1
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
2
|
Host Selection-producing Variations in the Genome of Hop Stunt Viroid. Virus Res 2022; 311:198706. [PMID: 35143908 DOI: 10.1016/j.virusres.2022.198706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
Abstract
A random mutant pool of hop stunt viroid (HSVd) was created by shuffling cDNA fragments prepared from three natural HSVd variants obtained from grapevine, citrus, and plum. It was used to infect five host plant species: hop, cucumber, grapevine, peach, and citrus. After infection, progenies having variations characteristic for grapevine and citrus HSVd variants have been preferentially enriched in the homologous plant species, suggesting that strong but different selection pressures affected the genomic RNA when HSVd-infected either grapevine or citrus. In the progeny propagated in cucumber, hop, and peach, variations characteristic to grapevine, citrus, and plum HSVd variants were detected simultaneously as a blend. Accordingly, we showed that at least some of the host-specific variations found in HSVd variants isolated from host plant species, e.g., grapevine and citrus, seemed to have arisen from positive host selection pressures. The HSVd-grapevine variant was found to be ideally adaptable not only to grapevine but to various host plants as well.
Collapse
|
3
|
Flores R, Navarro B, Serra P, Di Serio F. A scenario for the emergence of protoviroids in the RNA world and for their further evolution into viroids and viroid-like RNAs by modular recombinations and mutations. Virus Evol 2022; 8:veab107. [PMID: 35223083 PMCID: PMC8865084 DOI: 10.1093/ve/veab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Viroids are tiny, circular, and noncoding RNAs that are able to replicate and systemically infect plants. The smallest known pathogens, viroids have been proposed to represent survivors from the RNA world that likely preceded the cellular world currently dominating life on the earth. Although the small, circular, and compact nature of viroid genomes, some of which are also endowed with catalytic activity mediated by hammerhead ribozymes, support this proposal, the lack of feasible evolutionary routes and the identification of hammerhead ribozymes in a large number of DNA genomes of organisms along the tree of life have led some to question such a proposal. Here, we reassess the origin and subsequent evolution of viroids by complementing phylogenetic reconstructions with molecular data, including the primary and higher-order structure of the genomic RNAs, their replication, and recombination mechanisms and selected biological information. Features of some viroid-like RNAs found in plants, animals, and possibly fungi are also considered. The resulting evolutionary scenario supports the emergence of protoviroids in the RNA world, mainly as replicative modules, followed by a further increase in genome complexity based on module/domain shuffling and combination and mutation. Such a modular evolutionary scenario would have facilitated the inclusion in the protoviroid genomes of complex RNA structures (or coding sequences, as in the case of hepatitis delta virus and delta-like agents), likely needed for their adaptation from the RNA world to a life based on cells, thus generating the ancestors of current infectious viroids and viroid-like RNAs. Other noninfectious viroid-like RNAs, such as retroviroid-like RNA elements and retrozymes, could also be derived from protoviroids if their reverse transcription and integration into viral or eukaryotic DNA, respectively, are considered as a possible key step in their evolution. Comparison of evidence supporting a general and modular evolutionary model for viroids and viroid-like RNAs with that favoring alternative scenarios provides reasonable reasons to keep alive the hypothesis that these small RNA pathogens may be relics of a precellular world.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| |
Collapse
|
4
|
Hataya T, Naoi T. Precisely Monomeric Linear RNAs of Viroids Belonging to Pospiviroid and Hostuviroid Genera Are Infectious Regardless of Transcription Initiation Site and 5'-Terminal Structure. Cells 2021; 10:cells10112971. [PMID: 34831194 PMCID: PMC8616387 DOI: 10.3390/cells10112971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious dimeric RNA transcripts are a powerful tool for reverse genetic analyses in viroid studies. However, the construction of dimeric cDNA clones is laborious and time consuming, especially in mutational analyses by in vitro mutagenesis. In this study, we developed a system to synthesize a precisely monomeric linear RNA that could be transcribed in vitro directly from the cDNA clones of four viroid species. The cDNA clones were constructed such that RNA transcription was initiated at the guanine nucleotide of a predicted processing and ligation site in the viroid replication process. Although the transcribed RNAs were considered to possess 5′-triphosphate and 3′-hydroxyl termini, the RNA transcripts were infectious even without in vitro modifications. Additionally, infectivity was detected in the monomeric RNA transcripts, in which transcription was initiated at guanine nucleotides distinct from the predicted processing/ligation site. Moreover, monomeric viroid RNAs bearing 5′-monophosphate, 5′-hydroxyl, or 5′-capped termini were found to be infectious. Northern blot analysis of the pooled total RNA of the plants inoculated with the 5′-terminal modified RNA of potato spindle tuber viroid (PSTVd) indicated that maximum PSTVd accumulation occurred in plants with 5′-monophosphate RNA inoculation, followed by the plants with 5′-triphosphate RNA inoculation. Our system for synthesizing an infectious monomeric linear viroid RNA from a cDNA clone will facilitate mutational analyses by in vitro mutagenesis in viroid research.
Collapse
Affiliation(s)
- Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
- Correspondence:
| | - Takashi Naoi
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| |
Collapse
|
5
|
Symptom Severity, Infection Progression and Plant Responses in Solanum Plants Caused by Three Pospiviroids Vary with the Inoculation Procedure. Int J Mol Sci 2021; 22:ijms22126189. [PMID: 34201240 PMCID: PMC8273692 DOI: 10.3390/ijms22126189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious viroid clones consist of dimeric cDNAs used to generate transcripts which mimic the longer-than-unit replication intermediates. These transcripts can be either generated in vitro or produced in vivo by agro-inoculation. We have designed a new plasmid, which allows both inoculation methods, and we have compared them by infecting Solanum lycopersicum and Solanum melongena with clones of Citrus exocortis virod (CEVd), Tomato chlorotic dwarf viroid (TCDVd), and Potato spindle tuber viroid (PSTVd). Our results showed more uniform and severe symptoms in agro-inoculated plants. Viroid accumulation and the proportion of circular and linear forms were different depending on the host and the inoculation method and did not correlate with the symptoms, which correlated with an increase in PR1 induction, accumulation of the defensive signal molecules salicylic (SA) and gentisic (GA) acids, and ribosomal stress in tomato plants. The alteration in ribosome biogenesis was evidenced by both the upregulation of the tomato ribosomal stress marker SlNAC082 and the impairment in 18S rRNA processing, pointing out ribosomal stress as a novel signature of the pathogenesis of nuclear-replicating viroids. In conclusion, this updated binary vector has turned out to be an efficient and reproducible method that will facilitate the studies of viroid–host interactions.
Collapse
|
6
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
7
|
Flores R, Navarro B, Delgado S, Serra P, Di Serio F. Viroid pathogenesis: a critical appraisal of the role of RNA silencing in triggering the initial molecular lesion. FEMS Microbiol Rev 2021; 44:386-398. [PMID: 32379313 DOI: 10.1093/femsre/fuaa011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
The initial molecular lesions through which viroids, satellite RNAs and viruses trigger signal cascades resulting in plant diseases are hotly debated. Since viroids are circular non-protein-coding RNAs of ∼250-430 nucleotides, they appear very convenient to address this issue. Viroids are targeted by their host RNA silencing defense, generating viroid-derived small RNAs (vd-sRNAs) that are presumed to direct Argonaute (AGO) proteins to inactivate messenger RNAs, thus initiating disease. Here, we review the existing evidence. Viroid-induced symptoms reveal a distinction. Those attributed to vd-sRNAs from potato spindle tuber viroid and members of the family Pospiviroidae (replicating in the nucleus) are late, non-specific and systemic. In contrast, those attributed to vd-sRNAs from peach latent mosaic viroid (PLMVd) and other members of the family Avsunviroidae (replicating in plastids) are early, specific and local. Remarkably, leaf sectors expressing different PLMVd-induced chloroses accumulate viroid variants with specific pathogenic determinants. Some vd-sRNAs containing such determinant guide AGO1-mediated cleavage of mRNAs that code for proteins regulating chloroplast biogenesis/development. Therefore, the initial lesions and the expected phenotypes are connected by short signal cascades, hence supporting a cause-effect relationship. Intriguingly, one virus satellite RNA initiates disease through a similar mechanism, whereas in the Pospiviroidae and in plant viruses the situation remains uncertain.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Avenida de los Naranjos s/n 46010, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
8
|
Delgado S, Navarro B, Serra P, Gentit P, Cambra MÁ, Chiumenti M, De Stradis A, Di Serio F, Flores R. How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol 2019; 16:906-917. [PMID: 30990352 DOI: 10.1080/15476286.2019.1600396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5'-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses.
Collapse
Affiliation(s)
- Sonia Delgado
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Beatriz Navarro
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Pedro Serra
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Pascal Gentit
- c Plant Health Laboratory (ANSES-PHL) , Angers , France
| | | | - Michela Chiumenti
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Angelo De Stradis
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Francesco Di Serio
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Ricardo Flores
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| |
Collapse
|
9
|
Moreno M, Vázquez L, López-Carrasco A, Martín-Gago J, Flores R, Briones C. Direct visualization of the native structure of viroid RNAs at single-molecule resolution by atomic force microscopy. RNA Biol 2019; 16:295-308. [PMID: 30734641 PMCID: PMC6380281 DOI: 10.1080/15476286.2019.1572436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/11/2018] [Accepted: 01/17/2019] [Indexed: 11/01/2022] Open
Abstract
Viroids are small infectious, non-protein-coding circular RNAs that replicate independently and, in some cases, incite diseases in plants. They are classified into two families: Pospiviroidae, composed of species that have a central conserved region (CCR) and replicate in the cell nucleus, and Avsunviroidae, containing species that lack a CCR and whose multimeric replicative intermediates of either polarity generated in plastids self-cleave through hammerhead ribozymes. The compact, rod-like or branched, secondary structures of viroid RNAs have been predicted by RNA folding algorithms and further examined using different in vitro and in vivo experimental techniques. However, direct data about their native tertiary structure remain scarce. Here we have applied atomic force microscopy (AFM) to image at single-molecule resolution different variant RNAs of three representative viroids: potato spindle tuber viroid (PSTVd, family Pospiviroidae), peach latent mosaic viroid and eggplant latent viroid (PLMVd and ELVd, family Avsunviroidae). Our results provide a direct visualization of their native, three-dimensional conformations at 0 and 4 mM Mg2+ and highlight the role that some elements of tertiary structure play in their stabilization. The AFM images show that addition of 4 mM Mg2+ to the folding buffer results in a size contraction in PSTVd and ELVd, as well as in PLMVd when the kissing-loop interaction that stabilizes its 3D structure is preserved.
Collapse
Affiliation(s)
- M. Moreno
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - L. Vázquez
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - A. López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - J.A. Martín-Gago
- Departamento de Superficies y Recubrimientos, Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, Madrid, Spain
| | - R. Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - C. Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| |
Collapse
|
10
|
Friday D, Freidhoff P, Baumstark T, Bruist MF. Enrichment of midsized RNAs with manganese chloride precipitation. Anal Biochem 2018; 560:56-59. [PMID: 30193930 DOI: 10.1016/j.ab.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022]
Abstract
Enrichment of specific RNAs is important for RNA analysis. MnCl2 has been used previously to enrich viroid RNA fractions from total RNA from infected plants. We have expanded this method to show that MnCl2 can enrich single-stranded as well as structured RNAs of 450 nt and below from a total RNA preparation. We have applied this method to map the transcription start sites of a PSTVd transcript from total RNA from yeast under conditions where the RNA was previously undetectable.
Collapse
Affiliation(s)
- Dillon Friday
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Paul Freidhoff
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Tilman Baumstark
- Department of Microbiology and Immunology, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| | - Michael F Bruist
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Processing of Potato Spindle Tuber Viroid RNAs in Yeast, a Nonconventional Host. J Virol 2017; 91:JVI.01078-17. [PMID: 28978701 DOI: 10.1128/jvi.01078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a circular, single-stranded, noncoding RNA plant pathogen that is a useful model for studying the processing of noncoding RNA in eukaryotes. Infective PSTVd circles are replicated via an asymmetric rolling circle mechanism to form linear multimeric RNAs. An endonuclease cleaves these into monomers, and a ligase seals these into mature circles. All eukaryotes may have such enzymes for processing noncoding RNA. As a test, we investigated the processing of three PSTVd RNA constructs in the yeast Saccharomyces cerevisiae Of these, only one form, a construct that adopts a previously described tetraloop-containing conformation (TL), produces circles. TL has 16 nucleotides of the 3' end duplicated at the 5' end and a 3' end produced by self-cleavage of a delta ribozyme. The other two constructs, an exact monomer flanked by ribozymes and a trihelix-forming RNA with requisite 5' and 3' duplications, do not produce circles. The TL circles contain nonnative nucleotides resulting from the 3' end created by the ribozyme and the 5' end created from an endolytic cleavage by yeast at a site distinct from where potato enzymes cut these RNAs. RNAs from all three transcripts are cleaved in places not on path for circle formation, likely representing RNA decay. We propose that these constructs fold into distinct RNA structures that interact differently with host cell RNA metabolism enzymes, resulting in various susceptibilities to degradation versus processing. We conclude that PSTVd RNA is opportunistic and may use different processing pathways in different hosts.IMPORTANCE In higher eukaryotes, the majority of transcribed RNAs do not encode proteins. These noncoding RNAs are responsible for mRNA regulation, control of the expression of regulatory microRNAs, sensing of changes in the environment by use of riboswitches (RNAs that change shape in response to environmental signals), catalysis, and more roles that are still being uncovered. Some of these functions may be remnants from the RNA world and, as such, would be part of the evolutionary past of all forms of modern life. Viroids are noncoding RNAs that can cause disease in plants. Since they encode no proteins, they depend on their own RNA and on host proteins for replication and pathogenicity. It is likely that viroids hijack critical host RNA pathways for processing the host's own noncoding RNA. These pathways are still unknown. Elucidating these pathways should reveal new biological functions of noncoding RNA.
Collapse
|
12
|
López-Carrasco A, Ballesteros C, Sentandreu V, Delgado S, Gago-Zachert S, Flores R, Sanjuán R. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathog 2017; 13:e1006547. [PMID: 28910391 PMCID: PMC5614642 DOI: 10.1371/journal.ppat.1006547] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/26/2017] [Accepted: 07/22/2017] [Indexed: 01/19/2023] Open
Abstract
Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses. Spontaneous mutations are the ultimate source of genetic variation and their characterization provides fundamental information about evolutionary processes. The highest mutation rate so far described corresponds to a hammerhead viroid infecting plant chloroplasts. Viroids are plant-exclusive parasites constituted by 250–400 nt-long, non-protein-coding RNAs, and are divided into two families with distinct mechanisms of replication and localization: chloroplastic (Avsunviroidae), and nuclear (Pospiviroidae). Here, we have used high-fidelity ultra-deep sequencing to compare side by side the mutation rates of one representative member of each viroid family in the same host. We found that the mutation rate of the nuclear viroid was several fold lower than that of the chloroplastic viroid.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Cristina Ballesteros
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
| | | | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Selma Gago-Zachert
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
- Department of Molecular Signal Processing, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, València, Spain
- Departamento de Genética, Universitat de València, València, Spain
- * E-mail:
| |
Collapse
|
13
|
López-Carrasco A, Flores R. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro. RNA Biol 2017; 14:1046-1054. [PMID: 27574720 PMCID: PMC5680722 DOI: 10.1080/15476286.2016.1223005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 02/04/2023] Open
Abstract
With a minimal (250-400 nt), non-protein-coding, circular RNA genome, viroids rely on sequence/structural motifs for replication and colonization of their host plants. These motifs are embedded in a compact secondary structure whose elucidation is crucial to understand how they function. Viroid RNA structure has been tackled in silico with algorithms searching for the conformation of minimal free energy, and in vitro by probing in solution with RNases, dimethyl sulphate and bisulphite, and with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE), which interrogates the RNA backbone at single-nucleotide resolution. However, in vivo approaches at that resolution have not been assayed. Here, after confirming by 3 termodynamics-based predictions and by in vitro SHAPE that the secondary structure adopted by the infectious monomeric circular (+) RNA of potato spindle tuber viroid (PSTVd) is a rod-like conformation with double-stranded segments flanked by loops, we have probed it in vivo with a SHAPE modification. We provide direct evidence that a similar, but not identical, rod-like conformation exists in PSTVd-infected leaves of Nicotiana benthamiana, verifying the long-standing view that this RNA accumulates in planta as a "naked" form rather than tightly associated with protecting host proteins. However, certain nucleotides of the central conserved region, including some of the loop E involved in key functions such as replication, are more SHAPE-reactive in vitro than in vivo. This difference is most likely due to interactions with proteins mediating some of these functions, or to structural changes promoted by other factors of the in vivo habitat.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
14
|
Brass JRJ, Owens RA, Matoušek J, Steger G. Viroid quasispecies revealed by deep sequencing. RNA Biol 2017; 14:317-325. [PMID: 28027000 PMCID: PMC5367258 DOI: 10.1080/15476286.2016.1272745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022] Open
Abstract
Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.
Collapse
Affiliation(s)
- Joseph R. J. Brass
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert A. Owens
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Jaroslav Matoušek
- Biology Centre, CAS, v. v. i., Institute of Plant Molecular Biology, Branišovská, České Budějovice, Czech Republic
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
16
|
Minoia S, Navarro B, Delgado S, Di Serio F, Flores R. Viroid RNA turnover: characterization of the subgenomic RNAs of potato spindle tuber viroid accumulating in infected tissues provides insights into decay pathways operating in vivo. Nucleic Acids Res 2015; 43:2313-25. [PMID: 25662219 PMCID: PMC4344493 DOI: 10.1093/nar/gkv034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While biogenesis of viroid RNAs is well-known, how they decay is restricted to data involving host RNA silencing. Here we report an alternative degradation pathway operating on potato spindle tuber viroid (PSTVd), the type species of nuclear-replicating viroids (family Pospiviroidae). Northern-blot hybridizations with full- and partial-length probes revealed a set of PSTVd (+) subgenomic (sg)RNAs in early-infected eggplant, some partially overlapping and reaching levels comparable to those of the genomic circular and linear forms. Part of the PSTVd (+) sgRNAs were also observed in Nicotiana benthamiana (specifically in the nuclei) and tomato, wherein they have been overlooked due to their low accumulation. Primer extensions of representative (+) sgRNAs failed to detect a common 5′ terminus, excluding that they could result from aborted transcription initiated at one specific site. Supporting this view, 5′- and 3′-RACE indicated that the (+) sgRNAs have 5′-OH and 3′-P termini most likely generated by RNase-mediated endonucleolytic cleavage of longer precursors. These approaches also unveiled PSTVd (−) sgRNAs with features similar to their (+) counterparts. Our results provide a mechanistic insight on how viroid decay may proceed in vivo during replication, and suggest that synthesis and decay of PSTVd strands might be coupled as in mRNA.
Collapse
Affiliation(s)
- Sofia Minoia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, UOS Bari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
17
|
Adkar-Purushothama CR, Zhang Z, Li S, Sano T. Analysis and application of viroid-specific small RNAs generated by viroid-inducing RNA silencing. Methods Mol Biol 2015; 1236:135-170. [PMID: 25287502 DOI: 10.1007/978-1-4939-1743-3_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viroids are noncoding RNA pathogens inducing severe to mild disease symptoms on agriculturally important crop plants. Viroid replication is entirely dependent on host transcription machinery, and their replication/accumulation in the infected cells can activate RNA silencing-a host defense mechanism that targets the viroid itself. RNA silencing produces in the cell large amounts of viroid-specific small RNAs of 21-24-nucleotides by cleaving (or "dicing") entire molecules of viroid RNA. However, viroid replication is resistant to the effects of RNA silencing and disrupts the normal regulation of host gene expression, finally resulting in the development of disease symptoms on infected plant. The molecular mechanisms of biological processes involving RNA silencing and underlying various aspects of viroid-host interaction, such as symptom expression, are of special interests to both basic and applied areas of viroid research. Here we present a method to create infectious viroid cDNA clones and RNA transcripts, the starting material for such analyses, using Hop stunt viroid as an example. Next we describe methods for the preparation and analysis of viroid-specific small RNAs by deep sequencing using tomato plants infected with Potato spindle tuber viroid as an example. Finally we introduce bioinformatics tools and methods necessary to process, analyze, and characterize these viroid-specific small RNAs. These bioinformatic methods provide a powerful new tool for the detection and discovery of both known and new viroid species.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA group, Département de Biochimie, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | | | | | | |
Collapse
|
18
|
Minoia S, Carbonell A, Di Serio F, Gisel A, Carrington JC, Navarro B, Flores R. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo. J Virol 2014; 88:11933-45. [PMID: 25100851 PMCID: PMC4178711 DOI: 10.1128/jvi.01404-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
The identification of viroid-derived small RNAs (vd-sRNAs) of 21 to 24 nucleotides (nt) in plants infected by viroids (infectious non-protein-coding RNAs of just 250 to 400 nt) supports their targeting by Dicer-like enzymes, the first host RNA-silencing barrier. However, whether viroids, like RNA viruses, are also targeted by the RNA-induced silencing complex (RISC) remains controversial. At the RISC core is one Argonaute (AGO) protein that, guided by endogenous or viral sRNAs, targets complementary RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, AGO5, AGO6, AGO7, AGO9, and AGO10 from Arabidopsis thaliana. Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs except AGO6, AGO7, and AGO10 associated with vd-sRNAs: AGO1, AGO2, and AGO3 preferentially with those of 21 and 22 nt, while AGO4, AGO5, and AGO9 additionally bound those of 24 nt. Deep-sequencing analyses showed that sorting of vd-sRNAs into AGO1, AGO2, AGO4, and AGO5 depended essentially on their 5'-terminal nucleotides, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting specific hot spot distributions along the viroid genome. Furthermore, agroexpression of AGO1, AGO2, AGO4, and AGO5 on PSTVd-infected tissue attenuated the level of the genomic RNAs, suggesting that they, or their precursors, are RISC targeted. In contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with specificity similar to that of its A. thaliana counterpart. Importance: To contain invaders, particularly RNA viruses, plants have evolved an RNA-silencing mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived small RNAs of 21 to 24 nucleotides (nt) that load and guide Argonaute (AGO) proteins to target and repress viral RNA. Viroids, despite their minimal genomes (non-protein-coding RNAs of only 250 to 400 nt), infect and incite disease in plants. The accumulation in these plants of 21- to 24-nt viroid-derived small RNAs (vd-sRNAs) supports the notion that DCLs also target viroids but does not clarify whether vd-sRNAs activate one or more AGOs. Here, we show that in leaves of Nicotiana benthamiana infected by potato spindle tuber viroid, the endogenous AGO1 and distinct AGOs from Arabidopsis thaliana that were overexpressed were associated with vd-sRNAs displaying the same properties (5'-terminal nucleotide and size) previously established for endogenous and viral small RNAs. Overexpression of AGO1, AGO2, AGO4, and AGO5 attenuated viroid accumulation, supporting their role in antiviroid defense.
Collapse
Affiliation(s)
- Sofia Minoia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
19
|
Kovalskaya N, Owens R, Baker CJ, Deahl K, Hammond RW. Application of a modified EDTA-mediated exudation technique and guttation fluid analysis for Potato spindle tuber viroid RNA detection in tomato plants (Solanum lycopersicum). J Virol Methods 2013; 198:75-81. [PMID: 24388932 DOI: 10.1016/j.jviromet.2013.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
Abstract
Potato spindle tuber viroid (PSTVd) is a small plant pathogenic circular RNA that does not encode proteins, replicates autonomously, and traffics systemically in infected plants. Long-distance transport occurs by way of the phloem; however, one report in the literature describes the presence of viroid RNA in the xylem ring of potato tubers. In this study, a modified method based on an EDTA-mediated phloem exudation technique was applied for detection of PSTVd in the phloem of infected tomato plants. RT-PCR, nucleic acid sequencing, and Southern blot analyses of RT-PCR products verified the presence of viroid RNA in phloem exudates. In addition, the guttation fluid collected from the leaves of PSTVd-infected tomato plants was analyzed revealing the absence of viroid RNA in the xylem sap. To our knowledge, this is the first report of PSTVd RNA detection in phloem exudates obtained by the EDTA-mediated exudation technique.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; Institute of Ecological Soil Science of MV Lomonosov Moscow State University, Moscow 119991, Russia
| | - Robert Owens
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - C Jacyn Baker
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Kenneth Deahl
- Genetic Improvement of Fruits and Vegetables Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
20
|
Nohales MÁ, Molina-Serrano D, Flores R, Daròs JA. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 2012; 86:8269-76. [PMID: 22623792 PMCID: PMC3421689 DOI: 10.1128/jvi.00629-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/15/2012] [Indexed: 11/20/2022] Open
Abstract
Avocado sunblotch viroid, peach latent mosaic viroid, chrysanthemum chlorotic mottle viroid, and eggplant latent viroid (ELVd), the four recognized members of the family Avsunviroidae, replicate through the symmetric pathway of an RNA-to-RNA rolling-circle mechanism in chloroplasts of infected cells. Viroid oligomeric transcripts of both polarities contain embedded hammerhead ribozymes that, during replication, mediate their self-cleavage to monomeric-length RNAs with 5'-hydroxyl and 2',3'-phosphodiester termini that are subsequently circularized. We report that a recombinant version of the chloroplastic isoform of the tRNA ligase from eggplant (Solanum melongena L.) efficiently catalyzes in vitro circularization of the plus [(+)] and minus [(-)] monomeric linear replication intermediates from the four Avsunviroidae. We also show that while this RNA ligase specifically recognizes the genuine monomeric linear (+) ELVd replication intermediate, it does not do so with five other monomeric linear (+) ELVd RNAs with their ends mapping at different sites along the molecule, despite containing the same 5'-hydroxyl and 2',3'-phosphodiester terminal groups. Moreover, experiments involving transient expression of a dimeric (+) ELVd transcript in Nicotiana benthamiana Domin plants preinoculated with a tobacco rattle virus-derived vector to induce silencing of the plant endogenous tRNA ligase show a significant reduction of ELVd circularization. In contrast, circularization of a viroid replicating in the nucleus occurring through a different pathway is unaffected. Together, these results support the conclusion that the chloroplastic isoform of the plant tRNA ligase is the host enzyme mediating circularization of both (+) and (-) monomeric linear intermediates during replication of the viroids belonging to the family Avsunviroidae.
Collapse
Affiliation(s)
- María-Ángeles Nohales
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | | | | | | |
Collapse
|
21
|
Wang Y, Shibuya M, Taneda A, Kurauchi T, Senda M, Owens RA, Sano T. Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars. Virology 2011; 413:72-83. [PMID: 21353278 DOI: 10.1016/j.virol.2011.01.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/07/2010] [Accepted: 01/14/2011] [Indexed: 12/31/2022]
Abstract
To better understand the biogenesis of viroid-specific small RNAs and their possible role in disease induction, we have examined the accumulation of these small RNAs in potato spindle tuber viroid (PSTVd)-infected tomato plants. Large-scale sequence analysis of viroid-specific small RNAs revealed active production from the upper portion of the pathogenicity and central domains, two regions previously thought to be underrepresented. Profiles of small RNA populations derived from PSTVd antigenomic RNA were more variable, with differences between infected Rutgers (severe symptoms) and Moneymaker (mild symptoms) plants pointing to possible cultivar-specific differences in small RNA synthesis and/or stability. Using microarray analysis, we monitored the effects of PSTVd infection on the expression levels of >100 tomato genes containing potential binding sites for PSTVd small RNAs. Of 18 such genes down-regulated early in infection, two genes involved in gibberellin or jasmonic acid biosynthesis contain binding sites for PSTVd small RNAs in their respective ORFs.
Collapse
Affiliation(s)
- Ying Wang
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Di Serio F, Martínez de Alba AE, Navarro B, Gisel A, Flores R. RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 2010; 84:2477-89. [PMID: 20015979 PMCID: PMC2820905 DOI: 10.1128/jvi.02336-09] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 12/08/2009] [Indexed: 12/23/2022] Open
Abstract
The detection of viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs (siRNAs, 21 to 24 nucleotides [nt]) in plants infected by nuclear-replicating members of the family Pospiviroidae (type species, Potato spindle tuber viroid [PSTVd]) indicates that they are inducers and targets of the RNA-silencing machinery of their hosts. RNA-dependent RNA polymerase 6 (RDR6) catalyzes an amplification circuit producing the double-stranded precursors of secondary siRNAs. Recently, the role of RDR6 in restricting systemic spread of certain RNA viruses and precluding their invasion of the apical growing tip has been documented using RDR6-silenced Nicotiana benthamiana (NbRDR6i) plants. Here we show that RDR6 is also engaged in regulating PSTVd levels: accumulation of PSTVd genomic RNA was increased in NbRDR6i plants with respect to the wild-type controls (Nbwt) early in infection, whereas this difference decreased or disappeared in later infection stages. Moreover, in situ hybridization revealed that RDR6 is involved in restricting PSTVd access in floral and vegetative meristems, thus providing firm genetic evidence for an antiviroid RNA silencing mechanism. RNA gel blot hybridization and deep sequencing showed in wt and RDR6i backgrounds that PSTVd sRNAs (i) accumulate to levels paralleling their genomic RNA, (ii) display similar patterns with prevailing 22- or 21-nt plus-strand species, and (iii) adopt strand-specific hot spot profiles along the genomic RNA. Therefore, the surveillance mechanism restraining entry of some RNA viruses into meristems likely also controls PSTVd access in N. benthamiana. Unexpectedly, deep sequencing also disclosed in NbRDR6i plants a profile of RDR6-derived siRNA dominated by 21-nt plus-strand species mapping within a narrow window of the hairpin RNA stem expressed transgenically for silencing RDR6, indicating that minus-strand siRNAs silencing the NbRDR6 mRNA represent a minor fraction of the total siRNA population.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Angel-Emilio Martínez de Alba
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Beatriz Navarro
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Andreas Gisel
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Ricardo Flores
- Istituto di Virologia Vegetale (CNR), Unità Organizzativa di Bari, Via Amendola 165/A, 70126 Bari, Italy, Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus Universidad Politécnica, Avenida de los Naranjos, 46022 Valencia, Spain, Istituto di Tecnologie Biomediche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
23
|
Carbonell A, Martínez de Alba ÁE, Flores R, Gago S. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology 2008; 371:44-53. [DOI: 10.1016/j.virol.2007.09.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 06/27/2007] [Accepted: 09/20/2007] [Indexed: 12/27/2022]
|
24
|
Gas ME, Hernández C, Flores R, Daròs JA. Processing of nuclear viroids in vivo: an interplay between RNA conformations. PLoS Pathog 2008; 3:e182. [PMID: 18052530 PMCID: PMC2098832 DOI: 10.1371/journal.ppat.0030182] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/15/2007] [Indexed: 11/19/2022] Open
Abstract
Replication of viroids, small non-protein-coding plant pathogenic RNAs, entails reiterative transcription of their incoming single-stranded circular genomes, to which the (+) polarity is arbitrarily assigned, cleavage of the oligomeric strands of one or both polarities to unit-length, and ligation to circular RNAs. While cleavage in chloroplastic viroids (family Avsunviroidae) is mediated by hammerhead ribozymes, where and how cleavage of oligomeric (+) RNAs of nuclear viroids (family Pospiviroidae) occurs in vivo remains controversial. Previous in vitro data indicated that a hairpin capped by a GAAA tetraloop is the RNA motif directing cleavage and a loop E motif ligation. Here we have re-examined this question in vivo, taking advantage of earlier findings showing that dimeric viroid (+) RNAs of the family Pospiviroidae transgenically expressed in Arabidopsis thaliana are processed correctly. Using this methodology, we have mapped the processing site of three members of this family at equivalent positions of the hairpin I/double-stranded structure that the upper strand and flanking nucleotides of the central conserved region (CCR) can form. More specifically, from the effects of 16 mutations on Citrus exocortis viroid expressed transgenically in A. thaliana, we conclude that the substrate for in vivo cleavage is the conserved double-stranded structure, with hairpin I potentially facilitating the adoption of this structure, whereas ligation is determined by loop E and flanking nucleotides of the two CCR strands. These results have deep implications on the underlying mechanism of both processing reactions, which are most likely catalyzed by enzymes different from those generally assumed: cleavage by a member of the RNase III family, and ligation by an RNA ligase distinct from the only one characterized so far in plants, thus predicting the existence of at least a second plant RNA ligase.
Collapse
Affiliation(s)
- María-Eugenia Gas
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Abstract
Viroids, as a consequence of not encoding any protein, are extremely dependent on their hosts. Replication of these minimal genomes, composed exclusively by a circular RNA of 246-401 nt, occurs in the nucleus (family Pospiviroidae) or in the chloroplast (family Avsunviroidae) by an RNA-based rolling-circle mechanism with three steps: (1) synthesis of longer-than-unit strands catalyzed by host DNA-dependent RNA polymerases recruited and redirected to transcribe RNA templates, (2) cleavage to unit-length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization through an RNA ligase or autocatalytically. This consistent but still fragmentary picture has emerged from a combination of studies with in vitro systems (analysis of RNA preparations from infected plants, transcription assays with nuclear and chloroplastic fractions, characterization of enzymes and ribozymes mediating cleavage and ligation of viroid strands, dissection of 5' terminal groups of viroid strands, and in situ hybridization and microscopy of subcellular fractions and tissues), and in vivo systems (tissue infiltration studies, protoplasts, studies in planta and use of transgenic plants expressing viroid RNAs).
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
26
|
Owens RA. Potato spindle tuber viroid: the simplicity paradox resolved? MOLECULAR PLANT PATHOLOGY 2007; 8:549-560. [PMID: 20507521 DOI: 10.1111/j.1364-3703.2007.00418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
TAXONOMY Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. PHYSICAL PROPERTIES Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro. Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt. HOSTS AND SYMPTOMS: The natural host range of PSTVd-cultivated potato, certain other Solanum spp., and avocado-appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.
Collapse
Affiliation(s)
- Robert A Owens
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture/Agricultural Research Service-Beltsville, MD 20705, USA.
| |
Collapse
|
27
|
Eiras M, Kitajima EW, Flores R, Daròs JA. Existence in vivo of the loop E motif in potato spindle tuber viroid RNA. Arch Virol 2007; 152:1389-93. [PMID: 17370107 DOI: 10.1007/s00705-007-0952-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
In vitro experiments have previously identified in potato spindle tuber viroid (PSTVd), the type member of the nuclear viroids, an element of local tertiary structure termed loop E. Here, by direct UV irradiation of PSTVd-infected tomato tissue and subsequent RNA analysis by denaturing polyacrylamide gel electrophoresis, northern blot hybridization and primer extension, we report that PSTVd (+) RNA also forms the loop E in vivo. These results provide strong support for the physiological relevance of this structural motif, which is involved in a wide range of functions including replication, host specificity and pathogenesis.
Collapse
Affiliation(s)
- M Eiras
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
28
|
Wang Y, Zhong X, Itaya A, Ding B. Evidence for the existence of the loop E motif of Potato spindle tuber viroid in vivo. J Virol 2006; 81:2074-7. [PMID: 17135317 PMCID: PMC1797592 DOI: 10.1128/jvi.01781-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
RNA motifs comprising nucleotides that interact through non-Watson-Crick base pairing play critical roles in RNA functions, often by serving as the sites for RNA-RNA, RNA-protein, or RNA small ligand interactions. The structures of viral and viroid RNA motifs are studied commonly by in vitro, computational, and mutagenesis approaches. Demonstration of the in vivo existence of a motif will help establish its biological significance and promote mechanistic studies on its functions. By using UV cross-linking and primer extension, we have obtained direct evidence for the in vivo existence of the loop E motif of Potato spindle tuber viroid. We present our findings and discuss their biological implications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Plant Cellular and Molecular Biology, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Delgado S, Martínez de Alba AE, Hernández C, Flores R. A short double-stranded RNA motif of Peach latent mosaic viroid contains the initiation and the self-cleavage sites of both polarity strands. J Virol 2005; 79:12934-43. [PMID: 16188995 PMCID: PMC1235847 DOI: 10.1128/jvi.79.20.12934-12943.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The transcription initiation sites of viroid RNAs, despite their relevance for replication and in vivo folding, are poorly characterized. Here we have examined this question for Peach latent mosaic viroid (PLMVd), which belongs to the family of chloroplastic viroids with hammerhead ribozymes (Avsunviroidae), by adapting an RNA ligase-mediated rapid amplification of cDNA ends methodology developed for mapping the genuine capped 5' termini of eukaryotic messenger RNAs. To this aim, the characteristic free 5'-triphosphate group of chloroplastic primary transcripts from PLMVd-infected young fruits was previously capped in vitro with GTP and guanylyltransferase. PLMVd plus and minus initiation sites map at similar double-stranded motifs of 6 to 7 bp that also contain the conserved GUC triplet preceding the self-cleavage site in both polarity strands. Within the branched secondary structures predicted for the two PLMVd strands, this motif is located at the base of a similar long hairpin that presumably contains the promoters for a chloroplastic RNA polymerase. The transcription templates could be the circular viroid RNAs or their most abundant linear counterparts, assuming the involvement of an RNA polymerase able to jump over template discontinuities. Both PLMVd initiation sites were confirmed by applying the same methodology to two purified PLMVd subgenomic RNAs and by primer extension, and they therefore likely reflect the in vivo situation. The location of the PLMVd initiation sites provides a mechanistic view into how the nascent strands may fold and self-cleave during transcription. The approach described here may be extended to other chloroplastic RNA replicons and transcripts accumulating at low levels.
Collapse
Affiliation(s)
- Sonia Delgado
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Spain
| | | | | | | |
Collapse
|
30
|
Zhong X, Itaya A, Ding B. Transfecting protoplasts by electroporation to study viroid replication. CURRENT PROTOCOLS IN MICROBIOLOGY 2005; Chapter 16:Unit 16D.4. [PMID: 18770558 DOI: 10.1002/9780471729259.mc16d04s00] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protoplasts have been extensively used to study replication of plant viruses at the cellular level. However, their use in studying viroid replication has been very limited because of various technical barriers. As a result, mechanisms of viroid replication remain poorly understood. The electroporation protocol presented in this unit offers a simple, fast and reproducible method to inoculate protoplasts derived from cultured cells of tobacco (Nicotiana tabacum) and the related species Nicotiana benthamiana to study viroid replication. The protocol has proven to be useful in characterizing sequence/structural features of potato spindle tuber viroid (PSTVd) that are important for replication at the cellular level, and may be adapted to study the replication of other viroids.
Collapse
|
31
|
Flores R, Hernández C, Martínez de Alba AE, Daròs JA, Di Serio F. Viroids and viroid-host interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2005; 43:117-39. [PMID: 16078879 DOI: 10.1146/annurev.phyto.43.040204.140243] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although they induce symptoms in plants similar to those accompanying virus infections, viroids have unique structural, functional, and evolutionary characteristics. They are composed of a small, nonprotein-coding, single-stranded, circular RNA, with autonomous replication. Viroid species are clustered into the families Pospiviroidae and Avsunviroidae, whose members replicate (and accumulate) in the nucleus and chloroplast, respectively. Viroids replicate in three steps through an RNA-based rolling-circle mechanism: synthesis of longer-than-unit strands catalyzed by host RNA polymerases; processing to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes; and circularization. Within the initially infected cells, viroid RNA must move to its replication organelle, with the resulting progeny then invading adjacent cells through plasmodesmata and reaching distal parts via the vasculature. To carry out these movements, viroids must interact with host factors. The mature viroid RNA could be the primary pathogenic effector or, alternatively, viroids could exert their pathogenic effects via RNA silencing.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain.
| | | | | | | | | |
Collapse
|
32
|
Horiuchi H, Fukuhara T. Putative Replication Intermediates in Endornavirus, a Novel Genus of Plant dsRNA Viruses. Virus Genes 2004; 29:365-75. [PMID: 15550778 DOI: 10.1007/s11262-004-7441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oryza sativa endornavirus (OSV) belongs to a new genus (Endornavirus) and family (Endoviridae) with members containing large double-stranded RNA (dsRNA) replicons with plasmid-like properties. Analysis of products obtained from in vitro reaction of the OSV RNA-dependent RNA polymerase revealed a rapid increase of a population of the non-coding strand RNA molecules with a head-to-tail composition. Northern hybridization of total RNA from OSV-carrier cells with riboprobes specific for the coding strand RNA, revealed two types of RNA molecules (i) with a site specific nick and (ii) full-length unnicked molecules. Quantitative analyses of these RNAs showed about 50-fold higher amounts of full-length unnicked molecules in cultured cells in which the OSV copy number increases compared with those found in the seedling cells. Both the head-to-tail linked non-coding strand and the full-length coding strand molecules were also found in wild rice and broad beans infected with other endornaviruses indicating that the presence of these unique types of RNA molecules should be considered as a characteristic feature of Endoviridae .
Collapse
Affiliation(s)
- Hideki Horiuchi
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Tokyo, Japan
| | | |
Collapse
|
33
|
Daròs JA, Flores R. Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proc Natl Acad Sci U S A 2004; 101:6792-7. [PMID: 15096616 PMCID: PMC404124 DOI: 10.1073/pnas.0401090101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Indexed: 11/18/2022] Open
Abstract
Viroids, subviral noncoding RNAs, replicate, move, and incite diseases in plants. Viroids replicate through a rolling-circle mechanism in which oligomeric RNAs of one or both polarities are cleaved and ligated into the circular monomers. Attempts to transmit viroids to Arabidopsis have failed for unknown reasons. To tackle this question, Arabidopsis was transformed with cDNAs expressing dimeric (+) transcripts of representative species of the families Pospiviroidae and Avsunviroidae, which replicate in the nucleus and the chloroplast, respectively. Correct processing to the circular (+) monomers was always observed, demonstrating that Arabidopsis has the appropriate RNase and RNA ligase. Northern blot hybridization also revealed the multimeric (-) RNAs of Citrus exocortis viroid and Hop stunt viroid (HSVd) of the family Pospiviroidae, but not of Avocado sunblotch viroid of the family Avsunviroidae, showing that the first RNA-RNA transcription of the rolling-circle mechanism occurs in Arabidopsis for the two nuclear viroids and that their multimeric (-) RNAs remain unprocessed as in typical hosts. Moreover, transgenic Arabidopsis expressing HSVd dimeric (-) transcripts accumulated the circular (+) monomers, although at low levels, together with the unprocessed primary transcript that served as the template for the second RNA-RNA transcription. Agroinoculation of Arabidopsis with the dimeric (+) Citrus exocortis viroid, HSVd, and Coleus blumei viroid 1 cDNAs showed that these viroids could not move to distal plant parts, in contrast with the situation observed in their experimental hosts. Therefore, deficiencies in movement or low replication appear to be the factors limiting infectivity of some viroids in Arabidopsis.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | | |
Collapse
|
34
|
Owens RA, Sano T, Feldstein PA, Hu Y, Steger G. Identification of a novel structural interaction in Columnea latent viroid. Virology 2003; 313:604-14. [PMID: 12954225 DOI: 10.1016/s0042-6822(03)00352-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pairwise sequence comparisons suggest that Columnea latent viroid (CLVd) may have originated from a recombination event involving Potato spindle tuber viroid (PSTVd) and Hop stunt viroid (HSVd). To examine the role of specific structural features in determining the host range of CLVd, we constructed a series of interspecific chimeras by replacing increasing portions of its terminal left and pathogenicity domains with the corresponding portions of PSTVd. Exchanges involving the left side of the pathogenicity domain led to lower rates of progeny accumulation in tomato, but one of the resulting chimeras was still able to replicate in cucumber. Exchanges involving the right side of the pathogenicity domain severely inhibited replication in tomato and appeared to abolish replication in cucumber. To identify potential interactions between nucleotides comprising the right side of the pathogenicity domain and other portions of CLVd, melting behaviors of circularized CLVd and PSTVd RNA transcripts were compared using a combination of temperature gradient gel electrophoresis and structural calculations. These analyses revealed an unexpected complementarity between the upper portion of the pathogenicity and terminal right domains of CLVd that facilitates breakdown of the rod-like native structure and formation of secondary hairpin II. Unlike secondary hairpin II, CLVd hairpin IV appears likely to act within the context of the genomic RNA.
Collapse
Affiliation(s)
- R A Owens
- Molecular Plant Pathology Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
35
|
Fadda Z, Daròs JA, Fagoaga C, Flores R, Duran-Vila N. Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J Virol 2003; 77:6528-32. [PMID: 12743309 PMCID: PMC155007 DOI: 10.1128/jvi.77.11.6528-6532.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viroids, small circular RNAs that replicate independently and in most cases incite diseases in plants, are classified into the families Pospiviroidae, composed of species with a central conserved region (CCR) and without hammerhead ribozymes, and Avsunviroidae, composed of three members lacking CCR but able to self-cleave in both polarity strands through hammerhead ribozymes. Here we report the biological and molecular properties of Eggplant latent viroid (ELVd). Purified circular ELVd induces symptomless infections when inoculated into eggplant seedlings. ELVd can be transmitted horizontally and through seed. Sequencing 10 complete cDNA clones showed that ELVd is a circular RNA of 332 to 335 nucleotides with high variability. This RNA can adopt a quasi-rod-like secondary structure of minimal free energy and alternative foldings that permit formation of stable hammerhead structures in plus and minus strands. The ribozymes are active in vitro and, most likely, in vivo. Considering the ELVd properties to be intermediate between those of the two genera of family Avsunviroidae, we propose ELVd as the type species of a third genus with the name ELAVIROID:
Collapse
Affiliation(s)
- Z Fadda
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Spain
| | | | | | | | | |
Collapse
|
36
|
Daròs JA, Flores R. A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J 2002; 21:749-59. [PMID: 11847122 PMCID: PMC125856 DOI: 10.1093/emboj/21.4.749] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viroids, small single-stranded circular RNAs (246-401 nucleotides), do not have mRNA capacity and must recruit host proteins to assist in the steps of their biological cycle. The nature of these cellular factors is poorly understood due to a lack of reliable experimental approaches. Here, to screen for host proteins interacting with viroid RNAs in vivo, we UV-irradiated avocado leaves infected with avocado sunblotch viroid (ASBVd), the type member of chloroplast viroids containing hammerhead ribozymes. This resulted in the detection of several ASBVd-host protein adducts. Tandem mass spectrometry analysis of the most abundant cross-linked species identified the protein component as two closely related chloroplast RNA-binding proteins (PARBP33 and PARBP35) of a family whose members previously have been shown to be involved in stabilization, maturation and editing of chloroplast transcripts. PARBP33 behaves as an RNA chaperone that stimulates in vitro the hammerhead-mediated self-cleavage of the multimeric ASBVd transcripts that result from rolling circle replication, indicating that this reaction, despite its RNA-based mechanism, is facilitated by proteins. The structural and functional parallelism between PARBP33 and PARBP35, and some proteins involved in viral RNA replication, indicates that viroids and RNA viruses recruit similar host proteins for their replication.
Collapse
Affiliation(s)
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, Valencia 46022, Spain
Corresponding author e-mail:
| |
Collapse
|
37
|
Flores R. A naked plant-specific RNA ten-fold smaller than the smallest known viral RNA: the viroid. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:943-52. [PMID: 11570283 DOI: 10.1016/s0764-4469(01)01370-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viroids are subviral plant pathogens at the frontier of life. They are solely composed by a single-stranded circular RNA of 246-401 nt with a compact secondary structure. Viroids replicate autonomously when inoculated into their host plants and incite, in most of them, economically important diseases. In contrast to viruses, viroids do not code for any protein and depend on host enzymes for their replication, which in some viroids occurs in the nucleus and in others in the chloroplast, through a rolling-circle mechanism with three catalytic steps. Quite remarkably, however, one of the steps, cleavage of the oligomeric head-to-tail replicative intermediates to unit-length strands, is mediated in certain viroids by hammerhead ribozymes that can be formed by their strands of both polarities. Viroids induce disease by direct interaction with host factors, the nature of which is presently unknown. Some properties of viroids, particularly the presence of ribozymes, suggest that they might have appeared very early in evolution and could represent 'living fossils' of the precellular RNA world that presumably preceded our current world based on DNA and proteins.
Collapse
Affiliation(s)
- R Flores
- Instituto de Bología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
38
|
De la Peña M, Flores R. An extra nucleotide in the consensus catalytic core of a viroid hammerhead ribozyme: implications for the design of more efficient ribozymes. J Biol Chem 2001; 276:34586-93. [PMID: 11454858 DOI: 10.1074/jbc.m103867200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hammerhead ribozymes catalyze self-cleavage of oligomeric RNAs generated in replication of certain viroid and viroid-like RNAs. Previous studies have defined a catalytic core conserved in most natural hammerheads, but it is still unknown why some present deviations from the consensus. We have addressed this issue in chrysanthemum chlorotic mottle viroid (CChMVd), whose (+) hammerhead has an extra A (A10) between the conserved A9 and the quasi-conserved G10.1. Effects of insertions at this position on hammerhead kinetics have not hitherto been examined. A10 caused a moderate decrease of the trans-cleaving rate constant with respect to the CChMVd (+) hammerhead without this residue, whereas A10-->C and A10-->G substitutions had major detrimental effects, likely because they favor catalytically inactive foldings. By contrast, A10-->U substitution induced a 3-4-fold increase of the rate constant, providing an explanation for the extra U10 present in two natural hammerheads. Because A10 also occupies a singular and indispensable position in the global CChMVd conformation, as revealed by bioassays, these results show that some hammerheads deviate from the consensus due to the involvement of certain residues in critical function(s) other than self-cleavage. Incorporation of the extra U10 into a model hammerhead also caused a similar increase in the rate constant, providing data for a deeper understanding of the hammerhead structural requirements and for designing more efficient ribozymes.
Collapse
Affiliation(s)
- M De la Peña
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | | |
Collapse
|
39
|
Vera A, Daròs JA, Flores R, Hernández C. The DNA of a plant retroviroid-like element is fused to different sites in the genome of a plant pararetrovirus and shows multiple forms with sequence deletions. J Virol 2000; 74:10390-400. [PMID: 11044083 PMCID: PMC110913 DOI: 10.1128/jvi.74.22.10390-10400.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carnation small viroid-like RNA (CarSV RNA) and its homologous DNA are the two forms of a unique plant retroviroid-like system. CarSV RNA is a 275-nucleotide noninfectious viroid-like RNA, present in certain carnation plants, which can adopt hammerhead structures in both polarity strands and self-cleave accordingly. CarSV DNA is organized as a series of head-to-tail multimers forming part of extrachromosomal elements in which CarSV DNA sequences are fused to sequences of carnation etched ring virus (CERV), a plant pararetrovirus. Analysis of more than 30 CarSV-CERV DNA junctions showed that distinct regions of the viral genome seem able to interact with CarSV DNA. All these junctions were short nucleotide stretches common to both CarSV and CERV DNAs. This suggests a polymerase-driven mechanism for their origin involving an enzyme with low processivity, most likely the viral reverse transcriptase. This view was further supported by the observation that most of CarSV sequences forming part of the junctions correspond either to strong secondary structure motifs in the conformation proposed for CarSV RNA or to its self-cleavage sites, which may have facilitated polymerase jumping. Accompanying the most-abundant CarSV RNA, a series of CarSV RNAs with sequence deletions were previously characterized. Here we have identified some of their corresponding DNA forms, together with other CarSV DNA forms with deletions not found in any CarSV RNA species identified so far. Some of these CarSV DNA forms have also been detected fused to CERV sequences. The existence of these shortened CarSV DNA versions may provide a continuous input of their corresponding transcripts and explain the persistence of CarSV RNAs with defective hammerhead structures for which an RNA-RNA model of amplification seems unlikely.
Collapse
Affiliation(s)
- A Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
40
|
Navarro JA, Flores R. Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO J 2000; 19:2662-70. [PMID: 10835363 PMCID: PMC212762 DOI: 10.1093/emboj/19.11.2662] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viroids replicate through a rolling-circle mechanism in which the infecting circular RNA and its complementary (-) strand are transcribed. The precise site at which transcription starts was investigated for the avocado sunblotch viroid (ASBVd), the type species of the family of viroids with hammerhead ribozymes. Linear ASBVd (+) and (-) RNAs begin with a UAAAA sequence that maps to similar A+U-rich terminal loops in their predicted quasi-rod-like secondary structures. The sequences around the initiation sites of ASBVd, which replicates and accumulates in the chloroplast, are similar to the promoters of a nuclear-encoded chloroplastic RNA polymerase (NEP), supporting the involvement of an NEP-like activity in ASBVd replication. Since RNA folding appears to be kinetically determined, the specific location of both ASBVd initiation sites provides a mechanistic insight into how the nascent ASBVd strands may fold in vivo. The approach used here, in vitro capping and RNase protection assays, may be useful for investigating the initiation sites of other small circular RNA replicons.
Collapse
Affiliation(s)
- J A Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | | |
Collapse
|
41
|
Navarro JA, Vera A, Flores R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 2000; 268:218-25. [PMID: 10683343 DOI: 10.1006/viro.1999.0161] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avocado sunblotch viroid (ASBVd), the type species of the family Avsunviroidae, replicates and accumulates in the chloroplast. Two main chloroplastic RNA polymerases have been described: the plastid-encoded polymerase (PEP) with a multisubunit structure similar to the Escherichia coli enzyme and a single-unit nuclear-encoded polymerase (NEP) resembling phage RNA polymerases. On a different basis, sensitivity to tagetitoxin, two major RNA polymerase activities, tagetitoxin sensitive (TS) and resistant (TR), have been found in plastids. The most plausible candidates for the TS and TR RNA polymerases are PEP and NEP, respectively. To gain an insight into the enzymology of the polymerization of ASBVd strands, purified chloroplast preparations from ASBVd-infected leaves were assayed for their in vitro ability to transcribe ASBVd RNAs together with some representative genes (psbA, 16SrDNA, accD, and rpoB) of the three classes of chloroplastic genes according to their promoter structure. High concentrations of alpha-amanitin had no effect on gene or on viroid transcription, but tagetitoxin (5-10 microM) prevented transcription of all these genes without affecting synthesis of ASBVd strands; only at higher tagetitoxin concentrations (50-100 microM) was a 25% inhibition observed. These results suggest that NEP is the RNA polymerase required in ASBVd replication, although the participation of another TR RNA polymerase from the chloroplast cannot be excluded.
Collapse
Affiliation(s)
- J A Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia, 46022, Spain
| | | | | |
Collapse
|
42
|
Abstract
This chapter focuses on the second viroid family, whose members are also referred to as hammerhead viroids, taking into account their most outstanding feature. If the word “small” is the first to come to mind when considering viroids, perhaps the second word is “hammerhead,” because this class of ribozymes, which because of its structural simplicity has an enormous biotechnological potential, is described in avocado sunblotch viroid (ASBVd) as well as in a viroid-like satellite RNA. The most outstanding feature of the Avsunviroidae members is their potential to adopt hammerhead structures in both polarity strands and to self-cleave in vitro accordingly. Viroids differ from viruses not only in their genome size but also in other fundamental aspects, prominent among which is the lack of messenger activity of both viroid RNAs and their complementary strands.
Collapse
Affiliation(s)
- R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|