1
|
Gottlieb P, Alimova A. Heterologous RNA Recombination in the Cystoviruses φ6 and φ8: A Mechanism of Viral Variation and Genome Repair. Viruses 2022; 14:v14112589. [PMID: 36423198 PMCID: PMC9697746 DOI: 10.3390/v14112589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recombination and mutation of viral genomes represent major mechanisms for viral evolution and, in many cases, moderate pathogenicity. Segmented genome viruses frequently undergo reassortment of the genome via multiple infection of host organisms, with influenza and reoviruses being well-known examples. Specifically, major genomic shifts mediated by reassortment are responsible for radical changes in the influenza antigenic determinants that can result in pandemics requiring rapid preventative responses by vaccine modifications. In contrast, smaller mutational changes brought about by the error-prone viral RNA polymerases that, for the most part, lack a replication base mispairing editing function produce small mutational changes in the RNA genome during replication. Referring again to the influenza example, the accumulated mutations-known as drift-require yearly vaccine updating and rapid worldwide distribution of each new formulation. Coronaviruses with a large positive-sense RNA genome have long been known to undergo intramolecular recombination likely mediated by copy choice of the RNA template by the viral RNA polymerase in addition to the polymerase-based mutations. The current SARS-CoV-2 origin debate underscores the importance of understanding the plasticity of viral genomes, particularly the mechanisms responsible for intramolecular recombination. This review describes the use of the cystovirus bacteriophage as an experimental model for recombination studies in a controlled manner, resulting in the development of a model for intramolecular RNA genome alterations. The review relates the sequence of experimental studies from the laboratory of Leonard Mindich, PhD at the Public Health Research Institute-then in New York City-and covers a period of approximately 12 years. Hence, this is a historical scientific review of research that has the greatest relevance to current studies of emerging RNA virus pathogens.
Collapse
|
2
|
Gottlieb P, Alimova A. RNA Packaging in the Cystovirus Bacteriophages: Dynamic Interactions during Capsid Maturation. Int J Mol Sci 2022; 23:ijms23052677. [PMID: 35269819 PMCID: PMC8910881 DOI: 10.3390/ijms23052677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
The bacteriophage family Cystoviridae consists of a single genus, Cystovirus, that is lipid-containing with three double-stranded RNA (ds-RNA) genome segments. With regard to the segmented dsRNA genome, they resemble the family Reoviridae. Therefore, the Cystoviruses have long served as a simple model for reovirus assembly. This review focuses on important developments in the study of the RNA packaging and replication mechanisms, emphasizing the structural conformations and dynamic changes during maturation of the five proteins required for viral RNA synthesis, P1, P2, P4, P7, and P8. Together these proteins constitute the procapsid/polymerase complex (PC) and nucleocapsid (NC) of the Cystoviruses. During viral assembly and RNA packaging, the five proteins must function in a coordinated fashion as the PC and NC undergo expansion with significant position translation. The review emphasizes this facet of the viral assembly process and speculates on areas suggestive of additional research efforts.
Collapse
|
3
|
Sutton G, Sun D, Fu X, Kotecha A, Hecksel CW, Clare DK, Zhang P, Stuart DI, Boyce M. Assembly intermediates of orthoreovirus captured in the cell. Nat Commun 2020; 11:4445. [PMID: 32895380 PMCID: PMC7477198 DOI: 10.1038/s41467-020-18243-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/08/2020] [Indexed: 12/03/2022] Open
Abstract
Traditionally, molecular assembly pathways for viruses are inferred from high resolution structures of purified stable intermediates, low resolution images of cell sections and genetic approaches. Here, we directly visualise an unsuspected 'single shelled' intermediate for a mammalian orthoreovirus in cryo-preserved infected cells, by cryo-electron tomography of cellular lamellae. Particle classification and averaging yields structures to 5.6 Å resolution, sufficient to identify secondary structural elements and produce an atomic model of the intermediate, comprising 120 copies each of protein λ1 and σ2. This λ1 shell is 'collapsed' compared to the mature virions, with molecules pushed inwards at the icosahedral fivefolds by ~100 Å, reminiscent of the first assembly intermediate of certain prokaryotic dsRNA viruses. This supports the supposition that these viruses share a common ancestor, and suggests mechanisms for the assembly of viruses of the Reoviridae. Such methodology holds promise for dissecting the replication cycle of many viruses.
Collapse
Affiliation(s)
- Geoff Sutton
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Dapeng Sun
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiaofeng Fu
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Abhay Kotecha
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Thermo Fisher Scientific, Achtseweg Noorg 5, 5651 GG, Eindhoven, The Netherlands
| | - Corey W Hecksel
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Daniel K Clare
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Structure Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - David I Stuart
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Mark Boyce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
4
|
Borodavka A, Desselberger U, Patton JT. Genome packaging in multi-segmented dsRNA viruses: distinct mechanisms with similar outcomes. Curr Opin Virol 2018; 33:106-112. [PMID: 30145433 PMCID: PMC6289821 DOI: 10.1016/j.coviro.2018.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Segmented double-stranded (ds)RNA viruses share remarkable similarities in their replication strategy and capsid structure. During virus replication, positive-sense single-stranded (+)RNAs are packaged into procapsids, where they serve as templates for dsRNA synthesis, forming progeny particles containing a complete equimolar set of genome segments. How the +RNAs are recognized and stoichiometrically packaged remains uncertain. Whereas bacteriophages of the Cystoviridae family rely on specific RNA-protein interactions to select appropriate +RNAs for packaging, viruses of the Reoviridae instead rely on specific inter-molecular interactions between +RNAs that guide multi-segmented genome assembly. While these families use distinct mechanisms to direct +RNA packaging, both yield progeny particles with a complete set of genomic dsRNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Ulrich Desselberger
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John T Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
5
|
Abstract
Double-stranded RNA viruses infect a wide spectrum of hosts, including animals, plants, fungi, and bacteria. Yet genome replication mechanisms of these viruses are conserved. During the infection cycle, a proteinaceous capsid, the polymerase complex, is formed. An essential component of this capsid is the viral RNA polymerase that replicates and transcribes the enclosed viral genome. The polymerase complex structure is well characterized for many double-stranded RNA viruses. However, much less is known about the hierarchical molecular interactions that take place in building up such complexes. Using the bacteriophage Φ6 self-assembly system, we obtained novel insights into the processes that mediate polymerase subunit incorporation into the polymerase complex for generation of functional structures. The results presented pave the way for the exploitation and engineering of viral self-assembly processes for biomedical and synthetic biology applications. An understanding of viral assembly processes at the molecular level may also facilitate the development of antivirals that target viral capsid assembly. Double-stranded RNA (dsRNA) viruses package several RNA-dependent RNA polymerases (RdRp) together with their dsRNA genome into an icosahedral protein capsid known as the polymerase complex. This structure is highly conserved among dsRNA viruses but is not found in any other virus group. RdRp subunits typically interact directly with the main capsid proteins, close to the 5-fold symmetric axes, and perform viral genome replication and transcription within the icosahedral protein shell. In this study, we utilized Pseudomonas phage Φ6, a well-established virus self-assembly model, to probe the potential roles of the RdRp in dsRNA virus assembly. We demonstrated that Φ6 RdRp accelerates the polymerase complex self-assembly process and contributes to its conformational stability and integrity. We highlight the role of specific amino acid residues on the surface of the RdRp in its incorporation during the self-assembly reaction. Substitutions of these residues reduce RdRp incorporation into the polymerase complex during the self-assembly reaction. Furthermore, we determined that the overall transcription efficiency of the Φ6 polymerase complex increased when the number of RdRp subunits exceeded the number of genome segments. These results suggest a mechanism for RdRp recruitment in the polymerase complex and highlight its novel role in virion assembly, in addition to the canonical RNA transcription and replication functions.
Collapse
|
6
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
7
|
Hanhijärvi KJ, Ziedaite G, Bamford DH, Hæggström E, Poranen MM. Single-molecule measurements of viral ssRNA packaging. RNA (NEW YORK, N.Y.) 2017; 23:119-129. [PMID: 27803153 PMCID: PMC5159644 DOI: 10.1261/rna.057471.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Genome packaging of double-stranded RNA (dsRNA) phages has been widely studied using biochemical and molecular biology methods. We adapted the existing in vitro packaging system of one such phage for single-molecule experimentation. To our knowledge, this is the first attempt to study the details of viral RNA packaging using optical tweezers. Pseudomonas phage φ6 is a dsRNA virus with a tripartite genome. Positive-sense (+) single-stranded RNA (ssRNA) genome precursors are packaged into a preformed procapsid (PC), where negative strands are synthesized. We present single-molecule measurements of the viral ssRNA packaging by the φ6 PC. Our data show that packaging proceeds intermittently in slow and fast phases, which likely reflects differences in the unfolding of the RNA secondary structures of the ssRNA being packaged. Although the mean packaging velocity was relatively low (0.07-0.54 nm/sec), packaging could reach 4.62 nm/sec during the fast packaging phase.
Collapse
Affiliation(s)
| | - Gabija Ziedaite
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Edward Hæggström
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
8
|
Alimova A, Wei H, Katz A, Spatz L, Gottlieb P. The ϕ6 cystovirus protein P7 becomes accessible to antibodies in the transcribing nucleocapsid: a probe for viral structural elements. PLoS One 2015; 10:e0122160. [PMID: 25799314 PMCID: PMC4370446 DOI: 10.1371/journal.pone.0122160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/15/2015] [Indexed: 01/01/2023] Open
Abstract
Protein P7 is a component of the cystovirus viral polymerase complex. In the unpackaged procapsid, the protein is situated in close proximity to the viral directed RNA polymerase, P2. Cryo-electron microscopy difference maps from the species ϕ6 procapsid have demonstrated that P7 and P2 likely interact prior to viral RNA packaging. The location of P7 in the post-packaged nucleocapsid (NC) remains unknown. P7 may translocate closer to the five-fold axis of a filled procapsid but this has not been directly visualized. We propose that monoclonal antibodies (Mabs) can be selected that serve as probe- reagents for viral assembly and structure. A set of Mabs have been isolated that recognize and bind to the ϕ6 P7. The antibody set contains five unique Mabs, four of which recognize a linear epitope and one which recognizes a conformational epitope. The four unique Mabs that recognize a linear epitope display restricted utilization of Vκ and VH genes. The restricted genetic range among 4 of the 5 antibodies implies that the antibody repertoire is limited. The limitation could be the consequence of a paucity of exposed antigenic sites on the ϕ6 P7 surface. It is further demonstrated that within ϕ6 nucleocapsids that are primed for early-phase transcription, P7 is partially accessible to the Mabs, indicating that the nucleocapsid shell (protein P8) has undergone partial disassembly exposing the protein’s antigenic sites.
Collapse
Affiliation(s)
- Alexandra Alimova
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
| | - Hui Wei
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
| | - Al Katz
- Department of Physics, City College of New York, New York, NY 10031, United States of America
| | - Linda Spatz
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
| | - Paul Gottlieb
- Sophie Davis School of Biomedical Education, City College of New York, New York, NY 10031, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sun X, Pirttimaa MJ, Bamford DH, Poranen MM. Rescue of maturation off-pathway products in the assembly of Pseudomonas phage φ 6. J Virol 2013; 87:13279-86. [PMID: 24089550 PMCID: PMC3838280 DOI: 10.1128/jvi.02285-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022] Open
Abstract
Many complex viruses use an assembly pathway in which their genome is packaged into an empty procapsid which subsequently matures into its final expanded form. We utilized Pseudomonas phage 6, a well-established virus assembly model, to probe the plasticity of the procapsid maturation pathway. The 6 packaging nucleoside triphosphatase (NTPase), which powers sequential translocation of the three viral genomic single-stranded RNA molecules to the procapsid during capsid maturation, is part of the mature 6 virion but may spontaneously be dissociated from the procapsid shell. We demonstrate that the dissociation of NTPase subunits results in premature capsid expansion, which is detected as a change in the sedimentation velocity and as defects in RNA packaging and transcription activity. However, this dead-end conformation of the procapsids was rescued by the addition of purified NTPase hexamers, which efficiently associated on the NTPase-deficient particles and subsequently drove their contraction to the compact naive conformation. The resulting particles regained their biological and enzymatic activities, directing them into a productive maturation pathway. These observations imply that the maturation pathways of complex viruses may contain reversible steps that allow the rescue of the off-pathway conformation in an overall unidirectional virion assembly pathway. Furthermore, we provide direct experimental evidence that particles which have different physical properties (distinct sedimentation velocities and conformations) display different stages of the genome packaging program and show that the transcriptional activity of the 6 procapsids correlates with the number of associated NTPase subunits.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Markus J. Pirttimaa
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | - Dennis H. Bamford
- Department of Biosciences
- Institute of Biotechnology, University of Helsinki, Viikki Biocenter, Helsinki, Finland
| | | |
Collapse
|
10
|
Using cryoEM Reconstruction and Phase Extension to Determine Crystal Structure of Bacteriophage ϕ6 Major Capsid Protein. Protein J 2013; 32:635-40. [DOI: 10.1007/s10930-013-9526-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Desselberger U, Richards J, Tchertanov L, Lepault J, Lever A, Burrone O, Cohen J. Further characterisation of rotavirus cores: Ss(+)RNAs can be packaged in vitro but packaging lacks sequence specificity. Virus Res 2013; 178:252-63. [PMID: 24091366 PMCID: PMC3854842 DOI: 10.1016/j.virusres.2013.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
Rotavirus (RV) cores were released from double-layered particles (DLPs) by high concentrations of CaCl2, purified and 'opened' by treatment with EDTA or EGTA. Under appropriate in vitro conditions DLPs have been shown to have transcriptase and 'open cores' replicase activity. Furthermore, it has been demonstrated that transcriptase activity and infectivity of native cores can be restored by transcapsidation with VP6, VP7 and VP4. The missing link for particle reconstitution in vitro has been the manipulation of 'open cores' to become functionally active cores again. The experiments described here were undertaken with the aim of exploring packaging of RV RNAs into opened cores in vitro. Rotavirus cores were opened by approximately 200μM EGTA, leading to the release of genomic dsRNA. Conversely, RV cores were found to be stable in the presence of minimum concentrations of Ca(2+), Mg(2+), spermidine(3+) and cobalthexamine(3+) of between 40 and 300 μM. Aggregates of purified cores were resolved in the presence of 0.3mM deoxycholate (minimum concentration). Core shells opened with EGTA were reconstituted by the addition of di- or trivalent cations within 2 min of the opening procedure. Addition of purified, baculovirus recombinant-expressed VP6 to native and reconstituted cores led to the formation of DLPs or DLP-like particles, which upon transfection into MA104 cells were infectious. The rescued infectivity likely originated in part from unopened and in part from reconstituted cores. Radiolabelled RV (+) ssRNAs could be packaged into reconstituted cores and DLPs, as indicated by resistance to RNase I digestion. The packaging reaction was, however, not RV RNA sequence-specific, since unrelated ssRNAs, such as those transcribed from HIV-2 cDNAs, were also packaged. The kinetics of packaging of homologous and heterologous RNAs were similar, as evidenced by competitive packaging assays. None of the packaged in vitro engineered RNA segments has so far been rescued into infectious virus.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Virologie Moléculaire et Structurale, UMR 2472 du CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cédex, France; Molecular Immunology Group, International Centre for Genetic Engineering, Trieste, Italy; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
El Omari K, Sutton G, Ravantti J, Zhang H, Walter T, Grimes J, Bamford D, Stuart D, Mancini E. Plate tectonics of virus shell assembly and reorganization in phage φ8, a distant relative of mammalian reoviruses. Structure 2013; 21:1384-95. [PMID: 23891291 PMCID: PMC3737474 DOI: 10.1016/j.str.2013.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 01/07/2023]
Abstract
The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Geoff Sutton
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Janne J. Ravantti
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 Helsinki, Finland
| | - Hanwen Zhang
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Thomas S. Walter
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Jonathan M. Grimes
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Dennis H. Bamford
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56, 00014 Helsinki, Finland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Erika J. Mancini
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- Corresponding author
| |
Collapse
|
13
|
Nemecek D, Boura E, Wu W, Cheng N, Plevka P, Qiao J, Mindich L, Heymann JB, Hurley JH, Steven AC. Subunit folds and maturation pathway of a dsRNA virus capsid. Structure 2013; 21:1374-83. [PMID: 23891288 PMCID: PMC3742642 DOI: 10.1016/j.str.2013.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/08/2013] [Accepted: 06/14/2013] [Indexed: 12/24/2022]
Abstract
The cystovirus ϕ6 shares several distinct features with other double-stranded RNA (dsRNA) viruses, including the human pathogen, rotavirus: segmented genomes, nonequivalent packing of 120 subunits in its icosahedral capsid, and capsids as compartments for transcription and replication. ϕ6 assembles as a dodecahedral procapsid that undergoes major conformational changes as it matures into the spherical capsid. We determined the crystal structure of the capsid protein, P1, revealing a flattened trapezoid subunit with an α-helical fold. We also solved the procapsid with cryo-electron microscopy to comparable resolution. Fitting the crystal structure into the procapsid disclosed substantial conformational differences between the two P1 conformers. Maturation via two intermediate states involves remodeling on a similar scale, besides huge rigid-body rotations. The capsid structure and its stepwise maturation that is coupled to sequential packaging of three RNA segments sets the cystoviruses apart from other dsRNA viruses as a dynamic molecular machine.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Evzen Boura
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2. 16600 Prague 6, Czech Republic
| | - Weimin Wu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Naiqian Cheng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907
| | - Jian Qiao
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - Leonard Mindich
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - James H. Hurley
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Alasdair C. Steven
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| |
Collapse
|
14
|
Abstract
P4 proteins are hexameric RNA packaging ATPases of dsRNA bacteriophages of the Cystoviridae family. P4 hexamers are integral part of the inner polymerase core and play several essential roles in the virus replication cycle. P4 proteins are structurally related to the hexameric helicases and translocases of superfamily 4 (SF4) and other RecA-like ATPases. Recombinant P4 proteins retain their 5' to 3' helicase and translocase activity in vitro and thus serve as a model system for studying the mechanism of action of hexameric ring helicases and RNA translocation. This review summarizes the different roles that P4 proteins play during virus assembly, genome packaging, and transcription. Structural and mechanistic details of P4 action are laid out to and subsequently compared with those of the related hexameric helicases and other packaging motors.
Collapse
Affiliation(s)
- Erika J Mancini
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, OX3 7BN, UK.
| | | |
Collapse
|
15
|
Katz A, Alimova A, Futerman E, Katz G, Wei H, Gottlieb P. Bacteriophage φ6--structure investigated by fluorescence Stokes shift spectroscopy. Photochem Photobiol 2011; 88:304-10. [PMID: 22181691 DOI: 10.1111/j.1751-1097.2011.01051.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Stokes shift of tryptophan (Trp) fluorescence from layers of the lipid-containing bacteriophage φ6 is compared to determine the relative effect of the layers on virus hydrophobicity. In the inner most layer, the empty procapsid (PC) which contains 80-90% of the virion Trp residues, λ(max) = 339.8 nm. The PC emission is substantially more redshifted than the other φ6 layers and nearer to that of the Pseudomonad host cell than the other φ6 layers. The Trp emission from the nucleocapsid (NC) with λ(max) = 337.4 nm, is blueshifted by 2.4 nm relative to the PC although the number of Trp in the NC is identical to the PC. This shift represents an increase in Trp hydrophobicity, likely a requirement for the maintenance of A-form doubled-stranded RNA. Fluorescence from the completely assembled virion indicates it is in a considerably more hydrophobic environment with λ(max) = 330.9 nm. Density measurements show that the water content in the NC does not change during envelope assembly, therefore the blueshifted φ6 emission suggests that the envelope changes the PC environment, probably via the P8 layer. This change in hydrophobicity likely arises from charge redistribution or envelope-induced structural changes in the PC proteins.
Collapse
Affiliation(s)
- Alvin Katz
- Physics Department, The City College of New York, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Nemecek D, Cheng N, Qiao J, Mindich L, Steven AC, Heymann JB. Stepwise expansion of the bacteriophage ϕ6 procapsid: possible packaging intermediates. J Mol Biol 2011; 414:260-71. [PMID: 22019738 DOI: 10.1016/j.jmb.2011.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 12/31/2022]
Abstract
The initial assembly product of bacteriophage ϕ6, the procapsid, undergoes major structural transformation during the sequential packaging of its three segments of single-stranded RNA. The procapsid, a compact icosahedrally symmetric particle with deeply recessed vertices, expands to the spherical mature capsid, increasing the volume available to accommodate the genome by 2.5-fold. It has been proposed that expansion and packaging are linked, with each stage in expansion presenting a binding site for a particular RNA segment. To investigate procapsid transformability, we induced expansion by acidification, heating, and elevated salt concentration. Cryo-electron microscopy reconstructions after all three treatments yielded the same partially expanded particle. Analysis by cryo-electron tomography showed that all vertices of a given capsid were either in a compact or an expanded state, indicating a highly cooperative transition. To benchmark the mature capsid, we analyzed filled (in vivo packaged) capsids. When these particles were induced to release their RNA, they reverted to the same intermediate state as expanded procapsids (intermediate 1) or to a second, further expanded state (intermediate 2). This partial reversibility of expansion suggests that the mature spherical capsid conformation is obtained only when sufficient outward pressure is exerted by packaged RNA. The observation of two intermediates is consistent with the proposed three-step packaging process. The model is further supported by the observation that a mutant capable of packaging the second RNA segment without previously packaging the first segment has enhanced susceptibility for switching spontaneously from the procapsid to the first intermediate state.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Nemecek D, Heymann JB, Qiao J, Mindich L, Steven AC. Cryo-electron tomography of bacteriophage phi6 procapsids shows random occupancy of the binding sites for RNA polymerase and packaging NTPase. J Struct Biol 2010; 171:389-96. [PMID: 20538059 PMCID: PMC2910799 DOI: 10.1016/j.jsb.2010.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 11/24/2022]
Abstract
Assembly of dsRNA bacteriophage phi6 involves packaging of the three mRNA strands of the segmented genome into the procapsid, an icosahedrally symmetric particle with recessed vertices. The hexameric packaging NTPase (P4) overlies these vertices, and the monomeric RNA-dependent RNA polymerase (RdRP, P2) binds at sites inside the shell. P2 and P4 are present in substoichiometric amounts, raising the questions of whether they are recruited to the nascent procapsid in defined amounts and at specific locations, and whether they may co-localize to form RNA-processing assembly lines at one or more "special" vertices. We have used cryo-electron tomography to map both molecules on individual procapsids. The results show variable complements that accord with binomial distributions with means of 8 (P2) and 5 (P4), suggesting that they are randomly incorporated in copy numbers that simply reflect availability, i.e. their rates of synthesis. Analysis of the occupancy of potential binding sites (20 for P2; 12 for P4) shows no tendency to cluster nor for P2 and P4 to co-localize, suggesting that the binding sites for both proteins are occupied in random fashion. These observations indicate that although P2 and P4 act sequentially on the same substrates there is no direct physical coupling between their activities.
Collapse
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - J. Bernard Heymann
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| | - Jian Qiao
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - Leonard Mindich
- Department of Microbiology, Public Health Research Institute Center, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103
| | - Alasdair C. Steven
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892
| |
Collapse
|
18
|
Affiliation(s)
- Roman Tuma
- The Astbury Centre for Structural Molecular Biology, Institute of Cellular and Molecular Biology, University of Leeds Leeds UK
| |
Collapse
|
19
|
X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. J Mol Biol 2010; 397:587-99. [PMID: 20122940 DOI: 10.1016/j.jmb.2010.01.055] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 12/15/2022]
Abstract
The rotavirus inner capsid particle, known as the "double-layered particle" (DLP), is the "payload" delivered into a cell in the process of viral infection. Its inner and outer protein layers, composed of viral protein (VP) 2 and VP6, respectively, package the 11 segments of the double-stranded RNA (dsRNA) of the viral genome, as well as about the same number of polymerase molecules (VP1) and capping-enzyme molecules (VP3). We have determined the crystal structure of the bovine rotavirus DLP. There is one full particle (outer diameter approximately 700 A) in the asymmetric unit of the P2(1)2(1)2(1) unit cell of dimensions a=740 A, b=1198 A, and c=1345 A. A three-dimensional reconstruction from electron cryomicroscopy was used as a molecular replacement model for initial phase determination to about 18.5 A resolution, and the 60-fold redundancy of icosahedral particle symmetry allowed phases to be extended stepwise to the limiting resolution of the data (3.8 A). The structure of a VP6 trimer (determined previously by others) fits the outer layer density with very little adjustment. The T=13 triangulation number of that layer implies that there are four and one-third VP6 trimers per icosahedral asymmetric unit. The inner layer has 120 copies of VP2 and thus 2 copies per icosahedral asymmetric unit, designated VP2A and VP2B. Residues 101-880 fold into a relatively thin principal domain, comma-like in outline, shaped such that only rather modest distortions (concentrated at two "subdomain" boundaries) allow VP2A and VP2B to form a uniform layer with essentially no gaps at the subunit boundaries, except for a modest pore along the 5-fold axis. The VP2 principal domain resembles those of the corresponding shells and homologous proteins in other dsRNA viruses: lambda1 in orthoreoviruses and VP3 in orbiviruses. Residues 1-80 of VP2A and VP2B fold together with four other such pairs into a "5-fold hub" that projects into the DLP interior along the 5-fold axis; residues 81-100 link the 10 polypeptide chains emerging from a 5-fold hub to the N-termini of their corresponding principal domains, clustered into a decameric assembly unit. The 5-fold hub appears to have several distinct functions. One function is to recruit a copy of VP1 (or of a VP1-VP3 complex), potentially along with a segment of plus-strand RNA, as a decamer of VP2 assembles. The second function is to serve as a shaft around which can coil a segment of dsRNA. The third function is to guide nascent mRNA, synthesized in the DLP interior by VP1 and 5'-capped by the action of VP3, out through a 5-fold exit channel. We propose a model for rotavirus particle assembly, based on known requirements for virion formation, together with the structure of the DLP and that of VP1, determined earlier.
Collapse
|
20
|
Aalto AP, Sarin LP, van Dijk AA, Saarma M, Poranen MM, Arumäe U, Bamford DH. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage phi6 RNA-dependent RNA polymerase. RNA (NEW YORK, N.Y.) 2007; 13:422-9. [PMID: 17237359 PMCID: PMC1800515 DOI: 10.1261/rna.348307] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.
Collapse
Affiliation(s)
- Antti P Aalto
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Komoto S, Taniguchi K. Reverse genetics systems of segmented double-stranded RNA viruses including rotavirus. Future Virol 2006. [DOI: 10.2217/17460794.1.6.833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rotavirus genome is composed of 11 segments of double-stranded (ds)RNA. Recent studies have elucidated the precise mechanisms in transcription and replication of rotavirus RNA mainly by in vitro experiments. However, the ideal methodology for the molecular study of rotavirus replication is reverse genetics, which enables the viral genome to be artifically manipulated. Since the development of the first reverse genetics system for RNA virus in bacteriophage QB in 1978, the methodology has been developed for a variety of RNA viruses with plus-strand, minus-strand or dsRNA as a genome. However, there have been no reports on the reverse genetics of the viruses in the family Reoviridae with a genome of 10–12 segmented dsRNA, except for reovirus. This review describes the replication cycle of rotavirus with the aim of providing a general background to the development of rotavirus reverse genetics, and summarizes the reverse genetics system for dsRNA viruses, including rotavirus.
Collapse
Affiliation(s)
- Satoshi Komoto
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Fujita Health University, School of Medicine, Department of Virology & Parasitology, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
22
|
Huiskonen JT, de Haas F, Bubeck D, Bamford DH, Fuller SD, Butcher SJ. Structure of the bacteriophage phi6 nucleocapsid suggests a mechanism for sequential RNA packaging. Structure 2006; 14:1039-48. [PMID: 16765897 DOI: 10.1016/j.str.2006.03.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/29/2006] [Accepted: 03/29/2006] [Indexed: 12/01/2022]
Abstract
Bacteriophage phi6 is an enveloped dsRNA virus with a segmented genome. Phi6 specifically packages one copy of each of its three genome segments into a preassembled polymerase complex. This leads to expansion of the polymerase complex, minus and plus strand RNA synthesis, and assembly of the nucleocapsid. The phi6 in vitro assembly and packaging system is a valuable model for dsRNA virus replication. The structure of the nucleocapsid at 7.5 A resolution presented here reveals the secondary structure of the two major capsid proteins. Asymmetric P1 dimers organize as an inner T = 1 shell, and P8 trimers organize as an outer T = 13 laevo shell. The organization of the P1 molecules in the unexpanded and expanded polymerase complex suggests that the expansion is accomplished by rigid body movements of the P1 monomers. This leads to exposure of new potential RNA binding surfaces to control the sequential packaging of the genome segments.
Collapse
Affiliation(s)
- Juha T Huiskonen
- Institute of Biotechnology and Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
23
|
Basnayake VR, Sit TL, Lommel SA. The genomic RNA packaging scheme of Red clover necrotic mosaic virus. Virology 2006; 345:532-9. [PMID: 16297955 DOI: 10.1016/j.virol.2005.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/19/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Red clover necrotic mosaic virus (RCNMV) is a small icosahedral plant virus with a bipartite RNA genome. While the RCNMV genome consists of two RNAs, it has not been definitively established whether these RNAs are co-packaged into a single virion or packaged individually into separate virions. Biochemical evidence exists to support both hypotheses. To determine the genomic RNA complement within RCNMV, virions were subjected to heat treatments and UV crosslinking. A stable RNA-1:RNA-2 heterodimer was formed with both treatments establishing that RCNMV genomic RNAs are co-packaged into a single virion. Furthermore, RNA-2 homodimer and homotrimers were also observed indicating that some virions contain multiple copies of RNA-2 exclusively. These results indicate that RCNMV virions consist of two distinct populations: (i) virions containing both genomic RNAs; and (ii) virions with multiple copies of RNA-2. This type of hybrid packaging arrangement was unexpected and appears to be unique among the multipartite RNA viruses.
Collapse
Affiliation(s)
- Veronica R Basnayake
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Minna M Poranen
- Department of Biological and Environmental Sciences and Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
25
|
Froissart R, Wilke CO, Montville R, Remold SK, Chao L, Turner PE. Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 2005; 168:9-19. [PMID: 15454523 PMCID: PMC1448111 DOI: 10.1534/genetics.104.030205] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Co-infection may be beneficial in large populations of viruses because it permits sexual exchange between viruses that is useful in combating the mutational load. This advantage of sex should be especially substantial when mutations interact through negative epistasis. In contrast, co-infection may be detrimental because it allows virus complementation, where inferior genotypes profit from superior virus products available within the cell. The RNA bacteriophage phi6 features a genome divided into three segments. Co-infection by multiple phi6 genotypes produces hybrids containing reassorted mixtures of the parental segments. We imposed a mutational load on phi6 populations by mixing the wild-type virus with three single mutants, each harboring a deleterious mutation on a different one of the three virus segments. We then contrasted the speed at which these epistatic mutations were removed from virus populations in the presence and absence of co-infection. If sex is a stronger force, we predicted that the load should be purged faster in the presence of co-infection. In contrast, if complementation is more important we hypothesized that mutations would be eliminated faster in the absence of co-infection. We found that the load was purged faster in the absence of co-infection, which suggests that the disadvantages of complementation can outweigh the benefits of sex, even in the presence of negative epistasis. We discuss our results in light of virus disease management and the evolutionary advantage of haploidy in biological populations.
Collapse
Affiliation(s)
- Rémy Froissart
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
26
|
Qiao J, Qiao X, Mindich L. In vivo studies of genomic packaging in the dsRNA bacteriophage Phi8. BMC Microbiol 2005; 5:10. [PMID: 15762996 PMCID: PMC1079848 DOI: 10.1186/1471-2180-5-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/11/2005] [Indexed: 11/10/2022] Open
Abstract
Background Φ8 is a bacteriophage containing a genome of three segments of double-stranded RNA inside a polyhedral capsid enveloped in a lipid-containing membrane. Plus strand RNA binds and is packaged by empty procapsids. Whereas Φ6, another member of the Cystoviridae, shows high stringency, serial dependence and precision in its genomic packaging in vitro and in vivo, Φ8 packaging is more flexible. Unique sequences (pac) near the 5' ends of plus strands are necessary and sufficient for Φ6 genomic packaging and the RNA binding sites are located on P1, the major structural protein of the procapsid. Results In this paper the boundaries of the Φ8 pac sequences have been explored by testing the in vivo packaging efficacy of transcripts containing deletions or changes in the RNA sequences. The pac sequences have been localized to the 5' untranslated regions of the viral transcripts. Major changes in the pac sequences are either tolerated or ameliorated by suppressor mutations in the RNA sequence. Changes in the genomic packaging program can be established as a result of mutations in P1, the major structural protein of the procapsid and the determinant of RNA binding specificity. Conclusion Although Φ8 is distantly related to bacteriophage Φ6, and does not show sequence similarity, it has a similar genomic packaging program. This program, however, is less stringent than that of Φ6.
Collapse
Affiliation(s)
- Jian Qiao
- Department of Microbiology, The Public Health Research Institute. Newark, New Jersey 07103, USA
| | - Xueying Qiao
- Department of Microbiology, The Public Health Research Institute. Newark, New Jersey 07103, USA
| | - Leonard Mindich
- Department of Microbiology, The Public Health Research Institute. Newark, New Jersey 07103, USA
| |
Collapse
|
27
|
Mindich L. Packaging, replication and recombination of the segmented genome of bacteriophage Phi6 and its relatives. Virus Res 2004; 101:83-92. [PMID: 15010219 DOI: 10.1016/j.virusres.2003.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The genomes of bacteriophage Phi6 and its relatives are packaged through a mechanism that involves the recognition and translocation of the three different plus strand transcripts of the segmented dsRNA genomes into preformed polyhedral structures called procapsids or inner cores. The packaging requires hydrolysis of NTPs and takes place in the order S:M:L. Minus strand synthesis begins after the completion of the plus strand packaging. The packaging and replication reactions can be studied in vitro with purified components. A model has been presented that proposes that the program of serially dependent packaging is determined by the conformational changes at the surface of the procapsid due to the amount of RNA packaged at each step. The in vitro packaging and replication system has facilitated the application of reverse genetics and the study of recombination in the family of Cystoviridae.
Collapse
Affiliation(s)
- Leonard Mindich
- Department of Microbiology, The Public Health Research Institute, International Centre for Public Health, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
28
|
Kainov DE, Pirttimaa M, Tuma R, Butcher SJ, Thomas GJ, Bamford DH, Makeyev EV. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J Biol Chem 2003; 278:48084-91. [PMID: 12966097 DOI: 10.1074/jbc.m306928200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomes of complex viruses have been demonstrated, in many cases, to be packaged into preformed empty capsids (procapsids). This reaction is performed by molecular motors translocating nucleic acid against the concentration gradient at the expense of NTP hydrolysis. At present, the molecular mechanisms of packaging remain elusive due to the complex nature of packaging motors. In the case of the double-stranded RNA bacteriophage phi 6 from the Cystoviridae family, packaging of single-stranded genomic precursors requires a hexameric NTPase, P4. In the present study, the purified P4 proteins from two other cystoviruses, phi 8 and phi 13, were characterized and compared with phi 6 P4. All three proteins are hexameric, single-stranded RNA-stimulated NTPases with alpha/beta folds. Using a direct motor assay, we found that phi 8 and phi 13 P4 hexamers translocate 5' to 3' along ssRNA, whereas the analogous activity of phi 6 P4 requires association with the procapsid. This difference is explained by the intrinsically high affinity of phi 8 and phi 13 P4s for nucleic acids. The unidirectional translocation results in RNA helicase activity. Thus, P4 proteins of Cystoviridae exhibit extensive similarity to hexameric helicases and are simple models for studying viral packaging motor mechanisms.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Biosciences and Institute of Biotechnology, FIN-00014, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Qiao X, Qiao J, Mindich L. Analysis of specific binding involved in genomic packaging of the double-stranded-RNA bacteriophage phi6. J Bacteriol 2003; 185:6409-14. [PMID: 14563876 PMCID: PMC219405 DOI: 10.1128/jb.185.21.6409-6414.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of bacteriophage phi6 and its relatives are packaged through a mechanism that involves the recognition and translocation of the three different plus-strand transcripts of the segmented double-stranded-RNA genomes into preformed polyhedral structures called procapsids or inner cores. The packaging requires the hydrolysis of nucleoside triphosphates and takes place in the order segment S-segment M, segment L. Packaging is dependent upon unique sequences of about 200 nucleotides near the 5' ends of plus-strand transcripts of the three genomic segments. It appears that P1 is the determinant of the RNA binding sites. Directed mutation of P1 was used to locate regions that are important for genomic packaging. Specific binding of RNA to the exterior of the procapsid was dependent upon ATP, and a region that showed a high level of cross-linking to phage-specific RNA was located. Antibodies to peptide sequences were prepared, and their abilities to bind to the exterior of procapsids were determined. Sites sensitive to trypsin and to factor Xa were determined as well.
Collapse
Affiliation(s)
- Xueying Qiao
- Department of Microbiology, Public Health Research Institute, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
30
|
Lísal J, Kainov DE, Bamford DH, Thomas GJ, Tuma R. Enzymatic mechanism of RNA translocation in double-stranded RNA bacteriophages. J Biol Chem 2003; 279:1343-50. [PMID: 14530266 DOI: 10.1074/jbc.m309587200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many complex viruses acquire their genome by active packaging into a viral precursor particle called a procapsid. Packaging is performed by a viral portal complex, which couples ATP hydrolysis to translocation of nucleic acid into the procapsid. The packaging process has been studied for a variety of viruses, but the mechanism of the associated ATPase remains elusive. In this study, the mechanism of RNA translocation in double-stranded RNA bacteriophages is characterized using rapid kinetic analyses. The portal complex of bacteriophage 8 is a hexamer of protein P4, which exhibits nucleotide triphosphatase activity. The kinetics of ATP binding reveals a two-step process: an initial, fast, second-order association, followed by a slower, first-order phase. The slower phase exhibits a high activation energy and has been assigned to a conformational change. ATP binding becomes cooperative in the presence of RNA. Steady-state kinetics of ATP hydrolysis, which proceeds only in the presence of RNA, also exhibits cooperativity. On the other hand, ADP release is fast and RNA-independent. The steady-state rate of hydrolysis increases with the length of the RNA substrate indicating processive translocation. Raman spectroscopy reveals that RNA binds to P4 via the phosphate backbone. The ATP-induced conformational change affects the backbone of the bound RNA but leaves the protein secondary structure unchanged. This is consistent with a model in which cooperativity is induced by an RNA link between subunits of the hexamers and translocation is effected by an axial movement of the subunits relative to one another upon ATP binding.
Collapse
Affiliation(s)
- Jíri Lísal
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, 00014 Finland
| | | | | | | | | |
Collapse
|
31
|
Abstract
The three genomic and a single subgenomic RNA of brome mosaic virus (BMV), an RNA virus infecting plants, are packaged by a single-coat protein (CP) into three morphologically indistinguishable icosahedral virions with T = 3 quasi-symmetry. Genomic RNAs 1 and 2 are packaged individually into separate particles whereas genomic RNA3 and subgenomic RNA4 (coat protein mRNA) are copackaged into a single particle. We report here that packaging of dicistronic RNA3 requires a bipartite signal. A highly conserved 3' tRNA-like structure postulated to function as a nucleating element (NE) for CP subunits (Y. G. Choi, T. W. Dreher, and A. L. N. Rao, Proc. Natl. Acad. Sci. USA 99:655-660, 2002) and a cis-acting, position-dependent packaging element (PE) of 187 nt present in the nonstructural movement protein gene are the integral components of the packaging core. Efficient incorporation into BMV virions of nonviral RNA chimeras containing NE and the PE provides confirmatory evidence that these two elements are sufficient to direct packaging. Analysis of virion RNA profiles obtained from barley protoplasts transfected with a RNA3 variant lacking the PE provides the first genetic evidence that de novo synthesized RNA4 is incompetent for autonomous assembly whereas prior packaging of RNA3 is a prerequisite for RNA4 to copackage.
Collapse
Affiliation(s)
- Yoon Gi Choi
- Department of Plant Pathology, University of California, Riverside, CA 92521-0122, USA
| | | |
Collapse
|
32
|
Kainov DE, Butcher SJ, Bamford DH, Tuma R. Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. J Mol Biol 2003; 328:791-804. [PMID: 12729755 DOI: 10.1016/s0022-2836(03)00322-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double-stranded RNA (dsRNA) viruses are complex RNA processing machines that sequentially perform packaging, replication and transcription of their genomes. In order to characterize the assembly intermediates of such a machine we have developed an efficient in vitro assembly system for the procapsid of bacteriophage phi8. The major structural protein P1 is a stable and soluble tetramer. Three tetramers associate with a P2 monomer (RNA-dependent RNA polymerase) to form the nucleation complex. This complex is further stabilized by a P4 hexamer (packaging motor). Further assembly proceeds via rapid addition of individual building blocks. The incorporation of the packaging and replication machinery is under kinetic control. The in vitro assembled procapsids perform packaging, replication and transcription of viral RNA. Comparison with another dsRNA phage, phi6, indicates conservation of key assembly intermediates in the absence of sequence homology and suggests that a general assembly mechanism for the dsRNA virus lineage may exist.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Abstract
We previously examined competitive interactions among viruses by allowing the RNA phage phi6 to evolve at high and low multiplicities of infection (ratio of infecting viruses to bacterial cells). Derived high-multiplicity phages were competitively advantaged relative to their ancestors during coinfection, but their fixation caused population fitness to decline. These data conform to the evolution of lowered fitness in a population of defectors, as expected from the Prisoner's Dilemma of game theory. However, the generality of this result is unknown; the evolution of viruses at other multiplicities may alter the fitness payoffs associated with conflicting strategies of cooperation and defection. Here we examine the change in matrix variables by propagating the ancestor under strictly clonal conditions, allowing cooperation the chance to evolve. In competitions involving derived cooperators and their selfish counterparts, our data reveal a new outcome where the two strategies are predicted to coexist in a mixed polymorphism. Thus, we demonstrate that the payoff matrix is not a constant in phi6. Rather, clonal selection allows viruses the opportunity to escape the Prisoner's Dilemma. We discuss mechanisms that may afford selfish genotypes an advantage during intrahost competition and the relevance in our system for alternative ecological interactions among viruses.
Collapse
Affiliation(s)
- Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
34
|
Pirttimaa MJ, Paatero AO, Frilander MJ, Bamford DH. Nonspecific nucleoside triphosphatase P4 of double-stranded RNA bacteriophage phi6 is required for single-stranded RNA packaging and transcription. J Virol 2002; 76:10122-7. [PMID: 12239286 PMCID: PMC136547 DOI: 10.1128/jvi.76.20.10122-10127.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage phi6 has a segmented double-stranded RNA genome. The genomic single-stranded RNA (ssRNA) precursors are packaged into a preformed protein capsid, the polymerase complex, composed of viral proteins P1, P2, P4, and P7. Packaging of the genomic precursors is an energy-dependent process requiring nucleoside triphosphates. Protein P4, a nonspecific nucleoside triphosphatase, has previously been suggested to be the prime candidate for the viral packaging engine, based on its location at the vertices of the viral capsid and its biochemical characteristics. In this study we were able to obtain stable polymerase complex particles that are completely devoid of P4. Such particles were not able to package ssRNA segments and did not display RNA polymerase (either minus- or plus-strand synthesis) activity. Surprisingly, a mutation in P4, S250Q, which reduced the level of P4 in the particles to about 10% of the wild-type level, did not affect RNA packaging activity or change the kinetics of packaging. Moreover, such particles displayed minus-strand synthesis activity. However, no plus-strand synthesis was observed, suggesting that P4 has a role in the plus-strand synthesis reaction also.
Collapse
Affiliation(s)
- Markus J Pirttimaa
- Department of Biosciences. Institute of Biotechnology, Viikki Biocenter, FIN-00014 University of Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
Gottlieb P, Potgieter C, Wei H, Toporovsky I. Characterization of phi12, a bacteriophage related to phi6: nucleotide sequence of the large double-stranded RNA. Virology 2002; 295:266-71. [PMID: 12033785 DOI: 10.1006/viro.2002.1436] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of additional bacteriophages besides phi6 containing segmented double-stranded RNA genomes (dsRNA) has expanded the Cystoviridae family to nine members. Comparing the genomic sequences of these viruses has allowed evaluation of important genetic as well as structural motifs. These comparative studies are resulting in greater understanding of viral evolution and the role played by genetic and structural variation in the assembly mechanisms of the cystoviruses. In this regard, the large double-stranded RNA genomic segment of bacteriophage phi12 was copied as cDNA and its nucleotide sequence determined. This genome's organization is similar to that of the large segment of bacteriophages phi6, phi8, and phi13. In the amino acid sequence of the viral RNA-dependent RNA polymerase (P2), similarity was found to the comparable proteins of phi6, phi8, and phi13. Amino acid sequence similarity was also noted in the nucleotide triphosphate phosphorylase (P4) to the comparable proteins of phi8 and phi13.
Collapse
Affiliation(s)
- Paul Gottlieb
- Department of Microbiology and Immunology, The Sophie Davis School of Biomedical Education, The City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
36
|
Gottlieb P, Wei H, Potgieter C, Toporovsky I. Characterization of phi 12, a bacteriophage related to phi 6: nucleotide sequence of the small and middle double-stranded RNA. Virology 2002; 293:118-24. [PMID: 11853405 DOI: 10.1006/viro.2001.1288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of additional bacteriophages containing segmented double-stranded RNA genomes has expanded the Cystoviridae family to nine members. Comparing the genomic sequences of these viruses has allowed evaluation of important genetic as well as structural motifs. These comparative studies are resulting in greater understanding of viral evolution and the role played by genetic and structural variation in the assembly mechanisms of the cystoviruses. In this regard, the small and middle double-stranded RNA genomic segments of bacteriophage phi 12 were copied as cDNA and their nucleotide sequences determined. This genome's organization is similar to that of the small and middle segments of bacteriophages phi 6, phi 8, and phi 13. Although there is little similarity in the nucleotide sequences, similarity exists in the amino acid sequence of the lysis cassette proteins to those of phi 6. The host cell attachment proteins are found to have marked similarity to the phi 13 attachment proteins.
Collapse
Affiliation(s)
- Paul Gottlieb
- Department of Microbiology and Immunology, City College of New York, New York, New York 10031, USA.
| | | | | | | |
Collapse
|
37
|
Pirttimaa MJ, Bamford DH. RNA secondary structures of the bacteriophage phi6 packaging regions. RNA (NEW YORK, N.Y.) 2000; 6:880-889. [PMID: 10864045 PMCID: PMC1369964 DOI: 10.1017/s1355838200992598] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.
Collapse
Affiliation(s)
- M J Pirttimaa
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | |
Collapse
|
38
|
Affiliation(s)
- L Mindich
- Department of Microbiology, Public Health Research Institute, New York, New York 10016, USA
| |
Collapse
|
39
|
Abstract
Genome transcription is a critical stage in the life cycle of a virus, as this is the process by which the viral genetic information is presented to the host cell protein synthesis machinery for the production of the viral proteins needed for genome replication and progeny virion assembly. Viruses with dsRNA genomes face a particular challenge in that host cells do not produce proteins which can transcribe from a dsRNA template. Therefore, dsRNA viruses contain all of the necessary enzymatic machinery to synthesize complete mRNA transcripts within the core without the need for disassembly. Indeed one of the more striking observations about genome transcription in dsRNA viruses is that this process occurs efficiently only when the transcriptionally competent particle is fully intact. This observation suggests that all of the components of the TCP, including the viral genome, the transcription enzymes, and the viral capsid, function together to produce and release mRNA transcripts and that each component has a specific and critical role to play in promoting the efficiency of this process. This review has examined the process of genome transcription in dsRNA viruses from the perspective of rotavirus as a model system. However, despite numerous architectural and organizational differences among the families of dsRNA viruses, numerous studies suggest that the basic mechanism of mRNA production may be similar in most, if not all, viruses having dsRNA genomes. Important functional similarities include (1) the presence of a capsid-bound RNA-dependent RNA polymerase, which produces single-stranded mRNA transcripts from the dsRNA genome and regenerates the dsRNA genome from single-stranded RNA templates; (2) in viruses infecting eukaryotic hosts, the presence of all the enzymatic activities needed to generate the 5' cap required by the eukaryotic translation machinery; (3) the high degree of structural order present in the packaged genome, suggesting the requirement for organization in the viral core; (4) the role of the innermost capsid protein as a scaffold on which the core components of the transcription apparatus are assembled; and (5) the release of nascent mRNA transcripts through channels at the icosahedral vertices. The process of genome transcription in dsRNA viruses will become better understood as structural studies progress to higher resolution and as more viruses become amenable to study using site-directed mutagenesis coupled with viral reconstitution to generate recombinant particles having precise functional and structural changes. Future studies will dissect important intermolecular interactions required for efficient mRNA synthesis and will shed further light on the reasons for which the viral core must be structurally intact in order for transcription to occur efficiently. Structural studies of the capping enzymes at atomic resolution will reveal how multiple enzyme activities reside within a single polypeptide and how they act in concert to synthesize the 5' cap on the end of each mature transcript. Perhaps most interestingly, high resolution structural studies of actively transcribing virions will provide insight into the conformational changes that occur within the core during mRNA synthesis. Together, these studies will clarify the function of this complex macromolecular machine and will also shed additional light on the basic principles of virus architecture and assembly, as well as provide avenues for the design of antiviral therapies.
Collapse
Affiliation(s)
- J A Lawton
- Verna and Maars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
40
|
de Haas F, Paatero AO, Mindich L, Bamford DH, Fuller SD. A symmetry mismatch at the site of RNA packaging in the polymerase complex of dsRNA bacteriophage phi6. J Mol Biol 1999; 294:357-72. [PMID: 10610764 DOI: 10.1006/jmbi.1999.3260] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The polymerase complex of the enveloped double-stranded RNA (dsRNA) bacteriophage phi6 fulfils a similar function to those of other dsRNA viruses such as Reoviridae. The phi6 complex comprises protein P1, which forms the shell, and proteins P2, P4 and P7, which are involved in RNA synthesis and packaging. Icosahedral reconstructions from cryo-electron micrographs of recombinant polymerase particles revealed a clear dodecahedral shell and weaker satellites. Difference imaging demonstrated that these weak satellites were the sites of P4 and P2 within the complex. The structure determined by icosahedral reconstruction was used as an initial model in an iterative reconstruction technique to examine the departures from icosahedral symmetry. This approach showed that P4 and P2 contribute to structures at the 5-fold positions of the icosahedral P1 shell which lack 5-fold symmetry and appear in variable orientations. Reconstruction of isolated recombinant P4 showed that it was a hexamer with a size and shape matching the satellite. Symmetry mismatch between the satellites and the shell could play a role in RNA packaging akin to that of the portal vertex of dsDNA phages in DNA packaging. This is the first example of dsRNA virus in which the structure of the polymerase complex has been determined without the assumption of icosahedral symmetry. Our result with phi6 illustrates the symmetry mismatch which may occur at the sites of RNA packaging in other dsRNA viruses such as members of the Reoviridae.
Collapse
Affiliation(s)
- F de Haas
- The Structural Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | | | | | | | |
Collapse
|
41
|
Poranen MM, Daugelavičius R, Ojala PM, Hess MW, Bamford DH. A novel virus-host cell membrane interaction. Membrane voltage-dependent endocytic-like entry of bacteriophage straight phi6 nucleocapsid. J Cell Biol 1999; 147:671-82. [PMID: 10545509 PMCID: PMC2151191 DOI: 10.1083/jcb.147.3.671] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies on the virus-cell interactions have proven valuable in elucidating vital cellular processes. Interestingly, certain virus-host membrane interactions found in eukaryotic systems seem also to operate in prokaryotes (Bamford, D.H., M. Romantschuk, and P. J. Somerharju, 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1467-1473; Romantschuk, M., V.M. Olkkonen, and D.H. Bamford. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1821-1829). straight phi6 is an enveloped double-stranded RNA virus infecting a gram-negative bacterium. The viral entry is initiated by fusion between the virus membrane and host outer membrane, followed by delivery of the viral nucleocapsid (RNA polymerase complex covered with a protein shell) into the host cytosol via an endocytic-like route. In this study, we analyze the interaction of the nucleocapsid with the host plasma membrane and demonstrate a novel approach for dissecting the early events of the nucleocapsid entry process. The initial binding of the nucleocapsid to the plasma membrane is independent of membrane voltage (DeltaPsi) and the K(+) and H(+) gradients. However, the following internalization is dependent on plasma membrane voltage (DeltaPsi), but does not require a high ATP level or K(+) and H(+) gradients. Moreover, the nucleocapsid shell protein, P8, is the viral component mediating the membrane-nucleocapsid interaction.
Collapse
Affiliation(s)
- Minna M. Poranen
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Rimantas Daugelavičius
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Biophysics, Vilnius University, LT-2009 Vilnius, Lithuania
| | - Päivi M. Ojala
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Michael W. Hess
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Dennis H. Bamford
- Institute of Biotechnology, FIN-00014, University of Helsinki, Helsinki, Finland
- Department of Biosciences, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Mindich L, Qiao X, Qiao J, Onodera S, Romantschuk M, Hoogstraten D. Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J Bacteriol 1999; 181:4505-8. [PMID: 10419946 PMCID: PMC103579 DOI: 10.1128/jb.181.15.4505-4508.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1999] [Accepted: 05/26/1999] [Indexed: 11/20/2022] Open
Abstract
Eight different bacteriophages were isolated from leaves of Pisum sativum, Phaseolus vulgaris, Lycopersicon esculentum, Daucus carota sativum, Raphanus sativum, and Ocimum basilicum. All contain three segments of double-stranded RNA and have genomic-segment sizes that are similar but not identical to those of previously described bacteriophage phi6. All appear to have lipid-containing membranes. The base sequences of some of the viruses are very similar but not identical to those of phi6. Three of the viruses have little or no base sequence identity to phi6. Two of the viruses, phi8 and phi12, contain proteins with a size distribution very different from that of phi6 and do not package genomic segments of phi6. Whereas phi6 attaches to host cells by means of a pilus, several of the new isolates attach directly to the outer membrane. Although the normal hosts of these viruses seem to be pseudomonads, those viruses that attach directly to the outer membrane can establish carrier states in Escherichia coli or Salmonella typhimurium. One of the isolates, phi8, can form plaques on heptoseless strains of S. typhimurium.
Collapse
Affiliation(s)
- L Mindich
- Department of Microbiology, Public Health Research Institute, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Gouet P, Diprose JM, Grimes JM, Malby R, Burroughs JN, Zientara S, Stuart DI, Mertens PP. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 1999; 97:481-90. [PMID: 10338212 DOI: 10.1016/s0092-8674(00)80758-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concentration of double-stranded RNA within the bluetongue virus core renders the genome segments liquid crystalline. Powder diffraction rings confirm this local ordering with a 30 A separation between strands. Determination of the structure of the bluetongue virus core serotype 10 and comparison with that of serotype 1 reveals most of the genomic double-stranded RNA, packaged as well-ordered layers surrounding putative transcription complexes at the apices of the particle. The outer layer of RNA is sufficiently well ordered by interaction with the capsid that a model can be built and extended to the less-ordered inner layers, providing a structural framework for understanding the mechanism of this complex transcriptional machine. We show that the genome segments maintain local order during transcription.
Collapse
Affiliation(s)
- P Gouet
- The Laboratory of Molecular Biophysics, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Poranen MM, Bamford DH. Packaging and replication regulation revealed by chimeric genome segments of double-stranded RNA bacteriophage phi6. RNA (NEW YORK, N.Y.) 1999; 5:446-454. [PMID: 10094312 PMCID: PMC1369772 DOI: 10.1017/s1355838299981876] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bacteriophage phi6 has a double-stranded RNA genome composed of three linear segments, L, M, and S. The innermost particle in the virion of phi6, like in the other dsRNA viruses, is an RNA-dependent RNA polymerase complex, which carries out all the functions needed for the replication of the viral genome. Empty polymerase complexes can package the single-stranded copies of the viral genome segments, replicate the packaged segments into double-stranded form (minus strand synthesis), and then produce new plus strands (transcripts) from the double-stranded RNA templates. The three viral genomic segments contain unique packaging signals at their 5' ends, and minus strand synthesis initiation is dependent on the sequence at the 3' end. Here we have constructed chimeric segments that have the packaging signal from one segment and the minus strand synthesis initiation signal from another segment. Using purified recombinant polymerase complexes and single-stranded/chimeric and original RNA segments, we have analyzed the packaging and replication regulation operating in in vitro conditions. We show that the 5' end of the L genome segment in single-stranded form is needed to switch from the packaging to the minus strand synthesis and the same sequence is required in double-stranded form to switch on plus strand synthesis. In addition we have constructed deletions to the M segment to analyze the possible regulatory role of the internal noncoding area of this segment.
Collapse
Affiliation(s)
- M M Poranen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | |
Collapse
|
45
|
Mindich L. Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage phi6. Microbiol Mol Biol Rev 1999; 63:149-60. [PMID: 10066834 PMCID: PMC98960 DOI: 10.1128/mmbr.63.1.149-160.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage phi6 has a genome of three segments of double-stranded RNA. Each virus particle contains one each of the three segments. Packaging is effected by the acquisition, in a serially dependent manner, of the plus strands of the genomic segments into empty procapsids. The empty procapsids are compressed in shape and expand during packaging. The packaging program involves discrete steps that are determined by the amount of RNA inside the procapsid. The steps involve the exposure and concealment of binding sites on the outer surface of the procapsid for the plus strands of the three genomic segments. The plus strand of segment S can be packaged alone, while packaging of the plus strand of segment M depends upon prior packaging of S. Packaging of the plus strand of L depends upon the prior packaging of M. Minus-strand synthesis begins when the particle has a full complement of plus strands. Plus-strand synthesis commences upon the completion of minus-strand synthesis. All of the reactions of packaging, minus-strand synthesis, and plus-strand synthesis can be accomplished in vitro with isolated procapsids. Live-virus constructions that are in accord with the model have been prepared. Mutant virus with changes in the packaging program have been isolated and analyzed.
Collapse
Affiliation(s)
- L Mindich
- Department of Microbiology, The Public Health Research Institute New York, New York 10016, USA.
| |
Collapse
|
46
|
Onodera S, Qiao X, Qiao J, Mindich L. Isolation of a mutant that changes genomic packaging specificity in phi6. Virology 1998; 252:438-42. [PMID: 9878623 DOI: 10.1006/viro.1998.9479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage phi6 has a genome of three segments of double-stranded RNA enclosed in a polyhedral procapsid. Plus strand transcripts of the segments are packaged in a serially dependent fashion in which S can package alone, M depends on S, and L depends on S and M. We have isolated a mutant form of the virus in the carrier state that has lost segment S. This finding presented an apparent anomaly with respect to the packaging program. Sequencing of gene 1 of segment L in this virus showed a translational change of arginine to glycine at the 14th position. Procapsids prepared from cDNA containing this mutation show behavior in in vitro packaging that is consistent with the phenotype of the mutant virus. The procapsids are able to package segment S alone, but this RNA is present in reduced amounts when the other segments are present. Segments M and L package without dependence on segment S. The mutant virus appears to produce procapsids that are at the second stage of the packaging program.
Collapse
Affiliation(s)
- S Onodera
- Department of Microbiology, The Public Health Research Institute, 455 First Avenue, New York, New York, 10016, USA
| | | | | | | |
Collapse
|
47
|
Juuti JT, Bamford DH, Tuma R, Thomas GJ. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage phi 6. J Mol Biol 1998; 279:347-59. [PMID: 9642042 DOI: 10.1006/jmbi.1998.1772] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA polymerase complex of bacteriophage phi 6 comprises four proteins, P1, P2, P4 and P7, and forms the core of the virion. Protein P4 is a non-specific NTPase that provides the energy required for RNA translocation (packaging). Characterization of purified recombinant P4 shows that the protein assembles into stable hexamers in the presence of ADP and divalent cations. Image averaging of electron micrographs reveals this hexamer as a slightly skewed ring with outer and inner diameters of 12 and 2 nm, respectively. NTPase activity of P4 is associated only with the hexameric form. Ca2+ and Zn2+ and non-specific single-stranded RNA stimulate the NTPase activity, while Mg2+ acts as a non-competitive inhibitor, presumably via a separate Mg2+ binding site. Binding affinities of different nucleotide mono-, di- and triphosphates and non-hydrolyzable analogs indicate that the beta-phosphate moiety is required for substrate binding. A slight preference for binding of purine nucleotides is also observed. Analysis of P4 by CD and Raman spectroscopy indicates an alpha/beta subunit fold that is altered only slightly by hexamer assembly. Raman markers of P4 secondary and tertiary structures are also largely invariant to nucleotide exchange and hydrolysis, suggesting that the mechanisms of RNA translocation involves movement of subunits relative to one another rather than large scale changes in the alpha/beta subunit fold. The stoichiometry of P4 in the mature phi 6 virion is estimated as 120 copies. Because the recombinant P4 hexamers exhibit hydrodynamic and enzymatic properties that are identical to those of P4 oligomers released from native phi 6, we propose that P4 occurs as hexamers in the native viral core particle.
Collapse
Affiliation(s)
- J T Juuti
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
48
|
Yue Z, Shatkin AJ. Enzymatic and control functions of reovirus structural proteins. Curr Top Microbiol Immunol 1998; 233:31-56. [PMID: 9599920 DOI: 10.1007/978-3-642-72092-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Z Yue
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854-5638, USA
| | | |
Collapse
|
49
|
Onodera S, Qiao X, Qiao J, Mindich L. Directed changes in the number of double-stranded RNA genomic segments in bacteriophage phi6. Proc Natl Acad Sci U S A 1998; 95:3920-4. [PMID: 9520468 PMCID: PMC19938 DOI: 10.1073/pnas.95.7.3920] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1997] [Indexed: 02/06/2023] Open
Abstract
Bacteriophage Phi6 has a genome of three segments of double-stranded RNA. The segments are designated S, M, and L. Each segment has a unique packaging site, pac, near the 5' end of the plus strand. The plus strands of the segments are normally packaged in the order S, M, L. Chimeras of segment M and S in which segment M is at the 5' end of the plus strand can be stably incorporated into the virion; however, an independent segment S must be included along with normal segment L, even if it contains no active genes. A chimera of segment M and S in which segment S is at the 5' end of the plus strand can be stably incorporated into the virion along with normal segment L to form a two-segment genome. A chimera of segments S, M, and L in which the packaging sequence is that of S can also form a stable nonsegmented genome. These findings are consistent with a model that we have proposed for the packaging of the Phi6 genome.
Collapse
Affiliation(s)
- S Onodera
- Department of Microbiology, The Public Health Research Institute, New York, NY 10016, USA
| | | | | | | |
Collapse
|