1
|
Monetta R, Campagna D, Bartolocci V, Capone A, Teson M, Filippi S, Gabellone S, Piccinino D, Saladino R, Dellambra E. Differential Effects of Biomimetic Thymine Dimers and Corresponding Photo-Adducts in Primary Human Keratinocytes and Fibroblasts. Biomolecules 2024; 14:1484. [PMID: 39766191 PMCID: PMC11726716 DOI: 10.3390/biom14121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025] Open
Abstract
UVB radiation induces DNA damage generating several thymine photo-adducts (TDPs), which can lead to mutations and cellular transformation. The DNA repair pathways preserve genomic stability by recognizing and removing photodamage. These DNA repair side products may affect cellular processes. We previously synthesized novel thymine biomimetic thymine dimers (BTDs) bearing different alkane spacers between nucleobases. Thus, the present study investigates whether novel BTDs and their TDPs can modulate DNA damage safeguard pathways of primary keratinocytes and fibroblasts using 2D and 3D models. We found that the p53/p21waf1 pathway is activated by BTDs and TDPs in primary cells similar to UVB exposure. Compound 1b can also induce the p53/p21waf1 pathway in a 3D skin model. However, BTDs and TDPs exhibit distinct effects on cell survival. They have a protective action in keratinocytes, which maintain their clonogenic ability following treatments. Conversely, compounds induce pro-apoptotic pathways in fibroblasts that exhibit reduced clonogenicity. Moreover, compounds induce inflammatory cytokines mainly in keratinocytes rather than fibroblasts. Matrix metalloproteinase 1 is up-regulated in both cell types after treatments. Therefore, BTDs and TDPs can act in the short term as safeguard mechanisms helping DNA damage response. Furthermore, they have distinct biological effects depending on photodamage form and cell type.
Collapse
Affiliation(s)
- Rosanna Monetta
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy; (R.M.); (D.C.); (V.B.); (A.C.); (M.T.)
| | - Denise Campagna
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy; (R.M.); (D.C.); (V.B.); (A.C.); (M.T.)
| | - Valeria Bartolocci
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy; (R.M.); (D.C.); (V.B.); (A.C.); (M.T.)
| | - Alessio Capone
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy; (R.M.); (D.C.); (V.B.); (A.C.); (M.T.)
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy; (R.M.); (D.C.); (V.B.); (A.C.); (M.T.)
| | - Silvia Filippi
- Laboratorio di Genetica dell’Invecchiamento, Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Sofia Gabellone
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST Srl, 47014 Meldola, Italy;
| | - Davide Piccinino
- Centro Integrato di Ateneo, Sezione Centro Grandi Attrezzature, Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Via S Camillo de Lellis, 01100 Viterbo, Italy;
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Via S Camillo de Lellis, 01100 Viterbo, Italy;
| | - Elena Dellambra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata (IDI-IRCCS), 00167 Rome, Italy; (R.M.); (D.C.); (V.B.); (A.C.); (M.T.)
| |
Collapse
|
2
|
Song J, Park C, Cabanting FEB, Jun YW. Therapeutic upregulation of DNA repair pathways: strategies and small molecule activators. RSC Med Chem 2024; 15:d4md00673a. [PMID: 39430950 PMCID: PMC11487406 DOI: 10.1039/d4md00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
DNA repair activity diminishes with age and genetic mutations, leading to a significantly increased risk of cancer and other diseases. Upregulating the DNA repair system has emerged as a potential strategy to mitigate disease susceptibility while minimizing cytotoxic side effects. However, enhancing DNA repair activity presents significant challenges due to the inherent inefficiency in activator screening processes. Additionally, pinpointing a critical target that can effectively upregulate overall repair processes is complicated as the available information is somewhat sporadic. In this review, we discuss potential therapeutic targets for upregulating DNA repair pathways, along with the chemical structures and properties of reported small-molecule activators. We also elaborate on the diverse mechanisms by which these targets modulate repair activity, highlighting the critical need for a comprehensive understanding to guide the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Juhyung Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Cheoljun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Francis E B Cabanting
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Yong Woong Jun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| |
Collapse
|
3
|
Rallabandi R, Sharp B, Majerus S, Royster A, Hoffer S, Ikeda M, Devaux P. Engineering single-cycle MeV vector for CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev 2024; 32:101290. [PMID: 39070290 PMCID: PMC11283025 DOI: 10.1016/j.omtm.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
CRISPR-Cas9-mediated gene editing has vast applications in basic and clinical research and is a promising tool for several disorders. Our lab previously developed a non-integrating RNA virus, measles virus (MeV), as a single-cycle reprogramming vector by replacing the viral attachment protein with the reprogramming factors for induced pluripotent stem cell generation. Encouraged by the MeV reprogramming vector efficiency, in this study, we develop a single-cycle MeV vector to deliver the gRNA(s) and Cas9 nuclease to human cells for efficient gene editing. We show that the MeV vector achieved on-target gene editing of the reporter (mCherry) and endogenous genes (HBB and FANCD1) in human cells. Additionally, the MeV vector achieved precise knock-in via homology-directed repair using a single-stranded oligonucleotide donor. The MeV vector is a new and flexible platform for gene knock-out and knock-in modifications in human cells, capable of incorporating new technologies as they are developed.
Collapse
Affiliation(s)
- Ramya Rallabandi
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Spencer Majerus
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Austin Royster
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarrianna Hoffer
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mia Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Track, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Carpenter MA, Ginugu M, Khan S, Kemp MG. DNA Containing Cyclobutane Pyrimidine Dimers Is Released from UVB-Irradiated Keratinocytes in a Caspase-Dependent Manner. J Invest Dermatol 2022; 142:3062-3070.e3. [PMID: 35691362 PMCID: PMC11071605 DOI: 10.1016/j.jid.2022.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
Solar radiation induces the formation of cyclobutane pyrimidine dimers (CPDs) and other UV photoproducts in the genomic DNA of epidermal keratinocytes. Although CPDs have been detected in urine from UV- and sun-exposed individuals, the pathway by which they arrive there and the mechanisms by which UV-induced DNA damage in the skin has systemic effects throughout the body are not clear. Consistent with previous reports that DNA associates with small extracellular vesicles that are released from a variety of cell types, we observed that a small fraction of CPDs formed in genomic DNA after UVB exposure can later be detected in the culture medium. These extracellular CPDs are found within large fragments of histone-associated DNA and are released in a time- and UVB dose‒dependent manner. Moreover, studies with both cultured cells and human skin explants revealed that CPD release into the extracellular environment is blocked by caspase inhibition, which indicates a role for apoptotic signaling in CPD release from UVB-irradiated keratinocytes. Finally, we show that this released CPD-containing DNA can be taken up by other keratinocytes. These results therefore provide possible mechanisms for the export of damaged DNA from UVB-irradiated cells and for systemic effects of UVB exposure throughout the body.
Collapse
Affiliation(s)
- M Alexandra Carpenter
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Meghana Ginugu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Saman Khan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA; Dayton VA Medical Center, Dayton, Ohio, USA.
| |
Collapse
|
5
|
Sulforaphane induces cell differentiation, melanogenesis and also inhibit the proliferation of melanoma cells. Eur J Pharmacol 2022; 921:174894. [PMID: 35300996 DOI: 10.1016/j.ejphar.2022.174894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Sulforaphane (SFN) is an organosulfur compound extracted from cruciferous vegetables and has biological effects. The effect of SFN has been studied in different types of cancers, as this compound incites various cytotoxic mechanisms to stunt cancer proliferation. However, the role of SFN activity in melanoma is yet to be known. The current study has been devised to elucidate the effects induced by SFN treatment in the B16F10 melanoma cell line and zebrafish model. Cells were treated with SFN reduced cell proliferation and increased tyrosinase production. Moreover, microscopic and immunofluorescence analysis confirmed the elongated appearance of melanoma cells due to cytoskeletal reorganization induced by SFN. Western blotting showed that SFN regulates the protein expression of Microphthalmia-associated transcription factor (MITF), Protein kinase C beta 1 (PKCβ1), and tyrosinase. The relationship between melanin biosynthesis and changes in the actin cytoskeleton encouraged by SFN on melanoma was determined by treating it with Cytochalasin D (CD) and Jasplakinolide (JAS). Co-treatment of SFN with CD increased more tyrosinase expression than SFN alone whereas with JAS, slightly reduced the expression. Immature zebrafish were pretreated with phenylthiourea (PTU) and then exposed to different SFN concentrations yielded the same results by upregulating the melanin levels despite the presence of melanin inhibitor (PTU). These study results show that SFN induces the biosynthesis of melanin in the B16F10 melanoma cell line, which occurs through changes in actin.
Collapse
|
6
|
Growth arrest and DNA damage-inducible proteins (GADD45) in psoriasis. Sci Rep 2021; 11:14579. [PMID: 34272424 PMCID: PMC8285512 DOI: 10.1038/s41598-021-93780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
The interplay between T cells, dendritic cells and keratinocytes is crucial for the development and maintenance of inflammation in psoriasis. GADD45 proteins mediate DNA repair in different cells including keratinocytes. In the immune system, GADD45a and GADD45b regulate the function and activation of both T lymphocytes and dendritic cells and GADD45a links DNA repair and epigenetic regulation through its demethylase activity. Here, we analyzed the expression of GADD45a and GADD45b in the skin, dendritic cells and circulating T cells in a cohort of psoriasis patients and their regulation by inflammatory signals. Thirty patients (17 male/13 female) with plaque psoriasis and 15 controls subjects (7 male/8 female), were enrolled. Psoriasis patients exhibited a lower expression of GADD45a at the epidermis but a higher expression in dermal infiltrating T cells in lesional skin. The expression of GADD45a and GADD45b was also higher in peripheral T cells from psoriasis patients, although no differences were observed in p38 activation. The expression and methylation state of the GADD45a target UCHL1 were evaluated, revealing a hypermethylation of its promoter in lesional skin compared to controls. Furthermore, reduced levels of GADD45a correlated with a lower expression UCHL1 in lesional skin. We propose that the demethylase function of GADD45a may account for its pleiotropic effects, and the complex and heterogeneous pattern of expression observed in psoriatic disease.
Collapse
|
7
|
Saeed MS, Rashid N. Characterization of TK1646, a highly thermostable 3'-5' single strand specific exonuclease from Thermococcus kodakarensis. Int J Biol Macromol 2019; 140:1194-1201. [PMID: 31437504 DOI: 10.1016/j.ijbiomac.2019.08.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Exonucleases catalyze the hydrolysis of terminal phosphodiester bond in nucleic acid. They play important role in maintaining the integrity of DNA in eukaryotes, prokaryotes and archaea. Limited studies have been done on archaeal exonucleases. Here we report molecular cloning of TK1646, a putative exonuclease from the hyperthermophilic archaeon Thermococcus kodakarensis, and expression of the gene in Escherichia coli. Recombinant TK1646, produced in soluble and active form, was purified to apparent homogeneity. Characterization of the recombinant enzyme indicated that it was single strand specific 3'-5' exonuclease which cleaved the substrate DNA after every two nucleotides. It exhibited highest activity at 85-100 °C and pH 9.0. Unique property of TK1646 was its thermostability as it maintained its activity even at 100 °C with a half-life of 180 min. Recombinant TK1646 followed Michaelis-Menten kinetics and exhibited apparent Km and Vmax values of 33 ± 4 μM and 812 ± 48 nmol/min/mg, respectively. To the best of our knowledge this is the most thermostable single strand specific 3'-5' exonuclease characterized to date.
Collapse
Affiliation(s)
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan 54590.
| |
Collapse
|
8
|
Hua H, Cheng JW, Bu WB, Liu J, Ma WW, Ni N, Shi J, Zhou BR, Luo D. 5-aminolaevulinic acid-based photodynamic therapy inhibits ultraviolet B-induced skin photodamage. Int J Biol Sci 2019; 15:2100-2109. [PMID: 31592145 PMCID: PMC6775304 DOI: 10.7150/ijbs.31583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/21/2019] [Indexed: 12/02/2022] Open
Abstract
To evaluate the photoprotective effect of 5-aminolaevulinic acid-based photodynamic therapy (ALA-PDT) on ultraviolet B (UVB)-induced skin photodamage. In vivo experiments, the dorsal skin of hairless mice were treated with ALA-PDT or saline-PDT, and then exposed to 180 mJ/m2 UVB. Results showed that the number of sunburn cells and apoptotic cells in the epidermis of ALA-PDT-treated groups at 24 h after UVB irradiation were significantly decreased compared with those in the UVB groups. And the removal rate of CPDs was obviously higher in ALA-PDT-treated groups. At 48 h, the number of Ki67 positive nuclei in ALA-PDT-UVB group was significantly fewer than that in UVB group. Further in vitro experiments, human keratinocyte cell line (HaCaT) cells of two groups (one treated with ALA-PDT, the other untreated), were exposed to 60 mJ/m2 UVB irradiation. We found 0.5 mmol/L of ALA and 3 J/cm2 of red light did not affect the vitality of cells, and could reduce UVB induced apoptosis, accelerate the clearance of CPDs, inhibit proliferation and activate p53. Thus, our data demonstrate that ALA-PDT pretreatment can induce a protective DNA damage response that protects skin cells from UVB-induced photodamages.
Collapse
Affiliation(s)
- Hui Hua
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-wei Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-bo Bu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-wei Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Ni
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Shi
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-rong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
HGF/c-MET Signaling in Melanocytes and Melanoma. Int J Mol Sci 2018; 19:ijms19123844. [PMID: 30513872 PMCID: PMC6321285 DOI: 10.3390/ijms19123844] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-MET) signaling is involved in complex cellular programs that are important for embryonic development and tissue regeneration, but its activity is also utilized by cancer cells during tumor progression. HGF and c-MET usually mediate heterotypic cell–cell interactions, such as epithelial–mesenchymal, including tumor–stroma interactions. In the skin, dermal fibroblasts are the main source of HGF. The presence of c-MET on keratinocytes is crucial for wound healing in the skin. HGF is not released by normal melanocytes, but as melanocytes express c-MET, they are receptive to HGF, which protects them from apoptosis and stimulates their proliferation and motility. Dissimilar to melanocytes, melanoma cells not only express c-MET, but also release HGF, thus activating c-MET in an autocrine manner. Stimulation of the HGF/c-MET pathways contributes to several processes that are crucial for melanoma development, such as proliferation, survival, motility, and invasiveness, including distant metastatic niche formation. HGF might be a factor in the innate and acquired resistance of melanoma to oncoprotein-targeted drugs. It is not entirely clear whether elevated serum HGF level is associated with low progression-free survival and overall survival after treatment with targeted therapies. This review focuses on the role of HGF/c-MET signaling in melanoma with some introductory information on its function in skin and melanocytes.
Collapse
|
10
|
Wang LX, Li Y, Chen GZ. Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma. PLoS One 2018; 13:e0190447. [PMID: 29377892 PMCID: PMC5788335 DOI: 10.1371/journal.pone.0190447] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Metastatic melanoma is an aggressive skin cancer and is one of the global malignancies with high mortality and morbidity. It is essential to identify and verify diagnostic biomarkers of early metastatic melanoma. Previous studies have systematically assessed protein biomarkers and mRNA-based expression characteristics. However, molecular markers for the early diagnosis of metastatic melanoma have not been identified. To explore potential regulatory targets, we have analyzed the gene microarray expression profiles of malignant melanoma samples by co-expression analysis based on the network approach. The differentially expressed genes (DEGs) were screened by the EdgeR package of R software. A weighted gene co-expression network analysis (WGCNA) was used for the identification of DEGs in the special gene modules and hub genes. Subsequently, a protein-protein interaction network was constructed to extract hub genes associated with gene modules. Finally, twenty-four important hub genes (RASGRP2, IKZF1, CXCR5, LTB, BLK, LINGO3, CCR6, P2RY10, RHOH, JUP, KRT14, PLA2G3, SPRR1A, KRT78, SFN, CLDN4, IL1RN, PKP3, CBLC, KRT16, TMEM79, KLK8, LYPD3 and LYPD5) were treated as valuable factors involved in the immune response and tumor cell development in tumorigenesis. In addition, a transcriptional regulatory network was constructed for these specific modules or hub genes, and a few core transcriptional regulators were found to be mostly associated with our hub genes, including GATA1, STAT1, SP1, and PSG1. In summary, our findings enhance our understanding of the biological process of malignant melanoma metastasis, enabling us to identify specific genes to use for diagnostic and prognostic markers and possibly for targeted therapy.
Collapse
Affiliation(s)
- Li-xin Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Yang Li
- Institute of Dermatology and Skin Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Guan-zhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
11
|
Guthrie OW. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system. Exp Cell Res 2017; 359:50-61. [DOI: 10.1016/j.yexcr.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
|
12
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
13
|
Kim J, Sambalkhundev GO, Kim S, Son J, Han AR, Ko SM, Hwang KY, Lee WC. Processing of A-form ssDNA by cryptic RNase H fold exonuclease PF2046. Arch Biochem Biophys 2016; 606:143-50. [PMID: 27495739 DOI: 10.1016/j.abb.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022]
Abstract
RNase H fold protein PF2046 of Pyrococcus furiosus is a 3'-5' ssDNA exonuclease that cleaves after the second nucleotide from the 3' end of ssDNA and prefers poly-dT over poly-dA as a substrate. In our crystal structure of PF2046 complexed with an oligonucleotide of four thymidine nucleotides (dT4), PF2046 accommodates dT4 tightly in a groove and imposes steric hindrance on dT4 mainly by Phe220 such that dT4 assumes the A-form. As poly-dA prefer B-form due to the stereochemical restrictions, the A-form ssDNA binding by PF2046 should disfavor the processing of poly-dA. Phe220 variants display reduced activity toward poly-dA and the A-form appears to be a prerequisite for the processing by PF2046.
Collapse
Affiliation(s)
- Junsoo Kim
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea; Institute for Life Sciences and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - Gerelt-Od Sambalkhundev
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea; Institute for Life Sciences and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - Sulhee Kim
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Jonghyeon Son
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Ah-Reum Han
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Sul-Min Ko
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Woo Cheol Lee
- Division of Biotechnology, Korea University, Anam-Dong, Seongbuk-gu, Seoul 136-713, Republic of Korea; Institute for Life Sciences and Natural Resources, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
14
|
Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma. Cancers (Basel) 2015; 7:1586-604. [PMID: 26287245 PMCID: PMC4586785 DOI: 10.3390/cancers7030852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 01/10/2023] Open
Abstract
Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics.
Collapse
|
15
|
Affiliation(s)
- Barbara A Gilchrest
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Mione M, Bosserhoff A. MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res 2015; 28:340-54. [PMID: 25515738 DOI: 10.1111/pcmr.12346] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
The importance of microRNAs as key molecular components of cellular processes is now being recognized. Recent reports have shown that microRNAs regulate processes as diverse as protein expression and nuclear functions inside cells and are able to signal extracellularly, delivered via exosomes, to influence cell fate at a distance. The versatility of microRNAs as molecular tools inspires the design of novel strategies to control gene expression, protein stability, DNA repair and chromatin accessibility that may prove very useful for therapeutic approaches due to the extensive manageability of these small molecules. However, we still lack a comprehensive understanding of the microRNA network and its interactions with the other layers of regulatory elements in cellular and extracellular functions. This knowledge may be necessary before we exploit microRNA versatility in therapeutic settings. To identify rules of interactions between microRNAs and other regulatory systems, we begin by reviewing microRNA activities in a single cell type: the melanocyte, from development to disease.
Collapse
Affiliation(s)
- Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggestein-Leopoldshafen, Germany
| | | |
Collapse
|
17
|
Esteve-Puig R, Gil R, González-Sánchez E, Bech-Serra JJ, Grueso J, Hernández-Losa J, Moliné T, Canals F, Ferrer B, Cortés J, Bastian B, Ramón y Cajal S, Martín-Caballero J, Flores JM, Vivancos A, García-Patos V, Recio JÁ. A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation. PLoS Genet 2014; 10:e1004721. [PMID: 25329316 PMCID: PMC4199501 DOI: 10.1371/journal.pgen.1004721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/30/2014] [Indexed: 11/29/2022] Open
Abstract
Exposure to ultraviolet (UV) radiation from sunlight accounts for 90% of the symptoms of premature skin aging and skin cancer. The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome and in a spectrum of epithelial cancers whose etiology suggests a cooperation with environmental insults. Here we analyzed the role of LKB1 in a UV-dependent mouse skin cancer model and show that LKB1 haploinsufficiency is enough to impede UVB-induced DNA damage repair, contributing to tumor development driven by aberrant growth factor signaling. We demonstrate that LKB1 and its downstream kinase NUAK1 bind to CDKN1A. In response to UVB irradiation, LKB1 together with NUAK1 phosphorylates CDKN1A regulating the DNA damage response. Upon UVB treatment, LKB1 or NUAK1 deficiency results in CDKN1A accumulation, impaired DNA repair and resistance to apoptosis. Importantly, analysis of human tumor samples suggests that LKB1 mutational status could be a prognostic risk factor for UV-induced skin cancer. Altogether, our results identify LKB1 as a DNA damage sensor protein regulating skin UV-induced DNA damage response. Environmental insults are directly involved in cancer development. In particular, Ultraviolet (UV) radiation has been associated to the acquisition of different types skin cancer and premature skin aging. UV radiation causes modifications in the genetic material of cells (DNA) that if not repaired properly will lead to a mutated DNA (mutated genes) which might trigger the development of cancer. Understanding the molecular basis of the UV-induced DNA damage response is important to elucidate the mechanisms of skin homeostasis and tumorigenesis. Here we provide a UVB-induced skin cancer animal model showing that LKB1 tumor suppressor is also a DNA damage sensor. Importantly, the data suggest that reduced amounts of LKB1 protein in skin could be a risk factor for UV-induced skin carcinogenesis in humans.
Collapse
Affiliation(s)
- Rosaura Esteve-Puig
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Gil
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena González-Sánchez
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joan Josep Bech-Serra
- Proteomic Laboratory Medical Oncology Research Program, Vall d'Hebron Institute of Oncology - VHIO, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Judit Grueso
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Teresa Moliné
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francesc Canals
- Proteomic Laboratory Medical Oncology Research Program, Vall d'Hebron Institute of Oncology - VHIO, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Berta Ferrer
- Pathology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Javier Cortés
- Clinical Oncology Program, Vall d'Hebron Institute of Oncology - VHIO, Barcelona, Spain
| | - Boris Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | | | | | - Juana Maria Flores
- Surgery and Medicine Department, Veterinary School, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Vivancos
- Cancer Genomics Group Translational Research Program, Vall d'Hebron Institute of Oncology - VHIO, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vicenç García-Patos
- Dermatology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Juan Ángel Recio
- Animal Models and Cancer Laboratory, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Kim TJ, Cho MK, Lee JS, Whang KU, Jin SY, Hoshino T. The Expression of Melanogenic Proteins in Korean Skin after Ultraviolet Irradiation. J Dermatol 2014; 30:665-72. [PMID: 14578556 DOI: 10.1111/j.1346-8138.2003.tb00455.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 05/27/2003] [Indexed: 11/28/2022]
Abstract
For proper melanin production, several specific enzymes such as tyrosinase, tyrosinase-related protein 1 (TRP-1) and dopachrome tautomerase are required. Their expressions are increased after exposure to UVB. However, it is not known how long tyrosinase and TRP-1 activities continue after UV irradiation in vivo. The purpose of this study is to measure the changes in expressions of tyrosinase, TRP1, and MITF after exposure to UV on skin in a Korean population. We established an immunohistochemical staining protocol for specimens which were obtained from UV-irradiated skin in five healthy Korean males on the 2nd, 5th, 7th, 28th, and 56th days after UV irradiation. Tyrosinase, TRP-1, and MITF expressions increased until 7 days after UV irradiation and then dropped to the basal constitutive level 4 and 8 weeks later. Interestingly, tyrosinase increased prior to TRP-1. This study reveals the time-sequence of melanin-synthesized enzymes and provides important information for the clinical evaluation of the effectiveness of whitening agents.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
19
|
MicroRNA 340 is involved in UVB-induced dendrite formation through the regulation of RhoA expression in melanocytes. Mol Cell Biol 2014; 34:3407-20. [PMID: 24980435 DOI: 10.1128/mcb.00106-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influence of UV irradiation on pigmentation is well established, but the molecular and cellular mechanisms controlling dendrite formation remain incompletely understood. MicroRNAs (miRNAs) are a class of small RNAs that participate in various cellular processes by suppressing the expression of target mRNAs. In this study, we investigated the expression of miRNAs in response to UVB irradiation using a microarray screen and then identified potential mRNA targets for differentially expressed miRNAs among the genes governing dendrite formation. We subsequently determined the ability of miRNA 340 (miR-340) to suppress the expression of RhoA, which is a predicted miR-340 target gene that regulates dendrite formation. The overexpression of miR-340 promoted dendrite formation and melanosome transport, and the downregulation of miR-340 inhibited UVB-induced dendrite formation and melanosome transport. Moreover, a luciferase reporter assay demonstrated direct targeting of RhoA by miR-340 in the immortalized human melanocyte cell line Pig1. In conclusion, this study has established an miRNA associated with UVB irradiation. The significant downregulation of RhoA protein and mRNA expression after UVB irradiation and the modulation of miR-340 expression suggest a key role for miR-340 in regulating UVB-induced dendrite formation and melanosome transport.
Collapse
|
20
|
Salivary α-amylase, serum albumin, and myoglobin protect against DNA-damaging activities of ingested dietary agents in vitro. Food Chem Toxicol 2014; 70:114-9. [PMID: 24842839 DOI: 10.1016/j.fct.2014.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
Potent DNA-damaging activities were seen in vitro from dietary chemicals found in coffee, tea, and liquid smoke. A survey of tea varieties confirmed genotoxic activity to be widespread. Constituent pyrogallol-like polyphenols (PLPs) such as epigallocatechin-3-gallate (EGCG), pyrogallol, and gallic acid were proposed as a major source of DNA-damaging activities, inducing DNA double-strand breaks in the p53R assay, a well characterized assay sensitive to DNA strand breaks, and comet assay. Paradoxically, their consumption does not lead to the kind of widespread cellular toxicity and acute disease that might be expected from genotoxic exposure. Existing physiological mechanisms could limit DNA damage from dietary injurants. Serum albumin and salivary α-amylase are known to bind EGCG. Salivary α-amylase, serum albumin, and myoglobin, but not salivary proline-rich proteins, reduced damage from tea, coffee, and PLPs, but did not inhibit damage from the chemotherapeutics etoposide and camptothecin. This represents a novel function for saliva in addition to its known functions including protection against tannins. Cell populations administered repeated pyrogallol exposures had abatement of measured DNA damage by two weeks, indicating an innate cellular adaptation. We suggest that layers of physiological protections may exist toward natural dietary products to which animals have had high-level exposure over evolution.
Collapse
|
21
|
Puri N, Pitman RT, Mulnix RE, Erickson T, Iness AN, Vitali C, Zhao Y, Salgia R. Non-small cell lung cancer is susceptible to induction of DNA damage responses and inhibition of angiogenesis by telomere overhang oligonucleotides. Cancer Lett 2013; 343:14-23. [PMID: 24041868 DOI: 10.1016/j.canlet.2013.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/15/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
Abstract
Exposure of the telomere overhang acts as a DNA damage signal, and exogenous administration of an 11-base oligonucleotide homologous to the 3'-telomere overhang sequence (T-oligo) mimics the effects of overhang exposure by inducing senescence and cell death in non-small cell lung cancer (NSCLC) cells, but not in normal bronchial epithelial cells. T-oligo-induced decrease in cellular proliferation in NSCLC is likely directed through both p53 and its homolog, p73, with subsequent induction of senescence and expression of senescence-associated proteins, p21, p33(ING), and p27(Kip1) both in vivo and in vitro. Additionally, T-oligo decreases tumor size and inhibits angiogenesis through decreased VEGF signaling and increased TSP-1 expression.
Collapse
Affiliation(s)
- Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States.
| | - Ryan T Pitman
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States
| | - Richard E Mulnix
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States
| | - Terrianne Erickson
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States
| | - Audra N Iness
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States
| | - Connie Vitali
- Department of Pathology, University of Illinois College of Medicine, Rockford, IL, United States
| | - Yutong Zhao
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ravi Salgia
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Roh JI, Sung YH, Lee HW. Clinical implications of antitelomeric drugs with respect to the nontelomeric functions of telomerase in cancer. Onco Targets Ther 2013; 6:1161-6. [PMID: 24009427 PMCID: PMC3762763 DOI: 10.2147/ott.s50918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Telomerase is responsible for maintaining the length of telomeres at the ends of chromosomes. Although most somatic cells do not exhibit telomerase activity, it is reactivated in approximately 85% of cancers. This simple and attractive phenomenon steers the development of anticancer drugs targeting telomeres and telomerase. Recent studies have been revealing extratelomeric roles of telomerase in normal tissues, affecting processes that are critical for survival and aging of organisms. In this review, we will discuss the current therapeutic strategies targeting telomeres and telomerase and evaluate their potential advantages and risks with respect to nontelomeric functions.
Collapse
Affiliation(s)
- Jae-Il Roh
- Mouse Molecular Genetics Laboratory, Department of Biochemistry, Yonsei Laboratory Animal Research Center, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
23
|
Ogara MF, Sirkin PF, Carcagno AL, Marazita MC, Sonzogni SV, Ceruti JM, Cánepa ET. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA. PLoS One 2013; 8:e61143. [PMID: 23593412 PMCID: PMC3625165 DOI: 10.1371/journal.pone.0061143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/06/2013] [Indexed: 12/29/2022] Open
Abstract
The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.
Collapse
Affiliation(s)
- María F. Ogara
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Pablo F. Sirkin
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Abel L. Carcagno
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Mariela C. Marazita
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Silvina V. Sonzogni
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Julieta M. Ceruti
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
| | - Eduardo T. Cánepa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
Reichrath J, Reichrath S. The relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of non-melanoma skin cancer (NMSC): Present concepts and future perspectives. DERMATO-ENDOCRINOLOGY 2013; 5:38-50. [PMID: 24494041 PMCID: PMC3897597 DOI: 10.4161/derm.24156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022]
Abstract
Solar UV (UV)-B-radiation exerts both beneficial and adverse effects on human health. On the one hand, it is the most important environmental risk factor for the development of non-melanoma skin cancer [NMSC; most importantly basal (BCC) and squamous (SCC) cell carcinomas], that represent the most common malignancies in Caucasian populations. On the other hand, the human body's requirements of vitamin D are mainly achieved by UV-B-induced cutaneous photosynthesis. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases including various types of cancer has been convincingly demonstrated. In line with these findings, epidemiologic and laboratory investigations now indicate that vitamin D and its metabolites have a risk reducing effect for NMSC. Potential mechanisms of action include inhibition of the hedgehog signaling pathway (BCC) and modulation of p53-mediated DNA damage response (SCC). As a consequence of these new findings it can be concluded that UV-B-radiation exerts both beneficial and adverse effects on risk and prognosis of NMSC. It can be assumed that many independent factors, including frequency and dose of UV-B exposure, skin area exposed, and individual factors (such as skin type and genetic determinants of the skin`s vitamin D status and of signaling pathways that are involved in the tumorigenesis of NMSC) determine whether UV-B exposure promotes or inhibits tumorigenesis of NMSC. Moreover, these findings may help to explain many of the differential effects of UV-B radiation on risk of NMSC, including variation in the dose-dependent risk for development of SCC in situ (actinic keratosis, AK), invasive SCC, and BCC. In this review, we analyze the relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of NMSC and give an overview of present concepts and future perspectives.
Collapse
Affiliation(s)
- Jörg Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum des Saarlandes; Homburg/Saar, Germany
| | - Sandra Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum des Saarlandes; Homburg/Saar, Germany
| |
Collapse
|
25
|
Inherited MST1 deficiency underlies susceptibility to EV-HPV infections. PLoS One 2012; 7:e44010. [PMID: 22952854 PMCID: PMC3428299 DOI: 10.1371/journal.pone.0044010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023] Open
Abstract
Epidermodysplasia verruciformis (EV) is characterized by persistent cutaneous lesions caused by a specific group of related human papillomavirus genotypes (EV-HPVs) in otherwise healthy individuals. Autosomal recessive (AR) EVER1 and EVER2 deficiencies account for two thirds of known cases of EV. AR RHOH deficiency has recently been described in two siblings with EV-HPV infections as well as other infectious and tumoral manifestations. We report here the whole-exome based discovery of AR MST1 deficiency in a 19-year-old patient with a T-cell deficiency associated with EV-HPV, bacterial and fungal infections. MST1 deficiency has recently been described in seven patients from three unrelated kindreds with profound T-cell deficiency and various viral and bacterial infections. The patient was also homozygous for a rare ERCC3 variation. Our findings broaden the clinical range of infections seen in MST1 deficiency and provide a new genetic etiology of susceptibility to EV-HPV infections. Together with the recent discovery of RHOH deficiency, they suggest that T cells are involved in the control of EV-HPVs, at least in some individuals.
Collapse
|
26
|
Goukassian DA, Sharov A, Rhodes J, Coleman C, Eller MS, Sharova T, Bhawan J, Gilchrest BA. Topical application of thymidine dinucleotide to newborn mice reduces and delays development of UV-induced melanomas. J Invest Dermatol 2012; 132:2664-6. [PMID: 22696052 PMCID: PMC3443549 DOI: 10.1038/jid.2012.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Yu M, Bell RH, Ho MM, Leung G, Haegert A, Carr N, Shapiro J, McElwee KJ. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth. PLoS One 2012; 7:e34185. [PMID: 22615732 PMCID: PMC3353974 DOI: 10.1371/journal.pone.0034185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 02/27/2012] [Indexed: 01/04/2023] Open
Abstract
We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF) by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB) and the upper hair sheaths (HS) including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER) family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.
Collapse
Affiliation(s)
- Mei Yu
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Robert H. Bell
- Prostate Centre, Vancouver General Hospital, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Maggie M. Ho
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Gigi Leung
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Anne Haegert
- Prostate Centre, Vancouver General Hospital, Vancouver, Canada
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Nicholas Carr
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Jerry Shapiro
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Kevin J. McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute, Vancouver, Canada
- * E-mail:
| |
Collapse
|
28
|
Affiliation(s)
- Barbara A Gilchrest
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Hilbert L, Albrecht D, Mackey MC. Small delay, big waves: a minimal delayed negative feedback model captures Escherichia coli single cell SOS kinetics. ACTA ACUST UNITED AC 2011; 7:2599-607. [DOI: 10.1039/c1mb05122a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Sarkar S, Faller DV. T-oligos inhibit growth and induce apoptosis in human ovarian cancer cells. Oligonucleotides 2011; 21:47-53. [PMID: 21281128 DOI: 10.1089/oli.2010.0259] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ovarian cancer remains a leading cause of death among women worldwide, and current treatment regimens for advanced disease are inadequate. Oligonucleotides with sequence homology to telomeres (called T-oligos) have been shown to mimic DNA damage responses in cells and induce cytotoxic effects in certain tumor cell lines. We studied the effects of 2 distinct 16 mer T-oligos in 4 human ovarian epithelial carcinoma cell lines. A T-oligo with perfect homology to the telomere overhang region demonstrated some cytotoxic activity in half of the cell lines. A G-rich T-oligo derivative showed more potency and broader cytotoxic activity in these lines than the parental T-oligo. Activation of apoptotic pathways in ovarian cancer cells by exposure to the T-oligo was demonstrated by multiple independent assays. T-oligo was shown to have additive, or more than additive, activity in combination with 2 different histone deacetylase drugs currently in clinical testing. T-oligos may therefore provide a new and tumor-targeted approach to ovarian cancers.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Cancer Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol 2010; 90:560-4. [PMID: 21035896 DOI: 10.1016/j.ejcb.2010.09.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/03/2010] [Accepted: 09/20/2010] [Indexed: 01/10/2023] Open
Abstract
Solar ultraviolet radiation (UVR) is well known for its immunosuppressive properties. UVR can suppress immune reactions both in a local and a systemic fashion. One of the major molecular mediators of photoimmunosuppression is UVR-induced DNA damage. In contrast to immunosuppressive drugs, UVR does not act in a general but antigen-specific fashion. This is due to the induction of regulatory T cells. Epidermal Langerhans cells harboring UVR-induced DNA damage appear to be essentially involved in the induction of these cells. Cytokines including interleukin (IL)-12, -18 and -23 exert the capacity to reduce UVR-induced DNA damage via induction of DNA repair. Accordingly, these cytokines prevent UVR-mediated immunosuppression. In contrast to IL-18, IL-12 and IL-23 can also inhibit the suppressive activity of regulatory T cells by a mechanism which still needs to be determined. Clarification of the molecular mechanisms underlying UVR-induced immunosuppression will help to develop new immunosuppressive therapeutic strategies by utilizing UVR-induced regulatory T cells for the treatment of immune-mediated diseases. In addition, these insights will contribute to a better understanding of photocarcinogenesis since suppression of the immune system by UVR essentially contributes to the induction of skin cancer.
Collapse
Affiliation(s)
- Thomas Schwarz
- Department of Dermatology, University Kiel, Schittenhelmstrasse 7, 24105 Kiel, Germany.
| | | |
Collapse
|
32
|
Svobodová A, Vostálová J. Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 2010; 86:999-1030. [PMID: 20807180 DOI: 10.3109/09553002.2010.501842] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Solar energy has a number of short- and long-term detrimental effects on skin that can result in several skin disorders. The aim of this review is to summarise current knowledge on endogenous systems within the skin for protection from solar radiation and present research findings to date, on the exogenous options for such skin photoprotection. RESULTS Endogenous systems for protection from solar radiation include melanin synthesis, epidermal thickening and an antioxidant network. Existing lesions are eliminated via repair mechanisms. Cells with irreparable damage undergo apoptosis. Excessive and chronic sun exposure however can overwhelm these mechanisms leading to photoaging and the development of cutaneous malignancies. Therefore exogenous means are a necessity. Exogenous protection includes sun avoidance, use of photoprotective clothing and sufficient application of broad-spectrum sunscreens as presently the best way to protect the skin. However other strategies that may enhance currently used means of protection are being investigated. These are often based on the endogenous protective response to solar light such as compounds that stimulate pigmentation, antioxidant enzymes, DNA repair enzymes, non-enzymatic antioxidants. CONCLUSION More research is needed to confirm the effectiveness of new alternatives to photoprotection such as use of DNA repair and antioxidant enzymes and plant polyphenols and to find an efficient way for their delivery to the skin. New approaches to the prevention of skin damage are important especially for specific groups of people such as (young) children, photosensitive people and patients on immunosuppressive therapy. Changes in public awareness on the subject too must be made.
Collapse
Affiliation(s)
- Alena Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc, Czech Republic.
| | | |
Collapse
|
33
|
Jowsey PA, Williams FM, Blain PG. The role of homologous recombination in the cellular response to sulphur mustard. Toxicol Lett 2010; 197:12-8. [DOI: 10.1016/j.toxlet.2010.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 01/19/2023]
|
34
|
Inhibition of melanoma angiogenesis by telomere homolog oligonucleotides. JOURNAL OF ONCOLOGY 2010; 2010:928628. [PMID: 20652008 PMCID: PMC2906154 DOI: 10.1155/2010/928628] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 01/13/2023]
Abstract
Telomere homolog oligonucleotides (T-oligos) activate an innate telomere-based program that leads to multiple anticancer effects. T-oligos act at telomeres to initiate signaling through the Werner protein and ATM kinase. We wanted to determine if T-oligos have antiangiogenic effects. We found that T-oligo-treated human melanoma (MM-AN) cells had decreased expression of vascular endothelial growth factor (VEGF), VEGF receptor 2, angiopoeitin-1 and -2 and decreased VEGF secretion. T-oligos activated the transcription factor E2F1 and inhibited the activity of the angiogenic transcription factor, HIF-1α. T-oligos inhibited EC tubulogenesis and total tumor microvascular density matrix invasion by MM-AN cells and ECs in vitro. In melanoma SCID xenografts, two systemic T-oligo injections decreased by 60% (P < .004) total tumor microvascular density and the functional vessels density by 80% (P < .002). These findings suggest that restriction of tumor angiogenesis is among the host's innate telomere-based anticancer responses and provide further evidence that T-oligos may offer a powerful new approach for melanoma treatment.
Collapse
|
35
|
Jin S, Zhou B, Luo D. Hesperidin promotes cyclobutane pyrimidine dimer repair in UVB-exposed mice epidermis. Ir J Med Sci 2010; 180:709-14. [PMID: 20535600 DOI: 10.1007/s11845-010-0503-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/10/2010] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate whether topical application of hesperin affords protection to Balb/C mice epidermis from UVB-induced cyclobutane pyrimidine dimers (CPDs). METHODS A DNA damage model of UVB irradiation-induced mice epidermis was established. The immunohistochemical staining and southwestern dot blotting were used for CPDs detection; western blotting was used for P53 detection. RESULTS Topical application of hesperidin on Balb/C mice skin significantly decreased the amount of epidermal CPDs 24 and 48 h after 180 mJ/cm(2) of UVB irradiation as compared to untreated mice. UVB-induced p53 expression was more pronounced in hesperidin-treated mice epidermis compared to that of untreated mice. CONCLUSION Taken together, these results suggest that topical hesperidin application promotes DNA photo-damage repair. Hesperidin is therefore a promising protective substance against UVB radiation.
Collapse
Affiliation(s)
- S Jin
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | | | | |
Collapse
|
36
|
Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int J Cosmet Sci 2010; 27:17-34. [PMID: 18492178 DOI: 10.1111/j.1467-2494.2004.00241.x] [Citation(s) in RCA: 457] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inflammation and the resulting accumulation of reactive oxygen species (ROS) play an important role in the intrinsic and photoaging of human skin in vivo. Environmental insults such as ultraviolet (UV) rays from sun, cigarette smoke exposure and pollutants, and the natural process of aging contribute to the generation of free radicals and ROS that stimulate the inflammatory process in the skin. UV irradiation initiates and activates a complex cascade of biochemical reactions in human skin. In short, UV causes depletion of cellular antioxidants and antioxidant enzymes (SOD, catalase), initiates DNA damage leading to the formation of thymidine dimmers, activates the neuroendocrine system leading to immunosuppression and release of neuroendocrine mediators, and causes increased synthesis and release of pro-inflammatory mediators from a variety of skin cells. The pro-inflammatory mediators increase the permeability of capillaries leading to infiltration and activation of neutrophils and other phagocytic cells into the skin. The net result of all these effects is inflammation and free radical generation (both reactive oxygen and nitrogen species). Furthermore, elastsases and other proteases (cathepsin G) released from neutrophils cause further inflammation, and activation of matrix metalloproteases. The inflammation further activates the transcription of various matrixes degrading metalloproteases, leading to abnormal matrix degradation and accumulation of non-functional matrix components. In addition, the inflammation and ROS cause oxidative damage to cellular proteins, lipids and carbohydrates, which accumulates in the dermal and epidermal compartments, contributing to the aetiology of photoaging. Strategies to prevent photodamage caused by this cascade of reactions initiated by UV include: prevention of UV penetration into skin by physical and chemical sunscreens, prevention/reduction of inflammation using anti-inflammatory compounds (e.g. cyclooxygenase inhibitors, inhibitors of cytokine generation); scavenging and quenching of ROS by antioxidants; inhibition of neutrophil elastase activity to prevent extracellular matrix damage and activation of matrix metalloproteases (MMPs), and inhibition of MMP expression (e.g. by retinoids) and activity (e.g. by natural and synthetic inhibitors).
Collapse
Affiliation(s)
- S Pillai
- Engelhard Corporation, Long Island, New York, NY, USA.
| | | | | |
Collapse
|
37
|
Albertini RJ, Judice SA, Recio L, Walker VE. Hprt mutant frequency and p53 gene status in mice chronically exposed by inhalation to benzene. Chem Biol Interact 2010; 184:77-85. [DOI: 10.1016/j.cbi.2009.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 11/30/2022]
|
38
|
|
39
|
Lee MS, Yaar M, Eller MS, Rünger TM, Gao Y, Gilchrest BA. Telomeric DNA induces p53-dependent reactive oxygen species and protects against oxidative damage. J Dermatol Sci 2009; 56:154-62. [PMID: 19906512 DOI: 10.1016/j.jdermsci.2009.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/20/2009] [Accepted: 08/24/2009] [Indexed: 01/12/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are generated by cellular metabolism as well as by exogenous agents. While ROS can promote cellular senescence, they can also act as signaling molecules for processes that do not lead to senescence. Telomere homolog oligonucleotides (T-oligos) induce adaptive DNA damage responses including increased DNA repair capacity and these effects are mediated, at least in part, through p53. OBJECTIVE Studies were undertaken to determine whether such p53-mediated protective responses include enhanced antioxidant defenses. METHODS Normal human fibroblasts as well as R2F fibroblasts expressing wild type or dominant negative p53 were treated with an 11-base T-oligo, a complementary control oligo or diluents alone and then examined by western blot analysis, immunofluorescence microscopy and various biochemical assays. RESULTS We now report that T-oligo increases the level of the antioxidant enzymes superoxide dismutase 1 and 2 and protects cells from oxidative damage; and that telomere-based gammaH2AX (DNA damage) foci that form in response to T-oligos contain phosphorylated ATM and Chk2, proteins known to activate p53 and to mediate cell cycle arrest in response to oxidative stress. Further, T-oligo increases cellular ROS levels via a p53-dependent pathway, and these increases are abrogated by the NAD(P)H oxidase inhibitor diphenyliodonium chloride. CONCLUSION These results suggest the existence of innate telomere-based protective responses that act to reduce oxidative damage to cells. T-oligo treatment induces the same responses and offers a new model for studying intracellular ROS signaling and the relationships between DNA damage, ROS, oxidative stress, and cellular defense mechanisms.
Collapse
Affiliation(s)
- Margaret S Lee
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
UV-induced melanogenesis (tanning) and "premature aging" or photoaging result in large part from DNA damage. This article reviews data tying both phenomena to telomere-based DNA damage signaling and develops a conceptual framework in which both responses may be understood as cancer-avoidance protective mechanisms.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 25-31; doi:10.1038/jidsymp.2009.9.
Collapse
|
41
|
Abstract
As sunscreens do not provide complete protection against solar/UV radiation, alternative protective strategies are necessary to cope with the increasing incidence of skin cancer. These strategies include the reduction of UVR-induced DNA damage by the topical application of bacterial DNA repair enzymes. Recent evidence suggests that nucleotide excision repair, the physiological repair system that is mostly responsible for the removal of UVR-mediated DNA damage, can be modulated by cytokines, including IL-12, IL-18, and alpha-melanocyte-stimulating hormone. The mechanisms involved and the biological as well as the potential therapeutic implications of these findings are discussed.Journal of Investigative Dermatology Symposium Proceedings (2009) 14, 63-66; doi:10.1038/jidsymp.2009.3.
Collapse
|
42
|
Profiling the Response of Human Hair Follicles to Ultraviolet Radiation. J Invest Dermatol 2009; 129:1790-804. [DOI: 10.1038/jid.2008.418] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Lawrence NJ, Song L, Doig J, Ritchie AM, Brownstein DG, Melton DW. Topical thymidine dinucleotide application protects against UVB-induced skin cancer in mice with DNA repair gene (Ercc1)-deficient skin. DNA Repair (Amst) 2009; 8:664-71. [DOI: 10.1016/j.dnarep.2009.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/22/2008] [Accepted: 01/25/2009] [Indexed: 01/14/2023]
|
44
|
|
45
|
Ceruti JM, Scassa ME, Marazita MC, Carcagno AC, Sirkin PF, Cánepa ET. Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response. Int J Biochem Cell Biol 2008; 41:1344-53. [PMID: 19130897 DOI: 10.1016/j.biocel.2008.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/04/2008] [Accepted: 12/08/2008] [Indexed: 12/25/2022]
Abstract
p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.
Collapse
Affiliation(s)
- Julieta M Ceruti
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II Piso 4, 1428 Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
46
|
Ioki M, Takahashi S, Nakajima N, Fujikura K, Tamaoki M, Saji H, Kubo A, Aono M, Kanna M, Ogawa D, Fukazawa J, Oda Y, Yoshida S, Watanabe M, Hasezawa S, Kondo N. An unidentified ultraviolet-B-specific photoreceptor mediates transcriptional activation of the cyclobutane pyrimidine dimer photolyase gene in plants. PLANTA 2008; 229:25-36. [PMID: 18825406 DOI: 10.1007/s00425-008-0803-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 07/30/2008] [Indexed: 05/05/2023]
Abstract
Cyclobutane pyrimidine dimers (CPDs) constitute a majority of DNA lesions caused by ultraviolet-B (UVB). CPD photolyase, which rapidly repairs CPDs, is essential for plant survival under sunlight containing UVB. Our earlier results that the transcription of the cucumber CPD photolyase gene (CsPHR) was activated by light have prompted us to propose that this light-driven transcriptional activation would allow plants to meet the need of the photolyase activity upon challenges of UVB from sunlight. However, molecular mechanisms underlying the light-dependent transcriptional activation of CsPHR were unknown. In order to understand spectroscopic aspects of the plant response, we investigated the wavelength-dependence (action spectra) of the light-dependent transcriptional activation of CsPHR. In both cucumber seedlings and transgenic Arabidopsis seedlings expressing reporter genes under the control of the CsPHR promoter, the action spectra exhibited the most predominant peak in the long-wavelength UVB waveband (around 310 nm). In addition, a 95-bp cis-acting region in the CsPHR promoter was identified to be essential for the UVB-driven transcriptional activation of CsPHR. Thus, we concluded that the photoperception of long-wavelength UVB by UVB photoreceptor(s) led to the induction of the CsPHR transcription via a conserved cis-acting element.
Collapse
Affiliation(s)
- Motohide Ioki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arad S, Zattra E, Hebert J, Epstein EH, Goukassian DA, Gilchrest BA. Topical thymidine dinucleotide treatment reduces development of ultraviolet-induced basal cell carcinoma in Ptch-1+/- mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1248-55. [PMID: 18403589 DOI: 10.2353/ajpath.2008.071117] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment with thymidine dinucleotide (pTT) has well documented DNA-protective effects and reduces development of squamous cell carcinoma in UV-irradiated mice. The preventive effect of pTT on basal cell carcinoma (BCC) was evaluated in UV-irradiated Ptch-1(+/-) mice, a model of the human disease Gorlin syndrome. Topical pTT treatment significantly reduced the number and size (P < 0.001) of BCCs in murine skin after 7 months of chronic irradiation. Skin biopsies collected 24 hours after the final UV exposure showed that pTT reduced the number of nuclei positive for cyclobutane pyrimidine dimers by 40% (P < 0.0002) and for 8-hydroxy-2'-deoxyguanosine by 61% (P < 0.01 compared with vehicle control). Immunostaining with an antibody specific for mutated p53 revealed 63% fewer positive patches in BCCs of pTT-treated mice compared with controls (P < 0.01), and the number of Ki-67-positive cells was decreased by 56% (P < 0.01) in pTT-treated tumor-free epidermis and by 76% (P < 0.001) in BCC tumor nests (P < 0.001). Terminal dUTP nick-end labeling staining revealed a 213% increase (P < 0.04) in the number of apoptotic cells in BCCs of pTT-treated mice. Cox-2 immunostaining was decreased by 80% in tumor-free epidermis of pTT-treated mice compared with controls (P < 0.01). We conclude that topical pTT treatment during a prolonged period of intermittent UV exposure decreases the number and size of UV-induced BCCs through several anti-cancer mechanisms.
Collapse
Affiliation(s)
- Simin Arad
- Department of Dermatology, Boston University School of Medicine, 609 Albany St., Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
48
|
Belletti S, Uggeri J, Gatti R, Govoni P, Guizzardi S. Polydeoxyribonucleotide promotes cyclobutane pyrimidine dimer repair in UVB-exposed dermal fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2008; 23:242-9. [PMID: 17986061 DOI: 10.1111/j.1600-0781.2007.00320.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND DNA is the main cellular chromophore for ultraviolet B (UVB). Its absorption leads to the generation of typical photoproducts. The most frequent types (about 80%) are cyclobutane pyrimidine dimers (CPDs). Several studies have suggested that treatment with deoxyribonucleosides can protect some cell types from DNA damage. The aim of this work was to evaluate the ability of the polydeoxyribonucleotide (PDRN) to protect human dermal fibroblasts from UVB-induced DNA damage. METHODS Human dermal fibroblasts were irradiated with 600 mJ/cm(2) of UVB radiation. Cells were analyzed at increasing time points from irradiation to study the recovery from UVB-induced DNA photodamage. Damage repair was subsequently assessed by immunocytochemical analysis of CPDs levels and by measurement of p53 protein expression. RESULTS The extracellular addition of 100 microg/ml PDRN immediately after irradiation caused a strong activation of p53 protein in the first 24 h. This signal was accompanied by an increase in CPDs repair rates at early time points of recovery. CONCLUSIONS The addition of PDRN to the culture medium supports CPDs repair probably providing a faster supply of precursors for the deoxyribonucleotide triphosphates pool necessary to UVB-damaged cells. This condition could promote the action of the salvage pathway, thereby accelerating DNA repair, but other inducible responses linked to increased p53 expression could be involved.
Collapse
Affiliation(s)
- Silvana Belletti
- Department of Experimental Medicine, University of Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
49
|
T-oligos as differential modulators of human scalp hair growth and pigmentation: a new "time lapse system" for studying human skin and hair follicle biology in vitro? Arch Dermatol Res 2008; 300:155-9. [PMID: 18239924 DOI: 10.1007/s00403-008-0833-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Small DNA oligonucleotides homologous to the 3' overhang of human telomeres, called T-oligos, stimulate pigmentation in human epidermal melanocytes in vitro and in vivo. They induce UV-mimetic effects in the absence of DNA-damage, however, it is unknown how T-oligos affect human hair follicle keratinocyte and melanocyte functions in situ. Here, we present the first evidence that these oligonucleotides are powerful modulators of pigmentation and growth of microdissected, organ-cultured human scalp hair follicles. Hair follicles were incubated with T-oligo or vehicle control and were then assessed for changes in hair shaft length, follicle morphology, pigmentation, proliferation and apoptosis. After only 48 h, T-oligos induced a fourfold increase in pigmentation of human anagen VI hair bulbs, while hair matrix keratinocyte proliferation was reduced by 65%, without apparent changes in hair bulb cell apoptosis. This corresponded well with a significant inhibition of hair shaft elongation, which was not accompanied by premature catagen induction in anagen VI hair follicles. These diametrically opposed effects of T-oligos on human hair follicle melanocytes (stimulation of melanogenesis) versus human hair bulb keratinocytes (inhibition of proliferation) in situ illustrate that human hair follicle organ culture offers an excellent tool for T-oligo research. They suggest that T-oligos deserve to be further explored for the management of clinical hair growth and pigmentation disorders, and raise the possibility that this model may offer a unique "time lapse system" for studying skin and hair follicle biology and DNA repair strategies under physiologically relevant conditions.
Collapse
|
50
|
Eller MS, Asarch A, Gilchrest BA. Photoprotection in human skin--a multifaceted SOS response. Photochem Photobiol 2008; 84:339-49. [PMID: 18179622 DOI: 10.1111/j.1751-1097.2007.00264.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human skin has developed elaborate defense mechanisms for combating a wide variety of potentially damaging environmental factors; principal among these is UV light. Despite these defenses, short-term damage may include painful sunburn and long-term UV damage results in both accelerated skin aging and skin cancers such as basal cell carcinoma, squamous cell carcinoma and even malignant melanoma. While UV radiation damages many cellular constituents, its most lasting effects involve DNA alteration. The following sections briefly review UV-inducible protective responses in bacteria and in skin, thymidine dinucleotides (pTT) as a powerful probe of DNA damage responses, and potential means of harnessing these inducible responses therapeutically to reduce the now enormous burden of cutaneous photodamage in our society.
Collapse
Affiliation(s)
- Mark S Eller
- Department of Dermatology, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|