1
|
Guzmán-Beltrán S, Juárez E, Cruz-Muñoz BL, Páez-Cisneros CA, Sarabia C, González Y. Bactericidal Permeability-Increasing Protein (BPI) Inhibits Mycobacterium tuberculosis Growth. Biomolecules 2024; 14:475. [PMID: 38672491 PMCID: PMC11048543 DOI: 10.3390/biom14040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils, eosinophils, fibroblasts, and macrophages with antibacterial anti-inflammatory properties. In the context of Gram-negative infection, BPI kills bacteria, neutralizes the endotoxic activity of lipopolysaccharides (LPSs), and, thus, avoids immune hyperactivation. Interestingly, BPI increases in patients with Gram-positive meningitis, interacts with lipopeptides and lipoteichoic acids of Gram-positive bacteria, and significantly enhances the immune response in peripheral blood mononuclear cells. We evaluated the antimycobacterial and immunoregulatory properties of BPI in human macrophages infected with Mycobacterium tuberculosis. Our results showed that recombinant BPI entered macrophages, significantly reduced the intracellular growth of M. tuberculosis, and inhibited the production of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Furthermore, BPI decreased bacterial growth directly in vitro. These data suggest that BPI has direct and indirect bactericidal effects inhibiting bacterial growth and potentiating the immune response in human macrophages and support that this new protein's broad-spectrum antibacterial activity has the potential for fighting tuberculosis.
Collapse
Affiliation(s)
- Silvia Guzmán-Beltrán
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosio Villegas, Mexico City 14080, Mexico; (E.J.); (B.L.C.-M.); (C.A.P.-C.); (C.S.); (Y.G.)
| | | | | | | | | | | |
Collapse
|
2
|
Gerlach RG, Wittmann I, Heinrich L, Pinkenburg O, Meyer T, Elpers L, Schmidt C, Hensel M, Schnare M. Subversion of a family of antimicrobial proteins by Salmonella enterica. Front Cell Infect Microbiol 2024; 14:1375887. [PMID: 38505286 PMCID: PMC10948614 DOI: 10.3389/fcimb.2024.1375887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Salmonella enterica is a food-borne pathogen able to cause a wide spectrum of diseases ranging from mild gastroenteritis to systemic infections. During almost all stages of the infection process Salmonella is likely to be exposed to a wide variety of host-derived antimicrobial peptides (AMPs). AMPs are important components of the innate immune response which integrate within the bacterial membrane, thus forming pores which lead ultimately to bacterial killing. In contrast to other AMPs Bactericidal/Permeability-increasing Protein (BPI) displayed only weak bacteriostatic or bactericidal effects towards Salmonella enterica sv. Typhimurium (STM) cultures. Surprisingly, we found that sub-antimicrobial concentrations of BPI fold-containing (BPIF) superfamily members mediated adhesion of STM depending on pre-formed type 1 fimbriae. BPIF proteins directly bind to type 1 fimbriae through mannose-containing oligosaccharide modifications. Fimbriae decorated with BPIF proteins exhibit extended binding specificity, allowing for bacterial adhesion on a greater variety of abiotic and biotic surfaces likely promoting host colonization. Further, fimbriae significantly contributed to the resistance against BPI, probably through sequestration of the AMP before membrane interaction. In conclusion, functional subversion of innate immune proteins of the BPIF family through binding to fimbriae promotes Salmonella virulence by survival of host defense and promotion of host colonization.
Collapse
Affiliation(s)
- Roman G. Gerlach
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen and Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
- Robert Koch Institute, Wernigerode, Germany
| | - Irene Wittmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen and Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | | | - Olaf Pinkenburg
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Torben Meyer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Laura Elpers
- Division of Microbiology and CellNanOs – Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University Osnabrück, Osnabrück, Germany
| | | | - Michael Hensel
- Division of Microbiology and CellNanOs – Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University Osnabrück, Osnabrück, Germany
| | - Markus Schnare
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
3
|
Wang Y, Kong Q, Zhang Q, Ma T, An Y, Zhou YJ, Zhang X, Cao B. BPI 23-Fcγ alleviates lethal multi-drug-resistant Acinetobacter baumannii infection by enhancing bactericidal activity and orchestrating neutrophil function. Int J Antimicrob Agents 2024; 63:107002. [PMID: 37838150 DOI: 10.1016/j.ijantimicag.2023.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Antibiotic resistance has become a major threat, contributing significantly to morbidity and mortality globally. Administering non-antibiotic therapy, such as antimicrobial peptides, is one potential strategy for effective treatment of multi-drug-resistant Gram-negative bacterial infections. Bactericidal/permeability-increasing protein (BPI) derived from neutrophils has bactericidal and endotoxin-neutralizing activity. However, the protective roles and mechanisms of BPI in multi-drug-resistant bacterial infections have not been fully elucidated. In this study, a chimeric BPI23-Fcγ recombined protein comprising the functional N terminus of BPI and Fcγ was constructed and expressed by adenovirus vector 5 (Ad5). Ad5-BPI23-Fcγ or recombinant BPI23-Fcγ protein significantly improved the survival of mice with pneumonia induced by a minimal lethal dose of multi-drug-resistant Acinetobacter baumannii or Klebsiella pneumoniae by ameliorating lung pathology and reducing pro-inflammatory cytokines. Transfection with Ad5-BPI23-Fcγ significantly decreased the bacterial load and endotoxaemia, which was associated with enhanced bactericidal ability and elevated the phagocytic activity of neutrophils in vitro and in vivo. In addition, Ad5-BPI23-Fcγ transfection significantly increased the recruitment of neutrophils to lung, increased the proportion and number of neutrophils in peripheral blood, and promoted the maturation of bone marrow (BM) neutrophils after drug-resistant A. baumannii infection. BPI23-Fcγ and neutrophils synergistically enhanced bactericidal activity and decreased pro-inflammatory cytokines. These results demonstrated that the chimeric BPI23-Fcγ protein protected mice from pneumonia induced by multi-drug-resistant A. baumannii infection by direct bactericidal effects and promotion of neutrophil recruitment, phagocytosis and maturation. Chimeric BPI23-Fcγ may be a promising candidate as a non-antibiotic biological agent for multi-drug-resistant A. baumannii infection.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qingli Kong
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qi Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianxiao Ma
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yunqing An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu-Jie Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China; Department of Pulmonary and Critical Care Medicine, Centre of Respiratory Medicine, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Tsinghua University School of Medicine, Beijing, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
4
|
Robledo D, Ogwang J, Byakora E, Schulze JN, Benda KK, Fraslin C, Salisbury S, Solimo M, Mayega JF, Peter B, Masembe C, Houston R, Mukiibi R. Genetic diversity and population structure of farmed and wild Nile tilapia (Oreochromis niloticus) in Uganda: The potential for aquaculture selection and breeding programs. Genomics 2024; 116:110781. [PMID: 38182036 DOI: 10.1016/j.ygeno.2024.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Joel Ogwang
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Ezra Byakora
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Jennifer Nascimento Schulze
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel 24105, Germany
| | - Katali Kirungi Benda
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Clemence Fraslin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Moses Solimo
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Johnson Francis Mayega
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| | - Beine Peter
- National Animal Genetics Resources Centre and Data Bank (NAGRC&DB), P.O. Box 183, Nsamizi Road, Entebbe, Uganda
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| | - Ross Houston
- Benchmark Genetics, 1 Pioneer Building, Edinburgh Technopole, Penicuik EH26 0GB, United Kingdom
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
5
|
Solov'eva TF, Bakholdina SI, Naberezhnykh GA. Host Defense Proteins and Peptides with Lipopolysaccharide-Binding Activity from Marine Invertebrates and Their Therapeutic Potential in Gram-Negative Sepsis. Mar Drugs 2023; 21:581. [PMID: 37999405 PMCID: PMC10672452 DOI: 10.3390/md21110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Sepsis is a life-threatening complication of an infectious process that results from the excessive and uncontrolled activation of the host's pro-inflammatory immune response to a pathogen. Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative bacteria's outer membrane, plays a key role in the development of Gram-negative sepsis and septic shock in humans. To date, no specific and effective drug against sepsis has been developed. This review summarizes data on LPS-binding proteins from marine invertebrates (ILBPs) that inhibit LPS toxic effects and are of interest as potential drugs for sepsis treatment. The structure, physicochemical properties, antimicrobial, and LPS-binding/neutralizing activity of these proteins and their synthetic analogs are considered in detail. Problems that arise during clinical trials of potential anti-endotoxic drugs are discussed.
Collapse
Affiliation(s)
- Tamara Fedorovna Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Svetlana Ivanovna Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | | |
Collapse
|
6
|
Holzinger JM, Toelge M, Werner M, Ederer KU, Siegmund HI, Peterhoff D, Blaas SH, Gisch N, Brochhausen C, Gessner A, Bülow S. Scorpionfish BPI is highly active against multiple drug-resistant Pseudomonas aeruginosa isolates from people with cystic fibrosis. eLife 2023; 12:e86369. [PMID: 37461324 PMCID: PMC10353861 DOI: 10.7554/elife.86369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023] Open
Abstract
Chronic pulmonary infection is a hallmark of cystic fibrosis (CF) and requires continuous antibiotic treatment. In this context, Pseudomonas aeruginosa (Pa) is of special concern since colonizing strains frequently acquire multiple drug resistance (MDR). Bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived, endogenous protein with high bactericidal potency against Gram-negative bacteria. However, a significant range of people with CF (PwCF) produce anti-neutrophil cytoplasmic antibodies against BPI (BPI-ANCA), thereby neutralizing its bactericidal function. In accordance with literature, we describe that 51.0% of a total of 39 PwCF expressed BPI-ANCA. Importantly, an orthologous protein to human BPI (huBPI) derived from the scorpionfish Sebastes schlegelii (scoBPI) completely escaped recognition by these autoantibodies. Moreover, scoBPI exhibited high anti-inflammatory potency towards Pa LPS and was bactericidal against MDR Pa derived from PwCF at nanomolar concentrations. In conclusion, our results highlight the potential of highly active orthologous proteins of huBPI in treatment of MDR Pa infections, especially in the presence of BPI-ANCA.
Collapse
Affiliation(s)
- Jonas Maurice Holzinger
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Katharina Ursula Ederer
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| | | | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | | | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene Regensburg, University of Regensburg, Regensburg, Germany
| | - Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene Regensburg, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Scanu A, Luisetto R, Oliviero F, Galuppini F, Lazzarin V, Pennelli G, Masiero S, Punzi L. Bactericidal/Permeability-Increasing Protein Downregulates the Inflammatory Response in In Vivo Models of Arthritis. Int J Mol Sci 2022; 23:ijms232113066. [PMID: 36361854 PMCID: PMC9656099 DOI: 10.3390/ijms232113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the effects of bactericidal/permeability-increasing protein (BPI) alone or in combination with hyaluronic acid (HA) in two animal models: collagen-induced arthritis (CIA) and crystal-induced inflammation. In CIA, mice were intraperitoneally injected with PBS, HA, or BPI plus or minus HA, twice a week for 2 months, and then euthanized to collect paw and blood. Arthritis was assessed in ankle joints by clinical and histological evaluation. Pathogenic crystals were intraperitoneally injected in mice plus or minus BPI, or with a composition of BPI and HA. After sacrifice, total and differential leukocyte counts were determined. Cytokine levels were measured in serum and peritoneal fluids. In CIA mice, BPI improved clinical and histological outcomes (histological scores ≥2-fold), and downregulated inflammatory mediators (47–93%). In crystal-induced inflammation, BPI reduced leukocyte infiltration (total count: ≥60%; polymorphonuclear cells: ≥36%) and inhibited cytokine production (35–74%). In both models, when mice were co-treated with BPI and HA, the improvement of all parameters was greater than that observed after administration of the two substances alone. Results show that BPI attenuates CIA and inflammation in mice, and this effect is enhanced by HA co-administration. Combined use of BPI and HA represents an interesting perspective for new potential treatments in arthritis.
Collapse
Affiliation(s)
- Anna Scanu
- Rehabilitation Unit, Department of Neuroscience—DNS, University of Padova, 35128 Padova, Italy
- Correspondence:
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology—DISCOG, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Vanni Lazzarin
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience—DNS, University of Padova, 35128 Padova, Italy
| | - Leonardo Punzi
- Centre for Gout and Metabolic Bone and Joint Diseases, Rheumatology, SS Giovanni and Paolo Hospital, 30122 Venice, Italy
| |
Collapse
|
8
|
Liu Y, Zha H, Han X, Yu S, Chai Y, Zhong J, Zhu Q. Molecular characterization and functional analysis of the bactericidal permeability-increasing protein/LPS-binding protein (BPI/LBP) from roughskin sculpin (Trachidermus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104133. [PMID: 34000320 DOI: 10.1016/j.dci.2021.104133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide (LPS) binding proteins (LBP) both play important roles in innate immunity against bacterial infection. Herein, we identified a novel full-length cDNA sequence of BPI/LBP from Trachidermus fasciatus (designated as TfBPI/LBP). The full-length cDNA sequence of TfBPI/LBP was 1594bp, which contains an open reading frame (ORF) of 1422bp encoding a secreted protein with 473 amino acid residues. Similar to BPI/LBPs from other teleost and mammals, the peptide of TfBPI/LBP contains an N-terminal BPI/LBP/CETP domain with an LPS-binding motif and a C-terminal BPI/LBP/CETP domain BPI2. Multiple alignments and phylogenetic analysis supported that TfBPI/LBP was a new member of the vertebrate BPI/LBP family. TfBPI/LBP gene was ubiquitously expressed in all detected tissues, with the most abundant in the liver, and could be significantly induced in the skin, blood, liver, spleen post LPS challenge. The recombinant N-terminal domain of TfBPI/LBP (designated as rTfBPI/LBPN) was successfully expressed in Escherichia coli. Sugar binding assay showed that rTfBPI/LBPN could bind to LPS, peptidoglycan (PGN), and lipoteichoic acid (LTA), with the highest affinity to LPS. The results of bacteria binding and agglutinating assay revealed that rTfBPI/LBPN could bind and agglutinate to all of the 9 kinds of bacteria we used. Moreover, membrane integrity analysis indicated that rTfBPI/LBPN could increase the membrane permeability of bacteria. These results suggested that BPI/LBP may play crucial roles in host defense against microorganisms, possibly through non-selective bacterial recognition and induction of membrane penetration.
Collapse
Affiliation(s)
- Yingying Liu
- Ocean College, Shandong University (Weihai), Weihai, 264209, China
| | - Haidong Zha
- Ocean College, Shandong University (Weihai), Weihai, 264209, China
| | - Xiaodi Han
- Ocean College, Shandong University (Weihai), Weihai, 264209, China
| | - Shanshan Yu
- Ocean College, Shandong University (Weihai), Weihai, 264209, China
| | - Yingmei Chai
- Ocean College, Shandong University (Weihai), Weihai, 264209, China
| | - Jinmiao Zhong
- Ocean College, Shandong University (Weihai), Weihai, 264209, China
| | - Qian Zhu
- Ocean College, Shandong University (Weihai), Weihai, 264209, China.
| |
Collapse
|
9
|
Theprungsirikul J, Skopelja-Gardner S, Wierzbicki RM, Sessions KJ, Rigby WFC. Differential Enhancement of Neutrophil Phagocytosis by Anti-Bactericidal/Permeability-Increasing Protein Antibodies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:777-783. [PMID: 34272233 PMCID: PMC8354091 DOI: 10.4049/jimmunol.2100378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022]
Abstract
Bactericidal/permeability-increasing protein (BPI) plays a major role in innate immunity through the ability of the N-terminal domain (NTD) to bind LPS, mediate cytotoxicity, and block LPS-induced inflammation. The C-terminal domain mediates phagocytosis of bacteria bound to the NTD. These two domains are linked by a surface-exposed loop at amino acids 231-249 for human BPI, known as the "hinge region." Autoantibodies to human BPI are prevalent in many chronic lung diseases; their presence is strongly correlated with Pseudomonas aeruginosa and with worse lung function in patients with cystic fibrosis and bronchiectasis. Although prior literature has reported BPI neutralization effect with autoantibodies targeting either NTD or C-terminal domain, the functionality of BPI Ab to the hinge region has never been investigated. Here, we report that Ab responses to the BPI hinge region mediate a remarkably selective potentiation of BPI-dependent phagocytosis of P. aeruginosa with both human and murine neutrophils in vitro and in vivo. These findings indicate that autoantibodies to the BPI hinge region might enhance bacterial clearance.
Collapse
Affiliation(s)
- Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH; and
| | - Sladjana Skopelja-Gardner
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Rachel M Wierzbicki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH; and
| | - Katherine J Sessions
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - William F C Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH; and
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
10
|
Theprungsirikul J, Skopelja-Gardner S, Rigby WF. Killing three birds with one BPI: Bactericidal, opsonic, and anti-inflammatory functions. J Transl Autoimmun 2021; 4:100105. [PMID: 34142075 PMCID: PMC8187252 DOI: 10.1016/j.jtauto.2021.100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/17/2023] Open
Abstract
Bactericidal/permeability-increasing protein (BPI) is an anti-microbial protein predominantly expressed in azurophilic granules of neutrophils. BPI has been shown to mediate cytocidal and opsonic activity against Gram-negative bacteria, while also blunting inflammatory activity of lipopolysaccharide (LPS). Despite awareness of these functions in vitro, the magnitude of the contribution of BPI to innate immunity remains unclear, and the nature of the functional role of BPI in vivo has been submitted to limited investigation. Understanding this role takes on particular interest with the recognition that autoimmunity to BPI is tightly linked to a specific infectious trigger like Pseudomonas aeruginosa in chronic lung infection. This has led to the notion that anti-BPI autoantibodies compromise the activity of BPI in innate immunity against P. aeruginosa, which is primarily mediated by neutrophils. In this review, we explore the three main mechanisms in bactericidal, opsonic, and anti-inflammatory of BPI. We address the etiology and the effects of BPI autoreactivity on BPI function. We explore BPI polymorphism and its link to multiple diseases. We summarize BPI therapeutic potential in both animal models and human studies, as well as offer therapeutic approaches to designing a sustainable and promising BPI molecule.
Collapse
Affiliation(s)
- Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Sladjana Skopelja-Gardner
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F.C. Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
11
|
Gu QQ, He SW, Liu LH, Wang GH, Hao DF, Liu HM, Wang CB, Li C, Zhang M, Li NQ. A teleost bactericidal permeability-increasing protein-derived peptide that possesses a broad antibacterial spectrum and inhibits bacterial infection as well as human colon cancer cells growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103995. [PMID: 33412232 DOI: 10.1016/j.dci.2021.103995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
The bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils with antibacterial, antitumor, and LPS-neutralizing properties. In teleost, a number of BPIs have been reported, but their functions are very limited. In this study, an N-terminal peptide, BO18 (with 18 amino acids), derived from rock bream (Oplegnathus fasciatus) BPI, was synthesized and investigated for its antibacterial spectrum, action mechanism, immunoregulatory property as well as the inhibition effects on bacterial invasion and human colon cancer cells growth. The results showed that BO18 was active against Gram-positive bacteria Bscillus subiilis, Micrococcus luteus, and Staphylococcus aureus, as well as Gram-negative bacteria Vibrio alginolyticus, Vibrio litoralis, Vibrio parahaemolyticus and Vibrio vulnificus. BO18 treatment facilitated the bactericidal process of erythromycin and rifampicin by enhancing the permeability of the outer membrane. During its interaction with V. alginolyticus, BO18 exerted its antibacterial activity by destroying cell membrane integrity, penetrating into the cytoplasm and binding to genomic DNA and total RNA. In vitro analysis indicated BO18 could enhance the respiratory burst ability and regulate the expression of immune related genes of macrophages. In vivo detection showed the administration of fish with BO18 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. In addition, BO18 exerted a cytotoxic effect on the growth of human colon cancer cells HT-29. Together, these results add new insights into the function of teleost BPIs, and support that BO18 is a novel and broad-spectrum antibacterial peptide with potential to apply in fighting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shu-Wen He
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Li-Hui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China.
| |
Collapse
|
12
|
Theprungsirikul J, Skopelja-Gardner S, Burns AS, Wierzbicki RM, Rigby WFC. Bactericidal/Permeability-Increasing Protein Preeminently Mediates Clearance of Pseudomonas aeruginosa In Vivo via CD18-Dependent Phagocytosis. Front Immunol 2021; 12:659523. [PMID: 33981306 PMCID: PMC8107240 DOI: 10.3389/fimmu.2021.659523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic Pseudomonas aeruginosa infection mysteriously occurs in the airways of patients with cystic fibrosis (CF), bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD) in the absence of neutrophil dysfunction or neutropenia and is strongly associated with autoimmunity to bactericidal permeability-increasing protein (BPI). Here, we define a critical role for BPI in in vivo immunity against P. aeruginosa. Wild type and BPI-deficient (Bpi-/-) mice were infected with P. aeruginosa, and bacterial clearance, cell infiltrates, cytokine production, and in vivo phagocytosis were quantified. Bpi-/- mice exhibited a decreased ability to clear P. aeruginosa in vivo in concert with increased neutrophil counts and cytokine release. Bpi-/- neutrophils displayed decreased phagocytosis that was corrected by exogenous BPI in vitro. Exogenous BPI also enhanced clearance of P. aeruginosa in Bpi-/- mice in vivo by increasing P. aeruginosa uptake by neutrophils in a CD18-dependent manner. These data indicate that BPI plays an essential role in innate immunity against P. aeruginosa through its opsonic activity and suggest that perturbations in BPI levels or function may contribute to chronic lung infection with P. aeruginosa.
Collapse
Affiliation(s)
- Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Sladjana Skopelja-Gardner
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Ashley S. Burns
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rachel M. Wierzbicki
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F. C. Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
13
|
Zhou Y, Qiu N, Mine Y, Keast R, Meng Y. Comparative N-Glycoproteomic Analysis Provides Novel Insights into the Deterioration Mechanisms in Chicken Egg Vitelline Membrane during High-Temperature Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2354-2363. [PMID: 33566602 DOI: 10.1021/acs.jafc.0c07557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The weakening of chicken egg vitelline membrane (CEVM) is one of the most important factors influencing egg quality during high-temperature storage. Therefore, a comparative N-glycoproteomic analysis of CEVM after 10 days of storage at 30 °C was performed to explore the roles of protein N-glycosylation in membrane deterioration. In total, 399 N-glycosites corresponding to 198 proteins were identified, of which 46 N-glycosites from 30 proteins were significantly altered. Gene ontology analysis revealed that these differentially N-glycosylated proteins (DGPs) were involved in antibacterial activity, glycosaminoglycan binding, lipid binding, and aminopeptidase activity. Removal of the N-glycans in Mucin-5B may result in a loss of CEVM's mechanical properties. The N-glycosites enriched in the apolipoprotein B β2 domain in CEVM were significantly changed, which may contribute to lipid composition modifications during storage. Moreover, N-glycosites in several metalloproteases were located within the functional domain or active site region, indicating that the decreased N-glycosylation levels may affect their structural stability, specific substrate binding, or enzyme activity. These findings provide novel insights into the roles of protein N-glycosylation during membrane weakening.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ning Qiu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
14
|
Low-Avidity Autoantibodies against Bactericidal/Permeability-Increasing Protein Occur in Gram-Negative and Gram-Positive Bacteremia. Infect Immun 2020; 88:IAI.00444-20. [PMID: 32747603 PMCID: PMC7504969 DOI: 10.1128/iai.00444-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody autoreactivity against bactericidal/permeability-increasing protein (BPI) is strongly associated with Pseudomonas aeruginosa infection in cystic fibrosis (CF), non-CF bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD). We examined the pathogen-specific nature of this autoreactivity by examining antibodies to BPI in bacteremia patients. Antibodies to BPI and bacterial antigens were measured in sera by ELISA from five patient cohorts (n = 214). Antibody autoreactivity against bactericidal/permeability-increasing protein (BPI) is strongly associated with Pseudomonas aeruginosa infection in cystic fibrosis (CF), non-CF bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD). We examined the pathogen-specific nature of this autoreactivity by examining antibodies to BPI in bacteremia patients. Antibodies to BPI and bacterial antigens were measured in sera by ELISA from five patient cohorts (n = 214). Antibody avidity was investigated. Bacteremic patient sera (n = 32) exhibited IgG antibody autoreactivity against BPI in 64.7% and 46.7% of patients with positive blood cultures for P. aeruginosa and Escherichia coli, respectively. Autoantibody titers correlated with IgG responses to bacterial extracts and lipopolysaccharide (LPS). A prospective cohort of bacteremic patient sera exhibited anti-BPI IgG responses in 23/154 (14.9%) patients with autoreactivity present at the time of positive blood cultures in patients with Gram-negative and Gram-positive bacteria, including 8/60 (13.3%) patients with Staphylococcus aureus. Chronic tissue infection with S. aureus was associated with BPI antibody autoreactivity in 2/15 patients (13.3%). Previously, we demonstrated that BPI autoreactivity in CF patient sera exhibits high avidity. Here, a similar pattern was seen in BE patient sera. In contrast, sera from patients with bacteremia exhibited low avidity. These data indicate that low-avidity IgG responses to BPI can arise acutely in response to bacteremia and that this association is not limited to P. aeruginosa. This is to be contrasted with chronic respiratory infection with P. aeruginosa, suggesting that either the chronicity or the site of infection selects for the generation of high-avidity responses, with biologic consequences for airway immunity.
Collapse
|
15
|
Rheumatologic Manifestations of CF. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Yu Y, Song G. Lipopolysaccharide-Binding Protein and Bactericidal/Permeability-Increasing Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:27-35. [PMID: 32705592 DOI: 10.1007/978-981-15-6082-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) are the main members of BPI-like family based on the similar protein structure and conserved gene homology. Both LBP and BPI participate in lipid metabolism and thereby involve in pathogenesis of certain cardiovascular diseases. This chapter describes four aspects: (1) the loci of BPI and LBP in genome, (2) the characteristics of the cDNAs and expression patterns of LBP and BPI, (3) the structures and functions of LBP and BPI, and (4) the LBP and BPI in lipid metabolism and cardiovascular research.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Atherosclerosis, Shandong First Medical University, Shandong, China.
| | - Guohua Song
- Institute of Atherosclerosis, Shandong First Medical University, Shandong, China
| |
Collapse
|
17
|
Zhou S, Jiang G, Zhu Y, Liu L, Liu D, Diao J, Liu H, Xiu Y. Molecular identification and function analysis of bactericidal permeability-increasing protein/LPS-binding protein 1 (BPI/LBP1) from turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2019; 87:499-506. [PMID: 30731212 DOI: 10.1016/j.fsi.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) play important roles in host antimicrobial defense. In the present study, we identified one isoform of BPI/LBP gene from turbot (Scophthalmus maximus), designated as SmBPI/LBP1. The full-length cDNA sequence of SmBPI/LBP1 was 1826 bp, which encoding one secreted protein with 480 amino acid residues. Structurally, the SmBPI/LBP1 showed high similarity to its homologs from other vertebrates or invertebrates, which all contained a signal peptide, a BPI/LBP/CETP N-terminal with a LPS-binding domain, and a BPI/LBP/CETP C-terminal domain. The deduced amino acid sequences of SmBPI/LBP1 shared significant similarity to BPI/LBP of Seriola lalandi dorsalis (71%) and Paralichthys olivaceus (69%). Phylogentic analysis further supported that SmBPI/LBP1 act as a new member of vertebrate BPI/LBP family. SmBPI/LBP1 was ubiquitously expressed in all tested tissues, with the highest expression level in spleen tissue. The mRNA expression of SmBPI/LBP1 in spleen and kidney were significantly up-regulated after Vibrio vulnificus challenge. Finally, the recombinant SmBPI/LBP1 showed high affinity to lipopolysaccharide, followed by peptidoglycan and lipoteichoic acid, which is the ubiquitous component of Gram-negative or Gram-positive bacteria. These results indicated that SmBPI/LBP1 probably played important roles in immune response against bacteria infection.
Collapse
Affiliation(s)
- Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangpeng Jiang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ying Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Lanhao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Danyang Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, PR China
| | - Hongjun Liu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, PR China
| | - Yunji Xiu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, PR China.
| |
Collapse
|
18
|
Bülow S, Zeller L, Werner M, Toelge M, Holzinger J, Entzian C, Schubert T, Waldow F, Gisch N, Hammerschmidt S, Gessner A. Bactericidal/Permeability-Increasing Protein Is an Enhancer of Bacterial Lipoprotein Recognition. Front Immunol 2018; 9:2768. [PMID: 30581431 PMCID: PMC6293271 DOI: 10.3389/fimmu.2018.02768] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Adequate perception of immunologically important pathogen-associated molecular patterns like lipopolysaccharide and bacterial lipoproteins is essential for efficient innate and adaptive immune responses. In the context of Gram-negative infection, bactericidal/permeability-increasing protein (BPI) neutralizes endotoxic activity of lipopolysaccharides, and thus prohibits hyperactivation. So far, no immunological function of BPI has been described in Gram-positive infections. Here, we show a significant elevation of BPI in Gram-positive meningitis and, surprisingly, a positive correlation between BPI and pro-inflammatory markers like TNFα. To clarify the underlying mechanisms, we identify BPI ligands of Gram-positive origin, specifically bacterial lipopeptides and lipoteichoic acids, and determine essential structural motifs for this interaction. Importantly, the interaction of BPI with these newly defined ligands significantly enhances the immune response in peripheral blood mononuclear cells (PBMCs) mediated by Gram-positive bacteria, and thereby ensures their sensitive perception. In conclusion, we define BPI as an immune enhancing pattern recognition molecule in Gram-positive infections.
Collapse
Affiliation(s)
- Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Lisa Zeller
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonas Holzinger
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Franziska Waldow
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomcis of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Tsukamoto H, Takeuchi S, Kubota K, Kobayashi Y, Kozakai S, Ukai I, Shichiku A, Okubo M, Numasaki M, Kanemitsu Y, Matsumoto Y, Nochi T, Watanabe K, Aso H, Tomioka Y. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem 2018; 293:10186-10201. [PMID: 29760187 DOI: 10.1074/jbc.m117.796631] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 04/10/2018] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-β expression. However, LPS-stimulated late activation of NF-κB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-β pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578,
| | - Shino Takeuchi
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Kanae Kubota
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Yohei Kobayashi
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Sao Kozakai
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Ippo Ukai
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Ayumi Shichiku
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Misaki Okubo
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Muneo Numasaki
- the Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8575, and
| | - Yoshitomi Kanemitsu
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Yotaro Matsumoto
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578
| | - Tomonori Nochi
- the Laboratory of Functional Morphology and.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Sendai 980-0845, Japan
| | - Kouichi Watanabe
- the Laboratory of Functional Morphology and.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Sendai 980-0845, Japan
| | - Hisashi Aso
- the Laboratory of Functional Morphology and.,International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Sendai 980-0845, Japan
| | - Yoshihisa Tomioka
- From the Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578,
| |
Collapse
|
20
|
Miguel MA, Mingala CN. Screening of Pig (Sus scrofa) Bactericidal Permeability-Increasing Protein (BPI) Gene as Marker for Disease Resistance. Anim Biotechnol 2018; 30:146-150. [PMID: 29580199 DOI: 10.1080/10495398.2018.1450266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Salmonella infection can cause septicemia, acute or chronic enteritis and wasting in weaned pigs, but may occur in other age groups. The bactericidal/permeability-increasing protein (BPI) gene plays an important role in the natural defense of the host and is found to be associated with resistance/susceptibility to Salmonella infection and identified as a candidate gene for disease resistance breeding in pig. This study was conducted to screen the resistance and/or susceptibility of pigs to Salmonella infection, to determine the genotype and evaluate presence of resistant allele of the BPI gene in population of pigs, and to establish genetic data for pig breeders for the improvement of Philippine pig industry. In this study, 389 blood samples from different pig breeds were collected from pig breeder farms in the Philippines. Genomic DNA was extracted from these samples and genotyping was done by PCR-RFLP analysis using AvaII restriction enzyme. Out of 389 pigs, the genotypic frequency showed that 98.4, 1.3, and 0.3% pigs are resistant (GG), heterozygous type (AG), and susceptible (AA), respectively. The application of BPI gene as marker for disease resistance will provide information to the pig industry to implement strategies for the identification of Salmonella infection-resistant pigs.
Collapse
Affiliation(s)
- Michelle A Miguel
- a Biosafety and Environment Section , Philippine Carabao Center National Headquarters and Gene Pool , Muñoz , Nueva Ecija , Philippines
| | - Claro N Mingala
- a Biosafety and Environment Section , Philippine Carabao Center National Headquarters and Gene Pool , Muñoz , Nueva Ecija , Philippines.,b Department of Animal Science, College of Agriculture , Central Luzon State University , Muñoz , Nueva Ecija , Philippines
| |
Collapse
|
21
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
22
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
23
|
Importance of the residue 190 on bactericidal activity of the bactericidal/permeability-increasing protein 5. Oncotarget 2018; 7:43088-43094. [PMID: 27177329 PMCID: PMC5190010 DOI: 10.18632/oncotarget.9292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/26/2016] [Indexed: 11/25/2022] Open
Abstract
The bactericidal/permeability-increasing protein (BPI) with bactericidal and endotoxin-neutralizing activity is of considerable interest in clinical applications. However, the crucial residues responsible for the bactericidal activity of BPI remain elusive. In previous study, we identified the mutation of mBPI5 associated with the male infertility of mice. Here, the effects of Asp190Ala mutation on the antibacterial activity of mBPI5 have been determined. Substitution of Asp190 by alanine caused significant improvement in cytotoxic effect toward both E.coli J5 and P.aeruginosa. Liposome co-sedimentation assay showed that the ratio of Asp190Ala mutant binding to lipids increased by 8 folds. These results were well consistent with known fact that antibacterial activity of BPI is attributed to its high affinity for lipid moiety of lipopolysaccharides (LPS). The constructed structure of mBPI5 revealed that Asp190 was located close to 6 positively charged residues on the surface of N-terminal domain. When replacing Asp190 with alanine, salt linkages with Arg188 were broken, making the side chain of Arg188 be free to move and form tighter contacts with negatively charged LPS. These findings suggest that residue 190 combined with surrounding positively charged residues largely contribute to bactericidal and endotoxin-neutralizing activities of mBPI5.
Collapse
|
24
|
Qin WY, Gan LN, Xia RW, Sun SY, Zhu GQ, Wu SL, Bao WB. New insights into the codon usage patterns of the bactericidal/permeability-increasing (BPI) gene across nine species. Gene 2017; 616:45-51. [PMID: 28336464 DOI: 10.1016/j.gene.2017.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/31/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Bactericidal/permeability-increasing (BPI) protein is a member of a new generation of proteins known as super-antibiotics that are implicated as endotoxin neutralising agents. Non-uniform usage of synonymous codons for a specific amino acid during translation of a protein is known as codon usage bias (CUB). Analysis of CUB and compositional dynamics of coding sequences could contribute to a better understanding of the molecular mechanism and the evolution of a particular gene. In this study, we performed CUB analysis of the complete coding sequences of the BPI gene from nine different species. The codon usage patterns of BPI across different species were found to be influenced by GC bias, particularly GC3s, with a moderate bias in the codon usage of BPI. We found significant similarities in the codon usage patterns in BPI gene among closely related species, such as Sus_scrofa and Bos_taurus. Moreover, we observed evolutionary conservation of the most over-represented codon CUG for the amino acid leucine in the BPI gene across all species. In conclusion, our analysis provides a novel insight into the codon usage patterns of BPI. This information facilitates an improved understanding of the structural, functional and evolutionary significance of BPI gene among species, and provides a theoretical reference for developing antiseptic drug proteins with high efficiency across species.
Collapse
Affiliation(s)
- Wei-Yun Qin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Li-Na Gan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Ri-Wei Xia
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shou-Yong Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Guo-Qiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Sheng-Long Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wen-Bin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
25
|
Chen F, Krasity BC, Peyer SM, Koehler S, Ruby EG, Zhang X, McFall-Ngai MJ. Bactericidal Permeability-Increasing Proteins Shape Host-Microbe Interactions. mBio 2017; 8:e00040-17. [PMID: 28377525 PMCID: PMC5380838 DOI: 10.1128/mbio.00040-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/06/2017] [Indexed: 12/23/2022] Open
Abstract
We characterized bactericidal permeability-increasing proteins (BPIs) of the squid Euprymna scolopes, EsBPI2 and EsBPI4. They have molecular characteristics typical of other animal BPIs, are closely related to one another, and nest phylogenetically among invertebrate BPIs. Purified EsBPIs had antimicrobial activity against the squid's symbiont, Vibrio fischeri, which colonizes light organ crypt epithelia. Activity of both proteins was abrogated by heat treatment and coincubation with specific antibodies. Pretreatment under acidic conditions similar to those during symbiosis initiation rendered V. fischeri more resistant to the antimicrobial activity of the proteins. Immunocytochemistry localized EsBPIs to the symbiotic organ and other epithelial surfaces interacting with ambient seawater. The proteins differed in intracellular distribution. Further, whereas EsBPI4 was restricted to epithelia, EsBPI2 also occurred in blood and in a transient juvenile organ that mediates hatching. The data provide evidence that these BPIs play different defensive roles early in the life of E. scolopes, modulating interactions with the symbiont.IMPORTANCE This study describes new functions for bactericidal permeability-increasing proteins (BPIs), members of the lipopolysaccharide-binding protein (LBP)/BPI protein family. The data provide evidence that these proteins play a dual role in the modulation of symbiotic bacteria. In the squid-vibrio model, these proteins both control the symbiont populations in the light organ tissues where symbiont cells occur in dense monoculture and, concomitantly, inhibit the symbiont from colonizing other epithelial surfaces of the animal.
Collapse
Affiliation(s)
- Fangmin Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin C Krasity
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Suzanne M Peyer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sabrina Koehler
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward G Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Margaret J McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Guzmán-Beltrán S, Torres M, Arellano M, Juárez E. Human macrophages chronically exposed to LPS can be reactivated by stimulation with MDP to acquire an antimicrobial phenotype. Cell Immunol 2017; 315:45-55. [PMID: 28258715 DOI: 10.1016/j.cellimm.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/04/2017] [Accepted: 02/18/2017] [Indexed: 01/01/2023]
Abstract
Macrophages are important in host defense and can differentiate into functionally distinct subsets named classically (M1) or alternatively (M2) activated. In several inflammatory disorders, macrophages become tolerized to prevent deleterious consequences. This tolerization reduces the ability of macrophages to respond to bacterial components (e.g., LPS) maintaining a low level of inflammation but compromising the ability of macrophages to mount an effective immune response during subsequent pathogen encounters. In this study, we aimed to reactivate human monocyte-derived macrophages chronically exposed to LPS by re-stimulation with muramyl dipeptide (MDP). We observed an undefined profile of cell surface marker expression during endotoxin tolerance and absence of TNFα production. Stimulating macrophages chronically exposed to LPS with LPS+MDP restored TNFα, production together with an increased production of IL1, IL6, IFNγ, IL4, IL5 and IL10. These results suggest that macrophages chronically exposed to LPS possess a mixed M1-M2 phenotype with sufficient antimicrobial and homeostatic potential.
Collapse
Affiliation(s)
- Silvia Guzmán-Beltrán
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Martha Torres
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Monserrat Arellano
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Esmeralda Juárez
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico.
| |
Collapse
|
27
|
Lawrence SM, Corriden R, Nizet V. Age-Appropriate Functions and Dysfunctions of the Neonatal Neutrophil. Front Pediatr 2017; 5:23. [PMID: 28293548 PMCID: PMC5329040 DOI: 10.3389/fped.2017.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonatal and adult neutrophils are distinctly different from one another due to well-defined and documented deficiencies in neonatal cells, including impaired functions, reduced concentrations of microbicidal proteins and enzymes necessary for pathogen destruction, and variances in cell surface receptors. Neutrophil maturation is clearly demonstrated throughout pregnancy from the earliest hematopoietic precursors in the yolk sac to the well-developed myeloid progenitor cells in the bone marrow around the seventh month of gestation. Notable deficiencies of neonatal neutrophils are generally correlated with gestational age and clinical condition, so that the least functional neutrophils are found in the youngest, sickest neonates. Interruption of normal gestation secondary to preterm birth exposes these shortcomings and places the neonate at an exceptionally high rate of infection and sepsis-related mortality. Because the fetus develops in a sterile environment, neonatal adaptive immune responses are deficient from lack of antigen exposure in utero. Newborns must therefore rely on innate immunity to protect against early infection. Neutrophils are a vital component of innate immunity since they are the first cells to respond to and defend against bacterial, viral, and fungal infections. However, notable phenotypic and functional disparities exist between neonatal and adult cells. Below is review of neutrophil ontogeny, as well as a discussion regarding known differences between preterm and term neonatal and adult neutrophils with respect to cell membrane receptors and functions. Our analysis will also explain how these variations decrease with postnatal age.
Collapse
Affiliation(s)
- Shelley Melissa Lawrence
- Pediatrics, Neonatal-Perinatal Medicine, UCSD, La Jolla, CA, USA; Division of Host-Microbe Systems and Therapeutics, UCSD, La Jolla, CA, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, UCSD, La Jolla, CA, USA; Pharmacology, UCSD, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, UCSD, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA, USA
| |
Collapse
|
28
|
Hart CE, Lauth MJ, Hunter CS, Krasny BR, Hardy KM. Effect of 4-nonylphenol on the immune response of the Pacific oyster Crassostrea gigas following bacterial infection with Vibrio campbellii. FISH & SHELLFISH IMMUNOLOGY 2016; 58:449-461. [PMID: 27693202 DOI: 10.1016/j.fsi.2016.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The xenoestrogen 4-nonylphenol (NP) is a ubiquitous aquatic pollutant and has been shown to impair reproduction, development, growth and, more recently, immune function in marine invertebrates. We investigated the effects of short-term (7 d) exposure to low (2 μg l-1) and high (100 μg l-1) levels of NP on cellular and humoral elements of the innate immune response of Crassostrea gigas to a bacterial challenge. To this end, we measured 1) total hemocyte counts (THC), 2) relative transcript abundance of ten immune-related genes (defh1, defh2, bigdef1, bigdef2, bpi, lysozyme-1, galectin, C-type lectin 2, timp, and transglutaminase) in the hemocytes, gill and mantle, and 3) hemolymph plasma lysozyme activity, following experimental Vibrio campbellii infection. Both low and high levels of NP were found to repress a bacteria-induced increase in THC observed in the control oysters. While several genes were differentially expressed following bacterial introduction (bigdef2, bpi, lysozyme-1, timp, transglutaminase), only two genes (bpi in the hemocytes, transglutaminase in the mantle) exhibited a different bacteria-induced expression profile following NP exposure, relative to the control oysters. Independently of infection-status, exposure to NP also altered mRNA transcript abundance of several genes (bpi, galectin, C-type lectin 2) in naïve, saline-injected oysters. Finally, plasma lysozyme activity levels were significantly higher in low dose NP-treated oysters (both naïve and bacteria challenged) relative to control oysters. Combined, these results suggest that exposure to ecologically-relevant (low) and extreme (high) levels of NP can alter both cellular and humoral elements of the innate immune response in C. gigas, an aquaculture species of global economic importance.
Collapse
Affiliation(s)
- Courtney E Hart
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Michael J Lauth
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Cassidy S Hunter
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Brennan R Krasny
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA 93407, United States.
| |
Collapse
|
29
|
Balakrishnan A, Schnare M, Chakravortty D. Of Men Not Mice: Bactericidal/Permeability-Increasing Protein Expressed in Human Macrophages Acts as a Phagocytic Receptor and Modulates Entry and Replication of Gram-Negative Bacteria. Front Immunol 2016; 7:455. [PMID: 27822215 PMCID: PMC5075746 DOI: 10.3389/fimmu.2016.00455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Macrophages as immune cells prevent the spreading of pathogens by means of active phagocytosis and killing. We report here the presence of an antimicrobial protein, bactericidal/permeability-increasing protein (BPI) in human macrophages, which actively participates in engulfment and killing of Gram-negative pathogens. Our studies revealed increased expression of BPI in human macrophages during bacterial infection and upon stimulation with various pathogen-associated molecular patterns, viz., LPS and flagellin. Furthermore, during the course of an infection, BPI interacted with Gram-negative bacteria, resulting in enhanced phagocytosis and subsequent control of the bacterial replication. However, it was observed that bacteria which can maintain an active replicating niche (Salmonella Typhimurium) avoid the interaction with BPI during later stages of infection. On the other hand, Salmonella mutants, which cannot maintain a replicating niche, as well as Shigella flexneri, which quit the endosomal vesicle, showed interaction with BPI. These results propose an active role of BPI in Gram-negative bacterial clearance by human macrophages.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science , Bangalore , India
| | - Markus Schnare
- Institute for Immunology, University of Marburg , Marburg , Germany
| | - Dipshikha Chakravortty
- Centre for Biosystems Science and Engineering, Indian Institute of Science , Bangalore , India
| |
Collapse
|
30
|
Yin XM, Gan LN, Qin WY, Sun SY, Zhu GQ, Wu SL, Bao WB. Differential expression of genes BPI, TAP1, SLA-1 and SLA-3 in Escherichia coli F18-resistant and sensitive Meishan post-weaning piglets. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Aliprantis AO, Weiss DS, Zychlinsky A. Toll-like receptor-2 transduces signals for NF-κB activation, apoptosis and reactive oxygen species production. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070041101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The innate immune system coordinates the inflammatory response to pathogens. To do so, cells of the innate immune system must rapidly discriminate between self and non-self. All bacteria express membrane-associated lipoproteins. These molecules activate cells of the innate immune system to initiate host defense mechanisms. However, it is currently unknown how the innate immune system recognizes bacterial lipoproteins. Here, we describe that in response to bacterial lipoprotein, human Toll-like receptor-2 activates three different cellular responses: nuclear factor-κB dependent transcription, programmed cell death and reactive oxygen species production. We propose that Toll-like receptor-2 fulfils multiple roles in the genesis of the immune response to bacterial pathogens.
Collapse
Affiliation(s)
- Antonios O. Aliprantis
- Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA,
| | - David S. Weiss
- Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA
| | - Arturo Zychlinsky
- Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, USA
| |
Collapse
|
32
|
Sun YY, Sun L. A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. PLoS One 2016; 11:e0154045. [PMID: 27105425 PMCID: PMC4841584 DOI: 10.1371/journal.pone.0154045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/07/2016] [Indexed: 12/22/2022] Open
Abstract
Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense.
Collapse
Affiliation(s)
- Yuan-yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
33
|
Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. mBio 2015; 6:e01193-15. [PMID: 26463160 PMCID: PMC4620459 DOI: 10.1128/mbio.01193-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host’s epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont.
Collapse
|
34
|
Shao Y, Li C, Che Z, Zhang P, Zhang W, Duan X, Li Y. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:88-97. [PMID: 25956196 DOI: 10.1016/j.dci.2015.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/26/2015] [Accepted: 04/26/2015] [Indexed: 06/04/2023]
Abstract
Lipopolysaccharide-binding protein and bactericidal permeability-increasing protein (LBP/BPI) play crucial role in modulating cellular signals in response to Gram-negative bacteria infection. In the present study, two isoforms of LBP/BPI genes (designated as AjLBP/BPI1 and AjLBP/BPI2, respectively) were cloned from the sea cucumber Apostichopus japonicus by RACE approach. The full-length cDNAs of AjLBP/BPI1 and AjLBP/BPI2 were of 1479 and 1455 bp and encoded two secreted proteins of 492 and 484 amino acid residues, respectively. Signal peptide, two BPI/LBP/CETP and one central domain were totally conserved in the deduced amino acid of AjLBP/BPI1 and AjLBP/BPI2. Phylogentic analysis further supported that AjLBP/BPI1 and AjLBP/BPI2 belonged to new members of invertebrates LBP/BPI family. Spatial expression analysis revealed that both AjLBP/BPI1 and AjLBP/BPI2 were ubiquitously expressed in all examined tissues with the larger magnitude in AjLBP/BPI1. The Vibrio splenfidus challenge and LPS stimulation could significantly up-regulate the mRNA expression of both AjLBP/BPI1 and AjLBP/BPI2, with the increase of AjLBP/BPI2 expression occurred earlier than that of AjLBP/BPI1. More importantly, we found that LPS induced ROS production was markedly depressed after AjLBP/BPI1 knock-down, but there was no significant change by AjLBP/BPI2 silencing. Consistently, the expression level of unclassified AjToll, not AjTLR3, was tightly correlated with that of AjLBP/BPI1. Silencing the AjToll also depressed the ROS production in the cultured coelomocytes. All these results indicated that AjLBP/BPI1 and AjLBP/BPI2 probably played distinct roles in bacterial mediating immune response in sea cucumber, and AjLBP/BPI1 depressed coelomocytes ROS production via modulating AjToll cascade.
Collapse
Affiliation(s)
- Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Zhongjie Che
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Pengjuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuemei Duan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
35
|
Bachère E, Rosa RD, Schmitt P, Poirier AC, Merou N, Charrière GM, Destoumieux-Garzón D. The new insights into the oyster antimicrobial defense: Cellular, molecular and genetic view. FISH & SHELLFISH IMMUNOLOGY 2015; 46:50-64. [PMID: 25753917 DOI: 10.1016/j.fsi.2015.02.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
Oysters are sessile filter feeders that live in close association with abundant and diverse communities of microorganisms that form the oyster microbiota. In such an association, cellular and molecular mechanisms have evolved to maintain oyster homeostasis upon stressful conditions including infection and changing environments. We give here cellular and molecular insights into the Crassostrea gigas antimicrobial defense system with focus on antimicrobial peptides and proteins (AMPs). This review highlights the central role of the hemocytes in the modulation and control of oyster antimicrobial response. As vehicles for AMPs and other antimicrobial effectors, including reactive oxygen species (ROS), and together with epithelia, hemocytes provide the oyster with local defense reactions instead of systemic humoral ones. These reactions are largely based on phagocytosis but also, as recently described, on the extracellular release of antimicrobial histones (ETosis) which is triggered by ROS. Thus, ROS can signal danger and activate cellular responses in the oyster. From the current literature, AMP production/release could serve similar functions. We provide also new lights on the oyster genetic background that underlies a great diversity of AMP sequences but also an extraordinary individual polymorphism of AMP gene expression. We discuss here how this polymorphism could generate new immune functions, new pathogen resistances or support individual adaptation to environmental stresses.
Collapse
Affiliation(s)
- Evelyne Bachère
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France.
| | - Rafael Diego Rosa
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France; Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Paulina Schmitt
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France; Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad, Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Aurore C Poirier
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| | - Nicolas Merou
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| | - Guillaume M Charrière
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| | - Delphine Destoumieux-Garzón
- Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France
| |
Collapse
|
36
|
Tang L, Liang Y, Jiang Y, Liu S, Zhang F, He X, Wang T, Zhou Y, Zhong H, Yan J. Identification and expression analysis on bactericidal permeability-increasing protein/lipopolysaccharide-binding protein of blunt snout bream, Megalobrama amblycephala. FISH & SHELLFISH IMMUNOLOGY 2015; 45:630-640. [PMID: 25982396 DOI: 10.1016/j.fsi.2015.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) belong to the lipid transfer protein/lipopolysaccharide-binding protein family and play a critical role in the innate immune response to Gram-negative bacteria. In the present study, a novel BPI/LBP from blunt snout bream, Megalobrama amblycephala (maBPI/LBP) was isolated by RACE techniques. The open reading frame (ORF) of maBPI/LBP gene encoded a polypeptide of 474 amino acids with a putative 18-aa hydrophobic signal peptide. Structurally, the maBPI/LBP showed highly similar to those of BPI/LBPs from invertebrate and teleost, LBPs and BPIs from mammal, which contained an N-terminal BPI/LBP/CETP domain BPI1 with a LPS-binding domain, a C-terminal BPI/LBP/CETP domain BPI2, and proline-rich domain. The homologous identities of deduced amino acid sequences displayed that the maBPI/LBP possessed significant similarity (96.61% and 90.07%) with those of grass carp and common carp, respectively. The recombinant protein of maBPI/LBP showed effectively kill Gram-negative bacteria. The maBPI/LBP gene was expressed in a wide range of normal tested tissues, with the highest expression levels in the kidney. The experiments revealed that the mRNA expression of maBPI/LBP in spleen considerably up-regulated from 2 h to 8 h post LPS stimulation, and peaked rapidly at 2 h (7.40-fold, P < 0.05), which confirmed that maBPI/LBP was the absolute sensitive to LPS stimulation. Furthermore, the level of maBPI/LBP mRNA expression reached the maximum for a second time at 24 h after LPS stimulation. These results suggested that maBPI/LBP was a constitutive and inducible acute-phase protein contributing to the host immune defense against pathogenic bacterial infection in M. amblycephala. This study will further our understanding of the function of BPI/LBP and the molecular mechanism of innate immunity in teleost.
Collapse
Affiliation(s)
- Leilei Tang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410017, PR China
| | - Yinhua Liang
- Department of Operation, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yuhong Jiang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410017, PR China
| | - Shaojun Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of the State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410018, PR China
| | - Fuyun Zhang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410017, PR China
| | - Xia He
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410017, PR China
| | - Tianyi Wang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410017, PR China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, PR China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, PR China
| | - Jinpeng Yan
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410017, PR China.
| |
Collapse
|
37
|
BPI-ANCA Provides Additional Clinical Information to Anti-Pseudomonas Serology: Results from a Cohort of 117 Swedish Cystic Fibrosis Patients. J Immunol Res 2015; 2015:947934. [PMID: 26273683 PMCID: PMC4529961 DOI: 10.1155/2015/947934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/28/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022] Open
Abstract
Patients with cystic fibrosis (CF) colonized with Pseudomonas aeruginosa (P. aeruginosa) have worse prognosis compared with patients who are not. BPI-ANCA is an anti-neutrophil cytoplasmic antibody against BPI (bactericidal/permeability increasing protein) correlating with P. aeruginosa colonization and adverse long time prognosis. Whether it provides additional information as compared to standard anti-P. aeruginosa serology tests is not known. 117 nontransplanted CF patients at the CF centre in Lund, Sweden, were followed prospectively for ten years. Bacterial colonisation was classified according to the Leeds criteria. IgA BPI-ANCA was compared with assays for antibodies against alkaline protease (AP), Elastase (ELA), and Exotoxin A (ExoA). Lung function and patient outcome, alive, lung transplanted, or dead, were registered. BPI-ANCA showed the highest correlation with lung function impairment with an r-value of 0.44. Forty-eight of the 117 patients were chronically colonized with P. aeruginosa. Twenty of these patients experienced an adverse outcome. Receiver operator curve (ROC) analysis revealed that this could be predicted by BPI-ANCA (AUC = 0.77), (p = 0.002) to a better degree compared with serology tests. BPI-ANCA correlates better with lung function impairment and long time prognosis than anti-P. aeruginosa serology and has similar ability to identify patients with chronic P. aeruginosa.
Collapse
|
38
|
Sharifov OF, Xu X, Gaggar A, Tabengwa EM, White CR, Palgunachari MN, Anantharamaiah GM, Gupta H. L-4F inhibits lipopolysaccharide-mediated activation of primary human neutrophils. Inflammation 2015; 37:1401-12. [PMID: 24647607 DOI: 10.1007/s10753-014-9864-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human apolipoprotein A-I (apoA-I) mimetic L-4F inhibits acute inflammation in endotoxemic animals. Since neutrophils play a crucial role in septic inflammation, we examined the effects of L-4F, compared to apoA-I, on lipopolysaccharide (LPS)-mediated activation of human neutrophils. We performed bioassays in human blood, isolated human neutrophils (incubated in 50 % donor plasma), and isolated human leukocytes (incubated in 5 and 50 % plasma) in vitro. In whole blood, both L-4F and apoA-I inhibited LPS-mediated elevation of TNF-α and IL-6. In LPS-stimulated neutrophils, L-4F and apoA-I (40 μg/ml) also decreased myeloperoxidase and TNF-α levels; however, L-4F tended to be superior in inhibiting LPS-mediated increase in IL-6 levels, membrane lipid rafts abundance and CD11b expression. In parallel experiments, when TNF-α and IL-8, instead of LPS, was used for cell stimulation, L-4F and/or apoA-I revealed only limited efficacy. In LPS-stimulated leukocytes, L-4F was as effective as apoA-I in reducing superoxide formation in 50 % donor plasma, and more effective in 5 % donor plasma (P<0.05). Limulus ambocyte lysate (LAL) and surface plasmon resonance assays showed that L-4F neutralizes LAL endotoxin activity more effectively than apoA-I (P<0.05) likely due to avid binding to LPS. We conclude that (1) direct binding/neutralization of LPS is a major mechanism of L-4F in vitro; (2) while L-4F has similar efficacy to apoA-I in anti-endotoxin effects in whole blood, it demonstrates superior efficacy to apoA-I in aqueous solutions and fluids with limited plasma components. This study rationalizes the utility of L-4F in the treatment of inflammation that is mediated by endotoxin-activated neutrophils.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, BDB-101, 1808 7th Avenue South, Birmingham, AL, 35294-0012, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Antimicrobial activity of peptides derived from olive flounder lipopolysaccharide binding protein/bactericidal permeability-increasing protein (LBP/BPI). Mar Drugs 2014; 12:5240-57. [PMID: 25329706 PMCID: PMC4210897 DOI: 10.3390/md12105240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 11/17/2022] Open
Abstract
We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.
Collapse
|
40
|
Kai-Larsen Y, Gudmundsson GH, Agerberth B. A review of the innate immune defence of the human foetus and newborn, with the emphasis on antimicrobial peptides. Acta Paediatr 2014; 103:1000-8. [PMID: 24861898 DOI: 10.1111/apa.12700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/09/2014] [Accepted: 05/19/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED At birth, the foetus makes the transition from the uterus to a world full of microbes. The newborn baby needs protection against potential invading pathogens and needs to establish a normal microbiota. CONCLUSION Antimicrobial peptides and proteins are key effector molecules of innate immunity and are also important immunomodulators. Their presence in the cells and tissues of the uterus, foetus and the neonate indicates an important role in immunity during pregnancy and in early life.
Collapse
Affiliation(s)
- Ylva Kai-Larsen
- Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital Huddinge; Stockholm Sweden
| | | | - Birgitta Agerberth
- Department of Laboratory Medicine; Karolinska Institutet; Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
41
|
Lu XJ, Chu CQ, Chen Q, Chen J. A novel lipopolysaccharide-binding protein (LBP) gene from sweetfish Plecoglossus altivelis: molecular characterization and its role in the immune response of monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2014; 38:111-118. [PMID: 24594008 DOI: 10.1016/j.fsi.2014.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/14/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Lipopolysaccharide-binding protein (LBP) belongs to the lipid transfer/LBP (LT-LBP) family, and plays a crucial role in the recognition of bacterial components that modulate cellular signals in phagocytic cells. Although several LBPs have been identified in teleosts, the effects of LBP homologs on teleost phagocytic cells are still obscure. Here, we report the cloning a novel full-length cDNA sequence of LBP-like protein (paLBP) gene from sweetfish, Plecoglossus altivelis. The paLBP cDNA encoded a 464 aa polypeptide, which was closest to that of rainbow smelt (Osmerus mordax). paLBP mRNA was detected mainly in the spleen, liver, and head kidney and levels dramatically increased in various tissues after Listonella anguillarum infection. In contrast to mammalian studies, paLBP mRNA could also be detected in sweetfish monocytes/macrophages. Recombinant paLBP showed LPS-binding activity and Western blot results revealed a significant increase of paLBP in the supernatant of sweetfish monocytes/macrophages challenged with L. anguillarum. Moreover, paLBP neutralization led to up-regulation of IL-1β and TNF-α mRNA as well as respiratory burst activity in sweetfish monocytes/macrophages in response to L. anguillarum or LPS challenge. Therefore, these results suggest that paLBP is an inducible acute-phase protein mediating the immune response of sweetfish monocytes/macrophages upon bacterial challenge.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Qing Chu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
42
|
Levy O, Elsbach P. Bactericidal/permeability-increasing protein in host defense and its efficacy in the treatment of bacterial sepsis. Curr Infect Dis Rep 2014; 3:407-12. [PMID: 24395478 DOI: 10.1007/s11908-007-1007-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 55-kD bactericidal/permeability-increasing protein (BPI) is a neutrophil-derived polypeptide belonging to a family of lipid and endotoxin binding proteins. BPI is composed of two functionally distinct structural domains: a potently antibacterial and antiendotoxin ∼ 20-kD aminoterminal half, and an opsonic carboxy-terminal portion. In multiple animal models, a recombinant amino-terminal fragment of BPI (rBPI21) is nontoxic and protects against gram-negative bacteria and endotoxin. In humans, rBPI21 is also nontoxic and nonimmunogenic and has undergone phase II/III clinical trials with apparent therapeutic benefit.
Collapse
Affiliation(s)
- Ofer Levy
- Division of Infectious Diseases, Children's Hospital of Boston, 300 Longwood Avenue, 02115, Boston, MA, USA,
| | | |
Collapse
|
43
|
Sharifov OF, Nayyar G, Ternovoy VV, Palgunachari MN, Garber DW, Anantharamaiah G, Gupta H. Comparison of anti-endotoxin activity of apoE and apoA mimetic derivatives of a model amphipathic peptide 18A. Innate Immun 2013; 20:867-80. [PMID: 24323453 DOI: 10.1177/1753425913514621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Endotoxemia is a major cause of chronic inflammation, and is an important pathogenic factor in the development of metabolic syndrome and atherosclerosis. Human apolipoprotein E (apoE) and apoA-I are protein components of high-density lipoprotein, which have strong anti-endotoxin activity. Here, we compared anti-endotoxin activity of Ac-hE18A-NH2 and 4F peptides, modified from model amphipathic helical 18A peptide, to mimic, respectively, apoE and apoA-I properties. Ac-hE18A-NH2, stronger than 4F, inhibited endotoxin activity and disaggregated Escherichia coli 055:B5 (wild smooth serotype). Ac-hE18A-NH2 and 4F inhibited endotoxin activity of E. coli 026:B6 (rough-like serotype) to a similar degree. This suggests that Ac-hE18A-NH2 as a dual-domain molecule might interact with both the lipid A and headgroup of smooth LPS, whereas 4F binds lipid A. In C57BL/6 mice, Ac-hE18A-NH2 was superior to 4F in inhibiting the inflammatory responses mediated by E. coli 055:B5, but not E. coli 026:B6. However, in THP-1 cells, isolated human primary leukocytes, and whole human blood, Ac-hE18A-NH2 reduced responses more strongly than 4F to both E. coli serotypes either when peptides were pre-incubated or co-incubated with LPS, indicating that Ac-hE18A-NH2 also has strong anti-inflammatory effects independent of endotoxin-neutralizing properties. In conclusion, Ac-hE18A-NH2 is more effective than 4F in inhibiting LPS-mediated inflammation, which opens prospective clinical applications for Ac-hE18A-NH2.
Collapse
Affiliation(s)
- Oleg F Sharifov
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Gaurav Nayyar
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | | | | | - David W Garber
- Department of Medicine, University of Alabama at Birmingham, AL, USA
| | - Gm Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, AL, USA Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL, USA
| | - Himanshu Gupta
- Department of Medicine, University of Alabama at Birmingham, AL, USA VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
44
|
Gui T, Liu X, Tao J, Chen J, Li Y, Zhang M, Wu R, Zhang Y, Peng K, Liu Y, Zhang X, Zhang Y. Validation of a recombinant human bactericidal/permeability-increasing protein (hBPI) expression vector using murine mammary gland tumor cells and the early development of hBPI transgenic goat embryos. Anim Reprod Sci 2013; 143:48-56. [PMID: 24289868 DOI: 10.1016/j.anireprosci.2013.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 11/24/2022]
Abstract
Human bactericidal/permeability-increasing protein (hBPI) is the only antibacterial peptide which acts against both gram-negative bacteria and neutralizes endotoxins in human polymorphonuclear neutrophils; therefore, hBPI is of great value in clinical applications. In the study, we constructed a hBPI expression vector (pBC1-Loxp-Neo-Loxp-hBPI) containing the full-length hBPI coding sequence which could be specifically expressed in the mammary gland. To validate the function of the vector, in vitro cultured C127 (mouse mammary Carcinoma Cells) were transfected with the vector, and the transgenic cell clones were selected to express hBPI by hormone induction. The mRNA and protein expression of hBPI showed that the constructed vector was effective and suitable for future application in producing mammary gland bioreactor. Then, female and male goat fibroblasts were transfected with the vector, and two male and two female transgenic clonal cell lines were obtained. Using the transgenic cell lines as nuclear donors for somatic cell nuclear transfer, the reconstructed goat embryos produced from all four clones could develop to blastocysts in vitro. In conclusion, we constructed and validated an efficient mammary gland-specific hBPI expression vector, pBC1-Loxp-Neo-Loxp-hBPI, and transgenic hBPI goat embryos were successfully produced, laying foundations for future production of recombinant hBPI in goat mammary gland.
Collapse
Affiliation(s)
- Tao Gui
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130 of Changjiang West Road, Hefei, Anhui Province 230036, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weitz A, Spotnitz R, Collins J, Ovadia S, Iovine NM. Log reduction of multidrug-resistant Gram-negative bacteria by the neutrophil-derived recombinant bactericidal/permeability-increasing protein. Int J Antimicrob Agents 2013; 42:571-4. [PMID: 24189329 DOI: 10.1016/j.ijantimicag.2013.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/10/2013] [Accepted: 07/24/2013] [Indexed: 11/28/2022]
Abstract
Multidrug-resistant (MDR) Gram-negative bacterial infections are a serious and ever-increasing threat for which limited therapeutic options exist. The bactericidal/permeability-increasing protein (BPI) is a cationic, neutrophil-derived, lipopolysaccharide (LPS)-binding protein that binds to Gram-negative bacteria (GNB) and LPS via its lipid A region. A recombinant fragment, rBPI-21, was studied extensively in clinical trials for meningococcal disease in the 1990s and exhibited no significant safety issues. In this report, a dose-dependent 1-2 log reduction of MDR Pseudomonas and Acinetobacter after 1h incubation with rBPI-21 using clinically achievable doses is described. Given the dearth of novel antimicrobials expected to emerge from the pharmaceutical pipeline in the near future, exploration of rBPI-21 to combat MDR GNB is now warranted.
Collapse
Affiliation(s)
- Andrea Weitz
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
46
|
Mao Y, Zhou C, Zhu L, Huang Y, Yan T, Fang J, Zhu W. Identification and expression analysis on bactericidal permeability-increasing protein (BPI)/lipopolysaccharide-binding protein (LBP) of ark shell, Scapharca broughtonii. FISH & SHELLFISH IMMUNOLOGY 2013; 35:642-652. [PMID: 23742867 DOI: 10.1016/j.fsi.2013.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Bactericidal permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) are the numbers of the lipid transfer protein/lipopolysaccharide-binding protein family and play crucial roles in the innate immune response to Gram-negative bacteria. A novel Sb-BPI/LBP1 from ark shell Scapharca broughtonii was isolated by expressed sequence tag (EST) and RACE techniques. The Sb-BPI/LBP1 cDNA encoded a polypeptide of 484 amino acids with a putative signal peptide of 21 amino acid residues and a mature protein of 463 amino acids. The deduced amino acid sequence of Sb-BPI/LBP1 contained an N-terminal BPI/LBP/CETP domain BPI1 with three functional regions that display LPS-binding activity, and a C-terminal BPI/LBP/CETP domain BPI2. In structure and sequence, Sb-BPI/LBP1 showed highly similar to those of the BPI/LBPs from invertebrate and non-mammalian vertebrate, the LBPs and BPIs from mammal. By quantitative real-time RT-PCR, Sb-BPI/LBP1 transcripts could be detected in all normal tested tissues, including hepatopancreas, adductor muscle, mantle margin, heart, gonad, gill and hemocytes, and was universally up-regulatable at 24 h post LPS challenge. The mRNA expression of Sb-BPI/LBP1 in hemocytes was the most sensitive to LPS challenge, significantly up-regulated at 12 h post LPS challenge and peaked at 24 h (16.76-fold, P < 0.05). These results suggested that Sb-BPI/LBP1 was a constitutive and inducible acute-phase protein contributing to the host immune defense against Gram-negative bacterial infection in ark shell S. broughtonii.
Collapse
Affiliation(s)
- Yuze Mao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Eco-environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu L, Wang J, Zhao Q, Zi C, Wu Z, Su X, Huo Y, Zhu G, Wu S, Bao W. Genetic variation in exon 10 of the BPI gene is associated with Escherichia coli F18 susceptibility in Sutai piglets. Gene 2013; 523:70-5. [DOI: 10.1016/j.gene.2013.02.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
48
|
Li K, Liu Y, Xia X, Wang L, Lu M, Hu Y, Xu C. Bactericidal/permeability-increasing protein in the reproductive system of male mice may be involved in the sperm-oocyte fusion. Reproduction 2013; 146:135-44. [PMID: 23740083 DOI: 10.1530/rep-13-0127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bactericidal/permeability-increasing protein (BPI) is a 455-residue (∼55 kDa) protein found mainly in the primary (azurophilic) granules of human neutrophils. BPI is an endogenous antibiotic protein that belongs to the family of mammalian lipopolysaccharide (LPS)-binding and lipid transport proteins. Its major function is to kill Gram-negative bacteria, thereby protecting the host from infection. In addition, BPI can inhibit angiogenesis, suppress LPS-mediated platelet activation, increase DNA synthesis, and activate ERK/Akt signaling. In this study, we found that Bpi was expressed in the testis and epididymis but not in the seminal vesicles, prostate, and solidification glands. BPI expression in the epididymis increased upon upregulation of testosterone, caused by injection of GNRH. In orchidectomized mice, BPI expression was significantly reduced, but its expression was restored to 30% of control levels in orchidectomized mice that received supplementary testosterone. The number of sperm fused per egg significantly decreased after incubation with anti-BPI antiserum. These results suggest that BPI may take part in the process of sperm-oocyte fusion and play a unique and significant role in reproduction.
Collapse
Affiliation(s)
- Kun Li
- Department of Histology and Embryology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Sharifov OF, Xu X, Gaggar A, Grizzle WE, Mishra VK, Honavar J, Litovsky SH, Palgunachari MN, White CR, Anantharamaiah GM, Gupta H. Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis. PLoS One 2013; 8:e64486. [PMID: 23691230 PMCID: PMC3653907 DOI: 10.1371/journal.pone.0064486] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/14/2013] [Indexed: 01/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) due to sepsis has a high mortality rate with limited treatment options. High density lipoprotein (HDL) exerts innate protective effects in systemic inflammation. However, its role in ARDS has not been well studied. Peptides such as L-4F mimic the secondary structural features and functions of apolipoprotein (apo)A-I, the major protein component of HDL. We set out to measure changes in HDL in sepsis-mediated ARDS patients, and to study the potential of L-4F to prevent sepsis-mediated ARDS in a rodent model of lipopolysaccharide (LPS)-mediated acute lung injury, and a combination of primary human leukocytes and human ARDS serum. We also analyzed serum from non-lung disease intubated patients (controls) and sepsis-mediated ARDS patients. Compared to controls, ARDS demonstrates increased serum endotoxin and IL-6 levels, and decreased HDL, apoA-I and activity of anti-oxidant HDL-associated paraoxanase-1. L-4F inhibits the activation of isolated human leukocytes and neutrophils by ARDS serum and LPS in vitro. Further, L-4F decreased endotoxin activity and preserved anti-oxidant properties of HDL both in vitro and in vivo. In a rat model of severe endotoxemia, L-4F significantly decreased mortality and reduces lung and liver injury, even when administered 1 hour post LPS. Our study suggests the protective role of the apoA-I mimetic peptide L-4F in ARDS and gram-negative endotoxemia and warrant further clinical evaluation. The main protective mechanisms of L-4F are due to direct inhibition of endotoxin activity and preservation of HDL anti-oxidant activity.
Collapse
Affiliation(s)
- Oleg F. Sharifov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Medicine Service, United States Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Vinod K. Mishra
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaideep Honavar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mayakonda N. Palgunachari
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - C. Roger White
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - G. M. Anantharamaiah
- Department of Medicine, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Himanshu Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Medicine Service, United States Department of Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ding PH, Jin L. The role of lipopolysaccharide-binding protein in innate immunity: a revisit and its relevance to oral/periodontal health. J Periodontal Res 2013; 49:1-9. [DOI: 10.1111/jre.12081] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 12/28/2022]
Affiliation(s)
- P.-H. Ding
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| | - L.J. Jin
- Faculty of Dentistry; The University of Hong Kong; Hong Kong SAR China
| |
Collapse
|