1
|
Jin J, Guo Q, Yan Z. The Role of Lutheran/Basal Cell Adhesion Molecule in Hematological Diseases and Tumors. Int J Mol Sci 2024; 25:7268. [PMID: 39000374 PMCID: PMC11242806 DOI: 10.3390/ijms25137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Cell adhesion is a dynamic process that plays a fundamental role in cell proliferation, maintenance, differentiation, and migration. Basal cell adhesion molecule (BCAM), also known as Lutheran (Lu), belongs to the immunoglobulin superfamily of cell adhesion molecules. Lu/BCAM, which is widely expressed in red blood cells, endothelial cells, smooth muscle cells and epithelial cells across various tissues, playing a crucial role in many cellular processes, including cell adhesion, cell motility and cell migration. Moreover, Lu/BCAM, dysregulated in many diseases, such as blood diseases and various types of cancer, may act as a biomarker and target for the treatment of these diseases. This review explores the significance of Lu/BCAM in cell adhesion and its potential as a novel target for treating hematological diseases and tumors.
Collapse
Affiliation(s)
| | | | - Zhibin Yan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Q.G.)
| |
Collapse
|
2
|
He Y, Ma Y, Zhu Y, Zhang J, Zhao S, Zhang D, Xu D, Li Y, Tong Z, Zhao W. HDAC inhibitors target IRS4 to enhance anti‑AR therapy in AR‑positive triple‑negative breast cancer. Int J Oncol 2024; 64:25. [PMID: 38214343 PMCID: PMC10807637 DOI: 10.3892/ijo.2024.5613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024] Open
Abstract
Triple‑negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Androgen receptor (AR) has been identified as a potential therapeutic target for AR‑positive TNBC; however, clinical trials have not yet produced an effective treatment. The present study aimed to identify a novel treatment regimen to improve the prognosis of AR‑positive TNBC. First, a combination of an AR inhibitor (enzalutamide, Enz) and a selective histone deacetylase inhibitor (chidamide, Chid) was used to treat AR‑positive TNBC cell lines, and a synergistic effect of these drugs was observed. The combination treatment inhibited cell proliferation and migration by arresting the cell cycle at the G2/M phase. Subsequently, next‑generation sequencing was performed to detect changes in gene regulation. The results showed that the PI3K/Akt signalling pathway was significantly inhibited by the combination treatment of Enz and Chid. Gene Set Enrichment Analysis revealed that the combination group was significantly enriched in KRAS signalling. Analysis of the associated genes revealed that insulin receptor substrate 4 (IRS4) may have a critical role in blocking the activation of KRAS signalling. In a mouse xenograft model, combination treatment also inhibited the PI3K/Akt signalling pathway by upregulating the expression of IRS4 and thereby suppressing tumour growth. In conclusion, the results of the present study revealed that combination treatment with Enz and Chid can upregulate IRS4, which results in the blocking of KRAS signalling and suppression of tumour growth. It may be hypothesised that the expression levels of IRS4 could be used as a biomarker for screening patients with AR‑positive TNBC using Enz and Chid combination therapy.
Collapse
Affiliation(s)
- Yang He
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
- Department of Breast Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, P.R. China
| | - Yue Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200031, P.R. China
- Cancer Metastasis Institute, Fudan University, Shanghai 200437, P.R. China
| | - Ye Zhu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jingyi Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Shaorong Zhao
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Di Zhang
- Department of General Surgery, Diagnosis and Therapy Centre of Thyroid and Breast, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Danni Xu
- Department of Pathology, Laboratory Medicine Centre, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310003, P.R. China
| | - Yun Li
- The Department of Breast Surgery Ward 2, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhongsheng Tong
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Weipeng Zhao
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
3
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Wang Q, Xu C, Cai R, An W, Yuan H, Xu M. Fbxo45-mediated NP-STEP 46 degradation via K6-linked ubiquitination sustains ERK activity in lung cancer. Mol Oncol 2022; 16:3017-3033. [PMID: 35838331 PMCID: PMC9394119 DOI: 10.1002/1878-0261.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is one of the most threatening malignant tumors to human health. Epidermal growth factor receptor (EGFR)‐targeted therapy is a common and essential means for the clinical treatment of lung cancer. However, drug resistance has always affected the therapeutic effect and survival rate in non‐small cell lung cancer (NSCLC). Tumor heterogeneity is a significant reason, yielding various drug resistance mechanisms, such as EGFR‐dependent or ‐independent extracellular signal‐regulated kinase 1 and/or 2 (ERK1/2) activation in NSCLC. To examine whether this aberrant activation of ERK1/2 is related to the loss of function of its specific phosphatase, a series of in vitro and in vivo assays were performed. We found that F‐box/SPRY domain‐containing protein 1 (Fbxo45) induces ubiquitination of NP‐STEP46, an active form of striatal‐enriched protein tyrosine phosphatase, with a K6‐linked poly‐ubiquitin chain. This ubiquitination led to proteasome degradation in the nucleus, which then sustains the aberrant level of phosphorylated‐ERK (pERK) and promotes tumor growth of NSCLC. Fbxo45 silencing can significantly inhibit cell proliferation and tumor growth. Moreover, NSCLC cells with silenced Fbxo45 showed great sensitivity to the EGFR tyrosine kinase inhibitor (TKI) afatinib. Here, we first report this critical pERK maintenance mechanism, which might be independent of the upstream kinase activity in NSCLC. We propose that inhibiting Fbxo45 may combat the issue of drug resistance in NSCLC patients, especially combining with EGFR‐TKI therapy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Ci Xu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China.,Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Renjie Cai
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Weishu An
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Haihua Yuan
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Ming Xu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| |
Collapse
|
5
|
Johnson S, Karpova Y, Guo D, Ghatak A, Markov DA, Tulin AV. PARG suppresses tumorigenesis and downregulates genes controlling angiogenesis, inflammatory response, and immune cell recruitment. BMC Cancer 2022; 22:557. [PMID: 35585513 PMCID: PMC9118775 DOI: 10.1186/s12885-022-09651-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Chemokines are highly expressed in tumor microenvironment and play a critical role in all aspects of tumorigenesis, including the recruitment of tumor-promoting immune cells, activation of cancer-associated fibroblasts, angiogenesis, metastasis, and growth. Poly (ADP-ribose) polymerase (PARP) is a multi-target transcription regulator with high levels of poly(ADP-ribose) (pADPr) being reported in a variety of cancers. Furthermore, poly (ADP-ribose) glycohydrolase (PARG), an enzyme that degrades pADPr, has been reported to be downregulated in tumor tissues with abnormally high levels of pADPr. In conjunction to this, we have recently reported that the reduction of pADPr, by either pharmacological inhibition of PARP or PARG's overexpression, disrupts renal carcinoma cell malignancy in vitro. Here, we use 3 T3 mouse embryonic fibroblasts, a universal model for malignant transformation, to follow the effect of PARG upregulation on cells' tumorigenicity in vivo. We found that the overexpression of PARG in mouse allografts produces significantly smaller tumors with a delay in tumor onset. As downregulation of PARG has also been implicated in promoting the activation of pro-inflammatory genes, we also followed the gene expression profile of PARG-overexpressing 3 T3 cells using RNA-seq approach and observed that chemokine transcripts are significantly reduced in those cells. Our data suggest that the upregulation of PARG may be potentially useful for the tumor growth inhibition in cancer treatment and as anti-inflammatory intervention.
Collapse
Affiliation(s)
- Sarah Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Dmitriy A. Markov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084 USA
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| |
Collapse
|
6
|
Unveiling the pathogenesis of perineural invasion from the perspective of neuroactive molecules. Biochem Pharmacol 2021; 188:114547. [PMID: 33838132 DOI: 10.1016/j.bcp.2021.114547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Perineural invasion (PNI) is characterized by an encounter between the cancer cells and neuronal fibers and holds an extremely poor prognosis for malignant tumors. The exact molecular mechanism behind PNI yet remains to be explored. However, it is worth-noting that an involvement of the neuroactive molecules plays a major part in this process. A complex signaling network comprising the interplay between immunological cascades and neurogenic molecules such as tumor-derived neurotrophins, neuromodulators, and growth factors constitutes an active microenvironment for PNI associated with malignancy. The present review aims at discussing the following points in relation to PNI: a) Communication between PNI and neuroplasticity mechanisms can explain the pathophysiology of poor, short and long-term outcomes in cancer patients; b) Neuroactive molecules can significantly alter the neurons and cancer cells so as to sustain PNI progression; c) Finally, careful manipulation of neurogenic pathways and/or their crosstalk with the immunological molecules implicated in PNI could provide a potential breakthrough in cancer therapeutics.
Collapse
|
7
|
Jiang YW, Cheng HY, Kuo CL, Way TD, Lien JC, Chueh FS, Lin YL, Chung JG. Tetrandrine inhibits human brain glioblastoma multiforme GBM 8401 cancer cell migration and invasion in vitro. ENVIRONMENTAL TOXICOLOGY 2019; 34:364-374. [PMID: 30549224 DOI: 10.1002/tox.22691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Tetrandrine (TET) has been reported to induce anti-cancer activity in many human cancer cells and also to inhibit cancer cell migration and invasion. However, there are no reports to show TET inhibits cell migration and invasion in human brain glioblastoma multiforme GBM 8401 cells. In this study, we investigated the anti-metastasis effects of TET on GBM 8401 cells in vitro. Under sub-lethal concentrations (from 1, 5 up to 10 μM), TET significantly inhibited cell mobility, migration and invasion of GBM 8401 cells that were assayed by wound healing and Transwell assays. Gelatin zymography assay showed that TET inhibited MMP-2 activity in GBM 8401 cells. Western blotting results indicated that TET inhibited several key metastasis-related proteins, such as p-EGFR(Tyr1068) , SOS-1, GRB2, Ras, p-AKT(Ser473) and p-AKT(Thr308) , NF-κB-p65, Snail, E-cadherin, N-cadherin, NF-κB, MMP-2 and MMP-9 that were significant reduction at 24 and 48 hours treatment by TET. TET reduced MAPK signaling associated proteins such as p-JNK1/2 and p-c-Jun in GBM 8401 cells. The electrophoretic mobility shift (EMSA) assay was used to investigate NF-κB and DNA binding was reduced by TET in a dose-dependently. Based on these findings, we suggested that TET could be used in anti-metastasis of human brain glioblastoma multiforme GBM 8401 cells in the future.
Collapse
Affiliation(s)
- Yi-Wen Jiang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Hsin-Yu Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Tzong-Der Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of pharmacy, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L, Cheng X. DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep 2018; 40:1203-1222. [PMID: 29956792 PMCID: PMC6072387 DOI: 10.3892/or.2018.6520] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Dual-specificity phosphatase-1 (DUSP1) is an oncogene that is associated with cancer progression following drug resistance. In order to investigate the potential relationship between DUSP1 and apatinib resistance in gastric cancer cells, we preformed many assays to study this problem. DUSP1 gene was detected by RT-qPCR assay, proteins in MAPK pathway were quantified by western blot assay, and CCK-8 assay, flow cytometry and Hoechest 33342 stain were performed to detect the resistance of cells, cell cycles and apoptosis, respectively. Immunohistochemical staining was used to discover the expression of DUSP1 protein in patients' tumor or paratumor tissues. It was found that apatinib (Apa)-resistant gastric cancer (GC) cells showed increased expression of DUSP1, whereas the knockdown of DUSP1 in resistant cells resensitized these cells to Apa. The restored sensitivity to Apa was the result of inactivation of mitogen-activated protein kinase (MAPK) signaling and the induction of apoptosis. The in vitro use of Apa in combination with a DUSP1 inhibitor, triptolide, exerted significant effects on inhibiting the expression of DUSP1, growth inhibition, and apoptosis via the inactivation of MAPK signaling. In patients who did not undergo chemotherapy or targeted therapy, the expression of DUSP1 in adjacent tissues was higher when compared with that observed in tumor tissues. In addition, the expression of DUSP1 was higher in the early stages of GC than in the advanced stages. The expression of DUSP1 in tumor tissues was not associated with the survival rate of the patients. Therefore, increased expression of DUSP1 may be responsible for Apa resistance, and DUSP1 may serve as a biomarker for Apa efficacy. In conclusion, inducing the downregulation of DUSP1 may be a promising strategy to overcome Apa resistance.
Collapse
Affiliation(s)
- Fei Teng
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhiyuan Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiahui Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guowei Zheng
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guodian Zheng
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Yiping Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Lijing Wang
- Department of Medical Imaging, Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiangdong Cheng
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
9
|
Tsuchida N, Murugan AK, Grieco M. Kirsten Ras* oncogene: significance of its discovery in human cancer research. Oncotarget 2018; 7:46717-46733. [PMID: 27102293 PMCID: PMC5216832 DOI: 10.18632/oncotarget.8773] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/10/2016] [Indexed: 12/24/2022] Open
Abstract
The KRAS/ K-RAS oncogene is crucially involved in human cancer. The term "oncogene" -- i.e., a gene able to transform a normal cell into a tumor cell - was introduced in 1969, but the word was not used in the human carcinogenesis literature until much later. Transforming Kras and Hras oncogenes from the Kirsten and Harvey sarcoma viruses were not identified until the early 1980s due to the complicated structures of the viral genomes. Orthologs of these viral oncogenes were then found in transforming DNA fragments in human cancers in the form of mutated versions of the HRAS and KRAS proto-oncogenes. Thus, RAS genes were the first human oncogenes to be identified. Subsequent studies showed that mutated KRAS acted as an in vivo oncogenic driver, as indicated by studies of anti-EGFR therapy for metastatic colorectal cancers. This review addresses the historical background and experimental studies that led to the discovery of Kirsten Ras as an oncogene, the role of mutated KRAS in human carcinogenesis, and recent therapeutic studies of cancer cells with KRAS mutations.
Collapse
Affiliation(s)
- Nobuo Tsuchida
- Graduate School of Medical and Dental Sciences, Tokyo Medical Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | | | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| |
Collapse
|
10
|
Abstract
Metastasis is a complex process and a major contributor of death in cancer patients. Metastasis suppressor genes are identified by their ability to inhibit metastasis at a secondary site without affecting the growth of primary tumor. In this review, we have conducted a survey of the metastasis suppressor literature to identify common downstream pathways. The metastasis suppressor genes mechanistically target MAPK, G-protein-coupled receptor, cell adhesion, cytoskeletal, transcriptional regulatory, and metastasis susceptibility pathways. The majority of the metastasis suppressor genes are functionally multifactorial, inhibiting metastasis at multiple points in the cascade, and many operate in a context-dependent fashion. A greater understanding of common pathways/molecules targeted by metastasis suppressor could improve metastasis treatment strategies.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
11
|
Khan I, Steeg PS. Metastasis suppressors: functional pathways. J Transl Med 2018; 98:198-210. [PMID: 28967874 PMCID: PMC6545599 DOI: 10.1038/labinvest.2017.104] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complex process and a major contributor of death in cancer patients. Metastasis suppressor genes are identified by their ability to inhibit metastasis at a secondary site without affecting the growth of primary tumor. In this review, we have conducted a survey of the metastasis suppressor literature to identify common downstream pathways. The metastasis suppressor genes mechanistically target MAPK, G-protein-coupled receptor, cell adhesion, cytoskeletal, transcriptional regulatory, and metastasis susceptibility pathways. The majority of the metastasis suppressor genes are functionally multifactorial, inhibiting metastasis at multiple points in the cascade, and many operate in a context-dependent fashion. A greater understanding of common pathways/molecules targeted by metastasis suppressor could improve metastasis treatment strategies.
Collapse
|
12
|
Chang HY, Chang HM, Wu TJ, Chaing CY, Tzai TS, Cheng HL, Raghavaraju G, Chow NH, Liu HS. The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis. J Biomed Sci 2017; 24:61. [PMID: 28841878 PMCID: PMC6389174 DOI: 10.1186/s12929-017-0360-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Lutheran/basal cell adhesion molecule (Lu/BCAM) is a membrane bound glycoprotein. This study was performed to investigate the role and downstream signaling pathway of Lu/BCAM in human bladder tumorigenesis. Methods Five human bladder cancer (E6, RT4, TSGH8301, TCCSUP and J82), one stable mouse fibroblast cell line (NIH-Lu) expressing Lu/BCAM transgene and sixty human uroepithelial carcinoma specimens were analyzed by real-time PCR, immunohistochemistry (IHC), immunofluorescence (IFA) staining, Western blotting and promoter luciferase assay for Lu/BCAM, respectively. The tumorigenicity of Lu/BCAM was demonstrated by focus formation, colony-forming ability, tumour formation, cell adhesion and migration. Results H-rasV12 was revealed to up-regulate Lu/BCAM at both transcriptional and translation levels. Lu/BCAM expression was detected on the membrane of primary human bladder cancer cells. Over-expression of Lu/BCAM in NIH-Lu stable cells increased focus number, colony formation and cell adhesion accompanied with F-actin rearrangement and decreased cell migration compared with parental NIH3T3 fibroblasts. In the presence of laminin ligand, Lu/BCAM overexpression further suppressed cell migration accompanied with increased cell adhesion. We further revealed that laminin-Lu/BCAM-induced cell adhesion and F-actin rearrangement were through increased Erk phosphorylation with an increase of RhoA and a decrease of Rac1 activity. Similarly, high Lu/BCAM expression was detected in the tumors of human renal pelvis, ureter and bladder, and was significantly associated with advanced tumor stage (p = 0.02). Patients with high Lu/BCAM expression showed a trend toward larger tumor size (p = 0.07) and lower disease-specific survival (p = 0.08), although not reaching statistical significance. Conclusion This is the first report showing that Lu/BCAM, in the presence of its ligand laminin, is oncogenic in human urothelial cancers and may have potential as a novel therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0360-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Yi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hsin-Mei Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tsung-Jung Wu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chang-Yao Chaing
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzong-Shin Tzai
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hong-Lin Cheng
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Giri Raghavaraju
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
13
|
Shen J, Zhou S, Shi L, Liu X, Lin H, Yu H, Xiaoliang, Tang J, Yu T, Cai X. DUSP1 inhibits cell proliferation, metastasis and invasion and angiogenesis in gallbladder cancer. Oncotarget 2017; 8:12133-12144. [PMID: 28129656 PMCID: PMC5355331 DOI: 10.18632/oncotarget.14815] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/25/2016] [Indexed: 12/14/2022] Open
Abstract
DUSP1/MKP1 is a dual-specific phosphatase that regulates MAPK activity and is known to play a key role in tumor biology. Its function in gallbladder cancer (GBC) remains largely unknown, however. By exploring its activities in two GBC cell lines (SGC996 and GBC-SD), DUSP1 was found to inhibit GBC cell proliferation, migration and invasion. Moreover, DUSP1 inhibited GBC growth and metastasis in nude mice subcutaneously xenografted with SGC996 cells. The tumor suppression appeared to be mediated via the DUSP1-pERK/MAPK-MMP2 signal pathway. Angiogenesis was associated with the tumor metastasis in the mouse model and was impaired by DUSP1, which suppressed VEGF expression. These results suggest that DUSP1 suppresses GBC growth and metastasis by targeting the DUSP1-pERK-MMP2/VEGF axis. Identification of the DUSP1-pERK-MMP2/VEGF signals may provide new biomarkers and/or therapeutic targets to better suppress GBC metastasis in the future.
Collapse
Affiliation(s)
- Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Senjun Zhou
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Hui Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiaoliang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jiacheng Tang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Tunan Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
14
|
SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene 2016; 36:2724-2736. [DOI: 10.1038/onc.2016.425] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 09/19/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
|
15
|
Bizzarro V, Belvedere R, Milone MR, Pucci B, Lombardi R, Bruzzese F, Popolo A, Parente L, Budillon A, Petrella A. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget 2016; 6:25076-92. [PMID: 26312765 PMCID: PMC4694816 DOI: 10.18632/oncotarget.4725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression.
Collapse
Affiliation(s)
| | | | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.,Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | | |
Collapse
|
16
|
Can KRAS and BRAF mutations limit the benefit of liver resection in metastatic colorectal cancer patients? A systematic review and meta-analysis. Crit Rev Oncol Hematol 2016; 99:150-7. [PMID: 26775732 DOI: 10.1016/j.critrevonc.2015.12.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/27/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Clinical trials investigated the potential role of both KRAS and BRAF mutations, as prognostic biomarkers, in colorectal cancer (CRC) patients who underwent surgical treatment of CRC-related liver metastases (CLM), showing conflicting results. This meta-analysis aims to review all the studies reporting survival outcomes (recurrence free survival (RFS), and/or overall survival (OS)) of patients undergoing resection of CLM, stratified according to KRAS and/or BRAF mutation status. MATERIALS AND METHODS Data from all published studies reporting survival outcomes (RFS and/or OS) of CRC patients who received resection of CLM, stratified by KRAS and/or BRAF mutation status were collected, according to the PRISMA guidelines. Pooled HRs were calculated for both the OS and/or RFS. RESULTS Seven eligible trials (1403 patients) were included. Pooled analysis showed that KRAS mutations predicted a significantly worse both RFS (HR: 1.65; 95% CI: 1.23-2.21) and OS (HR: 1.86; 95% CI: 1.51-2.30) in patients who underwent surgical resection of CLM. BRAF mutations were also associated with a significantly worse OS (HR: 3.90; 95% CI: 1.96-7.73) in this subgroup of patients. CONCLUSIONS This meta-analysis suggests both KRAS and BRAF mutations as poor, prognostic biomarkers, associated with worse survival outcomes, in patients undergoing hepatic resection of CLM.
Collapse
|
17
|
Mishina K, Shinkai M, Shimokawaji T, Nagashima A, Hashimoto Y, Inoue Y, Inayama Y, Rubin BK, Ishigatsubo Y, Kaneko T. HO-1 inhibits IL-13-induced goblet cell hyperplasia associated with CLCA1 suppression in normal human bronchial epithelial cells. Int Immunopharmacol 2015; 29:448-453. [PMID: 26507166 DOI: 10.1016/j.intimp.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Mucus hypersecretion and goblet cell hyperplasia are common features that characterize asthma. IL-13 increases mucin (MUC) 5AC, the major component of airway mucus, in airway epithelial cells. According to the literature, IL-13 receptor activation leads to STAT6 activation and consequent induction of chloride channel accessory 1 (CLCA1) gene expression, associated with the induction of MUC5AC. Heme oxygenase-1 (HO-1) is an enzyme that catalyzes oxidation of heme to biliverdin, and has anti-inflammatory and anti-oxidant properties. We examined the effects of HO-1 on mucin production and goblet cell hyperplasia induced by IL-13. Moreover, we assessed the cell signaling intermediates that appear to be responsible for mucin production. Normal human bronchial epithelial (NHBE) cells were grown at air liquid interface (ALI) in the presence or absence of IL-13 and hemin, a HO-1 inducer, for 14 days. Protein concentration was analyzed using ELISA, and mRNA expression was examined by real-time PCR. Histochemical analysis was performed using HE staining, andWestern blotting was performed to evaluate signaling transduction pathway. Hemin (4 μM) significantly increased HO-1 protein expression (p b 0.01) and HO-1 mRNA expression (p b 0.001). IL-13 significantly increased goblet cells, MUC5AC protein secretion (p b 0.01) and MUC5AC mRNA (p b 0.001), and these were decreased by hemin by way of HO-1. Tin protoporphyrin (SnPP)-IX, a HO-1 inhibitor, blocked the effect of hemin restoring MUC5AC protein secretion (p b 0.05) and goblet cell hyperplasia. Hemin decreased the expression of CLCA1 mRNA (p b 0.05) and it was reversed by SnPP-IX, but could not suppress IL-13-induced phosphorylation of STAT6 or SAM pointed domain-containing ETS transcription factor (SPDEF) and Forkhead box A2 (FOXA2) mRNA expression. In summary, HO-1 overexpression suppressed IL-13-induced goblet cell hyperplasia and MUC5AC production, and involvement of CLCA1 in the mechanism was suggested.
Collapse
Affiliation(s)
- Kei Mishina
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaharu Shinkai
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan.
| | - Tadasuke Shimokawaji
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Akimichi Nagashima
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yusuke Hashimoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoriko Inoue
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshiaki Inayama
- Department of Pathology, Yokohama City University Medical Center, Yokohama, Japan
| | - Bruce K Rubin
- Department of Pediatrics, Virginia Commonwealth University, Richmond, USA
| | - Yoshiaki Ishigatsubo
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Pallegar NK, Ayre DC, Christian SL. Repression of CD24 surface protein expression by oncogenic Ras is relieved by inhibition of Raf but not MEK or PI3K. Front Cell Dev Biol 2015; 3:47. [PMID: 26301220 PMCID: PMC4525067 DOI: 10.3389/fcell.2015.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
CD24 is a dynamically regulated cell surface protein. High expression of CD24 leads to progression of lung, prostrate, colon, and pancreatic cancers, among others. In contrast, low expression of CD24 leads to cell proliferation and metastasis of breast cancer stem cells (BCSCs). Activating mutations in Ras are found in 30% of all human cancers. Oncogenic Ras constitutively stimulates the Raf, PI3K, and Ral GDS signaling pathways, leading to cellular transformation. Previous studies have shown that expression of oncogenic Ras in breast cancer cells generates CD24− cells from CD24+ cells. However, the molecular mechanisms involved in the generation of CD24− cells were not determined. Here, we demonstrate that oncogenic Ras (RasV12) expression suppresses CD24 mRNA, protein, and promoter levels when expressed in NIH/3T3 cells. Furthermore, activation of only the Raf pathway was sufficient to downregulate CD24 mRNA and protein expression to levels similar to those seen in with RasV12 expression. In contrast, activation of the PI3K pathway downregulated mRNA expression with a partial effect on protein expression whereas activation of the RalGDS pathway only partially affected protein expression. Surprisingly, inhibition of MEK with U0126 only partially restored CD24 mRNA expression but not surface protein expression. In contrast, inhibition of Raf with sorafenib did not restore CD24 mRNA expression but significantly increased the proportion of RasV12 cells expressing CD24. Therefore, the Raf pathway is the major repressor of CD24 mRNA and protein expression, with PI3K also able to substantially inhibit CD24 expression. Moreover, these data indicate that the levels of CD24 mRNA and surface protein are independently regulated. Although inhibition of Raf by sorafenib only partially restored CD24 expression, sorafenib should still be considered as a potential therapeutic strategy to alter CD24 expression in CD24− cells, such as BCSCs.
Collapse
Affiliation(s)
- Nikitha K Pallegar
- Department of Biochemistry, Memorial University of Newfoundland St. John's, NL, Canada
| | - D Craig Ayre
- Department of Biochemistry, Memorial University of Newfoundland St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
19
|
Yeh HH, Tseng YF, Hsu YC, Lan SH, Wu SY, Raghavaraju G, Cheng DE, Lee YR, Chang TY, Chow NH, Hung WC, Liu HS. Ras induces experimental lung metastasis through up-regulation of RbAp46 to suppress RECK promoter activity. BMC Cancer 2015; 15:172. [PMID: 25885317 PMCID: PMC4377201 DOI: 10.1186/s12885-015-1155-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/02/2015] [Indexed: 12/30/2022] Open
Abstract
Background Mutant Ras plays multiple functions in tumorigenesis including tumor formation and metastasis. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK), a metastasis inhibitor gene, suppresses matrix metalloproteinase (MMP) activity in the metastatic cascade. Clarifying the relationship between Ras and RECK and understanding the underlying molecular mechanism may lead to the development of better treatment for Ras-related tumors. Methods Suppression subtractive hybridization PCR (SSH PCR) was conducted to identify Ha-rasval12 up-regulated genes in bladder cancer cells. Stable cell lines of human breast cancer (MCF-7-ras) and mouse NIH3T3 fibroblasts (7–4) harboring the inducible Ha-rasval12 oncogene, which could be induced by isopropylthio-β-D-galactoside (IPTG), were used to clarify the relationship between Ras and the up-regulated genes. Chromatin immunoprecipitation (ChIP) assay, DNA affinity precipitation assay (DAPA) and RECK reporter gene assay were utilized to confirm the complex formation and binding with promoters. Results Retinoblastoma binding protein-7 (RbAp46) was identified and confirmed as a Ha-rasval12 up-regulated gene. RbAp46 could bind with histone deacetylase (HDAC1) and Sp1, followed by binding to RECK promoter at the Sp1 site resulting in repression of RECK expression. High expression of Ras protein accompanied with high RbAp46 and low RECK expression were detected in 75% (3/4) of the clinical bladder cancer tumor tissues compared to the adjacent normal parts. Ras induced RbAp46 expression increases invasion of the bladder cancer T24 cells and MMP-9 activity was increased, which was confirmed by specific lentiviral shRNAs inhibitors against Ras and RbAp46. Similarly, knockdown of RbAp46 expression in the stable NIH3T3 cells “7-4” by shRNA decreased Ras-related lung metastasis using a xenograft nude mice model. Conclusions We confirmed that RbAp46 is a Ha-rasval12 up-regulated gene and binds with HDAC1 and Sp1. Furthermore, RbAp46 binds to the RECK promoter at the Sp1 site via recruitment by Sp1. RECK is subsequently activated, leading to increased MMP9 activity, which may lead to increased metastasis in vivo. Our findings of Ras upregulation of RbAp46 may lead to revealing a novel mechanism of Ras-related tumor cell metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1155-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsuan-Heng Yeh
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Fen Tseng
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Chiao Hsu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.
| | - Sheng-Hui Lan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Giri Raghavaraju
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.
| | - Da-En Cheng
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan.
| | - Ying-Ray Lee
- Department of Medical Research, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Tsuey-Yu Chang
- Department of Parasitology, National Cheng Kung University, Tainan, Taiwan.
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University, Tainan, Taiwan.
| | - Wen-Chun Hung
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Van Nuffel AMT, Sukhatme V, Pantziarka P, Meheus L, Sukhatme VP, Bouche G. Repurposing Drugs in Oncology (ReDO)-clarithromycin as an anti-cancer agent. Ecancermedicalscience 2015; 9:513. [PMID: 25729426 PMCID: PMC4341996 DOI: 10.3332/ecancer.2015.513] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
Clarithromycin (CAM) is a well-known macrolide antibiotic available as a generic drug. CAM is traditionally used for many types of bacterial infections, treatment of Lyme disease and eradication of gastric infection with Helicobacter pylori. Extensive preclinical and clinical data demonstrate a potential role for CAM to treat various tumours in combination with conventional treatment. The mechanisms of action underlying the anti-tumour activity of CAM are multiple and include prolonged reduction of pro-inflammatory cytokines, autophagy inhibition, and anti-angiogenesis. Here, we present an overview of the current preclinical (in vitro and in vivo) and clinical evidence supporting the role of CAM in cancer. Overall these findings justify further research with CAM in many tumour types, with multiple myeloma, lymphoma, chronic myeloid leukaemia (CML), and lung cancer having the highest level of evidence. Finally, a series of proposals are being made to further investigate the use of CAM in clinical trials which offer the greatest prospect of clinical benefit to patients.
Collapse
Affiliation(s)
| | | | - Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
| | - Lydie Meheus
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium
| | - Vikas P Sukhatme
- GlobalCures, Inc, Newton, MA 02459, USA
- Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
21
|
Yang JH, Hu J, Wan L, Chen LJ. Barbigerone inhibits tumor angiogenesis, growth and metastasis in melanoma. Asian Pac J Cancer Prev 2014; 15:167-74. [PMID: 24528020 DOI: 10.7314/apjcp.2014.15.1.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with 10μM barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Jian-Hong Yang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China E-mail : ,
| | | | | | | |
Collapse
|
22
|
CRKL protein overexpression enhances cell proliferation and invasion in pancreatic cancer. Tumour Biol 2014; 36:1015-22. [PMID: 25318601 DOI: 10.1007/s13277-014-2706-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022] Open
Abstract
CRKL is an adapter protein which is overexpressed in many malignant tumors and plays crucial roles in tumor progression. However, expression pattern and biological roles of CRKL in pancreatic cancer have not been examined. In the present study, we found that CRKL expression in pancreatic cancer specimens was higher than that in normal pancreatic tissues. Colony formation assay and Matrigel invasion assay showed that the overexpression of CRKL in Bxpc3 and Capan2 cell lines with low endogenous expression increased cell proliferation and invasion. Flow cytometry showed that CRKL promoted cell proliferation by facilitating cell cycle. Further analysis of cell cycle- and invasion-related molecules showed that CRKL upregulated cyclin D1, cyclin A, matrix metalloproteinase 2 (MMP2) expression, and phosphorylated extracellular signal (ERK)-regulated kinase. In conclusion, our study demonstrated that CRKL was overexpressed in human pancreatic cancers and contributed to pancreatic cancer cell proliferation and invasion through ERK signaling.
Collapse
|
23
|
Kemeny NE, Chou JF, Capanu M, Gewirtz AN, Cercek A, Kingham TP, Jarnagin WR, Fong YC, DeMatteo RP, Allen PJ, Shia J, Ang C, Vakiani E, D'Angelica MI. KRAS mutation influences recurrence patterns in patients undergoing hepatic resection of colorectal metastases. Cancer 2014; 120:3965-71. [PMID: 25155157 DOI: 10.1002/cncr.28954] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND The validity of the KRAS mutation as a predictor of recurrence-free survival (RFS) or overall survival (OS) is unclear. The current study investigated whether the presence of the KRAS mutation decreased RFS or OS in patients with colorectal cancer who underwent liver resection. METHODS Patients with resected colorectal liver metastases who received adjuvant hepatic arterial infusion plus systemic therapy and for whom KRAS data was available were evaluated. Correlation between KRAS and clinical factors was done using the Fisher exact test. Kaplan-Meier methods were used to estimate the median RFS and OS. RESULTS A total of 169 patients were evaluated, 118 of whom had KRAS wild-type (WT) and 51 had KRAS mutated (MUT) tumors. The 3-year RFS rate was 46% for patients with KRAS WT (95% confidence interval [95% CI], 35%-56%) and 30% (95% CI, 16%-44%) for patients with KRAS MUT (P =.005). The 3-year OS rate was 95% (95% CI, 87%-98%) and 81% (95% CI, 62%-95%), respectively, for patients with KRAS WT and KRAS MUT (P =.07). On multivariate analysis, KRAS remained a significant predictor of RFS (hazard ratio, 1.9). The 3-year cumulative recurrence rate by site of metastases was as follows: 2% versus 13.4% for bone (P≤.01), 2% versus 14.5% for brain (P =.05), 33.2% versus 58% for lung (P≤.01), and 30% versus 47% for liver (P =.10) in patients with KRAS WT versus KRAS MUT. CONCLUSIONS In the current study, among patients with resected colorectal liver metastases who were treated with adjuvant hepatic arterial infusion plus systemic therapy, patients with KRAS MUT were found to have a significantly worse 3-year RFS (30%) compared with KRAS WT (46%) p=.005. The cumulative incidence of bone, brain, and lung metastases was significantly higher for patients with KRAS MUT compared with those with KRAS WT.
Collapse
Affiliation(s)
- Nancy E Kemeny
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsunaga T, Morikawa Y, Haga M, Endo S, Soda M, Yamamura K, El-Kabbani O, Tajima K, Ikari A, Hara A. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicol Appl Pharmacol 2014; 278:180-9. [PMID: 24813866 DOI: 10.1016/j.taap.2014.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/21/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023]
Abstract
Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-l-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mariko Haga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Kazuo Tajima
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
25
|
SONG JIE, ZHENG BIN, BU XIAOBO, FEI YAOYUAN, SHI SHULIANG. Negative association of R-Ras activation and breast cancer development. Oncol Rep 2014; 31:2776-84. [DOI: 10.3892/or.2014.3121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
|
26
|
Lin F, Chengyao X, Qingchang L, Qianze D, Enhua W, Yan W. CRKL promotes lung cancer cell invasion through ERK-MMP9 pathway. Mol Carcinog 2014; 54 Suppl 1:E35-44. [PMID: 24664993 DOI: 10.1002/mc.22148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
CRKL is recently defined as a new oncogene, which plays a role in the lung cancer progression. However, the potential mechanism of CRKL in human non-small cell lung cancer cell invasion is obscure. We investigated the potential mechanism of CRKL in lung cancer cell invasion using immunohistochemistry, plasmid transfection, Western blotting, real-time PCR, matrigel invasion assay, chromatin immunoprecipitation assay, and luciferase reporter assay. CRKL expression is higher in lymph node metastatic tumor compared with primary tumor. CRKL overexpression enhanced cell invasion and MMP9 expression in both HBE and H1299 cell lines. There was a significant correlation between CRKL overexpression and high MMP9 expression in primary tumors. MMP-9 antibody treatment significantly blocked cell invasion. CRKL overexpression also activated AP-1 luciferase reporter activity, ERK phosphorylation and association of c-fos to MMP9 promoter. Treatment with ERK inhibitor PD98059 in cells with CRKL transfection inhibited ERK activity, cell invasion, and MMP9 expression. These results suggested that overexpression of CRKL promoted cell invasion through upregulation of MMP9 expression and activation of ERK pathway.
Collapse
Affiliation(s)
- Fu Lin
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xie Chengyao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Li Qingchang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Dong Qianze
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wang Enhua
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wang Yan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Bergholz J, Zhang Y, Wu J, Meng L, Walsh EM, Rai A, Sherman MY, Xiao ZXJ. ΔNp63α regulates Erk signaling via MKP3 to inhibit cancer metastasis. Oncogene 2014; 33:212-24. [PMID: 23246965 PMCID: PMC3962654 DOI: 10.1038/onc.2012.564] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/17/2012] [Accepted: 10/09/2012] [Indexed: 02/06/2023]
Abstract
Reduced expression of the p53 family member p63 has been suggested to play a causative role in cancer metastasis. Here, we show that ΔNp63α, the predominant p63 isoform, plays a major role in regulation of cell migration, invasion and cancer metastasis. We identified mitogen-activated protein (MAP) kinase phosphatase 3 (MKP3) as a downstream target of ΔNp63α that is required for mediating these effects. We show that ΔNp63α regulates extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) activity via MKP3 in both cancer and non-transformed cells. We further show that exogenous ΔNp63α inhibits cell invasion and is dependent on MKP3 upregulation for repression. Conversely, endogenous pan-p63 ablation results in increased cell migration and invasion, which can be reverted by reintroducing the ΔNp63α isoform alone, but not by other isoforms. Interestingly, these effects require Erk2, but not Erk1 expression, and can be rescued by enforced MKP3 expression. Moreover, MKP3 expression is reduced in invasive cancers, and reduced p63 expression increases metastatic frequency in vivo. Taken together, these results suggest an important role for ΔNp63α in preventing cancer metastasis by inhibition of Erk2 signaling via MKP3.
Collapse
Affiliation(s)
- Johann Bergholz
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
- Center of Growth, Metabolism and Aging, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610014. China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610014. China
| | - Junfeng Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
| | - Le Meng
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
| | - Erica M. Walsh
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
| | - Arun Rai
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
| | - Michael Y. Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
| | - Zhi-Xiong Jim Xiao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118. U.S.A
- Center of Growth, Metabolism and Aging, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610014. China
| |
Collapse
|
28
|
Han B, Luan L, Xu Z, Wu B. Clinical significance and biological roles of CRKL in human bladder carcinoma. Tumour Biol 2013; 35:4101-6. [PMID: 24375195 DOI: 10.1007/s13277-013-1536-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022] Open
Abstract
CRKL encodes an adaptor protein that has been recently reported to be overexpressed in various cancers and associate with the malignant behavior of cancer cells. However, the expression pattern of CRKL protein and its clinical significance in human bladder cancer have not been well characterized to date. In the present study, CRKL expression was analyzed in 82 archived bladder cancer specimens using immunohistochemistry, and the correlations between CRKL expression and clinicopathological parameters were evaluated. We found that CRKL was overexpressed in 31 of 82 (37.8%) bladder cancer specimens. A significant association was observed between CRKL overexpression and tumor status (p = 0.019). To further explore the biological functions of CRKL in bladder cancer, we overexpressed CRKL in BIU-87 and 5637 cell lines. Using CCK8 assay and colony formation assay, we showed that CRKL upregulation increased cell proliferation. In addition, transwell assay showed that CRKL could also facilitate invasion. Further study demonstrated that CRKL upregulation increased cyclin D1 expression and ERK phosphorylation. In conclusion, CRKL is overexpressed in bladder cancer and regulates malignant cell growth and invasion, which makes CRKL a candidate therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Bin Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | |
Collapse
|
29
|
Samimi H, Zaki dizaji M, Ghadami M, Shahzadeh fazeli A, Khashayar P, Soleimani M, Larijani B, Haghpanah V. Essential genes in thyroid cancers: focus on fascin. J Diabetes Metab Disord 2013; 12:32. [PMID: 23815863 PMCID: PMC7983713 DOI: 10.1186/2251-6581-12-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 01/21/2023]
Abstract
Although thyroid cancers are not among common malignancies, they rank as the first prevalent endocrine cancers in human. According to the results of published studies it has been shown the gradual progress from normal to the neoplastic cell in the process of tumor formation is the result of sequential genetic events. Among them we may point the mutations and rearrangements occurred in a group of proto-oncogenes, transcription factors and metastasis elements such as P53, RAS,RET,BRAF, PPARγ and Fascin. In the present article,we reviewed the most important essential genes in thyroid cancers, the role of epithelial mesenchymal transition and Fascin has been highlighted in this paper.
Collapse
Affiliation(s)
- Hilda Samimi
- Science and Culture University, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 5th floor, Dr. Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Majid Zaki dizaji
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 5th floor, Dr. Shariati Hospital, North Kargar Ave, Tehran, Iran
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghadami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 5th floor, Dr. Shariati Hospital, North Kargar Ave, Tehran, Iran
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Patricia Khashayar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 5th floor, Dr. Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 5th floor, Dr. Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 5th floor, Dr. Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
30
|
Iwanaga R, Wang CA, Micalizzi DS, Harrell JC, Jedlicka P, Sartorius CA, Kabos P, Farabaugh SM, Bradford AP, Ford HL. Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways. Breast Cancer Res 2012; 14:R100. [PMID: 22765220 PMCID: PMC3680936 DOI: 10.1186/bcr3219] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022] Open
Abstract
Introduction Mammary-specific overexpression of Six1 in mice induces tumors that resemble human breast cancer, some having undergone epithelial to mesenchymal transition (EMT) and exhibiting stem/progenitor cell features. Six1 overexpression in human breast cancer cells promotes EMT and metastatic dissemination. We hypothesized that Six1 plays a role in the tumor initiating cell (TIC) population specifically in certain subtypes of breast cancer, and that by understanding its mechanism of action, we could potentially develop new means to target TICs. Methods We examined gene expression datasets to determine the breast cancer subtypes with Six1 overexpression, and then examined its expression in the CD24low/CD44+ putative TIC population in human luminal breast cancers xenografted through mice and in luminal breast cancer cell lines. Six1 overexpression, or knockdown, was performed in different systems to examine how Six1 levels affect TIC characteristics, using gene expression and flow cytometric analysis, tumorsphere assays, and in vivo TIC assays in immunocompromised and immune-competent mice. We examined the molecular pathways by which Six1 influences TICs using genetic/inhibitor approaches in vitro and in vivo. Finally, we examined the expression of Six1 and phosphorylated extracellular signal-regulated kinase (p-ERK) in human breast cancers. Results High levels of Six1 are associated with adverse outcomes in luminal breast cancers, particularly the luminal B subtype. Six1 levels are enriched in the CD24low/CD44+ TIC population in human luminal breast cancers xenografted through mice, and in tumorsphere cultures in MCF7 and T47D luminal breast cancer cells. When overexpressed in MCF7 cells, Six1expands the TIC population through activation of transforming growth factor-beta (TGF-β) and mitogen activated protein kinase (MEK)/ERK signaling. Inhibition of ERK signaling in MCF7-Six1 cells with MEK1/2 inhibitors, U0126 and AZD6244, restores the TIC population of luminal breast cancer cells back to that observed in control cells. Administration of AZD6244 dramatically inhibits tumor formation efficiency and metastasis in cells that express high levels of Six1 ectopically or endogenously. Finally, we demonstrate that Six1 significantly correlates with phosphorylated ERK in human breast cancers. Conclusions Six1 plays an important role in the TIC population in luminal breast cancers and induces a TIC phenotype by enhancing both TGF-β and ERK signaling. MEK1/2 kinase inhibitors are potential candidates for targeting TICs in breast tumors.
Collapse
|
31
|
Niu J, Mo Q, Wang H, Li M, Cui J, Li Z, Li Z. Invasion inhibition by a MEK inhibitor correlates with the actin-based cytoskeleton in lung cancer A549 cells. Biochem Biophys Res Commun 2012; 422:80-4. [PMID: 22560902 DOI: 10.1016/j.bbrc.2012.04.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
Abstract
Metastasis remains the primary cause of lung cancer. The molecules involved in metastasis may be candidates for new targets in the therapy of lung cancer. The MEK/ERK signaling pathway has been highlighted in a number of studies on invasiveness and metastasis. In this paper, we show that the MEK inhibitor U0126 induces flattened morphology, remodels the actin-based cytoskeleton, and potently inhibits chemotaxis and Matrigel invasion in the human lung cancer A549 cell line. Furthermore, downregulation of ERK by small interfering RNA significantly inhibits the invasion of A549 cells and induces stress fiber formation. Taken together, our findings provide the first evidence that the inhibition of invasion of lung cancer A549 cells by inhibiting MEK/ERK signaling activity is associated with remodeling of the actin cytoskeleton, suggesting a novel link between MEK/ERK signaling-mediated cell invasion and the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Junmei Niu
- Department of First Internal Medicine, Tuberculosis Division, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Sharma A, Robertson GP. Models of melanoma metastasis: using a transient siRNA-based protein inhibition strategy in mice to validate the functional relevance of pharmacological agents. ACTA ACUST UNITED AC 2012; Chapter 14:Unit 14.6. [PMID: 21948165 DOI: 10.1002/0471141755.ph1406s38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While a pharmacological agent may inhibit the activity of a protein in cultured cells by triggering a particular biological process, it may function differently in intact animals. Thus, an assay is needed to rapidly assess whether a drug candidate displays the same mechanism of action in vivo as in vitro. The experimental approach described in this unit utilizes synthetic siRNA in a transient animal assay to define the action of a drug candidate when inhibiting the activity of a particular gene. Commercially available synthetic siRNA is introduced into cancer cells by nucleofection to reduce protein expression. Cells are then introduced into animals and the mechanism responsible for tumor inhibition assessed. The action of a compound identified in vitro is then compared to that noted in vivo following siRNA-mediated inhibition to determine whether it reduces tumor development in the same manner in both systems.
Collapse
Affiliation(s)
- Arati Sharma
- The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania, USA
| | | |
Collapse
|
33
|
Gill K, Mohanti BK, Ashraf MS, Singh AK, Dey S. Quantification of p38αMAP kinase: A prognostic marker in HNSCC with respect to radiation therapy. Clin Chim Acta 2012; 413:219-25. [DOI: 10.1016/j.cca.2011.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 11/27/2022]
|
34
|
Oufkir T, Vaillancourt C. Phosphorylation of JAK2 by serotonin 5-HT (2A) receptor activates both STAT3 and ERK1/2 pathways and increases growth of JEG-3 human placental choriocarcinoma cell. Placenta 2011; 32:1033-40. [PMID: 21993263 DOI: 10.1016/j.placenta.2011.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
Abstract
Serotonin 5-HT(2A) receptor activation improves viability, increases DNA synthesis and activates JAK2-STAT3 and MEK1/2-ERK1/2 signalling pathways in JEG-3 human trophoblast choriocarcinoma cells. The goal of this study was to characterize the signal transduction cascade involved in 5-HT(2A) receptor-induced growth of JEG-3 cells. Selective 5-HT(2A) receptor agonist, DOI, induced JEG-3 cell growth was inhibited by the inhibitor of JAK2 (AG490), MEK1/2 (U0126), phospholipase C-β (PLC-β; U73122) and protein kinase C-β (PKC-β; Gö6976)), whereas the selective phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) had no effect. Specific inhibitors of PLC-β, PKC-β and Ras (farnesylthiosalicylic acid) inhibit activation of ERK1/2, whereas the PKC-ζ inhibitor GF109203X had no effect. Interestingly, inhibition of JAK2 prevented DOI-induced phosphorylation of ERK1/2 whereas inhibition of ERK1/2 pathway had no effect on DOI-induced activation of STAT3. Taken together, our results demonstrate that both the JAK2-STAT3 and PLC-β-PKC-β-Ras-ERK1/2 signalling pathways are involved in the stimulation of JEG-3 cell growth mediated by DOI. Moreover, this study shows that activation of JAK2 by the 5-HT(2A) receptor is essential to activate both STAT3 and ERK1/2 signalling pathways as well as to increase JEG-3 choriocarcinoma cell growth and survival.
Collapse
Affiliation(s)
- T Oufkir
- INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Building 18, Laval, QC, Canada H7V 1B7
| | | |
Collapse
|
35
|
Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L, Xu J. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res 2011; 71:3980-90. [PMID: 21502402 DOI: 10.1158/0008-5472.can-10-2914] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Twist1, a basic helix-loop-helix transcription factor, promotes breast tumor cell epithelial-mesenchymal transition (EMT), invasiveness, and metastasis. However, the mechanisms responsible for regulating Twist1 stability are unknown in these cells. We identified the serine 68 (Ser 68) as a major phosphorylation site of Twist1 by mass spectrometry and with specific antibodies. This Ser 68 is phosphorylated by p38, c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases1/2 in vitro, and its phosphorylation levels positively correlate with Twist1 protein levels in human embryonic kidney 293 and breast cancer cells. Prevention of Ser 68 phosphorylation by an alanine (A) mutation (Ser 68A) dramatically accelerates Twist1 ubiquitination and degradation. Furthermore, activation of mitogen-activated protein kinases (MAPK) by an active Ras protein or TGF-β treatment significantly increases Ser 68 phosphorylation and Twist1 protein levels without altering Twist1 mRNA expression, whereas blocking of MAPK activities by either specific inhibitors or dominant negative inhibitory mutants effectively reduces the levels of both induced and uninduced Ser 68 phosphorylation and Twist protein. Accordingly, the mammary epithelial cells expressing Twist1 exhibit much higher degrees of EMT and invasiveness on stimulation with TGF-β or the active Ras and paclitaxel resistance compared with the same cells expressing the Ser 68A-Twist1 mutant. Importantly, the levels of Ser 68 phosphorylation in the invasive human breast ductal carcinomas positively correlate with the levels of Twist1 protein and JNK activity and are significantly higher in progesterone receptor-negative and HER2-positive breast cancers. These findings suggest that activation of MAPKs by tyrosine kinase receptors and Ras signaling pathways may substantially promote breast tumor cell EMT and metastasis via phoshorylation and stabilization of Twist1.
Collapse
Affiliation(s)
- Jun Hong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Parthasarathy S, Dhayaparan D, Jayanthi V, Devaraj SN, Devaraj H. Aberrant expression of epidermal growth factor receptor and its interaction with protein kinase C δ in inflammation associated neoplastic transformation of human esophageal epithelium in high risk populations. J Gastroenterol Hepatol 2011; 26:382-90. [PMID: 21155880 DOI: 10.1111/j.1440-1746.2010.06526.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIM Esophageal cancer is the second most common cancer among Indian males and is mostly associated with tobacco smoking and alcohol consumption. Epidermal growth factor receptor (EGFR) is a member of Type I tyrosine kinases. Its activation causes the docking of various proteins in its cytosolic tail. In the present study we have analyzed the expression pattern of EGFR, protein kinase C δ (PKCδ), tumor necrosis factor-α (TNF-α), nuclear factor κB (NFκB) and the interactions between EGFR and PKCδ in various pathological conditions. METHODS Human esophageal biopsies were obtained from 93 patients with a past history of smoking and alcohol consumption: 20 showed normal mucosa, 40 with dysplasia and 33 squamous cell carcinoma (SCC). These pathological conditions were analyzed immunohistochemically for the presence of EGFR expression and then subsequently analyzed using immunoblot and immunoprecipitation. RESULTS A statistically significant difference of EGFR overexpression was found between low- and high-grade dysplasia and carcinoma (χ² = 3.3, χ² = 3.42: P = 0.07, 0.33). A statistical significance was observed between dysplasia and SCC and in all histopathological types (χ² = 4, χ² = 4.9; P < 0.05, P = 0.18 and χ² = 26.3, 26.6; P < 0.001). EGFR tyrosine phosphorylation and its association with PKCδ was significantly higher in all histopathological types with χ² = 7.965; P < 0.05 and 4.0830; P = 0.2530. CONCLUSION Altogether, our findings reveal that the activation of EGFR and its subsequent interaction with PKCδ under inflammatory conditions might positively be attributed to the transformation of normal esophageal epithelia to SCC, which could explain ongoing inflammation in normal mucosa in a population prone to smoking and alcoholism.
Collapse
|
37
|
Whyte J, Bergin O, Bianchi A, McNally S, Martin F. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res 2010; 11:209. [PMID: 19818165 PMCID: PMC2790844 DOI: 10.1186/bcr2361] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.
Collapse
Affiliation(s)
- Jacqueline Whyte
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
38
|
Gailhouste L, Ezan F, Bessard A, Frémin C, Rageul J, Langouët S, Baffet G. RNAi-mediated MEK1 knock-down prevents ERK1/2 activation and abolishes human hepatocarcinoma growth in vitro and in vivo. Int J Cancer 2010; 126:1367-77. [PMID: 19816936 DOI: 10.1002/ijc.24950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitogen-activated protein kinases MEK/ERK pathway regulates fundamental processes in malignant cells and represents an attractive target in the development of new cancer treatments especially for human hepatocarcinoma highly resistant to chemotherapy. Although gene extinction experiments have suggested distinct roles for these proteins, the MEK/ERK cascade remains widely considered as exhibiting an overlap of functions. To investigate the functionality of each kinase in tumorigenesis, we have generated stably knock-down clones for MEK1/2 and ERK1/2 isoforms in the human hepatocellular carcinoma line HuH7. Our results have shown that RNAi strategy allows a specific disruption of the targeted kinases and argued for the critical function of MEK1 in liver tumor growth. Transient and stable extinction experiments demonstrated that MEK1 isoform acts as a major element in the signal transduction by phosphorylating ERK1 and ERK2 after growth factors stimulation, whereas oncogenic level of ERK1/2 phosphorylation appears to be MEK1 and MEK2 dependent in basal condition. In addition, silencing of MEK1 or ERK2 abolished cell proliferation and DNA replication in vitro as well as tumor growth in vivo after injection in rodent. In contrast, targeting MEK2 or ERK1 had no effect on hepatocarcinoma progression. These results strongly corroborate the relevance of targeting the MEK cascade as attested by pharmacologic drugs and support the potential application of RNAi in future development of more effective cancer therapies. Our study emphasizes the importance of the MEK/ERK pathway in human hepatocarcinoma cell growth and argues for a crucial role of MEK1 and ERK2 in this regulation.
Collapse
Affiliation(s)
- Luc Gailhouste
- EA 4427-SeRAIC, IFR 140, Université de Rennes 1, F-35043 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Conklin MW, Ada-Nguema A, Parsons M, Riching KM, Keely PJ. R-Ras regulates beta1-integrin trafficking via effects on membrane ruffling and endocytosis. BMC Cell Biol 2010; 11:14. [PMID: 20167113 PMCID: PMC2830936 DOI: 10.1186/1471-2121-11-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin-mediated cell adhesion and spreading is dramatically enhanced by activation of the small GTPase, R-Ras. Moreover, R-Ras localizes to the leading edge of migrating cells, and regulates membrane protrusion. The exact mechanisms by which R-Ras regulates integrin function are not fully known. Nor is much known about the spatiotemporal relationship between these two molecules, an understanding of which may provide insight into R-Ras regulation of integrins. RESULTS GFP-R-Ras localized to the plasma membrane, most specifically in membrane ruffles, in Cos-7 cells. GFP-R-Ras was endocytosed from these ruffles, and trafficked via multiple pathways, one of which involved large, acidic vesicles that were positive for Rab11. Cells transfected with a dominant negative form of GFP-R-Ras did not form ruffles, had decreased cell spreading, and contained numerous, non-trafficking small vesicles. Conversely, cells transfected with the constitutively active form of GFP-R-Ras contained a greater number of ruffles and large vesicles compared to wild-type transfected cells. Ruffle formation was inhibited by knock-down of endogenous R-Ras with siRNA, suggesting that activated R-Ras is not just a component of, but also an architect of ruffle formation. Importantly, beta1-integrin co-localized with endogenous R-Ras in ruffles and endocytosed vesicles. Expression of dominant negative R-Ras or knock down of R-Ras by siRNA prevented integrin accumulation into ruffles, impaired endocytosis of beta1-integrin, and decreased beta1-integrin-mediated adhesion. Knock-down of R-Ras also perturbed the dynamics of another membrane-localized protein, GFP-VSVG, suggesting a more global role for R-Ras on membrane dynamics. However, while R-Ras co-internalized with integrins, it did not traffic with VSVG, which instead moved laterally out of ruffles within the plane of the membrane, suggesting multiple levels of regulation of and by R-Ras. CONCLUSIONS Our results suggest that integrin function involves integrin trafficking via a cycle of membrane protrusion, ruffling, and endocytosis regulated by R-Ras, providing a novel mechanism by which integrins are linked to R-Ras through control of membrane dynamics.
Collapse
Affiliation(s)
- Matthew W Conklin
- Dept of Pharmacology, Laboratory for Molecular Biology and University of Wisconsin Carbone Cancer Center, University of Wisconsin, 1525 Linden Dr, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Effect of ERK inhibitor on pulmonary metastasis of inoculated human adenoid cystic carcinoma cells in nude mice. ACTA ACUST UNITED AC 2010; 109:117-23. [DOI: 10.1016/j.tripleo.2009.07.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 07/13/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022]
|
41
|
Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer 2009; 8:128. [PMID: 20030805 PMCID: PMC2809056 DOI: 10.1186/1476-4598-8-128] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background Recent studies have implicated aberrant Notch signaling in breast cancers. Yet, relatively little is known about the pattern of expression of various components of the Notch pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands, and downstream targets at different stages of breast cancer progression. Results We report here that there is a general increase in the expression levels of Notch 1, 2, 4, Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were undetectable in normal tissues, moderate to high expression was detected in several cancers. We detected the presence of active, cleaved Notch1, along with downstream targets of the Notch pathway, Hes1/Hes5, in ~75% of breast cancers, clearly indicating that in a large proportion of breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1 and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ - suggesting that aberrant Notch activation may be an early event in breast cancer progression. Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation may lead to poor prognosis. Conclusions High level expression of Notch receptors and ligands, and its increased activation in several breast cancers and early precursors, places Notch signaling as a key player in breast cancer pathogenesis. Its cooperation with the Ras/MAPK pathway in transformation offers combined inhibition of the two pathways as a new modality for breast cancer treatment.
Collapse
|
42
|
Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC Cancer 2009; 9:435. [PMID: 20003375 PMCID: PMC2803196 DOI: 10.1186/1471-2407-9-435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/12/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Overexpression of Aurora-A and mutant Ras (RasV12) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. METHODS Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either RasV12 and wild-type Aurora-A (designated WT) or RasV12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. RESULTS Overexpression of wild-type Aurora-A and mutation of RasV12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the RasV12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the RasV12 transformants. CONCLUSION Wild-type-Aurora-A enhances focus formation and aggregation of the RasV12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway.
Collapse
|
43
|
Wang X, Li L, Wang B, Xiang J. Effects of ursolic acid on the proliferation and apoptosis of human ovarian cancer cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:761-4. [PMID: 20037823 DOI: 10.1007/s11596-009-0618-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Indexed: 12/29/2022]
Abstract
This study examined the effects of ursolic acid (UA) on the proliferation and apoptosis of a human ovarian cancer cell line, CAOV3. The CAOV3 cells were cultured in the RPMI 1640 media and treated with different concentrations of UA (0, 10, 20, 40 micromol/L). The proliferation rate of the CAOV3 cells was determined by MTT assay. The apoptosis rate was measured by flow cytometry. ERK activity was detected by immunoprecipitation and the expressions of p-ERK1/2, MKP-1, Bax and Bcl-2 by Western blotting. The results showed that the proliferation rate was significantly decreased in the cells treated with UA as compared with that in the non-treated cells (P<0.05). The intracellular ERK activity and p-ERK1/2 expression were also reduced in the UA-treated cells, while the MKP-1 expression was elevated. Moreover, the apoptosis was found in the CAOV3 cells exposed to UA; the Bax expression was increased and the Bcl-2 expression decreased. The apoptosis rate in the UA-treated cells was much higher than that in the non-treated cells (P<0.05). It is concluded that UA can inhibit the proliferation of CAOV3 cells by suppressing the ERK activity and the expression of p-ERK1/2. And it can also induce the apoptosis of the CAOV3 cells by up-regulating the Bax expression and down-regulating the Bcl-2 expression.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital of Hubei Province, Wuhan 430015, China.
| | | | | | | |
Collapse
|
44
|
McCubrey JA, Abrams SL, Stadelman K, Chappell WH, Lahair M, Ferland RA, Steelman LS. Targeting signal transduction pathways to eliminate chemotherapeutic drug resistance and cancer stem cells. ADVANCES IN ENZYME REGULATION 2009; 50:285-307. [PMID: 19895837 PMCID: PMC2862855 DOI: 10.1016/j.advenzreg.2009.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J. Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway. J Neurotrauma 2009; 26:41-53. [PMID: 19196180 DOI: 10.1089/neu.2008.0646] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Formation of a glial scar is one of the major obstacles to axonal growth after injury to the adult CNS. In this study, we have addressed this issue by focusing on reactive astrocytes in a mouse model of spinal cord injury (SCI). First, we attempted to identify profile changes in the expression of astrocytic gliosis 10 days after injury by using gliosis-specific microdissection, genome-wide microarray, and MetaCore(trade mark) pathway analysis. This systematic data processing revealed many intriguing activated pathways. However, considering that proliferation/mitosis is one of the most prominent features of reactive astrocytes, we focused on the functional role of the Ras-MEK-ERK signaling cascades in reactive astrocytes. SCI-induced proliferation of reactive astrocytes in the lesion is in accordance with the increase in the expression and phosphorylation of MEK-ERK. Second, to reduce reactive gliosis after SCI, liposomes containing the interferon-beta (IFN-beta) gene were administered locally 30 min after injury. At 14 days after this treatment, GFAP-positive intensity and MEK-ERK phosphorylation at the lesion were reduced. In the animals receiving the IFN-beta gene, significant recovery of neurobehavior and parameters of electrophysiology following SCI was revealed by assessments of rotarod performance and improvements in the Basso Mouse Scale for locomotion and cortical motor-evoked potentials. SCI resulted in the degeneration of biotinylated dextran amine-labeled descending corticospinal tract axons, but the IFN-beta gene delivery induced regrowth of a large number of corticospinal tract axons. These results suggest that liposome-mediated IFN-beta gene delivery inhibits glial scar formation after SCI and promotes functional recovery.
Collapse
Affiliation(s)
- Motokazu Ito
- Department of Neurosurgery, Nagoya University School of Medicine , Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Li Q, Yang Z. Expression of phospho-ERK1/2 and PI3-K in benign and malignant gallbladder lesions and its clinical and pathological correlations. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:65. [PMID: 19445727 PMCID: PMC2691734 DOI: 10.1186/1756-9966-28-65] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/18/2009] [Indexed: 01/06/2023]
Abstract
Background An increasing number of studies have shown that ERK and PI3-K/AKT signaling pathways are involved in various human cancers including hepatocellular carcinoma and cholangiocarcinoma. However, few studies have examined gallbladder cancer specimens, and little is known about the clinical and pathological significance of ERK1/2 and PI3-K/AKT signaling changes in gallbladder adenocarcinoma. In this study, we examined phospho-ERK1/2 (p-ERK1/2) and PI3K expression and analyzed its clinicopathological impact in gallbladder adenocarcinoma. Methods Immunohistochemistry was used to detect and compare the frequency of p-ERK1/2 and PI3-K expression in gallbladder adenocarcinoma, peri-tumor tissues, adenomatous polyps, and chronic cholecystitis specimens. Results The positive staining for p-EKR1/2 and PI3-K were 63/108 (58.3%) and 55/108 (50.9%) in gallbladder adenocarcinoma; 14/46 (30.4%) and 5/46 (10.1%) in peri-tumor tissues; 3/15 (20%) and 3/15 (20%) in adenomatous polyps; and 4/35 (11.4%) and 3/35 (8.6%) in chronic cholecystitis. The positive rate of p-ERK1/2 or PI3-K in gallbladder adenocarcinoma was significantly higher than that in peri-tumor tissue (both, P < 0.01), adenomatous polyps (p-ERK1/2, P < 0.01; PI3-K, P < 0.05), and chronic cholecystitis (both, P < 0.01). The positive staining for p-ERK1/2 or PI3-K was significantly lower in well/highly-differentiated adenocancinomas with maximal diameter < 2.0 cm, no metastasis to lymph node, and no infiltration of regional tissues or organs compared to poorly-differentiated adenocarcinomas which are characterized by a maximal diameter ≥ 2.0 cm, with metastasis to lymph node and infiltration of regional tissues or organs (P < 0.05 or P < 0.01). Moreover, the frequency of p-ERK1/2 expression in gallbladder adenocarcinomas without gallstone was significantly lower than those with gallstones. Increased expression of p-ERK1/2 (P < 0.05) and PI3K (P = 0.062) was associated with decreased overall survival. Multivariate Cox regression analysis showed that increased p-ERK1/2 expression was an independent prognostic predictor in gallbladder carcinoma (P = 0.028). Conclusion Increased expression of p-ERK1/2 and PI3K might contribute to gallbladder carcinogenesis. p-ERK1/2 over-expression is correlated with decreased survival and therefore may serve as an important biological marker in development of gallbladder adenocarcinoma.
Collapse
Affiliation(s)
- Qinglong Li
- Research Laboratory of Hepatobiliary Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | | |
Collapse
|
47
|
Han W, Gills JJ, Memmott RM, Lam S, Dennis PA. The chemopreventive agent myoinositol inhibits Akt and extracellular signal-regulated kinase in bronchial lesions from heavy smokers. Cancer Prev Res (Phila) 2009; 2:370-6. [PMID: 19336734 DOI: 10.1158/1940-6207.capr-08-0209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myoinositol is an isomer of glucose that has chemopreventive activity in animal models of cancer. In a recent phase I clinical trial, myoinositol administration correlated with a statistically significant regression of preexisting bronchial dysplastic lesions in heavy smokers. To shed light on the potential mechanisms involved, activation of Akt and extracellular signal-regulated kinase (ERK), two kinases that control cellular proliferation and survival, was assessed in 206 paired bronchial biopsies from 21 patients who participated in this clinical trial. Before myoinositol treatment, strongly positive staining for activation of Akt was detected in 27% of hyperplastic/metaplastic lesions and 58% of dysplastic lesions (P = 0.05, chi(2) test). There was also a trend toward increased activation of ERK (28% in regions of hyperplasia/metaplasia to 42% of dysplastic lesions). Following myoinositol treatment, significant decreases in Akt and ERK phosphorylation were observed in dysplastic (P < 0.01 and 0.05, respectively) but not hyperplastic/metaplastic lesions (P > 0.05). In vitro, myoinositol decreased endogenous and tobacco carcinogen-induced activation of Akt and ERK in immortalized human bronchial epithelial cells, which decreased cell proliferation and induced a G(1)-S cell cycle arrest. These results show that the phenotypic progression of premalignant bronchial lesions from smokers correlates with increased activation of Akt and ERK and that these kinases are targets of myoinositol. Moreover, they suggest that myoinositol might cause regression of bronchial dysplastic lesions through inhibition of active Akt and ERK.
Collapse
Affiliation(s)
- Wei Han
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20889, USA
| | | | | | | | | |
Collapse
|
48
|
Muralidharan-Chari V, Hoover H, Clancy J, Schweitzer J, Suckow MA, Schroeder V, Castellino FJ, Schorey JS, D'Souza-Schorey C. ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res 2009; 69:2201-9. [PMID: 19276388 DOI: 10.1158/0008-5472.can-08-1301] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study shows that the small GTP-binding protein ADP-ribosylation factor 6 (ARF6) is an important regulator of tumor growth and metastasis. Using spontaneous melanoma tumor growth assays and experimental metastasis assays in nude mice, we show that sustained activation of ARF6 reduces tumor mass growth but significantly enhances the invasive capacity of tumor cells. In contrast, mice injected with tumor cells expressing a dominantly inhibitory ARF6 mutant exhibited a lower incidence and degree of invasion and lung metastasis compared with control animals. Effects on tumor growth correlate with reduced cell proliferation capacity and are linked at least in part to alterations in mitotic progression induced by defective ARF6 cycling. Furthermore, phospho-ERK levels in subcultured cells from ARF6(GTP) and ARF6(GDP) tumor explants correlate with invasive capacity. ARF6-induced extracellular signal-regulated kinase (ERK) signaling leads to Rac1 activation to promote invadopodia formation and cell invasion. These findings document an intricate role for ARF6 and the regulation of ERK activation in orchestrating mechanisms underlying melanoma growth, invasion, and metastases.
Collapse
Affiliation(s)
- Vandhana Muralidharan-Chari
- Department of Biological Sciences, Freimann Life Science Center, and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Biol Chem 2008; 389:1163-71. [PMID: 18713003 DOI: 10.1515/bc.2008.132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Down-regulation of Ras signalling is mediated by specific GTPase-activating proteins (GAPs), which stimulate the very slow GTPase reaction of Ras by 10(5)-fold. The basic features of the GAP activity involve the stabilisation of both switch regions of Ras in the transition state, and the insertion of an arginine finger. In the case of oncogenic Ras mutations, the features of the active site are disturbed. To understand these features in more detail, we have investigated the effects of oncogenic mutations of Ras and compared the GAP-stimulated GTPase reaction with the ability to form GAP-mediated aluminium or beryllium fluoride complexes. In general we find a correlation between the size of the amino acid at position 12, the GTPase activity and ability to form aluminium fluoride complexes. While Gly12 is very sensitive to even the smallest possible structural change, Gly13 is much less sensitive to steric hindrance, but is sensitive to charge. Oncogenic mutants of Ras defective in the GTPase activity can however form ground-state GppNHp complexes with GAP, which can be mimicked by beryllium fluoride binding. We show that beryllium fluoride complexes are less sensitive to structural changes and report on a state close to but different from the ground state of the GAP-stimulated GTPase reaction.
Collapse
Affiliation(s)
- Lothar Gremer
- Abteilung Strukturelle Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
50
|
Johnson TR, Khandrika L, Kumar B, Venezia S, Koul S, Chandhoke R, Maroni P, Donohue R, Meacham RB, Koul HK. Focal Adhesion Kinase Controls Aggressive Phenotype of Androgen-Independent Prostate Cancer. Mol Cancer Res 2008; 6:1639-48. [DOI: 10.1158/1541-7786.mcr-08-0052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|