1
|
Medina E, Ariceta G, Batlle D. Primary Distal Renal Tubular Acidosis: Toward an Optimal Correction of Metabolic Acidosis. Clin J Am Soc Nephrol 2024; 19:1212-1222. [PMID: 38967973 PMCID: PMC11390030 DOI: 10.2215/cjn.0000000000000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
The term classic, type 1 renal tubular acidosis or primary distal renal tubular acidosis is used to designate patients with impaired ability to excrete acid normally in the urine as a result of tubular transport defects involving type A intercalated cells in the collecting duct. The clinical phenotype is largely characterized by the complications of chronic metabolic acidosis (MA): stunted growth, bone abnormalities, and nephrocalcinosis and nephrolithiasis that develop as the consequence of hypercalciuria and hypocitraturia. All these manifestations are preventable with early and sustained correction of MA with alkali therapy. The optimal target for plasma bicarbonate should be as close as possible to the range considered normal by current standards (between 23 and 28 mEq/L.). Most of the benefits of alkali therapy are tangible early in the course of the disease in childhood, but life-long treatment is required to prevent the vast array of complications attributable to chronic MA.
Collapse
Affiliation(s)
- Elba Medina
- Division of Nephrology, General Hospital of México, Eduardo Liceaga, México City, México and Master's and PhD Program in Dental and Health Medical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gema Ariceta
- Pediatric Nephrology, University Hospital Vall d’Hebron, and Autonomous University of Barcelona, Barcelona, Spain
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
2
|
Kunchur MG, Mauch TJ, Parkanzky M, Rahilly LJ. A review of renal tubular acidosis. J Vet Emerg Crit Care (San Antonio) 2024; 34:325-355. [PMID: 39023331 DOI: 10.1111/vec.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/14/2022] [Accepted: 11/11/2022] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To review the current scientific literature on renal tubular acidosis (RTA) in people and small animals, focusing on diseases in veterinary medicine that result in secondary RTA. DATA SOURCES Scientific reviews and original research publications on people and small animals focusing on RTA. SUMMARY RTA is characterized by defective renal acid-base regulation that results in normal anion gap hyperchloremic metabolic acidosis. Renal acid-base regulation includes the reabsorption and regeneration of bicarbonate in the renal proximal tubule and collecting ducts and the process of ammoniagenesis. RTA occurs as a primary genetic disorder or secondary to disease conditions. Based on pathophysiology, RTA is classified as distal or type 1 RTA, proximal or type 2 RTA, type 3 RTA or carbonic anhydrase II mutation, and type 4 or hyperkalemic RTA. Fanconi syndrome comprises proximal RTA with additional defects in proximal tubular function. Extensive research elucidating the genetic basis of RTA in people exists. RTA is a genetic disorder in the Basenji breed of dogs, where the mutation is known. Secondary RTA in human and veterinary medicine is the sequela of diseases that include immune-mediated, toxic, and infectious causes. Diagnosis and characterization of RTA include the measurement of urine pH and the evaluation of renal handling of substances that should affect acid or bicarbonate excretion. CONCLUSIONS Commonality exists between human and veterinary medicine among the types of RTA. Many genetic defects causing primary RTA are identified in people, but those in companion animals other than in the Basenji are unknown. Critically ill veterinary patients are often admitted to the ICU for diseases associated with secondary RTA, or they may develop RTA while hospitalized. Recognition and treatment of RTA may reverse tubular dysfunction and promote recovery by correcting metabolic acidosis.
Collapse
Affiliation(s)
| | - Teri Jo Mauch
- University of Nebraska Medical Center and Children's Hospital, Omaha, Nebraska, USA
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | | - Louisa J Rahilly
- Cape Cod Veterinary Specialists, Buzzards Bay, Massachusetts, USA
| |
Collapse
|
3
|
Mungara P, Waiss M, Hartwig S, Burger D, Cordat E. Unraveling the molecular landscape of kAE1: a narrative review. Can J Physiol Pharmacol 2024; 102:396-407. [PMID: 38669699 DOI: 10.1139/cjpp-2023-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Kidney anion exchanger 1 (kAE1) is an isoform of the AE1 protein encoded by the SLC4A1 gene. It is a basolateral membrane protein expressed by α-intercalated cells in the connecting tubules and collecting duct of the kidney. Its main function is to exchange bicarbonate and chloride ions between the blood and urine to maintain blood pH at physiological threshold. The kAE1 protein undergoes multiple post-translational modifications such as phosphorylation and ubiquitination and interacts with many different proteins such as claudin-4 and carbonic anhydrase II. Mutations in the gene may lead to the development of distal renal tubular acidosis, characterized by the failure to acidify the urine, which may result in nephrocalcinosis and in more severe cases, renal failure. In this review, we discuss the structure and function of kAE1, its post-translational modifications, and protein-protein interactions. Finally, we discuss insights gained from the study of kAE1 mutations in humans and in mice.
Collapse
Affiliation(s)
- Priyanka Mungara
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Moubarak Waiss
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Dylan Burger
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | - Emmanuelle Cordat
- Department of Physiology, Membrane Protein Disease Research Group, Faculty of Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Wu ST, Feng Y, Song R, Qi Y, Li L, Lu D, Wang Y, Wu W, Morgan A, Wang X, Xia Y, Liu R, Alexander SI, Wong J, Zhang Y, Zheng X. Foxp1 Is Required for Renal Intercalated Cell Differentiation and Acid-Base Regulation. J Am Soc Nephrol 2024; 35:533-548. [PMID: 38332484 PMCID: PMC11149051 DOI: 10.1681/asn.0000000000000319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Key Points Foxp1 is a key transcriptional factor for the differentiation of intercalated cells in collecting ducts. Dmrt2 and Hmx2 act downstream of Foxp1 to control the differentiation of type A and type B intercalated cells, respectively. Foxp1 and Dmrt2 are essential for body acid–base balance regulation. Background Kidney collecting ducts comprise principal cells and intercalated cells, with intercalated cells playing a crucial role in kidney acid–base regulation through H+ and HCO3− secretion. Despite its significance, the molecular mechanisms controlling intercalated cell development remain incompletely understood. Methods To investigate the specific role of Foxp1 in kidney tubular system, we specifically deleted Foxp1 expression in kidney distal nephrons and collecting ducts. We examined the effects of Foxp1 on intercalated cell differentiation and urine acidification. RNA sequencing and Chip-seq were used to identify Foxp1 target genes. To dissect the genetic network that regulates intercalated cell differentiation, Dmrt2 -deficient mice were generated to determine the role of Dmrt2 in intercalated cell differentiation. Foxp1 -deficient mice were crossed with Notch2 -deficient mice to dissect the relation between Foxp1 and Notch signaling. Results Foxp1 was selectively expressed in intercalated cells in collecting ducts. The absence of Foxp1 in kidney tubules led to the abolishment of intercalated cell differentiation in the collecting ducts, resulting in distal renal tubular acidosis. Foxp1 regulates the expression of Dmrt2 and Hmx2 , two genes encoding transcription factors specifically expressed in type A and type B intercalated cell cells, respectively. Further genetic analysis revealed that Dmrt2 was essential for type A intercalated cell differentiation, and Foxp1 was necessary downstream of Notch for the regulation of intercalated cell differentiation. Conclusions Foxp1 is required for the renal intercalated cell differentiation and participated in acid–base regulation. Foxp1 regulated downstream transcriptional factors, Dmrt2 and Hmx2, which were involved in the specification of distinct subsets of intercalated cells.
Collapse
Affiliation(s)
- Shi-Ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Yu Feng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute and the Faulty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yanmiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Lin Li
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Dongbo Lu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Wenrun Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Angela Morgan
- Murdoch Children's Research Institute, The Royal Children's Hospital and Department of Audiology and Speech Pathology and Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute and School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen I. Alexander
- Department of Pediatric Nephrology, The Children's Hospital at Westmead and Centre for Kidney Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Justin Wong
- Epigenetics and RNA Biology Program Centenary Institute and the Faulty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Yang G, Mack H, Harraka P, Colville D, Savige J. Ocular manifestations of the genetic renal tubulopathies. Ophthalmic Genet 2023; 44:515-529. [PMID: 37702059 DOI: 10.1080/13816810.2023.2253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND The genetic tubulopathies are rare and heterogenous disorders that are often difficult to identify. This study examined the tubulopathy-causing genes for ocular associations that suggested their genetic basis and, in some cases, the affected gene. METHODS Sixty-seven genes from the Genomics England renal tubulopathy panel were reviewed for ocular features, and for retinal expression in the Human Protein Atlas and an ocular phenotype in mouse models in the Mouse Genome Informatics database. The genes resulted in disease affecting the proximal tubules (n = 24); the thick ascending limb of the loop of Henle (n = 10); the distal convoluted tubule (n = 15); or the collecting duct (n = 18). RESULTS Twenty-five of the tubulopathy-associated genes (37%) had ocular features reported in human disease, 49 (73%) were expressed in the retina, although often at low levels, and 16 (24%) of the corresponding mouse models had an ocular phenotype. Ocular abnormalities were more common in genes affected in the proximal tubulopathies (17/24, 71%) than elsewhere (7/43, 16%). They included structural features (coloboma, microphthalmia); refractive errors (myopia, astigmatism); crystal deposition (in oxalosis, cystinosis) and sclerochoroidal calcification (in Bartter, Gitelman syndromes). Retinal atrophy was common in the mitochondrial-associated tubulopathies. Structural abnormalities and crystal deposition were present from childhood, but sclerochoroidal calcification typically occurred after middle age. CONCLUSIONS Ocular abnormalities are uncommon in the genetic tubulopathies but may be helpful in recognizing the underlying genetic disease. The retinal expression and mouse phenotype data suggest that further ocular associations may become apparent with additional reports. Early identification may be necessary to monitor and treat visual complications.
Collapse
Affiliation(s)
- GeFei Yang
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Heather Mack
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Philip Harraka
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| | - Deb Colville
- Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
6
|
Guo W, Ji P, Xie Y. Genetic Diagnosis and Treatment of Inherited Renal Tubular Acidosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:371-383. [PMID: 37901710 PMCID: PMC10601937 DOI: 10.1159/000531556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 10/31/2023]
Abstract
Background Renal tubular acidosis (RTA) is caused by various disruptions to the secretion of H+ by distal renal tubules and/or dysfunctional reabsorption of HCO3- by proximal renal tubules, which causes renal acidification dysfunction, ultimately leading to a clinical syndrome characterized by hyperchloremic metabolic acidosis with a normal anion gap. With the development of molecular genetics and gene sequencing technology, inherited RTA has also attracted attention, and an increasing number of RTA-related pathogenic genes have been discovered and reported. Summary This paper focuses on the latest progress in the research of inherited RTA and systematically reviews the pathogenic genes, protein functions, clinical manifestations, internal relationship between genotypes and clinical phenotypes, diagnostic clues, differential diagnosis, and treatment strategies associated with inherited RTA. This paper aims to deepen the understanding of inherited RTA and reduce the missed diagnosis and misdiagnosis of RTA. Key Messages This review systematically summarizes the pathogenic genes, pathophysiological mechanisms, differential diagnosis, and treatment of different types of inherited RTA, which has good clinical value for guiding the diagnosis and treatment of inherited RTA.
Collapse
Affiliation(s)
- Wenkai Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Guerra Hernández NE, Gómez Tenorio C, Méndez Silva LP, Moraleda Mesa T, Escobar LI, Salvador C, Vargas Poussou R, García Nieto VM. Autosomal dominant distal renal tubular acidosis in two pediatric patients with mutations in the SLC4A1 gene. Can the maximum urinary pCO 2 test be normal? Nefrologia 2023; 43:484-490. [PMID: 37775346 DOI: 10.1016/j.nefroe.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/06/2021] [Indexed: 10/01/2023] Open
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare tubulopathy characterised by the presence of hyperchloremic metabolic acidosis. It is caused by the existence of a defect in the function of the H+ -ATPase located on the luminal side of the α-intercalated cells or the Cl - HCO3- (AE1) anion exchanger located on the basolateral side. Patients do not acidify the urine after acid overload (NH4Cl) or after stimulating H+ secretion by obtaining a high intratubular concentration of an anion such as chlorine (pH is measured) or HCO3- (urinary pCO2 is measured). We present a family with autosomal dominant dRTA produced by a heterozygous mutation in the SLC4A1 gene in which the two paediatric members showed a test of normal maximum urinary pCO2. Our hypothesis is that since the H + -ATPase is intact, at least initially, the stimulation induced by intratubular electronegativity to secrete H + could be effective, which would allow the maximum urinary pCO2 to be paradoxically normal, which could explain the onset, moderate presentation of symptoms and late diagnosis in patients with this mutation. This is the first documented case of a dominant dRTA in Mexico.
Collapse
Affiliation(s)
- Norma E Guerra Hernández
- Servicio de Nefrología Pediátrica, Hospital General del Centro Médico Nacional «La Raza», Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| | - Circe Gómez Tenorio
- Servicio de Nefrología Pediátrica, Hospital General del Centro Médico Nacional «La Raza», Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Servicio de Nefrología Pediátrica, Hospital Hospital de Ginecología No. 48, Instituto Mexicano del Seguro Social, León, Guanajuato, Mexico
| | - Laura Paloma Méndez Silva
- Servicio de Nefrología Pediátrica, Hospital Hospital de Ginecología No. 48, Instituto Mexicano del Seguro Social, León, Guanajuato, Mexico
| | - Teresa Moraleda Mesa
- Servicio de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| | - Laura I Escobar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carolina Salvador
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Víctor M García Nieto
- Servicio de Nefrología Pediátrica, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| |
Collapse
|
8
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
9
|
Yang M, Sheng Q, Ge S, Song X, Dong J, Guo C, Liao L. Mutations and clinical characteristics of dRTA caused by SLC4A1 mutations: Analysis based on published patients. Front Pediatr 2023; 11:1077120. [PMID: 36776909 PMCID: PMC9910804 DOI: 10.3389/fped.2023.1077120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS The genetic and clinical characteristics of patients with distal renal tubular acidosis (dRTA) caused by SLC4A1 mutations have not been systematically recorded before. Here, we summarized the SLC4A1 mutations and clinical characteristics associated with dRTA. METHODS Database was searched, and the mutations and clinical manifestations of patients were summarized from the relevant articles. RESULTS Fifty-three eligible articles involving 169 patients were included and 41 mutations were identified totally. Fifteen mutations involving 100 patients were autosomal dominant inheritance, 21 mutations involving 61 patients were autosomal recessive inheritance. Nephrocalcinosis or kidney stones were found in 72.27%, impairment in renal function in 14.29%, developmental disorders in 61.16%, hematological abnormalities in 33.88%, and muscle weakness in 13.45% of patients. The age of onset was younger (P < 0.01), urine pH was higher (P < 0.01), and serum potassium was lower (P < 0.001) in recessive patients than patients with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients (P < 0.05). CONCLUSIONS The children present with metabolic acidosis with high urinary pH, accompanying hypokalemia, hyperchloremia, nephrocalcinosis, growth retardation and hematological abnormalities should be suspected as dRTA and suggested a genetic testing. The patients with recessive dRTA are generally more severely affected than that with dominant SLC4A1 mutations. Autosomal recessive inheritance was more often found in Asian patients, and more attentions should be paid to the Asian patients.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China
| | - Qiqi Sheng
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Shenghui Ge
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Xinxin Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
| | - Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China.,Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Ji-nan, China.,College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji-nan, China
| |
Collapse
|
10
|
Guerra Hernández NE, Gómez Tenorio C, Méndez Silva LP, Moraleda Mesa T, Escobar LI, Salvador C, Vargas Poussou R, García Nieto VM. Acidosis tubular renal distal autosómica dominante en dos pacientes pediátricos con mutaciones en el gen SLC4A1. ¿La prueba de la pCO2 urinaria máxima puede ser normal? Nefrologia 2021. [DOI: 10.1016/j.nefro.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Gómez-Conde S, García-Castaño A, Aguirre M, Herrero M, Gondra L, García-Pérez N, García-Ledesma P, Martín-Penagos L, Dall'Anese C, Ariceta G, Castaño L, Madariaga L. Molecular aspects and long-term outcome of patients with primary distal renal tubular acidosis. Pediatr Nephrol 2021; 36:3133-3142. [PMID: 33881640 DOI: 10.1007/s00467-021-05066-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal mechanisms of urinary acidification. Most cases are secondary to pathogenic variants in ATP6V0A4, ATP6V1B1, and SLC4A1 genes, which encode transporters regulating acid-base balance in the collecting duct. METHODS Retrospective study of molecular and clinical data from diagnosis and long-term follow-up (10, 20, and 40±10 years) of 16 patients with primary dRTA diagnosed in childhood. RESULTS Molecular analyses revealed nine patients had ATP6V0A4 pathogenic variants, five in ATP6V1B1, and two in SLC4A1. A novel intragenic deletion and a common ATP6V0A4 gene variant (c.1691 + 2dupT) in ATP6V0A4 occurred in two-thirds of these patients, suggesting a founder effect. Median age at diagnosis was 3.25 months (IQR 1, 13.5), which was higher in the SLC4A1 group. Median SDS height at diagnosis was -1.02 (IQR -1.79, 0.14). Delayed clinical diagnosis was significantly related to growth failure (P = 0.01). Median SDS height at 20 years follow-up was -1.23 (IQR -1.71, -0.48), and did not significantly improve from diagnosis (P = 0.76). Kidney function declined over time: at last follow-up, 43% had moderate to severe chronic kidney disease (CKD). Adequate metabolic control was not related to CKD development. Incidence of sensorineural hearing loss (SNHL) was high in ATP6V1B1 patients, though not universal. Patients harboring ATP6V0A4 variants also developed SNHL at a high rate (80%) over time. CONCLUSIONS Patients with dRTA can develop moderate to severe CKD over time with a high frequency despite adequate metabolic control. Early diagnosis ameliorates long-term height prognosis.
Collapse
Affiliation(s)
| | - Alejandro García-Castaño
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain
| | - Mireia Aguirre
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Pediatric Nephrology Department, Cruces University Hospital, Barakaldo, Spain
| | - María Herrero
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Pediatric Nephrology Department, Cruces University Hospital, Barakaldo, Spain
| | - Leire Gondra
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Pediatric Nephrology Department, Cruces University Hospital, Barakaldo, Spain.,Pediatric Department, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Nélida García-Pérez
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Pediatric Department, University of the Basque Country UPV/EHU, Leioa, Spain.,Pediatric Nephrology Department, Basurto University Hospital, Bilbao, Spain
| | | | - Luis Martín-Penagos
- Nephrology Department, Marqués de Valdecilla University Hospital, Santander, Spain
| | | | - Gema Ariceta
- Pediatric Nephrology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain.,Pediatric Department, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Leire Madariaga
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain. .,CIBERDEM, CIBERER, Endo-ERN, Madrid, Spain. .,Pediatric Nephrology Department, Cruces University Hospital, Barakaldo, Spain. .,Pediatric Department, University of the Basque Country UPV/EHU, Leioa, Spain.
| |
Collapse
|
12
|
Gómez-Conde S, García-Castaño A, Aguirre M, Herrero M, Gondra L, Castaño L, Madariaga L. Hereditary distal renal tubular acidosis: Genotypic correlation, evolution to long term, and new therapeutic perspectives. Nefrologia 2021; 41:383-390. [PMID: 36165107 DOI: 10.1016/j.nefroe.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/14/2020] [Indexed: 06/16/2023] Open
Abstract
Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3 groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.
Collapse
Affiliation(s)
- Sara Gómez-Conde
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain
| | - Alejandro García-Castaño
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN
| | - Mireia Aguirre
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - María Herrero
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain
| | - Leire Gondra
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain
| | - Luis Castaño
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN; Sección de Endocrinología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain
| | - Leire Madariaga
- Instituto de Investigación Sanitaria Biocruces Bizkaia, Barakaldo, Bizkaia, Spain; CIBERDEM, CIBERER, Endo-ERN; Sección de Nefrología Pediátrica, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain; Departamento de Pediatría, Universidad del País Vasco UPV/EHU, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
13
|
Zhang R, Chen Z, Song Q, Wang S, Liu Z, Zhao X, Shi X, Guo W, Lang Y, Bottillo I, Shao L. Identification of seven exonic variants in the SLC4A1, ATP6V1B1, and ATP6V0A4 genes that alter RNA splicing by minigene assay. Hum Mutat 2021; 42:1153-1164. [PMID: 34157794 DOI: 10.1002/humu.24246] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare tubular disease associated with variants in SLC4A1, ATP6V0A4, ATP6V1B1, FOXⅠ1, or WDR72 genes. Currently, there is growing evidence that all types of exonic variants can alter splicing regulatory elements, affecting the precursor messenger RNA (pre-mRNA) splicing process. This study was to determine the consequences of variants associated with dRTA on pre-mRNA splicing combined with predictive bioinformatics tools and minigene assay. As a result, among the 15 candidate variants, 7 variants distributed in SLC4A1 (c.1765C>T, p.Arg589Cys), ATP6V1B1 (c.368G>T, p.Gly123Val; c.370C>T, p.Arg124Trp; c.484G>T, p.Glu162* and c.1102G>A, p.Glu368Lys) and ATP6V0A4 genes (c.322C>T, p.Gln108* and c.1572G>A, p.Pro524Pro) were identified to result in complete or incomplete exon skipping by either disruption of exonic splicing enhancers (ESEs) and generation of exonic splicing silencers, or interference with the recognition of the classic splicing site, or both. To our knowledge, this is the first study on pre-mRNA splicing of exonic variants in the dRTA-related genes. These results highlight the importance of assessing the effects of exonic variants at the mRNA level and suggest that minigene analysis is an effective tool for evaluating the effects of splicing on variants in vitro.
Collapse
Affiliation(s)
- Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zeqing Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Qijing Song
- Emergency Center, People's Hospital of Jimo District, Qingdao, China
| | - Sai Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.,Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Zhiying Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomeng Shi
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wencong Guo
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yanhua Lang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
15
|
Palmer BF, Kelepouris E, Clegg DJ. Renal Tubular Acidosis and Management Strategies: A Narrative Review. Adv Ther 2021; 38:949-968. [PMID: 33367987 PMCID: PMC7889554 DOI: 10.1007/s12325-020-01587-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022]
Abstract
Renal tubular acidosis (RTA) occurs when the kidneys are unable to maintain normal acid−base homeostasis because of tubular defects in acid excretion or bicarbonate ion reabsorption. Using illustrative clinical cases, this review describes the main types of RTA observed in clinical practice and provides an overview of their diagnosis and treatment. The three major forms of RTA are distal RTA (type 1; characterized by impaired acid excretion), proximal RTA (type 2; caused by defects in reabsorption of filtered bicarbonate), and hyperkalemic RTA (type 4; caused by abnormal excretion of acid and potassium in the collecting duct). Type 3 RTA is a rare form of the disease with features of both distal and proximal RTA. Accurate diagnosis of RTA plays an important role in optimal patient management. The diagnosis of distal versus proximal RTA involves assessment of urinary acid and bicarbonate secretion, while in hyperkalemic RTA, selective aldosterone deficiency or resistance to its effects is confirmed after exclusion of other causes of hyperkalemia. Treatment options include alkali therapy in patients with distal or proximal RTA and lowering of serum potassium concentrations through dietary modification and potential new pharmacotherapies in patients with hyperkalemic RTA including newer potassium binders.
Collapse
|
16
|
Hereditary distal renal tubular acidosis: Genotypic correlation, evolution to long term, and new therapeutic perspectives. Nefrologia 2020. [PMID: 33386195 DOI: 10.1016/j.nefro.2020.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distal renal tubular acidosis (DRTA) is a rare disease resulting from a failure in the normal urine acidification process at the distal tubule and collecting duct level. It is characterised by persistent hyperchloremic metabolic acidosis, with a normal anion gap in plasma, in the presence of high urinary pH and low urinary excretion of ammonium. To date, 5 genes whose mutations give rise to primary DRTA have been described. Alterations in the ATP6V1B1 and ATP6V0A4 genes are inherited recessively and are associated with forms of early onset and, in many cases, with neurosensorial deafness. Pathogenic variants in the SLC4A1 gene are habitually inherited dominantly and give rise to milder symptoms, with a later diagnosis and milder electrolytic alterations. Nonetheless, evolution to nephrocalcinosis and lithiasis, and the development of chronic kidney disease in the medium to long term has been described in a similar manner in all 3groups. Lastly, recessive forms of DTRA associated to mutations in the FOXI1 and WDR72 genes have also been described. The clinical management of DTRA is based on bicarbonate or citrate salts, which do not succeed in correcting all cases of the metabolic alterations described and, thus, the consequences associated with them. Recently, a new treatment based on slow-release bicarbonate and citrate salts has received the designation of orphan drug in Europe for the treatment of DTRA.
Collapse
|
17
|
More TA, Kedar PS. Genotypic analysis of SLC4A1 A858D mutation in Indian population associated with distal renal tubular Acidosis (dRTA) coupled with hemolytic anemia. Gene 2020; 769:145241. [PMID: 33068675 DOI: 10.1016/j.gene.2020.145241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although distinctive, distal renal tubular acidosis (dRTA) and Hereditary Spherocytosis (HS) shares a common protein, the anion exchanger1 (AE1) encoded by SLC4A1gene. In spite of this, the co-existence of dRTA and HS has rarely been observed. To date, 23 mutations have been identified in SLC4A1 gene causing both autosomal recessive (AR) and autosomal dominant (AD) forms of dRTA. METHODS We have assessed the applicability of the High Resolution Melting curve (HRM) method for the detection of SLC4A1 (A858D) mutation in 12 Indian families having AR dRTA coupled with HS. The reliability of the HRM analysis was verified by comparing the results of the HRM method with those of conventional methods such as Polymerase Chain Reaction-Restriction Fragment-Length Polymorphism (PCR-RFLP) and Sanger sequencing thereby confirming the diagnosis. RESULTS We here described the clinical, hematological and genetic data of 16 individuals from 12 families having AR dRTA coupled with HS. All patients carried homozygous SLC4A1 (A858D) mutation, whereas their family members had heterozygous A858D obtained by HRM analysis and confirmed by RFLP and Sanger sequencing. CONCLUSION Our data indicates that a missense mutation of A858D in SLC4A1 gene is the most common cause of dRTA coupled with HS in the Indian population. HRM analysis can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in the Indian population.
Collapse
Affiliation(s)
- Tejashree Anil More
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India
| | - Prabhakar S Kedar
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India.
| |
Collapse
|
18
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
19
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
20
|
García-Nieto VM, Claverie-Martín F, Perdomo-Ramírez A, Cárdoba-Lanus E, Ramos-Trujillo E, Mura-Escorche G, Tejera-Carreño P, Luis-Yanes MI. Consideraciones acerca de las bases moleculares de algunas tubulopatías en relación con la endogamia y los desplazamientos poblacionales. Nefrologia 2020; 40:126-132. [DOI: 10.1016/j.nefro.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
|
21
|
Ullah AKMS, Rumley AC, Peleh V, Fernandes D, Almomani EY, Berrini M, Lashhab R, Touret N, Alexander RT, Herrmann JM, Cordat E. SLC26A7 protein is a chloride/bicarbonate exchanger and its abundance is osmolarity- and pH-dependent in renal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183238. [PMID: 32119864 DOI: 10.1016/j.bbamem.2020.183238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
Acid-secreting intercalated cells of the collecting duct express the chloride/bicarbonate kidney anion exchanger 1 (kAE1) as well as SLC26A7, two proteins that colocalize in the basolateral membrane. The latter protein has been reported to function either as a chloride/bicarbonate exchanger or a chloride channel. Both kAE1 and SLC26A7 are detected in the renal medulla, an environment hyper-osmotic to plasma. Individuals with mutations in the SLC4A1 gene encoding kAE1 and mice lacking Slc26a7 develop distal renal tubular acidosis (dRTA). Here, we aimed to (i) confirm that SLC26A7 can function as chloride/bicarbonate exchanger in Madin-Darby canine kidney (MDCK) cells, and (ii) examine the behavior of SLC26A7 relative to kAE1 wild type or carrying the dRTA mutation R901X in iso- or hyper-osmotic conditions mimicking the renal medulla. Although we found that SLC26A7 abundance increases in hyper-osmotic growth medium, it is reduced in low pH growth conditions mimicking acidosis when expressed at high levels in MDCK cells. In these cells, SLC26A7 exchange activity was independent from extracellular osmolarity. When SLC26A7 protein was co-expressed with kAE1 WT or the R901X dRTA mutant, the cellular chloride/bicarbonate exchange rate was not additive compared to when proteins are expressed individually, possibly reflecting a decreased overall protein expression. Furthermore, the cellular chloride/bicarbonate exchange rate was osmolarity-independent. Together, these results show that (i) in MDCK cells, SLC26A7 is a chloride/bicarbonate exchanger whose abundance is up-regulated by high osmolarity growth medium and (ii) acidic extracellular pH decreases the abundance of SLC26A7 protein.
Collapse
Affiliation(s)
| | - A Carly Rumley
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Valentina Peleh
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Daphne Fernandes
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Ensaf Y Almomani
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mattia Berrini
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Rawad Lashhab
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Nicolas Touret
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | | | - Emmanuelle Cordat
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
22
|
Saccharomyces cerevisiae: First Steps to a Suitable Model System To Study the Function and Intracellular Transport of Human Kidney Anion Exchanger 1. mSphere 2020; 5:5/1/e00802-19. [PMID: 31996424 PMCID: PMC6992373 DOI: 10.1128/msphere.00802-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Saccharomyces cerevisiae. Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future. Saccharomyces cerevisiae has been frequently used to study biogenesis, functionality, and intracellular transport of various renal proteins, including ion channels, solute transporters, and aquaporins. Specific mutations in genes encoding most of these renal proteins affect kidney function in such a way that various disease phenotypes ultimately occur. In this context, human kidney anion exchanger 1 (kAE1) represents an important bicarbonate/chloride exchanger which maintains the acid-base homeostasis in the human body. Malfunctions in kAE1 lead to a pathological phenotype known as distal renal tubular acidosis (dRTA). Here, we evaluated the potential of baker's yeast as a model system to investigate different cellular aspects of kAE1 physiology. For the first time, we successfully expressed yeast codon-optimized full-length versions of tagged and untagged wild-type kAE1 and demonstrated their partial localization at the yeast plasma membrane (PM). Finally, pH and chloride measurements further suggest biological activity of full-length kAE1, emphasizing the potential of S. cerevisiae as a model system for studying trafficking, activity, and/or degradation of mammalian ion channels and transporters such as kAE1 in the future. IMPORTANCE Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Saccharomyces cerevisiae. Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future.
Collapse
|
23
|
Abstract
Metabolic acidosis is defined as a pathologic process that, when unopposed, increases the concentration of hydrogen ions (H+) in the body and reduces the bicarbonate (HCO3-) concentration. Metabolic acidosis can be of a kidney origin or an extrarenal cause. Assessment of urinary ammonium excretion by calculating the urine anion gap or osmolal gap is a useful method to distinguish between these two causes. Extrarenal processes include increased endogenous acid production and accelerated loss of bicarbonate from the body. Metabolic acidosis of renal origin is due to a primary defect in renal acidification with no increase in extrarenal hydrogen ion production. This situation can occur because either the renal input of new bicarbonate is insufficient to regenerate the bicarbonate lost in buffering endogenous acid as with distal renal tubular acidosis (RTA) or the RTA of renal insufficiency, or the filtered bicarbonate is lost by kidney wasting as in proximal RTA. In either condition, because of loss of either NaHCO3 (proximal RTA) or NaA (distal RTA), effective extracellular volume is reduced and as a result the avidity for chloride reabsorption derived from the diet is increased and results in a hyperchloremic normal gap metabolic acidosis. The RTA of renal insufficiency is also characterized by a normal gap acidosis, however, with severe reductions in the glomerular filtration rate an anion gap metabolic acidosis eventually develops.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA -
| | - Deborah J Clegg
- Department of Health Studies, College of Arts and Sciences, American University, Washington, DC, USA.,Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
24
|
Shibata S. Role of Pendrin in the Pathophysiology of Aldosterone-Induced Hypertension. Am J Hypertens 2019; 32:607-613. [PMID: 30982848 DOI: 10.1093/ajh/hpz054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/14/2022] Open
Abstract
The recent advances in genetics and molecular biology have resulted in the characterization of key components that critically regulate renal NaCl transport and blood pressure. Pendrin is a Cl-/HCO3- exchanger that is highly expressed in thyroid, inner ear, and kidney. In the kidney, it is selectively present at the apical membrane in non-α intercalated cells of the connecting tubules and cortical collecting duct. Besides its role in acid/base homeostasis, accumulating studies using various genetically modified animals have provided compelling evidence that pendrin regulates extracellular fluid volume and electrolyte balance at the downstream of aldosterone signaling. We have shown that angiotensin II and aldosterone cooperatively control pendrin abundance partly through mammalian target of rapamycin signaling and mineralocorticoid receptor dephosphorylation, which is necessary for the kidney to prevent extracellular fluid loss and electrolyte disturbances under physiologic perturbations. In line with the experimental observations, several clinical data indicated that the impaired pendrin function can cause fluid and electrolyte abnormalities in humans. The purpose of this review is to provide an update on the recent progress regarding the role of pendrin in fluid and electrolyte homeostasis, as well as in the pathophysiology of hypertension associated with mineralocorticoid receptor signaling.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Lashhab R, Ullah AS, Cordat E. Renal collecting duct physiology and pathophysiology. Biochem Cell Biol 2019; 97:234-242. [DOI: 10.1139/bcb-2018-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rawad Lashhab
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - A.K.M. Shahid Ullah
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
26
|
Abstract
Renal tubular acidosis should be suspected in poorly thriving young children with hyperchloremic and hypokalemic normal anion gap metabolic acidosis, with/without syndromic features. Further workup is needed to determine the type of renal tubular acidosis and the presumed etiopathogenesis, which informs treatment choices and prognosis. The risk of nephrolithiasis and calcinosis is linked to the presence (proximal renal tubular acidosis, negligible stone risk) or absence (distal renal tubular acidosis, high stone risk) of urine citrate excretion. New formulations of slow-release alkali and potassium combination supplements are being tested that are expected to simplify treatment and lead to sustained acidosis correction.
Collapse
Affiliation(s)
- Robert Todd Alexander
- Department of Pediatrics and Physiology, Stollery Children's Hospital, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Martin Bitzan
- Division of Nephrology, Department of Pediatrics, The Montreal Children's Hospital, McGill University Health Centre, Room B RC.6651, Montreal, Quebec H4A 3J1, Canada; Al Jalila Children's Hospital, Al Jadaf PO Box 7662, Dubai, UAE.
| |
Collapse
|
27
|
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. Pediatric Health Med Ther 2018; 9:181-190. [PMID: 30588151 PMCID: PMC6296208 DOI: 10.2147/phmt.s174459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) in the collecting tubule. dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis. Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets. Mutations in genes encoding three distinct transport proteins in A-ICs have been identified as causes of dRTA, including the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H+-ATPase (H+-ATPase) and the chloride-bicarbonate exchanger AE1/SLC4A1. Homozygous or compound heterozygous mutations in ATP6V1B1 and ATP6V0A4 lead to autosomal recessive (AR) dRTA. dRTA caused by SLC4A1 mutations can occur with either autosomal dominant or AR transmission. Red blood cell abnormalities have been associated with AR dRTA due to SLC4A1 mutations, including hereditary spherocytosis, Southeast Asia ovalocytosis, and others. Some patients with dRTA exhibit atypical clinical features, including transient and reversible proximal tubular dysfunction and hyperammonemia. Incomplete dRTA presents with inadequate urinary acidification, but without spontaneous metabolic acidosis and recurrent urinary stones. Heterozygous mutations in the AE1 or H+-ATPase genes have recently been reported in patients with incomplete dRTA. Early and sufficient doses of alkali treatment are needed for patients with dRTA. Normalized serum bicarbonate, urinary calcium excretion, urinary low-molecular-weight protein levels, and growth rate are good markers of adherence to and/or efficacy of treatment. The prognosis of dRTA is generally good in patients with appropriate treatment. However, recent studies showed an increased frequency of chronic kidney disease (CKD) in patients with dRTA during long-term follow-up. The precise pathogenic mechanisms of CKD in patients with dRTA are unknown.
Collapse
Affiliation(s)
- Toru Watanabe
- Department of Pediatrics, Niigata City General Hospital, Niigata City 950-1197, Japan,
| |
Collapse
|
28
|
Nephrolithiasis secondary to inherited defects in the thick ascending loop of henle and connecting tubules. Urolithiasis 2018; 47:43-56. [PMID: 30460527 DOI: 10.1007/s00240-018-1097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Twin and genealogy studies suggest a strong genetic component of nephrolithiasis. Likewise, urinary traits associated with renal stone formation were found to be highly heritable, even after adjustment for demographic, anthropometric and dietary covariates. Recent high-throughput sequencing projects of phenotypically well-defined cohorts of stone formers and large genome-wide association studies led to the discovery of many new genes associated with kidney stones. The spectrum ranges from infrequent but highly penetrant variants (mutations) causing mendelian forms of nephrolithiasis (monogenic traits) to common but phenotypically mild variants associated with nephrolithiasis (polygenic traits). About two-thirds of the genes currently known to be associated with nephrolithiasis code for membrane proteins or enzymes involved in renal tubular transport. The thick ascending limb of Henle and connecting tubules are of paramount importance for renal water and electrolyte handling, urinary concentration and maintenance of acid-base homeostasis. In most instances, pathogenic variants in genes involved in thick ascending limb of Henle and connecting tubule function result in phenotypically severe disease, frequently accompanied by nephrocalcinosis with progressive CKD and to a variable degree by nephrolithiasis. The aim of this article is to review the current knowledge on kidney stone disease associated with inherited defects in the thick ascending loop of Henle and the connecting tubules. We also highlight recent advances in the field of kidney stone genetics that have implications beyond rare disease, offering new insights into the most common type of kidney stone disease, i.e., idiopathic calcium stone disease.
Collapse
|
29
|
Zhang R, Wang C, Lang Y, Gao Y, Chen Z, Lu J, Zhao X, Shao L. Five Novel Mutations in Chinese Children with Primary Distal Renal Tubular Acidosis. Genet Test Mol Biomarkers 2018; 22:599-606. [PMID: 30256676 DOI: 10.1089/gtmb.2018.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Cui Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yanhua Lang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
| | - Yanxia Gao
- Department of Nephrology, Qingdao Branch of Qilu Hospital of Shandong University, Qingdao, P.R. China
| | - Zeqing Chen
- Academy for Engineer and Technology, The Fudan University, Shanghai, P.R. China
| | - Jingru Lu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xiangzhong Zhao
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Leping Shao
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, P.R. China
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
30
|
Alonso-Varela M, Gil-Peña H, Coto E, Gómez J, Rodríguez J, Rodríguez-Rubio E, Santos F. Distal renal tubular acidosis. Clinical manifestations in patients with different underlying gene mutations. Pediatr Nephrol 2018; 33:1523-1529. [PMID: 29725771 DOI: 10.1007/s00467-018-3965-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND To evaluate whether there are differences in the phenotype of primary distal renal tubular acidosis (dRTA) patients according to the causal defective gene. METHODS Twenty-seven non-oriental patients with genetically confirmed dRTA were grouped according to the identified underlying mutations in either ATP6V1B1 (n = 10), ATP6V0A4 (n = 12), or SLC4A1 (n = 5) gene. Demographic features, growth impairment, biochemical variables and presence of deafness, nephrocalcinosis, and urolithiasis at diagnosis were compared among the three groups. RESULTS Patients with SLC4A1 mutations presented later than those with ATP6V1B1 or ATP6V0A4 defects (120 vs. 7 and 3 months, respectively). Hearing loss at diagnosis was present in the majority of patients with ATP6V1B1 mutations, in two patients with ATP6V0A4 mutations, and in none of cases harboring SLC4A1 mutations. Serum potassium concentration (X ± SD) was higher in SLC4A1 group (3.66 ± 0.44 mEq/L) than in ATP6V0A4 group (2.96 ± 0.63 mEq/L) (p = 0.046). There were no differences in the other clinical or biochemical variables analyzed in the three groups. CONCLUSIONS This study indicates that non-oriental patients with dRTA caused by mutations in the SLC4A1 gene present later and have normokalemia or milder hypokalemia. Hypoacusia at diagnosis is characteristically associated with ATP6V1B1 gene mutations although it may also be present in infants with ATP6V0A4 defects. Other phenotypical manifestations do not allow predicting the involved gene.
Collapse
Affiliation(s)
| | - Helena Gil-Peña
- University of Oviedo, Oviedo, Spain. .,AGC de Pediatría, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain. .,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Eliecer Coto
- University of Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,AGC Laboratorio - Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,AGC Laboratorio - Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Julián Rodríguez
- University of Oviedo, Oviedo, Spain.,AGC de Pediatría, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Fernando Santos
- University of Oviedo, Oviedo, Spain.,AGC de Pediatría, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | |
Collapse
|
31
|
Deejai N, Wisanuyotin S, Nettuwakul C, Khositseth S, Sawasdee N, Saetai K, Yenchitsomanus PT, Rungroj N. Molecular Diagnosis of Solute Carrier Family 4 Member 1 (SLC4A1) Mutation–Related Autosomal Recessive Distal Renal Tubular Acidosis. Lab Med 2018; 50:78-86. [DOI: 10.1093/labmed/lmy051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nipaporn Deejai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwannee Wisanuyotin
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Thailand
| | - Choochai Nettuwakul
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sookkasem Khositseth
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kiattichai Saetai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanyawan Rungroj
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
32
|
Frische S, Chambrey R, Trepiccione F, Zamani R, Marcussen N, Alexander RT, Skjødt K, Svenningsen P, Dimke H. H +-ATPase B1 subunit localizes to thick ascending limb and distal convoluted tubule of rodent and human kidney. Am J Physiol Renal Physiol 2018; 315:F429-F444. [PMID: 29993276 DOI: 10.1152/ajprenal.00539.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The vacuolar-type H+-ATPase B1 subunit is heavily expressed in the intercalated cells of the collecting system, where it contributes to H+ transport, but has also been described in other segments of the renal tubule. This study aimed to determine the localization of the B1 subunit of the vacuolar-type H+-ATPase in the early distal nephron, encompassing thick ascending limbs (TAL) and distal convoluted tubules (DCT), in human kidney and determine whether the localization differs between rodents and humans. Antibodies directed against the H+-ATPase B1 subunit were used to determine its localization in paraffin-embedded formalin-fixed mouse, rat, and human kidneys by light microscopy and in sections of Lowicryl-embedded rat kidneys by electron microscopy. Abundant H+-ATPase B1 subunit immunoreactivity was observed in the human kidney. As expected, intercalated cells showed the strongest signal, but significant signal was also observed in apical membrane domains of the distal nephron, including TAL, macula densa, and DCT. In mouse and rat, H+-ATPase B1 subunit expression could also be detected in apical membrane domains of these segments. In rat, electron microscopy revealed that the H+-ATPase B1 subunit was located in the apical membrane. Furthermore, the H+-ATPase B1 subunit colocalized with other H+-ATPase subunits in the TAL and DCT. In conclusion, the B1 subunit is expressed in the early distal nephron. The physiological importance of H+-ATPase expression in these segments remains to be delineated in detail. The phenotype of disease-causing mutations in the B1 subunit may also relate to its presence in the TAL and DCT.
Collapse
Affiliation(s)
| | - Régine Chambrey
- INSERM 1188-Université de La Réunion, Sainte Clotilde, La Réunion, France
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Reza Zamani
- Department of Urology, Odense University Hospital , Odense , Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital , Odense , Denmark
| | - R Todd Alexander
- Department of Pediatrics, University of Alberta , Edmonton, Alberta , Canada.,Membrane Protein Disease Research Group, University of Alberta , Edmonton, Alberta , Canada
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
33
|
Abstract
Distal renal tubular acidosis (DRTA) is defined as hyperchloremic, non-anion gap metabolic acidosis with impaired urinary acid excretion in the presence of a normal or moderately reduced glomerular filtration rate. Failure in urinary acid excretion results from reduced H+ secretion by intercalated cells in the distal nephron. This results in decreased excretion of NH4+ and other acids collectively referred as titratable acids while urine pH is typically above 5.5 in the face of systemic acidosis. The clinical phenotype in patients with DRTA is characterized by stunted growth with bone abnormalities in children as well as nephrocalcinosis and nephrolithiasis that develop as the consequence of hypercalciuria, hypocitraturia, and relatively alkaline urine. Hypokalemia is a striking finding that accounts for muscle weakness and requires continued treatment together with alkali-based therapies. This review will focus on the mechanisms responsible for impaired acid excretion and urinary potassium wastage, the clinical features, and diagnostic approaches of hypokalemic DRTA, both inherited and acquired.
Collapse
|
34
|
Batlle D, Arruda J. Hyperkalemic Forms of Renal Tubular Acidosis: Clinical and Pathophysiological Aspects. Adv Chronic Kidney Dis 2018; 25:321-333. [PMID: 30139459 DOI: 10.1053/j.ackd.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In contrast to distal type I or classic renal tubular acidosis (RTA) that is associated with hypokalemia, hyperkalemic forms of RTA also occur usually in the setting of mild-to-moderate CKD. Two pathogenic types of hyperkalemic metabolic acidosis are frequently encountered in adults with underlying CKD. One type, which corresponds to some extent to the animal model of selective aldosterone deficiency (SAD) created experimentally by adrenalectomy and glucocorticoid replacement, is manifested in humans by low plasma and urinary aldosterone levels, reduced ammonium excretion, and preserved ability to lower urine pH below 5.5. This type of hyperkalemic RTA is also referred to as type IV RTA. It should be noted that the mere deficiency of aldosterone when glomerular filtration rate is completely normal only causes a modest decline in plasma bicarbonate which emphasizes the importance of reduced glomerular filtration rate in the development of the hyperchloremic metabolic acidosis associated with SAD. Another type of hyperkalemic RTA distinctive from SAD in which plasma aldosterone is not reduced is referred to as hyperkalemic distal renal tubular acidosis because urine pH cannot be reduced despite acidemia or after provocative tests aimed at increasing sodium-dependent distal acidification such as the administration of sodium sulfate or loop diuretics with or without concurrent mineralocorticoid administration. This type of hyperkalemic RTA (also referred to as voltage-dependent distal renal tubular acidosis) has been best described in patients with obstructive uropathy and resembles the impairment in both hydrogen ion and potassium secretion that are induced experimentally by urinary tract obstruction and when sodium transport in the cortical collecting tubule is blocked by amiloride.
Collapse
|
35
|
Zhou F, Mao J, Ye Q, Zhu X, Zhang Y, Ye Y, Fu H, Shen H, Lu Z, Xia Y, Liu A, Shu Q, Du L. Clinical features and genetic findings in Chinese children with distal renal tubular acidosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3523-3532. [PMID: 31949730 PMCID: PMC6962865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/28/2018] [Indexed: 06/10/2023]
Abstract
Distal renal tubular acidosis (dRTA) is characterized by metabolic acidosis due to uric acid dysfunction. The aim of this study was to demonstrate the genetic diagnosis of Chinese children with dRTA by whole-exome sequencing. From Jan. 2010 to Sept. 2015, 16 children with dRTA were recruited to investigate the possibility of genetic diagnosis and to examine any genotype-phenotype relationships in these patients. Sanger sequencing was used to confirm mutations identified by whole-exome sequencing. Clinical and biological features in the patients included hyperchloremic metabolic acidosis, impaired growth, hypokalemia, nephrocalcinosis, nephrolithiasis, hypercalciuria, hypocitraturia, and rickets or osteomalacia. Seventeen mutations in the solute carrier family 4 member 1 (SLC4A1), ATPase H+ transporting V0 subunit a4 (ATP6V0A4), ATPase H+ transporting V1 subunit B1 (ATP6V1B1), WNK lysine deficient protein kinase 1 (WNK1) and the claudin 16 (CLDN16) were identified in 15 patients, and 14 of these mutations are novel. Only 1 patient was negative for any mutations. Our results demonstrate the existence of SLC4A1, ATP6V1B1, ATP6V0A4, WNK1 and CLDN16 mutations in Chinese children with dRTA and indicate that compound heterozygosity at 2 or more different but related genes can be responsible for its pathogenesis. This study also indicates that whole-exome sequencing is a labor and cost-effective means of analyzing dRTA-associated genes.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
- Department of Internal Medicine, Hangzhou Children’s HospitalHangzhou, Zhejiang Province, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Qing Ye
- Department of Zhejiang Key Laboratory for Neonatal Diseases, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Xiujuan Zhu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Yingying Zhang
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Yuhong Ye
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Huijun Shen
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Zhihong Lu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Yonghui Xia
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Aimin Liu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Qiang Shu
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| | - Lizhong Du
- Department of Nephrology, The Children’s Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang Province, China
| |
Collapse
|
36
|
Abstract
Renal tubular acidosis (RTA) is comprised of a diverse group of congenital or acquired diseases with the common denominator of defective renal acid excretion with protean manifestation, but in adults, recurrent kidney stones and nephrocalcinosis are mainly found in presentation. Calcium phosphate (CaP) stones and nephrocalcinosis are frequently encountered in distal hypokalemic RTA type I. Alkaline urinary pH, hypocitraturia, and, less frequently, hypercalciuria are the tripartite lithogenic factors in distal RTA (dRTA) predisposing to CaP stone formation; the latter 2 are also commonly encountered in other causes of urolithiasis. Although the full blown syndrome is easily diagnosed by conventional clinical criteria, an attenuated forme fruste called incomplete dRTA typically evades clinical testing and is only uncovered by provocative acid-loading challenges. Stone formers (SFs) that cannot acidify urine of pH < 5.3 during acid loading are considered to have incomplete dRTA. However, urinary acidification capacity is not a dichotomous but rather a continuous trait, so incomplete dRTA is not a distinct entity but may be one end of a spectrum. Recent findings suggest that incomplete dRTA can be attributed to heterozygous carriers of hypofunctional V-ATPase. The value of incomplete dRTA diagnosis by provocative testing and genotyping candidate genes is a valuable research tool, but it remains unclear at the moment whether they alter clinical practice and needs further clarification. No randomized controlled trials have been performed in SFs with dRTA or CaP stones, and until such data are available, treatment of CaP stones are centered on reversing the biochemical abnormalities encountered in the metabolic workup. SFs with type I dRTA should receive alkali therapy, preferentially in the form of K-citrate delivered judiciously to treat the chronic acid retention that drives both stone formation and bone disease.
Collapse
|
37
|
Kurtz I. Renal Tubular Acidosis: H +/Base and Ammonia Transport Abnormalities and Clinical Syndromes. Adv Chronic Kidney Dis 2018; 25:334-350. [PMID: 30139460 PMCID: PMC6128697 DOI: 10.1053/j.ackd.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal tubular acidosis (RTA) represents a group of diseases characterized by (1) a normal anion gap metabolic acidosis; (2) abnormalities in renal HCO3- absorption or new renal HCO3- generation; (3) changes in renal NH4+, Ca2+, K+, and H2O homeostasis; and (4) extrarenal manifestations that provide etiologic diagnostic clues. The focus of this review is to give a general overview of the pathogenesis of the various clinical syndromes causing RTA with a particular emphasis on type I (hypokalemic distal RTA) and type II (proximal) RTA while reviewing their pathogenesis from a physiological "bottom-up" approach. In addition, the factors involved in the generation of metabolic acidosis in both type I and II RTA are reviewed highlighting the importance of altered renal ammonia production/partitioning and new HCO3- generation. Our understanding of the underlying tubular transport and extrarenal abnormalities has significantly improved since the first recognition of RTA as a clinical entity because of significant advances in clinical acid-base chemistry, whole tubule and single-cell H+/base transport, and the molecular characterization of the various transporters and channels that are functionally affected in patients with RTA. Despite these advances, additional studies are needed to address the underlying mechanisms involved in hypokalemia, altered ammonia production/partitioning, hypercalciuria, nephrocalcinosis, cystic abnormalities, and CKD progression in these patients.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA.
| |
Collapse
|
38
|
Rahmati N, Hoebeek FE, Peter S, De Zeeuw CI. Chloride Homeostasis in Neurons With Special Emphasis on the Olivocerebellar System: Differential Roles for Transporters and Channels. Front Cell Neurosci 2018; 12:101. [PMID: 29765304 PMCID: PMC5938380 DOI: 10.3389/fncel.2018.00101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl- ([Cl-]i) evokes, in addition to that of Na+ and Ca2+, robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl-]i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl-]i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl- channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl- channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl- channels and transporters play an indispensable role in determining their [Cl-]i and thereby their function in sensorimotor coordination.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - Saša Peter
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
39
|
Almomani EY, Touret N, Cordat E. Adaptor protein 1 B mu subunit does not contribute to the recycling of kAE1 protein in polarized renal epithelial cells. Mol Membr Biol 2018; 34:50-64. [PMID: 29651904 DOI: 10.1080/09687688.2018.1451662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1 WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.
Collapse
Affiliation(s)
- Ensaf Y Almomani
- a Department of Physiology , University of Alberta , Edmonton , AB , Canada
| | - Nicolas Touret
- b Department of Biochemistry , University of Alberta , Edmonton , AB , Canada
| | - Emmanuelle Cordat
- a Department of Physiology , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
40
|
Park E, Cho M, Hyun H, Shin J, Lee J, Park Y, Choi H, Kang H, Cheong H. Genotype–Phenotype Analysis in Pediatric Patients with Distal Renal Tubular Acidosis. Kidney Blood Press Res 2018; 43:513-521. [DOI: 10.1159/000488698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022] Open
|
41
|
Park E, Phaymany V, Yi ES, Phangmanixay S, Cheong HI, Choi Y. Primary Autosomal Recessive Distal Renal Tubular Acidosis Caused by a Common Homozygous SLC4A1 Mutation in Two Lao Families. J Korean Med Sci 2018; 33:e95. [PMID: 29573245 PMCID: PMC5865059 DOI: 10.3346/jkms.2018.33.e95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Primary distal renal tubular acidosis (dRTA) caused by mutations of the SLC4A1 gene, which encodes for erythroid and kidney isoforms of anion exchanger, shows marked difference in inheritance patterns and clinical features in different parts of the world. While the disease shows autosomal dominant inheritance without any red cell morphological abnormalities in the temperate countries, it is almost invariably recessive, and often accompanies red cell morphological abnormalities or hemolytic anemia in the tropics, especially in Southeast Asia. Here, we report three patients with autosomal recessive (AR) dRTA, presenting with typical findings of failure to thrive and rickets, from two unrelated Lao families. The mutational analyses revealed that all three patients harbored the same homozygous SLC4A1 mutation, p.Gly701Asp. Adequate supplementation of alkali and potassium resulted in remarkable improvement of growth retardation and skeletal deformities of the patients. This is the first case report of Lao patients with AR dRTA caused by SLC4A1 mutations.
Collapse
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Vilaphone Phaymany
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Department of Pediatrics, Children's Hospital, Vientiane, Lao PRD
| | - Eun Sang Yi
- Department of Pediatrics, Children's Hospital, Vientiane, Lao PRD
- Department of Pediatrics, Korea University Guro Hospital, Seoul, Korea
| | | | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
- Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Yong Choi
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
42
|
Parker MD. Mouse models of SLC4-linked disorders of HCO 3--transporter dysfunction. Am J Physiol Cell Physiol 2018; 314:C569-C588. [PMID: 29384695 DOI: 10.1152/ajpcell.00301.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SLC4 family Cl-/[Formula: see text] cotransporters (NBCe1, NBCe2, NBCn1, and NBCn2) contribute to a variety of vital physiological processes including pH regulation and epithelial fluid secretion. Accordingly, their dysfunction can have devastating effects. Disorders such as epilepsy, hemolytic anemia, glaucoma, hearing loss, osteopetrosis, and renal tubular acidosis are all genetically linked to SLC4-family gene loci. This review summarizes how studies of Slc4-modified mice have enhanced our understanding of the etiology of SLC4-linked pathologies and the interpretation of genetic linkage studies. The review also surveys the novel disease signs exhibited by Slc4-modified mice which could either be considered to presage their description in humans, or to highlight interspecific differences. Finally, novel Slc4-modified mouse models are proposed, the study of which may further our understanding of the basis and treatment of SLC4-linked disorders of [Formula: see text]-transporter dysfunction.
Collapse
Affiliation(s)
- Mark D Parker
- Department of Physiology and Biophysics, The State University of New York: The University at Buffalo , Buffalo, New York.,Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo: The State University of New York , Buffalo, New York.,State University of New York Eye Institutes, University at Buffalo: The State University of New York , Buffalo, New York
| |
Collapse
|
43
|
Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis. J Nephrol 2017; 31:511-522. [DOI: 10.1007/s40620-017-0447-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
44
|
Trepiccione F, Prosperi F, de la Motte LR, Hübner CA, Chambrey R, Eladari D, Capasso G. New Findings on the Pathogenesis of Distal Renal Tubular Acidosis. KIDNEY DISEASES 2017; 3:98-105. [PMID: 29344504 DOI: 10.1159/000478781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Indexed: 12/23/2022]
Abstract
Background Distal renal tubular acidosis (dRTA) is characterized by an impairment of the urinary acidification process in the distal nephron. Complete or incomplete metabolic acidosis coupled with inappropriately alkaline urine are the hallmarks of this condition. Genetic forms of dRTA are caused by loss of function mutations of either SLC4A1, encoding the AE1 anion exchanger, or ATP6V1B1 and ATP6V0A4, encoding for the B1 and a4 subunits of the vH+ATPase, respectively. These genes are crucial for the function of A-type intercalated cells (A-IC) of the distal nephron. Summary Alterations of acid-base homeostasis are variably associated with hypokalemia, hypercalciuria, nephrocalcinosis or nephrolithiasis, and a salt-losing phenotype. Here we report the diagnostic test and the underlying physiopathological mechanisms. The molecular mechanisms identified so far can explain the defect in acid secretion, but do not explain all clinical features. We review the latest experimental findings on the pathogenesis of dRTA, reporting mechanisms that are instrumental for the clinician and potentially inspiring a novel therapeutic strategy. Key Message Primary dRTA is usually intended as a single-cell disease because the A-IC are mainly affected. However, novel evidence shows that different cell types of the nephron may contribute to the signs and symptoms, moving the focus from a single-cell towards a renal disease.
Collapse
Affiliation(s)
- Francesco Trepiccione
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Federica Prosperi
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| | - Luigi Regenburgh de la Motte
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Regine Chambrey
- Inserm U1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, Saint-Denis, Ile de la Réunion, France
| | - Giovambattista Capasso
- Department of Cardiothoracic and Respiratory Science, University of Campania "Luigi Vanvitelli," Naples, Italy.,Biogem S.c.a.r.l., Research Institute Gaetano Salvatore, Ariano Irpino, Italy
| |
Collapse
|
45
|
Chen L, Higgins PJ, Zhang W. Development and Diseases of the Collecting Duct System. Results Probl Cell Differ 2017; 60:165-203. [PMID: 28409346 DOI: 10.1007/978-3-319-51436-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The collecting duct of the mammalian kidney is important for the regulation of extracellular volume, osmolarity, and pH. There are two major structurally and functionally distinct cell types: principal cells and intercalated cells. The former regulates Na+ and water homeostasis, while the latter participates in acid-base homeostasis. In vivo lineage tracing using Cre recombinase or its derivatives such as CreGFP and CreERT2 is a powerful new technique to identify stem/progenitor cells in their native environment and to decipher the origins of the tissue that they give rise to. Recent studies using this technique in mice have revealed multiple renal progenitor cell populations that differentiate into various nephron segments and collecting duct. In particular, emerging evidence suggests that like principal cells, most of intercalated cells originate from the progenitor cells expressing water channel Aquaporin 2. Mutations or malfunctions of the channels, pumps, and transporters expressed in the collecting duct system cause various human diseases. For example, gain-of-function mutations in ENaC cause Liddle's syndrome, while loss-of-function mutations in ENaC lead to Pseudohypoaldosteronism type 1. Mutations in either AE1 or V-ATPase B1 result in distal renal tubular acidosis. Patients with disrupted AQP2 or AVPR2 develop nephrogenic diabetes insipidus. A better understanding of the function and development of the collecting duct system may facilitate the discovery of new therapeutic strategies for treating kidney disease.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, NHLBI, Bethesda, MD, 20892-1603, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
46
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
47
|
The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis. Kidney Int 2017; 91:1243-1255. [PMID: 28233610 DOI: 10.1016/j.kint.2016.12.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022]
Abstract
Primary distal renal tubular acidosis is a rare genetic disease. Mutations in SLC4A1, ATP6V0A4, and ATP6V1B1 genes have been described as the cause of the disease, transmitted as either an autosomal dominant or recessive trait. Particular clinical features, such as sensorineural hearing loss, have been mainly described in association with mutations in one gene instead of the others. Nevertheless, the diagnosis of distal renal tubular acidosis is essentially based on clinical and laboratory findings, and the series of patients described so far are usually represented by small cohorts. Therefore, a strict genotype-phenotype correlation is still lacking, and questions about whether clinical and laboratory data should direct the genetic analysis remain open. Here, we applied next-generation sequencing in 89 patients with a clinical diagnosis of distal renal tubular acidosis, analyzing the prevalence of genetic defects in SLC4A1, ATP6V0A4, and ATP6V1B1 genes and the clinical phenotype. A genetic cause was determined in 71.9% of cases. In our group of sporadic cases, clinical features, including sensorineural hearing loss, are not specific indicators of the causal underlying gene. Mutations in the ATP6V0A4 gene are quite as frequent as mutations in ATP6V1B1 in patients with recessive disease. Chronic kidney disease was frequent in patients with a long history of the disease. Thus, our results suggest that when distal renal tubular acidosis is suspected, complete genetic testing could be considered, irrespective of the clinical phenotype of the patient.
Collapse
|
48
|
PDLIM5 links kidney anion exchanger 1 (kAE1) to ILK and is required for membrane targeting of kAE1. Sci Rep 2017; 7:39701. [PMID: 28045035 PMCID: PMC5206653 DOI: 10.1038/srep39701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022] Open
Abstract
Anion exchanger 1 (AE1) mediates Cl−/HCO3− exchange in erythrocytes and kidney intercalated cells where it functions to maintain normal bodily acid-base homeostasis. AE1’s C-terminal tail (AE1C) contains multiple potential membrane targeting/retention determinants, including a predicted PDZ binding motif, which are critical for its normal membrane residency. Here we identify PDLIM5 as a direct binding partner for AE1 in human kidney, via PDLIM5’s PDZ domain and the PDZ binding motif in AE1C. Kidney AE1 (kAE1), PDLIM5 and integrin-linked kinase (ILK) form a multiprotein complex in which PDLIM5 provides a bridge between ILK and AE1C. Depletion of PDLIM5 resulted in significant reduction in kAE1 at the cell membrane, whereas over-expression of kAE1 was accompanied by increased PDLIM5 levels, underscoring the functional importance of PDLIM5 for proper kAE1 membrane residency, as a crucial linker between kAE1 and actin cytoskeleton-associated proteins in polarized cells.
Collapse
|
49
|
Genetic defects underlying renal stone disease. Int J Surg 2016; 36:590-595. [PMID: 27838384 DOI: 10.1016/j.ijsu.2016.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Renal stones are common and are usually secondary to risk factors affecting the solubility of substances in the urinary tract. Primary, that is genetic, causes are rare but nevertheless are important to recognise so that appropriate treatments can be instigated and the risks to other family members acknowledged. A brief overview of the investigation of renal stones from a biochemical point of view is presented with emphasis on the problems that can arise. The genetic basis of renal stone disease caused by (i) derangement of a metabolic pathway, (ii) diversion to an insoluble product, (iii) failure of transport and (iv) renal tubular acidosis is described by reference to the disorders of adenine phosphoribosyl transferase (APRT) deficiency, primary hyperoxaluria, cystinuria and autosomal dominant distal renal tubular acidosis.
Collapse
|
50
|
Takeuchi T, Hattori-Kato M, Okuno Y, Kanatani A, Zaitsu M, Mikami K. A single nucleotide polymorphism in kidney anion exchanger 1 gene is associated with incomplete type 1 renal tubular acidosis. Sci Rep 2016; 6:35841. [PMID: 27767102 PMCID: PMC5073285 DOI: 10.1038/srep35841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/06/2016] [Indexed: 11/19/2022] Open
Abstract
Various conditions including distal renal tubular acidosis (dRTA) can induce stone formation in the kidney. dRTA is characterized by an impairment of urine acidification in the distal nephron. dRTA is caused by variations in genes functioning in intercalated cells including SLC4A1/AE1/Band3 transcribing two kinds of mRNAs encoding the Cl−/HCO3− exchanger in erythrocytes and that expressed in α-intercalated cells (kAE1). With the acid-loading test, 25% of urolithiasis patients were diagnosed with incomplete dRTA. In erythroid intron 3 containing the promoter region of kAE1, rs999716 SNP showed a significantly higher minor allele A frequency in incomplete dRTA compared with non-dRTA patients. The promoter regions of the kAE1 gene with the minor allele A at rs999716 downstream of the TATA box showed reduced promoter activities compared that with the major allele G. Patients with the A allele at rs999716 may express less kAE1 mRNA and protein in the intercalated cells, developing incomplete dRTA.
Collapse
Affiliation(s)
- Takumi Takeuchi
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Mami Hattori-Kato
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Yumiko Okuno
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Atsushi Kanatani
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masayoshi Zaitsu
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| | - Koji Mikami
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, 1-1 Kizukisumiyoshi-cho, Nakahara-ku, Kawasaki 211-8510, Japan
| |
Collapse
|