chromosome in female somatic cells in what is thought to be a means of compensating for the unbalanced X chromosome dosage between XX females and XY males. The hypothesis of X chromosome inactivation (XCI) was first published by Mary Lyon just over 50 years ago, with the discovery of XCI in marsupials occurring a decade later. However, we are still piecing together the evolutionary origins of this fascinating epigenetic mechanism. From the very first studies on marsupial X inactivation, it was apparent that, although there were some similarities between marsupial and eutherian XCI, there were also some striking differences. For instance, the paternally derived X was found to be preferentially silenced in marsupials, although the silencing was often incomplete, which was in contrast to the random and more tightly controlled inactivation of the X chromosome in eutherians. Many of these earlier studies used isozymes to study the activity of just a few genes in marsupials. The sequencing of several marsupial genomes and the advent of molecular cytogenetic techniques have facilitated more in-depth studies into marsupial X chromosome inactivation and allowed more detailed comparisons of the features of XCI to be made. Several important findings have come from such comparisons, among which is the absence of the XIST gene in marsupials, a non-coding RNA gene with a critical role in eutherian XCI, and the discovery of the marsupial RSX gene, which appears to perform a similar role to XIST. Here I review the history of marsupial XCI studies, the latest advances that have been made and the impact they have had towards unravelling the evolution of XCI in mammals.
Collapse
|
13
|
Abstract
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
14
|
Livernois AM, Graves JAM, Waters PD. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinb) 2011; 108:50-8. [PMID: 22086077 DOI: 10.1038/hdy.2011.106] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.
Collapse
Affiliation(s)
- A M Livernois
- Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|
15
|
Finding a balance: how diverse dosage compensation strategies modify histone h4 to regulate transcription. GENETICS RESEARCH INTERNATIONAL 2011; 2012:795069. [PMID: 22567401 PMCID: PMC3335593 DOI: 10.1155/2012/795069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023]
Abstract
Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.
Collapse
|
16
|
Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Marshall Graves JA. Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLoS One 2011; 6:e19040. [PMID: 21541345 PMCID: PMC3081832 DOI: 10.1371/journal.pone.0019040] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
X chromosome inactivation (XCI) is the transcriptional silencing of one X in female mammals, balancing expression of X genes between females (XX) and males (XY). In placental mammals non-coding XIST RNA triggers silencing of one X (Xi) and recruits a characteristic suite of epigenetic modifications, including the histone mark H3K27me3. In marsupials, where XIST is missing, H3K27me3 association seems to have different degrees of stability, depending on cell-types and species. However, the complete suite of histone marks associated with the Xi and their stability throughout cell cycle remain a mystery, as does the evolution of an ancient mammal XCI system. Our extensive immunofluorescence analysis (using antibodies against specific histone modifications) in nuclei of mammals distantly related to human and mouse, revealed a general absence from the mammalian Xi territory of transcription machinery and histone modifications associated with active chromatin. Specific repressive modifications associated with XCI in human and mouse were also observed in elephant (a distantly related placental mammal), as was accumulation of XIST RNA. However, in two marsupial species the Xi either lacked these modifications (H4K20me1), or they were restricted to specific windows of the cell cycle (H3K27me3, H3K9me2). Surprisingly, the marsupial Xi was stably enriched for modifications associated with constitutive heterochromatin in all eukaryotes (H4K20me3, H3K9me3). We propose that marsupial XCI is comparable to a system that evolved in the common therian (marsupial and placental) ancestor. Silent chromatin of the early inactive X was exapted from neighbouring constitutive heterochromatin and, in early placental evolution, was augmented by the rise of XIST and the stable recruitment of specific histone modifications now classically associated with XCI.
Collapse
Affiliation(s)
- Julie Chaumeil
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Paul D. Waters
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (PW); (JC)
| | - Edda Koina
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Clément Gilbert
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Terence J. Robinson
- Evolutionary Genomics Group, Department of Zoology, University of Stellenbosch, Matieland, South Africa
| | - Jennifer A. Marshall Graves
- Comparative Genomics Group, Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Al Nadaf S, Waters PD, Koina E, Deakin JE, Jordan KS, Graves JA. Activity map of the tammar X chromosome shows that marsupial X inactivation is incomplete and escape is stochastic. Genome Biol 2010; 11:R122. [PMID: 21182760 PMCID: PMC3046482 DOI: 10.1186/gb-2010-11-12-r122] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
Background X chromosome inactivation is a spectacular example of epigenetic silencing. In order to deduce how this complex system evolved, we examined X inactivation in a model marsupial, the tammar wallaby (Macropus eugenii). In marsupials, X inactivation is known to be paternal, incomplete and tissue-specific, and occurs in the absence of an XIST orthologue. Results We examined expression of X-borne genes using quantitative PCR, revealing a range of dosage compensation for different loci. To assess the frequency of 1X- or 2X-active fibroblasts, we investigated expression of 32 X-borne genes at the cellular level using RNA-FISH. In female fibroblasts, two-color RNA-FISH showed that genes were coordinately expressed from the same X (active X) in nuclei in which both loci were inactivated. However, loci on the other X escape inactivation independently, with each locus showing a characteristic frequency of 1X-active and 2X-active nuclei, equivalent to stochastic escape. We constructed an activity map of the tammar wallaby inactive X chromosome, which identified no relationship between gene location and extent of inactivation, nor any correlation with the presence or absence of a Y-borne paralog. Conclusions In the tammar wallaby, one X (presumed to be maternal) is expressed in all cells, but genes on the other (paternal) X escape inactivation independently and at characteristic frequencies. The paternal and incomplete X chromosome inactivation in marsupials, with stochastic escape, appears to be quite distinct from the X chromosome inactivation process in eutherians. We find no evidence for a polar spread of inactivation from an X inactivation center.
Collapse
Affiliation(s)
- Shafagh Al Nadaf
- Research School of Biology, The Australian National University, Biology Place, Canberra 0200, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Histone H3 trimethylation at lysine 9 marks the inactive metaphase X chromosome in the marsupial Monodelphis domestica. Chromosoma 2010; 120:177-83. [PMID: 21110203 DOI: 10.1007/s00412-010-0300-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
In somatic cells of female marsupial and eutherian mammals, X chromosome inactivation (XCI) occurs. XCI results in the transcriptional silencing of one of the two X chromosomes and is accompanied by specific covalent histone modifications attributable to the inactive chromatin state. Because data about repressed chromatin of the inactive X chromosome (Xi) in marsupials are sparse, we examined in more detail the distribution of active and inactive chromatin markers on metaphase X chromosomes of an American marsupial, Monodelphis domestica. Consistent with data reported previously both for eutherian and marsupial mammals, we found that the Xi of M. domestica lacks active histone markers-H3K4 dimethylation and H3K9 acetylation. We did not observe on metaphase spreads enrichment of the Xi with H3K27 trimethylation which is involved in XCI in eutherians and was detected on the Xi in the interphase nuclei of mature female M. domestica in an earlier study. Moreover, we found that the Xi of M. domestica was specifically marked with H3K9 trimethylation, which is known to be a component of the Xi chromatin in eutherians and is involved in both marsupials and eutherians in meiotic sex chromosome inactivation which has been proposed as an ancestral mechanism of XCI.
Collapse
|
19
|
Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc Natl Acad Sci U S A 2010; 107:17657-62. [PMID: 20861449 DOI: 10.1073/pnas.0910322107] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
X chromosome dosage compensation in female eutherian mammals is regulated by the noncoding Xist RNA and is associated with the differential acquisition of active and repressive histone modifications, resulting in repression of most genes on one of the two X chromosome homologs. Marsupial mammals exhibit dosage compensation; however, they lack Xist, and the mechanisms conferring epigenetic control of X chromosome dosage compensation remain elusive. Oviparous mammals, the monotremes, have multiple X chromosomes, and it is not clear whether they undergo dosage compensation and whether there is epigenetic dimorphism between homologous pairs in female monotremes. Here, using antibodies against DNA methylation, eight different histone modifications, and HP1, we conduct immunofluorescence on somatic cells of the female Australian marsupial possum Trichosurus vulpecula, the female platypus Ornithorhynchus anatinus, and control mouse cells. The two marsupial X's were different for all epigenetic features tested. In particular, unlike in the mouse, both repressive modifications, H3K9me3 and H4K20Me3, are enriched on one of the X chromosomes, and this is associated with the presence of HP1 and hypomethylation of DNA. Using sequential labeling, we determine that this DNA hypomethylated X correlates with histone marks of inactivity. These results suggest that female marsupials use a repressive histone-mediated inactivation mechanism and that this may represent an ancestral dosage compensation process that differs from eutherians that require Xist transcription and DNA methylation. In comparison to the marsupial, the monotreme exhibited no epigenetic differences between homologous X chromosomes, suggesting the absence of a dosage compensation process comparable to that in therians.
Collapse
|
20
|
Abstract
In 2001 it was established that, contrary to our previous understanding, a mechanism exists that equalises the expression levels of Z chromosome genes found in male (ZZ) and female (ZW) birds (McQueen et al. 2001). More recent large scale studies have revealed that avian dosage compensation is not a chromosome-wide phenomenon and that the degree of dosage compensation can vary between genes (Itoh et al. 2007; Ellegren et al. 2007). Although, surprisingly, dosage compensation has recently been described as absent in birds (Mank and Ellegren 2009b), this interpretation is not supported by the accumulated evidence, which indicates that a significant proportion of Z chromosome genes show robust dosage compensation and that a particular cluster of such dosage compensated genes can be found on the short arm of the Z chromosome. The implications of this new picture of avian dosage compensation for avian sex determination are discussed, along with a possible mechanism of avian dosage compensation.
Collapse
Affiliation(s)
- Heather A McQueen
- Institute of Cell Biology University of Edinburgh, West Mains Rd, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
21
|
|
22
|
Deakin JE, Chaumeil J, Hore TA, Marshall Graves JA. Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res 2009; 17:671-85. [DOI: 10.1007/s10577-009-9058-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Daish T, Grützner F. Location, location, location! Monotremes provide unique insights into the evolution of sex chromosome silencing in mammals. DNA Cell Biol 2009; 28:91-100. [PMID: 19196046 DOI: 10.1089/dna.2008.0818] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Platypus and echidnas are the only living representative of the egg-laying mammals that diverged 166 million years ago from the mammalian lineage. Despite occupying a key spot in mammalian phylogeny, research on monotremes has been limited by access to material and lack of molecular genetic resources. This has changed recently, and the sequencing of the platypus genome has promoted monotremes into a generally accessible tool in comparative genomics. The most extraordinary aspect of the monotreme genome is an amazingly complex sex chromosomes system that shares extensive homology with bird sex chromosomes and no homology with sex chromosomes of other mammals. This raises important questions about dosage compensation of the five pairs of sex chromosomes in females and meiotic silencing in males, and we are only beginning to unravel possible mechanisms and pathways that may be involved. The homology between monotreme and bird sex chromosomes makes comparison between those species worthwhile, also as they provide a well-defined example where the same sex chromosomes changed from female heterogamety (chicken) to male heterogamety (monotremes). We summarize recent research on monotreme and chicken sex chromosomes and discuss possible mechanisms that may contribute to sex chromosome silencing in monotremes.
Collapse
Affiliation(s)
- Tasman Daish
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, Australia.
| | | |
Collapse
|
24
|
Koina E, Chaumeil J, Greaves IK, Tremethick DJ, Graves JAM. Specific patterns of histone marks accompany X chromosome inactivation in a marsupial. Chromosome Res 2009; 17:115-26. [PMID: 19214764 DOI: 10.1007/s10577-009-9020-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 02/03/2023]
Abstract
The inactivation of one of the two X chromosomes in female placental mammals represents a remarkable example of epigenetic silencing. X inactivation occurs also in marsupial mammals, but is phenotypically different, being incomplete, tissue-specific and paternal. Paternal X inactivation occurs also in the extraembryonic cells of rodents, suggesting that imprinted X inactivation represents a simpler ancestral mechanism. This evolved into a complex and random process in placental mammals under the control of the XIST gene, involving notably variant and modified histones. Molecular mechanisms of X inactivation in marsupials are poorly known, but occur in the absence of an XIST homologue. We analysed the specific pattern of histone modifications using immunofluorescence on metaphasic chromosomes of a model kangaroo, the tammar wallaby. We found that all active marks are excluded from the inactive X in marsupials, as in placental mammals, so this represents a common feature of X inactivation throughout mammals. However, we were unable to demonstrate the accumulation of inactive histone marks, suggesting some fundamental differences in the molecular mechanism of X inactivation between marsupial and placental mammals. A better understanding of the epigenetic mechanisms underlying X inactivation in marsupials will provide important insights into the evolution of this complex process.
Collapse
Affiliation(s)
- Edda Koina
- Research School of Biological Sciences, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | | | |
Collapse
|
25
|
Abstract
The strategic importance of the genome sequence of the gray, short-tailed opossum, Monodelphis domestica, accrues from both the unique phylogenetic position of metatherian (marsupial) mammals and the fundamental biologic characteristics of metatherians that distinguish them from other mammalian species. Metatherian and eutherian (placental) mammals are more closely related to one another than to other vertebrate groups, and owing to this close relationship they share fundamentally similar genetic structures and molecular processes. However, during their long evolutionary separation these alternative mammals have developed distinctive anatomical, physiologic, and genetic features that hold tremendous potential for examining relationships between the molecular structures of mammalian genomes and the functional attributes of their components. Comparative analyses using the opossum genome have already provided a wealth of new evidence regarding the importance of noncoding elements in the evolution of mammalian genomes, the role of transposable elements in driving genomic innovation, and the relationships between recombination rate, nucleotide composition, and the genomic distributions of repetitive elements. The genome sequence is also beginning to enlarge our understanding of the evolution and function of the vertebrate immune system, and it provides an alternative model for investigating mechanisms of genomic imprinting. Equally important, availability of the genome sequence is fostering the development of new research tools for physical and functional genomic analyses of M. domestica that are expanding its versatility as an experimental system for a broad range of research applications in basic biology and biomedically oriented research.
Collapse
|
26
|
Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res 2008; 647:77-85. [PMID: 18778719 DOI: 10.1016/j.mrfmmm.2008.08.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 11/25/2022]
Abstract
Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation's germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
27
|
The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet 2008; 4:e1000140. [PMID: 18654631 PMCID: PMC2453332 DOI: 10.1371/journal.pgen.1000140] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/24/2008] [Indexed: 12/02/2022] Open
Abstract
Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse. Dosage compensation equalizes the expression of genes found on sex chromosomes so that they are equally expressed in females and males. In placental and marsupial mammals, this is accomplished by silencing one of the two X chromosomes in female cells. In birds, dosage compensation seems not to be strictly required to balance the expression of most genes on the Z chromosome between ZZ males and ZW females. Whether dosage compensation exists in the third group of mammals, the egg-laying monotremes, is of considerable interest, particularly since the platypus has five different X and five different Y chromosomes. As part of the platypus genome project, genes have now been assigned to four of the five X chromosomes. We have shown that there is some evidence for dosage compensation, but it is variable between genes. Most interesting are our results showing that there is a difference in the probability of expression for X-specific genes, with about 50% of female cells having two active copies of an X gene while the remainder have only one. This means that, although the platypus has the variable compensation characteristic of birds, it also has some level of inactivation, which is characteristic of dosage compensation in other mammals.
Collapse
|
28
|
Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, Garber M, Gentles AJ, Goodstadt L, Heger A, Jurka J, Kamal M, Mauceli E, Searle SMJ, Sharpe T, Baker ML, Batzer MA, Benos PV, Belov K, Clamp M, Cook A, Cuff J, Das R, Davidow L, Deakin JE, Fazzari MJ, Glass JL, Grabherr M, Greally JM, Gu W, Hore TA, Huttley GA, Kleber M, Jirtle RL, Koina E, Lee JT, Mahony S, Marra MA, Miller RD, Nicholls RD, Oda M, Papenfuss AT, Parra ZE, Pollock DD, Ray DA, Schein JE, Speed TP, Thompson K, VandeBerg JL, Wade CM, Walker JA, Waters PD, Webber C, Weidman JR, Xie X, Zody MC, Graves JAM, Ponting CP, Breen M, Samollow PB, Lander ES, Lindblad-Toh K. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 2007; 447:167-77. [PMID: 17495919 DOI: 10.1038/nature05805] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/03/2007] [Indexed: 12/15/2022]
Abstract
We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.
Collapse
Affiliation(s)
- Tarjei S Mikkelsen
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hore TA, Koina E, Wakefield MJ, Marshall Graves JA. The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 2007; 15:147-61. [PMID: 17333539 DOI: 10.1007/s10577-007-1119-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/29/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
Marsupial, as well as eutherian, mammals are subject to X chromosome inactivation in the somatic cells of females, although the phenotype and the molecular mechanism differ in important respects. Monotreme mammals appear to subscribe at least to a form of dosage compensation of X-borne genes. An important question is whether inactivation in these non-eutherian mammals involves co-ordination by a control locus homologous to the XIST gene and neighbouring genes, which play a key regulatory role in human and mouse X inactivation. We mapped BACs containing several orthologues of protein-coding genes that flank human and mouse XIST and genes that lie in the homologous region in chicken and frog. We found that these genes map to two distant locations on the opossum X, and also to different locations on a platypus autosome. We failed to find any trace of an XIST orthologue in any marsupial or monotreme or on any flanking BAC, confirming the conclusion from recent work that non-eutherian mammals lack XIST. We propose the region homologous to the human and mouse X-inactivation centre expanded in early mammals, and this unstable region was disrupted independently in marsupial and monotreme lineages. In the eutherian lineage, inserted and existing sequences provided the starting material for the non-translated RNAs of the X-inactivation centre, including XIST.
Collapse
Affiliation(s)
- Timothy A Hore
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
30
|
Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848-67. [PMID: 16847345 DOI: 10.1101/gad.1422906] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian females have two X chromosomes and males have only one. This has led to the evolution of special mechanisms of dosage compensation. The inactivation of one X chromosome in females equalizes gene expression between the sexes. This process of X-chromosome inactivation (XCI) is a remarkable example of long-range, monoallelic gene silencing and facultative heterochromatin formation, and the questions surrounding it have fascinated biologists for decades. How does the inactivation of more than a thousand genes on one X chromosome take place while the other X chromosome, present in the same nucleus, remains genetically active? What are the underlying mechanisms that trigger the initial differential treatment of the two X chromosomes? How is this differential treatment maintained once it has been established, and how are some genes able to escape the process? Does the mechanism of X inactivation vary between species and even between lineages? In this review, X inactivation is considered in evolutionary terms, and we discuss recent insights into the epigenetic changes and developmental timing of this process. We also review the discovery and possible implications of a second form of dosage compensation in mammals that deals with the unique, potentially haploinsufficient, status of the X chromosome with respect to autosomal gene expression.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
31
|
Abstract
Sex chromosomes--particularly the human Y--have been a source of fascination for decades because of their unique transmission patterns and their peculiar cytology. The outpouring of genomic data confirms that their atypical structure and gene composition break the rules of genome organization, function, and evolution. The X has been shaped by dosage differences to have a biased gene content and to be subject to inactivation in females. The Y chromosome seems to be a product of a perverse evolutionary process that does not select the fittest Y, which may cause its degradation and ultimate extinction.
Collapse
Affiliation(s)
- Jennifer A Marshall Graves
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
32
|
De Bonis ML, Cerase A, Matarazzo MR, Ferraro M, Strazzullo M, Hansen RS, Chiurazzi P, Neri G, D'Esposito M. Maintenance of X- and Y-inactivation of the pseudoautosomal (PAR2) gene SPRY3 is independent from DNA methylation and associated to multiple layers of epigenetic modifications. Hum Mol Genet 2006; 15:1123-32. [PMID: 16500999 DOI: 10.1093/hmg/ddl027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Maintenance of X-inactivation is achieved through a combination of different repressive mechanisms, thus perpetuating the silencing message through many cell generations. The second human X-Y pseudoautosomal region 2 (PAR2) is a useful model to explore the features and internal relationships of the epigenetic circuits involved in this phenomenon. Recently, we demonstrated that DNA methylation plays an essential role for the maintenance of X- and Y-inactivation of the PAR2 gene SYBL1; here we report that the silencing of the second repressed PAR2 gene, SPRY3, appears to be independent of DNA methylation. In contrast to SYBL1, the inactive X and Y alleles of SPRY3 are not reactivated in cells treated with a DNA methylation inhibitor and in cells from ICF (immunodeficiency, centromeric instability, facial anomalies) syndrome patients, which have mutations in the DNA methyltransferase gene DNMT3B. SPRY3 X- and Y-inactivation is associated with a differential enrichment of repressive histone modifications and the recruitment of Polycomb 2 group proteins compared to the active X allele. Another major factor in SPRY3 repression is late replication; the inactive X and Y alleles of SPRY3 have delayed replication relative to the active X allele, even in ICF syndrome cells where the closely linked SYBL1 gene is reactivated and advanced in replication. The relatively stable maintenance of SPRY3 silencing compared with SYBL1 suggests that genes without CpG islands may be less prone to reactivation than previously thought and that genes with CpG islands require promoter methylation as an additional layer of repression.
Collapse
MESH Headings
- Alleles
- Cell Line, Transformed
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/metabolism
- Chromosomes, Human, Y/genetics
- Chromosomes, Human, Y/metabolism
- DNA Methylation
- DNA Replication
- Epigenesis, Genetic
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Intracellular Signaling Peptides and Proteins
- Male
- Models, Genetic
- Proteins/genetics
- Proteins/metabolism
Collapse
Affiliation(s)
- M L De Bonis
- Institute of Genetics and Biophysics A. Buzzati Traverso CNR, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Koina E, Wakefield MJ, Walcher C, Disteche CM, Whitehead S, Ross M, Marshall Graves JA. Isolation, X location and activity of the marsupial homologue of SLC16A2, an XIST-flanking gene in eutherian mammals. Chromosome Res 2005; 13:687-98. [PMID: 16235118 PMCID: PMC2819140 DOI: 10.1007/s10577-005-1006-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
X chromosome inactivation (XCI) achieves dosage compensation between males and females for most X-linked genes in eutherian mammals. It is a whole-chromosome effect under the control of the XIST locus, although some genes escape inactivation. Marsupial XCI differs from the eutherian process, implying fundamental changes in the XCI mechanism during the evolution of the two lineages. There is no direct evidence for the existence of a marsupial XIST homologue. XCI has been studied for only a handful of genes in any marsupial, and none in the model kangaroo Macropus eugenii (the tammar wallaby). We have therefore studied the sequence, location and activity of a gene SLC16A2 (solute carrier, family 16, class A, member 2) that flanks XIST on the human and mouse X chromosomes. A BAC clone containing the marsupial SLC16A2 was mapped to the end of the long arm of the tammar X chromosome and used in RNA FISH experiments to determine whether one or both loci are transcribed in female cells. In male and female cells, only a single signal was found, indicating that the marsupial SLC16A2 gene is silenced on the inactivated X.
Collapse
Affiliation(s)
- Edda Koina
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Alsop AE, Miethke P, Rofe R, Koina E, Sankovic N, Deakin JE, Haines H, Rapkins RW, Marshall Graves JA. Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar wallaby). Chromosome Res 2005; 13:627-36. [PMID: 16170627 DOI: 10.1007/s10577-005-0989-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 07/05/2005] [Indexed: 11/26/2022]
Abstract
Marsupials occupy a phylogenetic middle ground that is very valuable in genome comparisons of mammal and other vertebrate species. For this reason, whole genome sequencing is being undertaken for two distantly related marsupial species, including the model kangaroo species Macropus eugenii (the tammar wallaby). As a first step towards the molecular characterization of the tammar genome, we present a detailed description of the tammar karyotype, report the development of a set of molecular anchor markers and summarize the comparative mapping data for this species.
Collapse
Affiliation(s)
- Amber E Alsop
- ARC Centre for Kangaroo Genomics, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Suzuki S, Renfree MB, Pask AJ, Shaw G, Kobayashi S, Kohda T, Kaneko-Ishino T, Ishino F. Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby. Mech Dev 2005; 122:213-22. [PMID: 15652708 DOI: 10.1016/j.mod.2004.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/21/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
Genomic imprinting is widespread amongst mammals, but has not yet been found in birds. To gain a broader understanding of the origin and significance of imprinting, we have characterized three genes, from three separate imprinted clusters in eutherian mammals in the developing fetus and placenta of an Australian marsupial, the tammar wallaby Macropus eugenii. Imprinted gene orthologues of human and mouse p57(KIP2), IGF2 and PEG1/MEST genes were isolated. p57(KIP2) did not show stable monoallelic expression suggesting that it is not imprinted in marsupials. In contrast, there was paternal-specific expression of IGF2 in almost all tissues, but the biased paternal expression of IGF2 in the fetal head and placenta, demonstrates the occurrence of tissue-specific imprinting, as occurs in mice and humans. There was also paternal-biased expression of PEG1/MESTalpha. The differentially methylated region (DMR) of the human and mouse PEG1/MEST promoter is absent in the wallaby. These data confirm the existence of common imprinted regions in eutherians and marsupials during development, but suggest that the regulatory mechanisms that control imprinted gene expression differ between these two groups of mammals.
Collapse
Affiliation(s)
- Shunsuke Suzuki
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Raefski AS, O'Neill MJ. Identification of a cluster of X-linked imprinted genes in mice. Nat Genet 2005; 37:620-4. [PMID: 15908953 DOI: 10.1038/ng1567] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 03/31/2005] [Indexed: 01/28/2023]
Abstract
Complete or partial monosomy with respect to the X chromosome is the genetic basis of Turner syndrome in human females. Individuals with Turner syndrome have a spectrum of anatomical, physiological and behavioral phenotypes with expressivity dependent on the extent of monosomy and the parental origin of the single X. Parent-of-origin influences on social cognition in Turner syndrome might be due to the presence of imprinted genes on the X. Imprinting of X-linked genes has also been implicated in the male prevalence of autistic spectrum disorders, in male sexual orientation and in the developmental delay of XO mouse embryos. The only molecular evidence for X-chromosome imprinting, however, concerns X-chromosome inactivation in specific circumstances and does not account for these phenotypes. Using a mouse model for Turner syndrome, we searched for locus-specific imprinting of X-linked genes in developing brain. We identified a cluster of X-linked genes containing at least three genes that show transcriptional repression of paternal alleles. Imprinting of these three genes, Xlr3b, Xlr4b and Xlr4c, is independent of X-chromosome inactivation and has a dynamic and complex pattern of tissue and stage specificity.
Collapse
Affiliation(s)
- Adam S Raefski
- Department of Molecular and Cell Biology, University of Connecticut, 354 Mansfield Rd., U-2131, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
37
|
Luciani JJ, Depetris D, Missirian C, Mignon-Ravix C, Metzler-Guillemain C, Megarbane A, Moncla A, Mattei MG. Subcellular distribution of HP1 proteins is altered in ICF syndrome. Eur J Hum Genet 2005; 13:41-51. [PMID: 15470359 DOI: 10.1038/sj.ejhg.5201293] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Immunodeficiency, Centromeric instability, and Facial (ICF) syndrome is a rare autosomal recessive disorder that results from mutations in the DNMT3B gene, encoding a DNA-methyltransferase that acts on GC-rich satellite DNAs. This syndrome is characterized by immunodeficiency, facial dysmorphy, mental retardation of variable severity and chromosomal abnormalities that essentially involve juxtacentromeric heterochromatin of chromosomes 1 and 16. These abnormalities demonstrate that hypomethylation of satellite DNA can induce alterations in the structure of heterochromatin. In order to investigate the effect of DNA hypomethylation on heterochromatin organization, we analyzed the in vivo distribution of HP1 proteins, essential components of heterochromatin, in three ICF patients. We observed that, in a large proportion of ICF G2 nuclei, all HP1 isoforms show an aberrant signal concentrated into a prominent bright focus that co-localizes with the undercondensed 1qh or 16qh heterochromatin. We found that SP100, SUMO-1 and other proteins from the promyelocytic leukemia nuclear bodies (NBs) form a large body that co-localizes with the HP1 signal. This is the first description of altered nuclear distribution of HP1 proteins in the constitutional ICF syndrome. Our results show that satellite DNA hypomethylation does not prevent HP1 proteins from associating with heterochromatin. They suggest that, at G2 phase, HP1 proteins are involved in the heterochromatin condensation and may therefore remain concentrated at these sites until the condensation is complete. They also indicate that proteins from the NB could play a role in this process. Finally, satellite DNA length polymorphism could affect the efficiency of heterochromatin condensation and thus contribute to the variability of the ICF phenotype.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Centromere/genetics
- Child, Preschool
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/genetics
- Chromosome Aberrations
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 16/genetics
- DNA Methylation
- DNA, Satellite/metabolism
- Face/abnormalities
- Female
- G2 Phase
- Heterochromatin/genetics
- Heterochromatin/metabolism
- Humans
- Immunologic Deficiency Syndromes/genetics
- In Situ Hybridization, Fluorescence
- Infant
- Karyotyping
- Leukemia, Promyelocytic, Acute/genetics
- Mutation/genetics
- Protein Isoforms
- Syndrome
Collapse
|
38
|
Wako T, Murakami Y, Fukui K. Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley cells. Genes Genet Syst 2005; 80:269-76. [PMID: 16284420 DOI: 10.1266/ggs.80.269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle.
Collapse
Affiliation(s)
- Toshiyuki Wako
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | |
Collapse
|
39
|
Abstract
The genome of monotremes, like the animals themselves, is unique and strange. The importance of monotremes to genomics depends on their position as the earliest offshoot of the mammalian lineage. Although there has been controversy in the literature over the phylogenetic position of monotremes, this traditional interpretation is now confirmed by recent sequence comparisons. Characterizing the monotreme genome will therefore be important for studying the evolution and organization of the mammalian genome, and the proposal to sequence the platypus genome has been received enthusiastically by the genomics community. Recent investigations of X-chromosome inactivation, genomic imprinting and sex chromosome evolution provide good examples of the power of the monotreme genome to inform us about mammalian genome organization and evolution.
Collapse
Affiliation(s)
- Frank Grützner
- Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, Australian Capital Territory 2601, Australia.
| | | |
Collapse
|
40
|
Disteche CM, Filippova GN, Tsuchiya KD. Escape from X inactivation. Cytogenet Genome Res 2004; 99:36-43. [PMID: 12900543 DOI: 10.1159/000071572] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 02/14/2003] [Indexed: 11/19/2022] Open
Abstract
Although the process of X inactivation in mammalian cells silences the majority of genes on the inactivated X chromosome, some genes escape this chromosome-wide silencing. Genes that escape X inactivation present a unique opportunity to study the process of silencing and the mechanisms that protect some genes from being turned off. In this review, we will discuss evolutionary aspects of escape from X inactivation, in relation to the divergence of the sex chromosomes. Molecular characteristics, expression, and epigenetic modifications of genes that escape will be presented, including their developmental regulation and the implications of chromatin domains along the X chromosome in modeling the escape process.
Collapse
Affiliation(s)
- C M Disteche
- Department of Pathology, University of Washington, Seattle WA 98195, USA.
| | | | | |
Collapse
|
41
|
Reik W, Murrell A, Lewis A, Mitsuya K, Umlauf D, Dean W, Higgins M, Feil R. Chromosome loops, insulators, and histone methylation: new insights into regulation of imprinting in clusters. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:29-37. [PMID: 16117630 DOI: 10.1101/sqb.2004.69.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- W Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Grützner F, Deakin J, Rens W, El-Mogharbel N, Marshall Graves JA. The monotreme genome: a patchwork of reptile, mammal and unique features? Comp Biochem Physiol A Mol Integr Physiol 2003; 136:867-81. [PMID: 14667850 DOI: 10.1016/j.cbpb.2003.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first specimen of platypus (Ornithorhynchus anatinus) that reached Britain in the late 18th century was regarded a scientific hoax. Over decades the anatomical characteristics of these unique mammals, such as egg laying and the existence of mammary glands, were hotly debated before they were accepted. Within the last 40 years, more and more details of monotreme physiology, histology, reproduction and genetics have been revealed. Some show similarities with birds or reptiles, some with therian mammals, but many are very specific to monotremes. The genome is no exception to monotreme uniqueness. An early opinion was that the karyotype, composed of a few large chromosomes and many small ones, resembled bird and reptile macro- and micro-chromosomes. However, the platypus genome also features characteristics that are not present in other mammals, such as a complex translocation system. The sex chromosome system is still not resolved. Nothing is known about dosage compensation and, unlike in therian mammals, there seems to be no genomic imprinting. In this article we will recount the mysteries of the monotreme genome and describe how we are using recently developed technology to identify chromosomes in mitosis, meiosis and sperm, to map genes to chromosomes, to unravel the sex chromosome system and the translocation chain and investigate X inactivation and genomic imprinting in monotremes.
Collapse
Affiliation(s)
- Frank Grützner
- Research School of Biological Sciences, Australian National University, G.P.O. Box 475, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | |
Collapse
|
43
|
Wakefield MJ, Graves JAM. The kangaroo genome. Leaps and bounds in comparative genomics. EMBO Rep 2003; 4:143-7. [PMID: 12612602 PMCID: PMC1315837 DOI: 10.1038/sj.embor.embor739] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Accepted: 12/18/2002] [Indexed: 11/09/2022] Open
Abstract
The kangaroo genome is a rich and unique resource for comparative genomics. Marsupial genetics and cytology have made significant contributions to the understanding of gene function and evolution, and increasing the availability of kangaroo DNA sequence information would provide these benefits on a genomic scale. Here we summarize the contributions from cytogenetic and genetic studies of marsupials, describe the genomic resources currently available and those being developed, and explore the benefits of a kangaroo genome project.
Collapse
Affiliation(s)
- Matthew J Wakefield
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
44
|
Abstract
Marsupials, the 'other' mammals, are found only in Australasia and the Americas. They are quite different from eutherian ('placental') mammals, as well they might be after 130 million years of separate evolution. They display a unique pattern of mammalian organization and development that is reflected by differences in their genomes. Here, we introduce marsupials as alternative (but not inferior!) mammals and summarize the state of knowledge of marsupial relationships, marsupial chromosomes, maps, genes and genetic regulatory systems. We shamelessly present the case for a Kangaroo Genome Project.
Collapse
Affiliation(s)
- Jennifer A Marshall Graves
- Comparative Genomics Research Group, Research School of Biological Science, Australian National University, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
45
|
Wako T, Fukuda M, Furushima-Shimogawara R, Belyaev ND, Fukui K. Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. PLANT MOLECULAR BIOLOGY 2002; 49:645-53. [PMID: 12081372 DOI: 10.1023/a:1015554124675] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histone acetylation affects chromatin conformation and regulates various cellular functions, such as transcription and cell cycle progression. Although mitosis dependent transcriptional silencing and large-scale chromatin structural changes are well established, acetylation of histone H4 during the mitosis is poorly understood in plants. Here, the dynamics of acetylation of histone H4 in defined genome regions has been examined in the fixed barley cells throughout the mitosis by three-dimensional microscopy. Patterns of strong acetylation of the two lysine residues K5 and K16 of histone H4 in the barley genomes were found to be different. In interphase nuclei, H4 acetylated at K 16 was associated with the gene-rich, telomere-associated hemispheres, whereas K5 acetylation was detected in centromeric regions where the heterochromatin is distributed. Regions of strong K5 acetylation changed dynamically as the cell cycle proceeded. At prometaphase, centromeric acetylation at K5 decreased suddenly, with accompanying rapid increases of acetylation in the nucleolar organizing regions (NORs). Reverse changes occurred at telophase. On the other hand, the strongly acetylated regions of the K16 showed changes compatible with transcriptional activities and chromosome condensation throughout the cell cycle. Telomeric acetylation at K16 was detected throughout the cell cycle, although it was reduced at metaphase which corresponds to the most condensed stage of the chromosomes. It is concluded that dynamic changes in H4 acetylation occur in a lysine residue-, stage-, and region-specific manner and that they correlate with changes in the chromosome structure through the cell cycle.
Collapse
Affiliation(s)
- Toshiyuki Wako
- Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
46
|
El-Osta A, Kantharidis P, Zalcberg JR, Wolffe AP. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol Cell Biol 2002; 22:1844-57. [PMID: 11865062 PMCID: PMC135609 DOI: 10.1128/mcb.22.6.1844-1857.2002] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of the human multidrug resistance gene 1 (MDR1) is a negative prognostic factor in leukemia. Despite intense efforts to characterize the gene at the molecular level, little is known about the genetic events that switch on gene expression in P-glycoprotein-negative cells. Recent studies have shown that the transcriptional competence of MDR1 is often closely associated with DNA methylation. Chromatin remodeling and modification targeted by the recognition of methylated DNA provide a dominant mechanism for transcriptional repression. Consistent with this epigenetic model, interference with DNA methyltransferase and histone deacetylase activity alone or in combination can reactivate silent genes. In the present study, we used chromatin immunoprecipitation to monitor the molecular events involved in the activation and repression of MDR1. Inhibitors of DNA methyltransferase (5-azacytidine [5aC]) and histone deacetylase (trichostatin A [TSA]) were used to examine gene transcription, promoter methylation status, and the chromatin determinants associated with the MDR1 promoter. We have established that methyl-CpG binding protein 2 (MeCP2) is involved in methylation-dependent silencing of human MDR1 in cells that lack the known transcriptional repressors MBD2 and MBD3. In the repressed state the MDR1 promoter is methylated and assembled into chromatin enriched with MeCP2 and deacetylated histone. TSA induced significant acetylation of histones H3 and H4 but did not activate transcription. 5aC induced DNA demethylation, leading to the release of MeCP2, promoter acetylation, and partial relief of repression. MDR1 expression was significantly increased following combined 5aC and TSA treatments. Inhibition of histone deacetylase is not an overriding mechanism in the reactivation of methylated MDR1. Our results provide us with a clearer understanding of the molecular mechanism necessary for repression of MDR1.
Collapse
Affiliation(s)
- Assam El-Osta
- Sir Donald & Lady Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, St. Andrews Place, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
47
|
Abstract
The X chromosomes of mammals and fruit flies exhibit unusual properties that have evolved to deal with the different dosages of X-linked genes in males (XY) and females (XX). The X chromosome dosage-compensation mechanisms discovered in these species are evolutionarily unrelated, but exhibit surprising parallels in their regulatory strategies. These features include the importance of noncoding RNAs, and epigenetic spreading of chromatin-modifying activities. Sex chromosomes have posed a fascinating puzzle for biologists. The dissimilar organization, gene content, and regulation of the X and Y chromosomes are thought to reflect selective forces acting on original pairs of identical chromosomes (1-3). The result in many organisms is a male-specific Y chromosome that has lost most of its original genetic content, and a difference in dosage of the X chromosome in males (XY) and females (XX).
Collapse
Affiliation(s)
- Y Park
- Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Capco DG. Molecular and biochemical regulation of early mammalian development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 207:195-235. [PMID: 11352267 DOI: 10.1016/s0074-7696(01)07006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fertilization initiates a rapid series of changes that restructures the egg into the zygote and initiates the program of early development. These changes in the cell occur while the genetic complement of the egg and sperm are in a highly condensed state and unable to participate in transcription. The egg cytoplasm, formed by the maternal genome, contains the necessary components that mediate the early restructuring of egg into zygote. These changes are mediated by a series of cytoplasmic signal transduction events initiated by the rise in [Ca2+]i caused when the sperm penetrates the egg. The structural changes that the egg undergoes are rapid and result in the extensive remodeling of this specialized cell. Protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaM KII) are two pivotal signaling agents that mediate several of these rapid modifications in cell structure. Studies indicate the meiotic spindle serves as an architectural element in the egg that acts to colocalize elements from several of the key signaling pathways and may provide a means for these pathways to interact. In mammals, transcription begins earlier than in zygotes from other classes of organisms, starting several hours after fertilization in the male and female pronuclei and continuing in the embryonic nuclei. Studies indicate that nuclei undergo an initial state that is permissive for transcription, and then in Gap 2 of the two-cell embryo, enter a transcriptionally repressive state. These changes have been linked to the times during the cell cycle when the DNA is replicated, and also have been proposed as a requirement for proper initiation of the program of early development.
Collapse
Affiliation(s)
- D G Capco
- Department of Biology, Molecular and Cellular Biology Program, Arizona State University, Tempe 85287, USA
| |
Collapse
|
49
|
Surrallés J, Natarajan AT. Position effect of translocations involving the inactive X chromosome: physical linkage to XIC/XIST does not lead to long-range de novo inactivation in human differentiated cells. CYTOGENETICS AND CELL GENETICS 2000; 82:58-66. [PMID: 9763661 DOI: 10.1159/000015065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Given the reported long-range cis-inactivating effect of the XIST gene in early embryonic development and the lack of requirement of X-chromosome-specific elements for propagating the inactive state, there exists the possibility of cis inactivation of autosomal material after de novo translocation to an inactive X chromosome (Xi) in differentiated cells. We have analyzed de novo radiation-induced translocations between the Xi and autosomes to study the maintenance and spreading of X-chromosome inactivation (X inactivation) in relation to the position of the X-inactivation center (XIC)/XIST in differentiated cells. Autosome/Xi translocations were detected by fluorescence in situ hybridization (FISH). The activation status of the chromosomes involved in the translocation was determined by simultaneous immunocytogenetic studies using antibodies against either BrdU incorporated at late S phase or acetylated histone H4. The position of XIC/XIST in the reciprocal products of the translocation was determined by XIST-specific FISH and computer enhancement. In other experiments, the Xq13 region carrying XIC/XIST was localized by computer enhancement of the DAPI banding pattern. Our study in differentiated cells provides a visual demonstration that physical separation from XIC/XIST does not result in reactivation of inactive X-chromosome material and that X inactivation is not spread to the translocated autosomes irrespective of the position of XIC/XIST. This observation suggests that physical linkage to XIC/XIST does not lead to de novo inactivation of autosomal material.
Collapse
Affiliation(s)
- J Surrallés
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
50
|
Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 2000; 350 Pt 1:199-205. [PMID: 10926844 PMCID: PMC1221242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Histone deacetylases (HDACs) are a growing family of enzymes implicated in transcriptional regulation by affecting the acetylation state of core histones in the nucleus of cells. HDACs are known to have key roles in the regulation of cell proliferation [Brehm, Miska, McCance, Reid, Bannister and Kouzarides (1998) Nature (London) 391, 597-600], and aberrant recruitment of an HDAC complex has been shown to be a key step in the mechanism of cell transformation in acute promyelocytic leukaemia [Grignani, De Matteis, Nervi, Tomassoni, Gelmetti, Cioce, Fanelli, Ruthardt, Ferrara, Zamir et al. (1998) Nature (London) 391, 815-818; Lin, Nagy, Inoue, Shao, Miller and Evans (1998), Nature (London) 391, 811-814]. Here we present the complete nucleotide sequence of a cDNA clone, termed HDAC8, that encodes a protein product with similarity to the RPD3 class (I) of HDACs. The predicted 377-residue HDAC8 product contains a shorter C-terminal extension relative to other members of its class. After expression in two cell systems, immunopurified HDAC8 is shown to possess trichostatin A- and sodium butyrate-inhibitable HDAC activity on histone H4 peptide substrates as well as on core histones. Expression profiling reveals the expression of HDAC8 to various degrees in every tissue tested and also in several tumour lines. Mutation of two adjacent histidine residues within the predicted active site severely decreases activity, confirming these residues as important for HDAC8 enzyme activity. Finally, linkage analysis after radiation hybrid mapping has localized HDAC8 to chromosomal position Xq21.2-Xq21.3. These results confirm HDAC8 as a new member of the HDAC family.
Collapse
Affiliation(s)
- J J Buggy
- AXYS Pharmaceuticals, 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|