1
|
Arunachalam AB. Vaccines Induce Homeostatic Immunity, Generating Several Secondary Benefits. Vaccines (Basel) 2024; 12:396. [PMID: 38675778 PMCID: PMC11053716 DOI: 10.3390/vaccines12040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The optimal immune response eliminates invading pathogens, restoring immune equilibrium without inflicting undue harm to the host. However, when a cascade of immunological reactions is triggered, the immune response can sometimes go into overdrive, potentially leading to harmful long-term effects or even death. The immune system is triggered mostly by infections, allergens, or medical interventions such as vaccination. This review examines how these immune triggers differ and why certain infections may dysregulate immune homeostasis, leading to inflammatory or allergic pathology and exacerbation of pre-existing conditions. However, many vaccines generate an optimal immune response and protect against the consequences of pathogen-induced immunological aggressiveness, and from a small number of unrelated pathogens and autoimmune diseases. Here, we propose an "immuno-wave" model describing a vaccine-induced "Goldilocks immunity", which leaves fine imprints of both pro-inflammatory and anti-inflammatory milieus, derived from both the innate and the adaptive arms of the immune system, in the body. The resulting balanced, 'quiet alert' state of the immune system may provide a jump-start in the defense against pathogens and any associated pathological inflammatory or allergic responses, allowing vaccines to go above and beyond their call of duty. In closing, we recommend formally investigating and reaping many of the secondary benefits of vaccines with appropriate clinical studies.
Collapse
Affiliation(s)
- Arun B Arunachalam
- Analytical Sciences, R&D Sanofi Vaccines, 1 Discovery Dr., Swiftwater, PA 18370, USA
| |
Collapse
|
2
|
Eggert J, Zinzow-Kramer WM, Hu Y, Kolawole EM, Tsai YL, Weiss A, Evavold BD, Salaita K, Scharer CD, Au-Yeung BB. Cbl-b mitigates the responsiveness of naive CD8 + T cells that experience extensive tonic T cell receptor signaling. Sci Signal 2024; 17:eadh0439. [PMID: 38319998 PMCID: PMC10897907 DOI: 10.1126/scisignal.adh0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Naive T cells experience tonic T cell receptor (TCR) signaling in response to self-antigens presented by major histocompatibility complex (MHC) in secondary lymphoid organs. We investigated how relatively weak or strong tonic TCR signals influence naive CD8+ T cell responses to stimulation with foreign antigens. The heterogeneous expression of Nur77-GFP, a transgenic reporter of tonic TCR signaling, in naive CD8+ T cells suggests variable intensities or durations of tonic TCR signaling. Although the expression of genes associated with acutely stimulated T cells was increased in Nur77-GFPHI cells, these cells were hyporesponsive to agonist TCR stimulation compared with Nur77-GFPLO cells. This hyporesponsiveness manifested as diminished activation marker expression and decreased secretion of IFN-γ and IL-2. The protein abundance of the ubiquitin ligase Cbl-b, a negative regulator of TCR signaling, was greater in Nur77-GFPHI cells than in Nur77-GFPLO cells, and Cbl-b deficiency partially restored the responsiveness of Nur77-GFPHI cells. Our data suggest that the cumulative effects of previously experienced tonic TCR signaling recalibrate naive CD8+ T cell responsiveness. These changes include gene expression changes and negative regulation partially dependent on Cbl-b. This cell-intrinsic negative feedback loop may enable the immune system to restrain naive CD8+ T cells with higher self-reactivity.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| | - Wendy M. Zinzow-Kramer
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University; Atlanta, 30322, USA
| | - Elizabeth M. Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | - Yuan-Li Tsai
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco; San Francisco, 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Departments of Medicine and of Microbiology and Immunology, University of California, San Francisco; San Francisco, 94143, USA
| | - Brian D. Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84112, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University; Atlanta, 30322, USA
| | | | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University; Atlanta, 30322, USA
| |
Collapse
|
3
|
Zhang C, Sheng Q, Zhao N, Huang S, Zhao Y. DNA hypomethylation mediates immune response in pan-cancer. Epigenetics 2023; 18:2192894. [PMID: 36945884 PMCID: PMC10038033 DOI: 10.1080/15592294.2023.2192894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Abnormal DNA methylation is a fundamental characterization of epigenetics in cancer. Here we demonstrate that aberrant DNA methylating can modulate the tumour immune microenvironment in 16 cancer types. Differential DNA methylation in promoter region can regulate the transcriptomic pattern of immune-related genes and DNA hypomethylation mainly participated in the processes of immunity, carcinogenesis and immune infiltration. Moreover, many cancer types shared immune-related functions, like activation of innate immune response, interferon gamma response and NOD-like receptor signalling pathway. DNA methylation can further help identify molecular subtypes of kidney renal clear cell carcinoma. These subtypes are characterized by DNA methylation pattern, major histocompatibility complex, cytolytic activity and cytotoxic t lymphocyte and tumour mutation burden, and subtype with hypomethylation pattern shows unstable immune status. Then, we investigate the DNA methylation pattern of exhaustion-related marker genes and further demonstrate the role of hypomethylation in tumour immune microenvironment. In summary, our findings support the use of hypomethylation as a biomarker to understand the mechanism of tumour immune environment.
Collapse
Affiliation(s)
- Chunlong Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Qi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shan Huang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Juhl M, Follin B, Christensen JP, Kastrup J, Ekblond A. Functional in vitro models of the inhibitory effect of adipose tissue-derived stromal cells on lymphocyte proliferation: Improved sensitivity and quantification through flow cytometric analysis. J Immunol Methods 2022; 510:113360. [PMID: 36130659 DOI: 10.1016/j.jim.2022.113360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
As the interest in cell-based therapies continue to increase, so does the need for assays detailing potency and providing platforms for identifying mechanisms of action. For most clinical implications of mesenchymal stromal cells, the immunomodulatory effect is crucial. While the suppressive potential on lymphocyte proliferation is well-described in literature, reproducible and standardized assays to document and quantify it varies from research group to research group and between methodologies. The aim of the present study was to utilize flowcytometry to quantify proliferation and identify measurements to increase the assay sensitivity to treatment with adipose tissue-derived stromal cells (ASC). Lymphocyte proliferation was induced by the unspecific mitogen phytohemagglutinin or by alloreactivity towards an irradiated donor in a mixed lymphocyte reaction. Addition of ASC did not change the composition of T cells, B cells, NK cells, NKT cell types considerably; likewise, no increases in proliferation were observed upon inclusion of ASC, demonstrating that ASC does not evoke an additive response. On the contrary, the suppressive effect of ASC was documented. By applying different gating strategies and curve fitting, the sensitivity was increased, and dose-response relationships established. Flow cytometric evaluation allows for more detailed identification of the lymphocytes affected by ASC and constitute a significant asset in future unraveling of modes and mechanisms of action, as well as quantification of potency.
Collapse
Affiliation(s)
- Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark.
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| | | | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Denmark
| |
Collapse
|
5
|
Radtke D, Thuma N, Schülein C, Kirchner P, Ekici AB, Schober K, Voehringer D. Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice. eLife 2022; 11:74183. [PMID: 35950748 PMCID: PMC9391044 DOI: 10.7554/elife.74183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Th2 cells provide effector functions in type 2 immune responses to helminths and allergens. Despite knowledge about molecular mechanisms of Th2 cell differentiation, there is little information on Th2 cell heterogeneity and clonal distribution between organs. To address this, we performed combined single-cell transcriptome and T-cell receptor (TCR) clonotype analysis on murine Th2 cells in mesenteric lymph nodes (MLNs) and lung after infection with Nippostrongylus brasiliensis (Nb) as a human hookworm infection model. We find organ-specific expression profiles, but also populations with conserved migration or effector/resident memory signatures that unexpectedly cluster with potentially regulatory Il10posFoxp3neg cells. A substantial MLN subpopulation with an interferon response signature suggests a role for interferon signaling in Th2 differentiation or diversification. Further RNA-inferred developmental directions indicate proliferation as a hub for differentiation decisions. Although the TCR repertoire is highly heterogeneous, we identified expanded clones and CDR3 motifs. Clonal relatedness between distant organs confirmed effective exchange of Th2 effector cells, although locally expanded clones dominated the response. We further cloned an Nb-specific TCR from an expanded clone in the lung effector cluster and describe surface markers that distinguish transcriptionally defined clusters. These results provide insights in Th2 cell subset diversity and clonal relatedness in distant organs.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Natalie Thuma
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christine Schülein
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kilian Schober
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Howard FHN, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding Immune Responses to Viruses-Do Underlying Th1/Th2 Cell Biases Predict Outcome? Viruses 2022; 14:1493. [PMID: 35891472 PMCID: PMC9324514 DOI: 10.3390/v14071493] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging and re-emerging viral diseases have increased in number and geographical extent during the last decades. Examples include the current COVID-19 pandemic and the recent epidemics of the Chikungunya, Ebola, and Zika viruses. Immune responses to viruses have been well-characterised within the innate and adaptive immunity pathways with the outcome following viral infection predominantly attributed to properties of the virus and circumstances of the infection. Perhaps the belief that the immune system is often considered as a reactive component of host defence, springing into action when a threat is detected, has contributed to a poorer understanding of the inherent differences in an individual's immune system in the absence of any pathology. In this review, we focus on how these host factors (age, ethnicity, underlying pathologies) may skew the T helper cell response, thereby influencing the outcome following viral infection but also whether we can use these inherent biases to predict patients at risk of a deviant response and apply strategies to avoid or overcome them.
Collapse
Affiliation(s)
- Faith H. N. Howard
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; (A.K.); (N.W.); (A.M.); (C.C.-R.); (M.M.)
| | | | | | | | | | | |
Collapse
|
7
|
Heritable changes in division speed accompany the diversification of single T cell fate. Proc Natl Acad Sci U S A 2022; 119:2116260119. [PMID: 35217611 PMCID: PMC8892279 DOI: 10.1073/pnas.2116260119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Rapid clonal expansion of antigen-specific T cells is a fundamental feature of adaptive immune responses. Here, we utilize continuous live-cell imaging in vitro to track the division speed and genealogical connections of all descendants derived from a single naive CD8+ T cell throughout up to ten divisions of activation-induced proliferation. Bayesian inference of tree-structured data reveals that clonal expansion is divided into a homogenously fast burst phase encompassing two to three divisions and a subsequent diversification phase during which T cells segregate into quickly dividing effector T cells and more slowly cycling memory precursors. Our work highlights cell cycle speed as a major heritable property that is regulated in parallel to key lineage decisions of activated T cells. Rapid clonal expansion of antigen-specific T cells is a fundamental feature of adaptive immune responses. It enables the outgrowth of an individual T cell into thousands of clonal descendants that diversify into short-lived effectors and long-lived memory cells. Clonal expansion is thought to be programmed upon priming of a single naive T cell and then executed by homogenously fast divisions of all of its descendants. However, the actual speed of cell divisions in such an emerging “T cell family” has never been measured with single-cell resolution. Here, we utilize continuous live-cell imaging in vitro to track the division speed and genealogical connections of all descendants derived from a single naive CD8+ T cell throughout up to ten divisions of activation-induced proliferation. This comprehensive mapping of T cell family trees identifies a short burst phase, in which division speed is homogenously fast and maintained independent of external cytokine availability or continued T cell receptor stimulation. Thereafter, however, division speed diversifies, and model-based computational analysis using a Bayesian inference framework for tree-structured data reveals a segregation into heritably fast- and slow-dividing branches. This diversification of division speed is preceded already during the burst phase by variable expression of the interleukin-2 receptor alpha chain. Later it is accompanied by selective expression of memory marker CD62L in slower dividing branches. Taken together, these data demonstrate that T cell clonal expansion is structured into subsequent burst and diversification phases, the latter of which coincides with specification of memory versus effector fate.
Collapse
|
8
|
Mehrotra A, Bhushan B, Kumar A, Panigrahi M, Chauhan A, Kumari S, Saini BL, Dutt T, Mishra BP. Characterisation and comparison of immune response mechanisms in an indigenous and a commercial pig breed after classical swine fever vaccination. Anim Genet 2021; 53:68-79. [PMID: 34729794 DOI: 10.1111/age.13152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 01/27/2023]
Abstract
The live attenuated classical swine fever (CSF) vaccine has been successfully used to prevent and control CSF outbreaks for 6 decades. However, the immune response mechanisms against the vaccine remain poorly understood. Moreover, very few reports exist regarding the breed differences in the response to CSF vaccine. In this study, we generated the peripheral blood mononuclear cell transcriptomes of indigenous Ghurrah and commercial Landrace pig breeds, before and 7 days after CSF vaccination. Subsequently, between and within-breed differential gene expression analyses were carried out. Results revealed large differences in pre-vaccination peripheral blood mononuclear cell transcriptome profiles of the two breeds, which were homogenised 7 days after vaccination. Before vaccination, gene set enrichment analysis showed that pathways related to antigen sensing and innate immune response were enriched in Ghurrah, while pathways related to adaptive immunity were enriched in Landrace. Ghurrah exhibited greater immunomodulation compared to Landrace following the vaccination. In Ghurrah, cell-cycle processes and T-cell response pathways were upregulated after vaccination. However, no pathways were upregulated in Landrace after vaccination. Pathways related to inflammation were downregulated in both the breeds after vaccination. Key regulators of inflammation such as IL1A, IL1B, NFKBIA and TNF genes were strongly downregulated in both the breeds after vaccination. Overall, our results have elucidated the mechanisms of host immune response against CSF vaccination in two distinct breeds and revealed common key genes instrumental in the global immune response to the vaccine.
Collapse
Affiliation(s)
- A Mehrotra
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - B Bhushan
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - A Kumar
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - M Panigrahi
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - A Chauhan
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - S Kumari
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - B L Saini
- Division of Animal Genetics, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - T Dutt
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| | - B P Mishra
- Animal Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnangar, Bareilly, UP, 243122, India
| |
Collapse
|
9
|
Bhattacharyya ND, Counoupas C, Daniel L, Zhang G, Cook SJ, Cootes TA, Stifter SA, Bowen DG, Triccas JA, Bertolino P, Britton WJ, Feng CG. TCR Affinity Controls the Dynamics but Not the Functional Specification of the Antimycobacterial CD4 + T Cell Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:2875-2887. [PMID: 34049970 DOI: 10.4049/jimmunol.2001271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
The quality of T cell responses depends on the lymphocytes' ability to undergo clonal expansion, acquire effector functions, and traffic to the site of infection. Although TCR signal strength is thought to dominantly shape the T cell response, by using TCR transgenic CD4+ T cells with different peptide:MHC binding affinity, we reveal that TCR affinity does not control Th1 effector function acquisition or the functional output of individual effectors following mycobacterial infection in mice. Rather, TCR affinity calibrates the rate of cell division to synchronize the distinct processes of T cell proliferation, differentiation, and trafficking. By timing cell division-dependent IL-12R expression, TCR affinity controls when T cells become receptive to Th1-imprinting IL-12 signals, determining the emergence and magnitude of the Th1 effector pool. These findings reveal a distinct yet cooperative role for IL-12 and TCR binding affinity in Th1 differentiation and suggest that the temporal activation of clones with different TCR affinity is a major strategy to coordinate immune surveillance against persistent pathogens.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Lina Daniel
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Guoliang Zhang
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Stuart J Cook
- Immune Imaging Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Taylor A Cootes
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sebastian A Stifter
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - David G Bowen
- Liver Immunology Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; and
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Patrick Bertolino
- Liver Immunology Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; and
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Department of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; .,Tuberculosis Research Program, Centenary Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Rangel Rivera GO, Knochelmann HM, Dwyer CJ, Smith AS, Wyatt MM, Rivera-Reyes AM, Thaxton JE, Paulos CM. Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy. Front Immunol 2021; 12:645242. [PMID: 33815400 PMCID: PMC8014042 DOI: 10.3389/fimmu.2021.645242] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging reports show that metabolic pathways can be targeted to enhance T cell-mediated immunity to tumors. Yet, tumors consume key metabolites in the host to survive, thus robbing T cells of these nutrients to function and thrive. T cells are often deprived of basic building blocks for energy in the tumor, including glucose and amino acids needed to proliferate or produce cytotoxic molecules against tumors. Immunosuppressive molecules in the host further compromise the lytic capacity of T cells. Moreover, checkpoint receptors inhibit T cell responses by impairing their bioenergetic potential within tumors. In this review, we discuss the fundamental metabolic pathways involved in T cell activation, differentiation and response against tumors. We then address ways to target metabolic pathways to improve the next generation of immunotherapies for cancer patients.
Collapse
Affiliation(s)
- Guillermo O Rangel Rivera
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Hannah M Knochelmann
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Connor J Dwyer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Megan M Wyatt
- Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Amalia M Rivera-Reyes
- Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Jessica E Thaxton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Orthopaedics and Physical Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Chrystal M Paulos
- Department of Surgery, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Pfister G, Toor SM, Sasidharan Nair V, Elkord E. An evaluation of sorter induced cell stress (SICS) on peripheral blood mononuclear cells (PBMCs) after different sort conditions - Are your sorted cells getting SICS? J Immunol Methods 2020; 487:112902. [DOI: 10.1016/j.jim.2020.112902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
|
12
|
Costa Del Amo P, Debebe B, Razavi-Mohseni M, Nakaoka S, Worth A, Wallace D, Beverley P, Macallan D, Asquith B. The Rules of Human T Cell Fate in vivo. Front Immunol 2020; 11:573. [PMID: 32322253 PMCID: PMC7156550 DOI: 10.3389/fimmu.2020.00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 12/05/2022] Open
Abstract
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset.
Collapse
Affiliation(s)
- Pedro Costa Del Amo
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bisrat Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Shinji Nakaoka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Andrew Worth
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Diana Wallace
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Peter Beverley
- TB Research Centre, National Heart and Lung Research Institute, Imperial College London, London, United Kingdom
| | - Derek Macallan
- Institute for Infection and Immunity, St. George's Hospital, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
de Graaf NPJ, Bontkes HJ, Roffel S, Kleverlaan CJ, Rustemeyer T, Gibbs S, Feilzer AJ. Non-heat inactivated autologous serum increases accuracy of in vitro CFSE lymphocyte proliferation test (LPT) for nickel. Clin Exp Allergy 2020; 50:722-732. [PMID: 32215995 PMCID: PMC7317482 DOI: 10.1111/cea.13603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 02/08/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023]
Abstract
Background Skin patch testing is still seen as the gold standard for the diagnosis of allergic hypersensitivity. For several metals and for patients with a suspected adverse reaction to their medical device implant material, patch testing can be unreliable. The current alternative to metal allergy patch testing is the in vitro lymphocyte proliferation test (LPT) using tritiated thymidine. This method is well‐established but requires handling of radioactive material, often uses heat‐inactivated allogenic human pooled serum and cannot determine T cell subsets. Objective To develop a radioactive free LPT by using carboxyfluorescein succinimidyl ester (CFSE) and to evaluate the influence of serum source (heat‐inactivated human pooled serum [HI HPS] vs autologous serum) on the sensitivity and specificity of the nickel‐specific LPT. Methods Peripheral blood mononuclear cells derived from nickel‐allergic patients and healthy controls were collected, labelled with CFSE and cultured in medium containing 10% HI HPS or 10% autologous serum with or without additional T cell skewing cytokine cocktails (Th1: IL‐7/IL‐12, Th2: IL‐7/IL‐4 or Th17: IL‐7/IL‐23/IL‐1β) in the absence or presence of NiSO4. The stimulation index (SI) was calculated as the ratio of divided cells, that is the percentage of CFSElow/neg CD3+CD4+ T‐lymphocytes upon nickel stimulation compared to the percentage of CFSElow/neg CD3+CD4+ T‐lymphocytes without antigen. These results were compared with the history of Ni allergy, patch test results and the MELISA test. Results Autologous serum positively influenced Ni‐specific proliferation while HI HPS negatively influenced Ni‐specific proliferation. The test protocol analysing CD4+ cells and autologous serum without skewing cytokines scored the best diagnostic values (sensitivity 95%; specificity 93%; and overall accuracy 94%) compared to the parallel test using HI HPS (accuracy 60%). Cytokine supplements did not further improve the test protocol which used autologous serum. The protocol using HI HPS could be further improved by addition of the cytokine skewing cocktails. Conclusions Here, we describe an optimized and highly accurate flow cytometric LPT which comprises of CFSE‐labelled cells cultured in autologous serum (not heat inactivated) and without the presence of T cell skewing cytokines. Clinical relevance The sensitivity and specificity of LPT is enhanced, compared to HI HPS, when autologous serum without skewing cytokines is used.
Collapse
Affiliation(s)
- Niels P J de Graaf
- Department of Dermatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Clinical Chemistry, Medical Immunology Laboratory, Amsterdam Infection & Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, MOVE Research Institute Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sue Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, MOVE Research Institute Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert J Feilzer
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, Halle S, Patzer GE, Bošnjak B, Kiefer F, Janssen A, Friedrichsen M, Poetzsch J, Kohli K, Lueder Y, Gutierrez Jauregui R, Eckert N, Worbs T, Galla M, Förster R. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun 2020; 11:1114. [PMID: 32111837 PMCID: PMC7048855 DOI: 10.1038/s41467-020-14921-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/09/2020] [Indexed: 01/12/2023] Open
Abstract
Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live imaging data further show that activated T cells come to an instantaneous arrest mediated passively by the mechanical 3D-sieve barrier of the LN subcapsular sinus (SCS). Arrested T cells subsequently migrate randomly on the sinus floor independent of both chemokines and integrins. However, chemokine receptors are imperative for guiding cells out of the SCS, and for their subsequent directional translocation towards the T cell zone. By contrast, integrins are dispensable for LN homing, yet still contribute by increasing the dwell time within the SCS and by potentially enhancing T cell sensing of chemokine gradients. Together, these findings provide fundamental insights into mechanisms that control homing of lymph-derived immune cells. Immune cells mostly enter lymph nodes (LN) from blood circulation, but whether afferent lymphatics contributes to LN entry is unclear. Here, the authors show, using a photo-convertible reporter, that T cells in afferent lymphatics frequently enter LN and become arrested in the subcapsular sinus, with chemokines and integrins further guiding their migration in the LN.
Collapse
Affiliation(s)
- Rieke Martens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asolina Braun
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Olga Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Jenny Poetzsch
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Karan Kohli
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Tim Worbs
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Pillay BA, Avery DT, Smart JM, Cole T, Choo S, Chan D, Gray PE, Frith K, Mitchell R, Phan TG, Wong M, Campbell DE, Hsu P, Ziegler JB, Peake J, Alvaro F, Picard C, Bustamante J, Neven B, Cant AJ, Uzel G, Arkwright PD, Casanova JL, Su HC, Freeman AF, Shah N, Hickstein DD, Tangye SG, Ma CS. Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight 2019; 5:127527. [PMID: 31021819 DOI: 10.1172/jci.insight.127527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bi-allelic inactivating mutations in DOCK8 cause a combined immunodeficiency characterised by severe pathogen infections, eczema, allergies, malignancy and impaired humoral responses. These clinical features result from functional defects in most lymphocyte lineages. Thus, DOCK8 plays a key role in immune cell function. Hematopoietic stem cell transplantation (HSCT) is curative for DOCK8 deficiency. While previous reports have described clinical outcomes for DOCK8 deficiency following HSCT, the effect on lymphocyte reconstitution and function has not been investigated. Our study determined whether defects in lymphocyte differentiation and function in DOCK8-deficient patients were restored following HSCT. DOCK8-deficient T and B lymphocytes exhibited aberrant activation and effector function in vivo and in vitro. Frequencies of αβ T and MAIT cells were reduced while γδT cells were increased in DOCK8-deficient patients. HSCT improved, abnormal lymphocyte function in DOCK8-deficient patients. Elevated total and allergen-specific IgE in DOCK8-deficient patients decreased over time following HSCT. Our results document the extensive catalogue of cellular defects in DOCK8-deficient patients, and the efficacy of HSCT to correct these defects, concurrent with improvements in clinical phenotypes. Overall, our findings provide mechanisms at a functional cellular level for improvements in clinical features of DOCK8 deficiency post-HSCT, identify biomarkers that correlate with improved clinical outcomes, and inform the general dynamics of immune reconstitution in patients with monogenic immune disorders following HSCT.
Collapse
Affiliation(s)
- Bethany A Pillay
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle T Avery
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Joanne M Smart
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sharon Choo
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Damien Chan
- Women and Children's Hosp==ital, Adelaide, South Australia, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Katie Frith
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard Mitchell
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Dianne E Campbell
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - John B Ziegler
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Frank Alvaro
- Pediatric Hematology, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Andrew J Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle upon Tyne University, Newcastle upon Tyne, United Kingdom
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, United Kingdom
| | - Jean-Laurent Casanova
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, New York, New York, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Laphanuwat P, Jirawatnotai S. Immunomodulatory Roles of Cell Cycle Regulators. Front Cell Dev Biol 2019; 7:23. [PMID: 30863749 PMCID: PMC6399147 DOI: 10.3389/fcell.2019.00023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/08/2019] [Indexed: 01/11/2023] Open
Abstract
Core cell cycle regulators, including cyclin-dependent kinases (CDKs), cyclins, and cyclin-dependent kinase inhibitors (CKIs), are known for their well-characterized roles in cell division. Several recent studies have shed light on the roles of these proteins in immune modulation. The development and activation of cells in the immune system take place not only during embryonic development but throughout the life of a multicellular organism. Cell cycle regulators are involved in the development of immune cells, partly as the machinery controlling the expansion and differentiation of the populations of immune cells. In addition, these proteins serve non-cell cycle functions. In this review, we summarize the emerging roles of cell cycle regulators in modulating functions of the immune system and discuss how they may be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Siriraj Center of Research for Excellence for Systems Pharmacology, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Siriraj Center of Research for Excellence for Systems Pharmacology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Bier J, Rao G, Payne K, Brigden H, French E, Pelham SJ, Lau A, Lenthall H, Edwards ESJ, Smart JM, Cole TS, Choo S, Joshi AY, Abraham RS, O'Sullivan M, Boztug K, Meyts I, Gray PE, Berglund LJ, Hsu P, Wong M, Holland SM, Notarangelo LD, Uzel G, Ma CS, Brink R, Tangye SG, Deenick EK. Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4 + T cells. J Allergy Clin Immunol 2019; 144:236-253. [PMID: 30738173 DOI: 10.1016/j.jaci.2019.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in PIK3CD cause a primary immunodeficiency characterized by recurrent respiratory tract infections, susceptibility to herpesvirus infections, and impaired antibody responses. Previous work revealed defects in CD8+ T and B cells that contribute to this clinical phenotype, but less is understood about the role of CD4+ T cells in disease pathogenesis. OBJECTIVE We sought to dissect the effects of increased phosphoinositide 3-kinase (PI3K) signaling on CD4+ T-cell function. METHODS We performed detailed ex vivo, in vivo, and in vitro phenotypic and functional analyses of patients' CD4+ T cells and a novel murine disease model caused by overactive PI3K signaling. RESULTS PI3K overactivation caused substantial increases in numbers of memory and follicular helper T (TFH) cells and dramatic changes in cytokine production in both patients and mice. Furthermore, PIK3CD GOF human TFH cells had dysregulated phenotype and function characterized by increased programmed cell death protein 1, CXCR3, and IFN-γ expression, the phenotype of a TFH cell subset with impaired B-helper function. This was confirmed in vivo in which Pik3cd GOF CD4+ T cells also acquired an aberrant TFH phenotype and provided poor help to support germinal center reactions and humoral immune responses by antigen-specific wild-type B cells. The increase in numbers of both memory and TFH cells was largely CD4+ T-cell extrinsic, whereas changes in cytokine production and TFH cell function were cell intrinsic. CONCLUSION Our studies reveal that CD4+ T cells with overactive PI3K have aberrant activation and differentiation, thereby providing mechanistic insight into dysfunctional antibody responses in patients with PIK3CD GOF mutations.
Collapse
Affiliation(s)
- Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Henry Brigden
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; University of Bath, Bath, United Kingdom
| | - Elise French
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; University of Bath, Bath, United Kingdom
| | - Simon J Pelham
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Helen Lenthall
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Joanne M Smart
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Theresa S Cole
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Avni Y Joshi
- Division of Allergy and Immunology, Mayo Clinic Children's Center, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Roshini S Abraham
- Division of Allergy and Immunology, Mayo Clinic Children's Center, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Michael O'Sullivan
- Department of Immunology and Allergy, Princess Margaret Hospital, Subiaco, Australia
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Paul E Gray
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia
| | - Lucinda J Berglund
- Clinical Immunogenomics Research Consortia Australia, Sydney, Australia; Immunopathology Department, Westmead Hospital, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortia Australia, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Children's Hospital at Westmead, Westmead, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortia Australia, Sydney, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia; Children's Hospital at Westmead, Westmead, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia.
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Clinical Immunogenomics Research Consortia Australia, Sydney, Australia.
| |
Collapse
|
18
|
Pramanik J, Chen X, Kar G, Henriksson J, Gomes T, Park JE, Natarajan K, Meyer KB, Miao Z, McKenzie ANJ, Mahata B, Teichmann SA. Genome-wide analyses reveal the IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation. Genome Med 2018; 10:76. [PMID: 30355343 PMCID: PMC6199730 DOI: 10.1186/s13073-018-0589-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
Background The IRE1a-XBP1 pathway is a conserved adaptive mediator of the unfolded protein response. The pathway is indispensable for the development of secretory cells by facilitating protein folding and enhancing secretory capacity. In the immune system, it is known to function in dendritic cells, plasma cells, and eosinophil development and differentiation, while its role in T helper cell is unexplored. Here, we investigated the role of the IRE1a-XBP1 pathway in regulating activation and differentiation of type-2 T helper cell (Th2), a major T helper cell type involved in allergy, asthma, helminth infection, pregnancy, and tumor immunosuppression. Methods We perturbed the IRE1a-XBP1 pathway and interrogated its role in Th2 cell differentiation. We performed genome-wide transcriptomic analysis of differential gene expression to reveal IRE1a-XBP1 pathway-regulated genes and predict their biological role. To identify direct target genes of XBP1 and define XBP1’s regulatory network, we performed XBP1 ChIPmentation (ChIP-seq). We validated our predictions by flow cytometry, ELISA, and qPCR. We also used a fluorescent ubiquitin cell cycle indicator mouse to demonstrate the role of XBP1 in the cell cycle. Results We show that Th2 lymphocytes induce the IRE1a-XBP1 pathway during in vitro and in vivo activation. Genome-wide transcriptomic analysis of differential gene expression by perturbing the IRE1a-XBP1 pathway reveals XBP1-controlled genes and biological pathways. Performing XBP1 ChIPmentation (ChIP-seq) and integrating with transcriptomic data, we identify XBP1-controlled direct target genes and its transcriptional regulatory network. We observed that the IRE1a-XBP1 pathway controls cytokine secretion and the expression of two Th2 signature cytokines, IL13 and IL5. We also discovered that the IRE1a-XBP1 pathway facilitates activation-dependent Th2 cell proliferation by facilitating cell cycle progression through S and G2/M phase. Conclusions We confirm and detail the critical role of the IRE1a-XBP1 pathway during Th2 lymphocyte activation in regulating cytokine expression, secretion, and cell proliferation. Our high-quality genome-wide XBP1 ChIP and gene expression data provide a rich resource for investigating XBP1-regulated genes. We provide a browsable online database available at http://data.teichlab.org. Electronic supplementary material The online version of this article (10.1186/s13073-018-0589-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xi Chen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gozde Kar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Johan Henriksson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kedar Natarajan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Zhichao Miao
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Bidesh Mahata
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. .,Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
19
|
Abstract
Problem-solving strategies in immunology currently utilize a series of ad hoc, qualitative variations on a foundation of Burnet's formulation of clonal selection theory. These modifications, including versions of two-signal theory, describe how signals regulate lymphocytes to make important decisions governing self-tolerance and changes to their effector and memory states. These theories are useful but are proving inadequate to explain the observable genesis and control of heterogeneity in cell types, the nonlinear passage of cell fate trajectories and how the input from multiple environmental signals can be integrated at different times and strengths. Here, I argue for a paradigm change to place immune theory on a firmer philosophical and quantitative foundation to resolve these difficulties. This change rejects the notion of identical cell subsets and substitutes the concept of a cell as comprised of autonomous functional mechanical components subject to stochastic variations in construction and operation. The theory aims to explain immunity in terms of cell population dynamics, dictated by the operation of cell machinery, such as randomizing elements, division counters, and fate timers. The effect of communicating signals alone and in combination within this system is determined with a cellular calculus. A series of models developed with these principles can resolve logical cell fate and signaling paradoxes and offer a reinterpretation for how self-non-self discrimination and immune response class are controlled.
Collapse
Affiliation(s)
- Philip D. Hodgkin
- Immunology DivisionThe Walter & Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
- Department of Medical BiologyThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
20
|
Horton MB, Prevedello G, Marchingo JM, Zhou JHS, Duffy KR, Heinzel S, Hodgkin PD. Multiplexed Division Tracking Dyes for Proliferation-Based Clonal Lineage Tracing. THE JOURNAL OF IMMUNOLOGY 2018; 201:1097-1103. [PMID: 29914887 DOI: 10.4049/jimmunol.1800481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/19/2022]
Abstract
The generation of cellular heterogeneity is an essential feature of immune responses. Understanding the heritability and asymmetry of phenotypic changes throughout this process requires determination of clonal-level contributions to fate selection. Evaluating intraclonal and interclonal heterogeneity and the influence of distinct fate determinants in large numbers of cell lineages, however, is usually laborious, requiring familial tracing and fate mapping. In this study, we introduce a novel, accessible, high-throughput method for measuring familial fate changes with accompanying statistical tools for testing hypotheses. The method combines multiplexing of division tracking dyes with detection of phenotypic markers to reveal clonal lineage properties. We illustrate the method by studying in vitro-activated mouse CD8+ T cell cultures, reporting division and phenotypic changes at the level of families. This approach has broad utility as it is flexible and adaptable to many cell types and to modifications of in vitro, and potentially in vivo, fate monitoring systems.
Collapse
Affiliation(s)
- Miles B Horton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Giulio Prevedello
- Hamilton Institute, Maynooth University, Maynooth, County Kildare, Ireland
| | - Julia M Marchingo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Jie H S Zhou
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, County Kildare, Ireland
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; .,Department of Medical Biology, The University of Melbourne, Parkville 3010, Victoria, Australia; and
| |
Collapse
|
21
|
Fox A, Harland KL, Kedzierska K, Kelso A. Exposure of Human CD8 + T Cells to Type-2 Cytokines Impairs Division and Differentiation and Induces Limited Polarization. Front Immunol 2018; 9:1141. [PMID: 29892290 PMCID: PMC5985406 DOI: 10.3389/fimmu.2018.01141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Effector CD8+ T cells generally produce type-1 cytokines and mediators of the perforin/granzyme cytolytic pathway, yet type-2-polarized CD8+ cells (Tc2) are detected in type-2 (T2) cytokine-driven diseases such as asthma. It is unclear whether T2 cytokine exposure during activation is sufficient to polarize human CD8+ T cells. To address this question, a protocol was developed for high-efficiency activation of human CD8+ T cells in which purified single cells or populations were stimulated with plate-bound anti-CD3 and anti-CD11a mAb for up to 8 days in T2 polarizing or neutral conditions, before functional analysis. Activation of CD8+ naïve T cells (TN) in T2 compared with neutral conditions decreased the size of single-cell clones, although early division kinetics were equivalent, indicating an effect on overall division number. Activation of TN in T2 conditions followed by brief anti-CD3 mAb restimulation favored expression of T2 cytokines, GATA3 and Eomes, and lowered expression of type-1 cytokines, Prf1, Gzmb, T-BET, and Prdm1. However, IL-4 was only weakly expressed, and PMA and ionomycin restimulation favored IFN-γ over IL-4 expression. Activation of TN in T2 compared with neutral conditions prevented downregulation of costimulatory (CD27, CD28) and lymph-node homing receptors (CCR7) and CD95 acquisition, which typically occur during differentiation into effector phenotypes. CD3 was rapidly and substantially induced after activation in neutral, but not T2 conditions, potentially contributing to greater division and differentiation in neutral conditions. CD8+ central memory T cells (TCM) were less able to enter division upon reactivation in T2 compared with neutral conditions, and were more refractory to modulating IFN-γ and IL-4 production than CD8+ TN. In summary, while activation of TN in T2 conditions can generate T2 cytokine-biased cells, IL-4 expression is weak, T2 bias is lost upon strong restimulation, differentiation, and division are arrested, and reactivation of TCM is reduced in T2 conditions. Taken together, this suggests that exposure to T2 cytokines during activation may not be sufficient to generate and retain human Tc2 cells.
Collapse
Affiliation(s)
- Annette Fox
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
22
|
Heinzel S, Marchingo JM, Horton MB, Hodgkin PD. The regulation of lymphocyte activation and proliferation. Curr Opin Immunol 2018; 51:32-38. [PMID: 29414529 DOI: 10.1016/j.coi.2018.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 01/10/2023]
Abstract
Activation induced proliferation and clonal expansion of antigen specific lymphocytes is a hallmark of the adaptive immune response to pathogens. Recent studies identify two distinct control phases. In the first T and B lymphocytes integrate antigen and additional costimuli to motivate a programmed proliferative burst that ceases with a return to cell quiescence and eventual death. This proliferative burst is autonomously timed, ensuring an appropriate response magnitude whilst preventing uncontrolled expansion. This initial response is subject to further modification and extension by a range of signals that modify, expand and direct the emergence of a rich array of new cell types. Thus, both robust clonal expansion of a small number of antigen specific T cells, and the concurrent emergence of extensive cellular diversity, confers immunity to a vast array of different pathogens. The in vivo response to a given pathogen is made up by the sum of all responding clones and is reproducible and pathogen specific. Thus, a precise description of the regulatory principles governing lymphocyte proliferation, differentiation and survival is essential to a unified understanding of the immune system.
Collapse
Affiliation(s)
- Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Julia M Marchingo
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Miles B Horton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Philip D Hodgkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
|
24
|
Tempany JC, Zhou JH, Hodgkin PD, Bryant VL. Superior properties of CellTrace Yellow™ as a division tracking dye for human and murine lymphocytes. Immunol Cell Biol 2017; 96:149-159. [PMID: 29363164 PMCID: PMC6446909 DOI: 10.1111/imcb.1020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
The discovery of cell division tracking properties of 5‐(and‐6)‐carboxyfluorescein diacetate succinimidyl ester (CFSE) by Lyons and Parish in 1994 led to a broad range of new methods and numerous important biological discoveries. After labeling, CFSE is attached to free amine groups and intracellular proteins in the cytoplasm and nucleus of a cell, and halves in fluorescence intensity with each round of cell division, enabling enumeration of the number of divisions a cell has undergone. A range of popular division tracking dyes were subsequently developed, including CellTrace Violet (CTV), making available the green fluorescent channel previously occupied by CFSE. More recently, CellTrace Yellow (CTY) and CellTrace Far Red (CTFR), each with unique fluorescence properties, were introduced. In a comparison, we found that the fluorescence values of both dyes were well separated from autofluorescence, and enabled a greater number of divisions to be identified than CTV, before this limit was reached. These new dyes provided clear and well‐separated peaks for both murine and human B lymphocytes, and should find wide application. The range of excitation/emission spectra available for division tracking dyes now also facilitates multiplexing, that is, the labeling of cells with different combinations of dyes to give a unique fluorescence signature, allowing single cell in vitro and in vivo tracking. The combinatorial possibilities are significantly increased with these additional dyes.
Collapse
Affiliation(s)
- Jessica C Tempany
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jie Hs Zhou
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Bryant
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Ocular antigen does not cause disease unless presented in the context of inflammation. Sci Rep 2017; 7:14226. [PMID: 29079770 PMCID: PMC5660195 DOI: 10.1038/s41598-017-14618-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues.
Collapse
|
26
|
Tangye SG, Pillay B, Randall KL, Avery DT, Phan TG, Gray P, Ziegler JB, Smart JM, Peake J, Arkwright PD, Hambleton S, Orange J, Goodnow CC, Uzel G, Casanova JL, Lugo Reyes SO, Freeman AF, Su HC, Ma CS. Dedicator of cytokinesis 8-deficient CD4 + T cells are biased to a T H2 effector fate at the expense of T H1 and T H17 cells. J Allergy Clin Immunol 2017; 139:933-949. [PMID: 27554822 PMCID: PMC10500883 DOI: 10.1016/j.jaci.2016.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency caused by autosomal recessive loss-of-function mutations in DOCK8. This disorder is characterized by recurrent cutaneous infections, increased serum IgE levels, and severe atopic disease, including food-induced anaphylaxis. However, the contribution of defects in CD4+ T cells to disease pathogenesis in these patients has not been thoroughly investigated. OBJECTIVE We sought to investigate the phenotype and function of DOCK8-deficient CD4+ T cells to determine (1) intrinsic and extrinsic CD4+ T-cell defects and (2) how defects account for the clinical features of DOCK8 deficiency. METHODS We performed in-depth analysis of the CD4+ T-cell compartment of DOCK8-deficient patients. We enumerated subsets of CD4+ T helper cells and assessed cytokine production and transcription factor expression. Finally, we determined the levels of IgE specific for staple foods and house dust mite allergens in DOCK8-deficient patients and healthy control subjects. RESULTS DOCK8-deficient memory CD4+ T cells were biased toward a TH2 type, and this was at the expense of TH1 and TH17 cells. In vitro polarization of DOCK8-deficient naive CD4+ T cells revealed the TH2 bias and TH17 defect to be T-cell intrinsic. Examination of allergen-specific IgE revealed plasma IgE from DOCK8-deficient patients is directed against staple food antigens but not house dust mites. CONCLUSION Investigations into the DOCK8-deficient CD4+ T cells provided an explanation for some of the clinical features of this disorder: the TH2 bias is likely to contribute to atopic disease, whereas defects in TH1 and TH17 cells compromise antiviral and antifungal immunity, respectively, explaining the infectious susceptibility of DOCK8-deficient patients.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.
| | - Bethany Pillay
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Katrina L Randall
- Department of Immunology, John Curtin School of Medical Research, Acton, Australia; Australian National University Medical School, Australian National University, Acton, Australia
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Paul Gray
- University of New South Wales School of Women's and Children's Health, Randwick, Australia
| | - John B Ziegler
- University of New South Wales School of Women's and Children's Health, Randwick, Australia
| | - Joanne M Smart
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Jane Peake
- University of Queensland and Lady Cilento Children's Hospital, Brisbane, Australia
| | - Peter D Arkwright
- University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Jordan Orange
- Center for Human Immunobiology of Texas Children's Hospital/Department of Pediatrics, Baylor College of Medicine; the Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, and the Department of Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Tex
| | - Christopher C Goodnow
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes, Paris, France; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY
| | | | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.
| |
Collapse
|
27
|
Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR. T-cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun 2016; 7:13540. [PMID: 27869196 PMCID: PMC5121331 DOI: 10.1038/ncomms13540] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. Why do populations of highly similar T cells have heterogeneous division destinies in response to antigenic stimulus? Here the authors develop a multiplex-dye assay and a mathematical framework to test clonal heterogeneity and show distinction in division destiny is a result of inter-clonal variability as lineage imprinting ensures clones share similar proliferation fates.
Collapse
Affiliation(s)
- J M Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G Prevedello
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| | - A Kan
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - P D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Co Kildare W23 WK26, Ireland
| |
Collapse
|
28
|
Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lönnberg T, Svensson V, Pramanik J, Natarajan KN, Zhai W, Zhang X, Donati G, Kayikci M, Kotar J, McKenzie ANJ, Montandon R, Billker O, Woodhouse S, Cicuta P, Nicodemi M, Teichmann SA. Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol 2016; 17:103. [PMID: 27176874 PMCID: PMC4866375 DOI: 10.1186/s13059-016-0957-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. RESULTS We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse model of infection that elicits a type 2 immune response and infer that the differentiated, cytokine-producing cells cycle faster than early activated precursor cells. To dissect this phenomenon quantitatively, we determine expression profiles across consecutive generations of differentiated and undifferentiated cells during Th2 polarization in vitro. We predict three discrete cell states, which we verify by single-cell quantitative PCR. Based on these three states, we extract rates of death, division and differentiation with a branching state Markov model to describe the cell population dynamics. From this multi-scale modelling, we infer a significant acceleration in proliferation from the intermediate activated cell state to the mature cytokine-secreting effector state. We confirm this acceleration both by live imaging of single Th2 cells and in an ex vivo Th1 malaria model by single-cell RNA-sequencing. CONCLUSION The link between cytokine secretion and proliferation rate holds both in Th1 and Th2 cells in vivo and in vitro, indicating that this is likely a general phenomenon in adaptive immunity.
Collapse
Affiliation(s)
- Valentina Proserpio
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrea Piccolo
- Department of Physics, University of Naples Federico II, CNR-Spin, Istituto Nazionale di Fisica Nucleare (INFN), Napoli, Italy
| | - Liora Haim-Vilmovsky
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gozde Kar
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
| | - Tapio Lönnberg
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Jhuma Pramanik
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kedar Nath Natarajan
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Weichao Zhai
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK
| | - Xiuwei Zhang
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
| | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, Kings College London, London, SE1 9RT, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK
| | | | - Ruddy Montandon
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven Woodhouse
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, CNR-Spin, Istituto Nazionale di Fisica Nucleare (INFN), Napoli, Italy.
| | - Sarah A Teichmann
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
29
|
Clonal expansion under the microscope: studying lymphocyte activation and differentiation using live‐cell imaging. Immunol Cell Biol 2015; 94:242-9. [DOI: 10.1038/icb.2015.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
|
30
|
Inoue T, Ikegame K, Kaida K, Okada M, Yoshihara S, Tamaki H, Fujimori Y, Soma T, Ogawa H. Host Foxp3+CD4+ Regulatory T Cells Act as a Negative Regulator of Dendritic Cells in the Peritransplantation Period. THE JOURNAL OF IMMUNOLOGY 2015; 196:469-83. [PMID: 26621858 DOI: 10.4049/jimmunol.1402950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
Host Foxp3+CD4+ regulatory T cells (Tregs) have been shown to suppress graft-versus-host disease (GVHD) in experimental bone marrow transplantation (BMT) models; however, the detailed mechanism is unknown. To address this issue, we established a murine MHC-haploidentical BMT model (BDF1 (H-2b/d) → B6C3F1 (H-2b/k)), in which transplantation following conditioning with high-dose (13 Gy) or low-dose (5 Gy) total body irradiation corresponds to myeloablative stem cell transplantation (MAST) or reduced-intensity stem cell transplantation (RIST) BMT. All MAST recipients died of GVHD within 70 d, whereas RIST recipients developed almost no GVHD and survived for at least 3 mo. In this BMT model, we investigated the kinetics of immune cells in the mesenteric lymph nodes because GVHD was most prominent in the intestines. Host Tregs that survived after total body irradiation could proliferate transiently by day 4. Comparing the kinetics of immune cells among MAST, RIST, and anti-CD25 mAb-treated RIST, we found that the transiently surviving host Tregs were fully functional, closely contacted with host dendritic cells (DCs), and significantly restrained the maturation (CD80 and CD86 expression) of DCs in a dose-dependent manner. There was a positive correlation between the ratio of DCs to host Tregs and the extent of maturation of DCs. Host Tregs suppressed alloresponse mainly by contact inhibition. Host Tregs are already active in lymph nodes before transplantation and restrain the maturation of host DCs, thereby dampening the ability of DCs to activate allogeneic donor T cells and consequently reducing the magnitude of graft-versus-host reaction. Thus, host Tregs are negative regulators of host DCs that act in the peritransplantation period.
Collapse
Affiliation(s)
- Takayuki Inoue
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Masaya Okada
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Satoshi Yoshihara
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Yoshihiro Fujimori
- Department of Transfusion Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Toshihiro Soma
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| |
Collapse
|
31
|
Kerbrat S, Vingert B, Junier MP, Castellano F, Renault-Mihara F, Dos Reis Tavares S, Surenaud M, Noizat-Pirenne F, Boczkowski J, Guellaën G, Chneiweiss H, Le Gouvello S. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo. PLoS One 2015; 10:e0136885. [PMID: 26317969 PMCID: PMC4552951 DOI: 10.1371/journal.pone.0136885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response.
Collapse
Affiliation(s)
- Stéphane Kerbrat
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Benoit Vingert
- Inserm U955, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Marie-Pierre Junier
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | - Flavia Castellano
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, France
| | - François Renault-Mihara
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | - Silvina Dos Reis Tavares
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
| | | | - France Noizat-Pirenne
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- Etablissement Français du Sang, Créteil, France
| | - Jorge Boczkowski
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Georges Guellaën
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
| | - Hervé Chneiweiss
- Inserm, U1130, Neuroscience Paris Seine, IBPS, Paris, France
- Université Pierre et Marie Curie, UM119, Neuroscience Paris Seine, IBPS, Paris, France
- CNRS, UMR8246, Neuroscience Paris Seine, IBPS, Paris, France
- * E-mail: (SLG); (HC)
| | - Sabine Le Gouvello
- Université Paris-Est, Créteil, France
- Inserm U955, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Pôle de Biologie-Pathologie, Créteil, France
- * E-mail: (SLG); (HC)
| |
Collapse
|
32
|
Biron CA, Tarrio ML. Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus. Med Microbiol Immunol 2015; 204:345-54. [PMID: 25850988 DOI: 10.1007/s00430-015-0412-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Innate immunity defends against infection but also mediates immunoregulatory effects shaping innate and adaptive responses. Studies of murine cytomegalovirus (MCMV) infections have helped elucidate the mechanisms inducing, as well as the elicited soluble and cellular networks contributing to, innate immunity. Specialized receptors are engaged by infection-induced structures to stimulate production of key innate cytokines. These then stimulate cytokine and cellular responses such as activation of natural killer (NK) cells to mediate elevated killing by type 1 interferon (IFN) and/or to produce the pro-inflammatory and antiviral cytokine IFN-γ by interleukin 12 (IL-12). An inter-systemic loop, with IL-6 inducing glucocorticoid release, negatively regulates these early cytokine responses. As infections advance into periods of overlapping innate and adaptive responses, however, the cells are intrinsically conditioned to modify the biological effects of exposure to individual cytokines. Some pathways are turned off to inhibit an existing, whereas others are broadened for acquisition of a new, response function. Remarkably, extended NK cell proliferation during MCMV infection is associated with epigenetic modifications shifting the state of the inhibitory cytokine IL-10 gene from closed to open and results in their becoming equipped to produce this cytokine. When induced, NK cell IL-10 negatively regulates the magnitude of adaptive responses to protect against immune pathology. Thus, innate immunoregulatory cytokine networks are integral to pro-inflammatory and defense functions, but responding cells have the flexibility to undergo cell intrinsic conditioning with changing network characteristics to result in a new negative immunoregulatory function, and consequently, both promote beneficial and limit detrimental immune responses.
Collapse
Affiliation(s)
- Christine A Biron
- Department of Molecular Microbiology and Immunology, The Division of Biology and Medicine and The Warren Alpert Medical School, Brown University, 171 Meeting Street, Providence, RI, 02912, USA,
| | | |
Collapse
|
33
|
Jug r 2-reactive CD4(+) T cells have a dominant immune role in walnut allergy. J Allergy Clin Immunol 2015; 136:983-92.e7. [PMID: 25772597 PMCID: PMC4568181 DOI: 10.1016/j.jaci.2015.01.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022]
Abstract
Background Allergic reactions to walnut can be life threatening. While IgE epitopes of walnut have been studied, CD4+ T-cell specific epitopes for walnut remain uncharacterized. Particularly, the relationship of both phenotype and frequency of walnut specific T-cells to the disease have not been examined. Objectives We sought to provide a thorough phenotypic analysis for walnut reactive T-cells in allergic and non-allergic subjects. Particularly, the relationship of phenotypes and frequencies of walnut specific T-cells with the disease. Methods CD154 up-regulation assay was used to examine CD4+ T-cell reactivity towards walnut allergens.Jug r 1, Jug r 2 and Jug r 3. Tetramer-Guided epitope mapping approach was utilized to identify HLA-restricted CD4+ T-cells epitopes in Jug r 2. Direct ex vivo staining with peptide-major histocompatibility complex class II (pMHC-II) tetramers enabled the comparison of frequency and phenotype of Jug r 2-specific CD4+ T-cells between allergic and non-allergic subjects. Jug r 2-specific T-cell-clones were also generated and mRNA transcription factor levels were assessed by RT qPCR. Intracellular cytokine staining (ICS) assays were performed for further phenotypical analyses. Results Jug r 2 was identified as the major allergen that elicited CD4+ T-cell responses. Multiple Jug r 2 T-cell epitopes were identified. The majority of these T-cells in allergic subjects have a CCR4+ TCM (central memory) phenotype. A subset of these T-cells express CCR4+CCR6+ irrespectively of the asthmatic status of the allergic subjects. ICS confirmed these TH2, TH2/TH17 and TH17-like heterogenic profiles. Jug r 2-specific T-cell-clones from allergic subjects mainly expressed GATA3; nonetheless, a portion of T-cell clones expressed either GATA3 and RORC, or RORC, confirming the presence of TH2, TH2/TH17 and TH17 cells. Conclusions Jug r 2 specific responses dominate walnut T-cell responses in subjects with walnut allergy. Jug r 2 central memory CD4+ cells and terminal effector T-cells were detected in peripheral blood with the central memory phenotype as the most prevalent phenotype. In addition to conventional TH2-cells, TH2/TH17 and TH17 cells were also detected in non-asthmatic and asthmatic subjects with walnut allergy. Understanding this T-cell heterogeneity may render better understanding of the disease manifestation.
Collapse
|
34
|
Kinjyo I, Qin J, Tan SY, Wellard CJ, Mrass P, Ritchie W, Doi A, Cavanagh LL, Tomura M, Sakaue-Sawano A, Kanagawa O, Miyawaki A, Hodgkin PD, Weninger W. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation. Nat Commun 2015; 6:6301. [PMID: 25709008 PMCID: PMC4346633 DOI: 10.1038/ncomms7301] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 01/15/2015] [Indexed: 01/08/2023] Open
Abstract
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. CD8+ memory T cells appear during infection via a process of selection and differentiation that remains poorly understood. Using a fluorescent indicator of cell cycle progression, Kinjyo et al. show that slow-cycling memory precursors are derived from fast-cycling-activated T cells in influenza-infected mice.
Collapse
Affiliation(s)
- Ichiko Kinjyo
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Jim Qin
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Sioh-Yang Tan
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Cameron J Wellard
- 1] Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Paulus Mrass
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - William Ritchie
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Atsushi Doi
- Cell Innovator Co., Ltd., Fukuoka 812-8581, Japan
| | - Lois L Cavanagh
- Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia
| | - Michio Tomura
- Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Osami Kanagawa
- Laboratory for Autoimmune Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Philip D Hodgkin
- 1] Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Wolfgang Weninger
- 1] Immune Imaging Program, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales 2042, Australia [2] Discipline of Dermatology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia [3] Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
35
|
Demenesku J, Mirkov I, Ninkov M, Popov Aleksandrov A, Zolotarevski L, Kataranovski D, Kataranovski M. Acute cadmium administration to rats exerts both immunosuppressive and proinflammatory effects in spleen. Toxicology 2014; 326:96-108. [DOI: 10.1016/j.tox.2014.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 02/08/2023]
|
36
|
Kyläniemi MK, Kaukonen R, Myllyviita J, Rasool O, Lahesmaa R. The regulation and role of c-FLIP in human Th cell differentiation. PLoS One 2014; 9:e102022. [PMID: 25019384 PMCID: PMC4096760 DOI: 10.1371/journal.pone.0102022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/14/2014] [Indexed: 12/19/2022] Open
Abstract
The early differentiation of T helper (Th) cells is a tightly controlled and finely balanced process, which involves several factors including cytokines, transcription factors and co-stimulatory molecules. Recent studies have shown that in addition to the regulation of apoptosis, caspase activity is also needed for Th cell proliferation and activation and it might play a role in Th cell differentiation. The isoforms of the cellular FLICE inhibitory protein (c-FLIP) are regulators of CASPASE-8 activity and the short isoform, c-FLIPS, has been shown to be up-regulated by IL-4, the Th2 driving cytokine. In this work, we have studied the expression and functional role of three c-FLIP isoforms during the early Th cell differentiation. Only two of the isoforms, c-FLIPS and c-FLIPL, were detected at the protein level although c-FLIPR was expressed at the mRNA level. The knockdown of c-FLIPL led to enhanced Th1 differentiation and elevated IL-4 production by Th2 cells, whereas the knockdown of c-FLIPS diminished GATA3 expression and IL-4 production by Th2 cells. In summary, our results provide new insight into the role of c-FLIP proteins in the early differentiation of human Th cells.
Collapse
Affiliation(s)
- Minna K. Kyläniemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- National Doctoral Programme in Informational and Structural Biology, Åbo Akademi University, Turku, Finland
| | - Riina Kaukonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Myllyviita
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- * E-mail:
| |
Collapse
|
37
|
Tarrio ML, Lee SH, Fragoso MF, Sun HW, Kanno Y, O'Shea JJ, Biron CA. Proliferation conditions promote intrinsic changes in NK cells for an IL-10 response. THE JOURNAL OF IMMUNOLOGY 2014; 193:354-63. [PMID: 24907347 DOI: 10.4049/jimmunol.1302999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Constitutively found at high frequencies, the role for NK cell proliferation remains unclear. In this study, a shift in NK cell function from predominantly producing IFN-γ, a cytokine with proinflammatory and antimicrobial functions, to producing the immunoregulatory cytokine IL-10 was defined during extended murine CMV infection. The response occurred at times subsequent to IL-12 production, but the NK cells elicited acquired responsiveness to IL-12 and IL-21 for IL-10 production. Because neither IL-12 nor IL-21 was required in vivo, however, additional pathways appeared to be available to promote NK cell IL-10 expression. In vitro studies with IL-2 to support proliferation and in vivo adoptive transfers into murine CMV-infected mice demonstrated that NK cell proliferation and further division enhanced the change. In contrast to the sustained open profile of the IFN-γ gene, NK cells responding to infection acquired histone modifications in the IL-10 gene indicative of changing from a closed to an open state. The IL-10 response to IL-12 was proliferation dependent ex vivo if the NK cells had not yet expanded in vivo but independent if they had. Thus, a novel role for proliferation in supporting changing innate cell function is reported.
Collapse
Affiliation(s)
- Margarite L Tarrio
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Seung-Hwan Lee
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Maria F Fragoso
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Christine A Biron
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912;
| |
Collapse
|
38
|
Wells AD, Morawski PA. New roles for cyclin-dependent kinases in T cell biology: linking cell division and differentiation. Nat Rev Immunol 2014; 14:261-70. [PMID: 24603166 PMCID: PMC10114933 DOI: 10.1038/nri3625] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proliferation of a few antigen-reactive lymphocytes into a large population of effector cells is a fundamental property of adaptive immunity. The cell division that fuels this process is driven by signals from antigen, co-stimulatory molecules and growth factor receptors, and is controlled by the cyclin-dependent kinase (CDK) cascade. In this Opinion article, we discuss how the CDK cascade provides one potential link between cell division and differentiation through the phosphorylation of immunologically relevant transcription factors, and how components of this pathway might ultimately participate in the decision between tolerance and immunity.
Collapse
Affiliation(s)
- Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, USA; and The Children's Hospital of Philadelphia Research Institute, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Peter A Morawski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, USA; and The Children's Hospital of Philadelphia Research Institute, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4+ T cells. Proc Natl Acad Sci U S A 2014; 111:2067-74. [PMID: 24520172 DOI: 10.1073/pnas.1322739111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The NDFIP1 (neural precursor cell expressed, developmentally down-regulated protein 4 family-interacting protein 1) adapter for the ubiquitin ligase ITCH is genetically linked to human allergic and autoimmune disease, but the cellular mechanism by which these proteins enable foreign and self-antigens to be tolerated is unresolved. Here, we use two unique mouse strains--an Ndfip1-YFP reporter and an Ndfip1-deficient strain--to show that Ndfip1 is progressively induced during T-cell differentiation and activation in vivo and that its deficiency causes a cell-autonomous, Forkhead box P3-independent failure of peripheral CD4(+) T-cell tolerance to self and exogenous antigen. In small cohorts of antigen-specific CD4(+) cells responding in vivo, Ndfip1 was necessary for tolerogen-reactive T cells to exit cell cycle after one to five divisions and to abort Th2 effector differentiation, defining a step in peripheral tolerance that provides insights into the phenomenon of T-cell anergy in vivo and is distinct from the better understood process of Bcl2-interacting mediator of cell death-mediated apoptosis. Ndfip1 deficiency precipitated autoimmune pancreatic destruction and diabetes; however, this depended on a further accumulation of nontolerant anti-self T cells from strong stimulation by exogenous tolerogen. These findings illuminate a peripheral tolerance checkpoint that aborts T-cell clonal expansion against allergens and autoantigens and demonstrate how hypersensitive responses to environmental antigens may trigger autoimmunity.
Collapse
|
40
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
41
|
Zhang Z, Liu Q, Leskov KS, Wu X, Duan J, Zhang GL, Hall M, Rosenbaum JT. Roscovitine suppresses CD4+ T cells and T cell-mediated experimental uveitis. PLoS One 2013; 8:e81154. [PMID: 24260551 PMCID: PMC3832440 DOI: 10.1371/journal.pone.0081154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Background T cells are essential for the development of uveitis and other autoimmune diseases. After initial activation, CD4+ lymphocytes express the co-stimulatory molecule OX40 that plays an important role in T cell proliferation. Cyclin dependent kinase 2 (CdK2) plays a pivotal role in the cell cycle transition from G1 to S phase. In addition, recent research has implicated CdK2 in T cell activation. Thus, we sought to test the immunosuppressive effect of roscovitine, a potent CdK2 inhibitor, on CD4+ T cell activation, proliferation, and function. Design and Methods Mouse CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies. The expression of OX40, CD44, and CdK2 were analyzed by flow cytometry. In addition, cell cycle progression and apoptosis of control and roscovitine-treated T lymphocytes were measured by BrdU incorporation and annexin V assay, respectively. Furthermore, the immunoregulatory effect of roscovitine was evaluated in both ovalbumin-induced uveitis and experimental autoimmune uveitis (EAU) models. Results In this study, we found that T cell activation induced OX40 expression. Cell cycle analysis showed that more CD4+OX40+ cells entered S phase than OX40- T cells. Concurrently, CD4+OX40+ cells had a higher level of CdK2 expression. Roscovitine treatment blocked activated CD4+ cells from entering S phase. In addition, roscovitine not only reduced the viability of CD4+ lymphocytes but also suppressed T cell activation and cytokine production. Finally, roscovitine significantly attenuated the severity of T cell-dependent, OX40-enhanced uveitis. Conclusion These results implicate CdK2 in OX40-augmented T cell response and expansion. Furthermore, this study suggests that roscovitine is a novel, promising, therapeutic agent for treating T cell-mediated diseases such as uveitis.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Qi Liu
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Konstantin S. Leskov
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiumei Wu
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jie Duan
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gary L. Zhang
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Mark Hall
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - James T. Rosenbaum
- Departments of Medicine and Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
- Devers Eye Institute, Legacy Health System, Portland, Oregon, United States of America
| |
Collapse
|
42
|
Russ BE, Prier JE, Rao S, Turner SJ. T cell immunity as a tool for studying epigenetic regulation of cellular differentiation. Front Genet 2013; 4:218. [PMID: 24273551 PMCID: PMC3824109 DOI: 10.3389/fgene.2013.00218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Cellular differentiation is regulated by the strict spatial and temporal control of gene expression. This is achieved, in part, by regulating changes in histone post-translational modifications (PTMs) and DNA methylation that in turn, impact transcriptional activity. Further, histone PTMs and DNA methylation are often propagated faithfully at cell division (termed epigenetic propagation), and thus contribute to maintaining cellular identity in the absence of signals driving differentiation. Cardinal features of adaptive T cell immunity include the ability to differentiate in response to infection, resulting in acquisition of immune functions required for pathogen clearance; and the ability to maintain this functional capacity in the long-term, allowing more rapid and effective pathogen elimination following re-infection. These characteristics underpin vaccination strategies by effectively establishing a long-lived T cell population that contributes to an immunologically protective state (termed immunological memory). As we discuss in this review, epigenetic mechanisms provide attractive and powerful explanations for key aspects of T cell-mediated immunity – most obviously and notably, immunological memory, because of the capacity of epigenetic circuits to perpetuate cellular identities in the absence of the initial signals that drive differentiation. Indeed, T cell responses to infection are an ideal model system for studying how epigenetic factors shape cellular differentiation and development generally. This review will examine how epigenetic mechanisms regulate T cell function and differentiation, and how these model systems are providing general insights into the epigenetic regulation of gene transcription during cellular differentiation.
Collapse
Affiliation(s)
- Brendan E Russ
- Department of Microbiology and Immunology, The University of Melbourne Parkville, VIC, Australia
| | | | | | | |
Collapse
|
43
|
Kondilis-Mangum HD, Wade PA. Epigenetics and the adaptive immune response. Mol Aspects Med 2013; 34:813-25. [PMID: 22789989 PMCID: PMC3508324 DOI: 10.1016/j.mam.2012.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 01/31/2023]
Abstract
Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathogens. While the immune system benefits from the dynamic nature of the epigenome, such benefit comes at a cost - increased likelihood of disease-causing mutation.
Collapse
Affiliation(s)
- Hrisavgi D Kondilis-Mangum
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
44
|
van den Ham HJ, de Waal L, Zaaraoui-Boutahar F, Bijl M, van Ijcken WFJ, Osterhaus ADME, de Boer RJ, Andeweg AC. Early divergence of Th1 and Th2 transcriptomes involves a small core response and sets of transiently expressed genes. Eur J Immunol 2013; 43:1074-84. [PMID: 23436590 DOI: 10.1002/eji.201242979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/03/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
Th cells can adopt a number of different phenotypes. We performed microarray-assisted mRNA profiling on antigen-stimulated, TCR transgenic murine splenocytes that were cultured in the presence of cytokines. Transcriptome snapshots of Th cells differentiating into Th1 and Th2 phenotypes were obtained at various time points. Principal component analysis shows that time since activation and Th skewing are the largest sources of variance (i.e. the largest contributing factors) in our profiling experiments. Divergence between the Th1 and Th2 phenotypes is established early and does not increase in terms of number of differential genes from day 1 to day 4 after stimulation. Notwithstanding the lack of further divergence between the Th1 and Th2 lineages, we show that gene expression is best described by a 'turnover' rather than a 'core response' model, although we find evidence for both. We identify clusters of skewed genes associated with early persistent ('core response') and late ('turnover') Th1 and Th2 gene expression. In addition to the classical Th genes, members of the Batf transcription factor family are differentially expressed in particular helper phenotypes, suggesting an important role for this family in Th-cell phenotype differentiation.
Collapse
Affiliation(s)
- Henk-Jan van den Ham
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands; Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Viral-specific adoptive immunotherapy after allo-SCT: the role of multimer-based selection strategies. Bone Marrow Transplant 2013; 48:1265-70. [PMID: 23318538 DOI: 10.1038/bmt.2012.262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/12/2012] [Accepted: 11/17/2012] [Indexed: 01/13/2023]
Abstract
Recipients of hematopoietic SCT undergo a period of profound immunosuppression due to the chemotherapy and/or radiotherapy used for the conditioning and to the graft versus host reaction. SCT patients are highly susceptible to the development of viral infections such as CMV or EBV. The achievement of a competent immunological response, such as viral-specific T cells, is associated with a lower incidence of viral infections. Methods for direct identification of antigen-specific T cells have been based on the functional characteristics of these T cells. Techniques such as proliferation and ELISPOT assays, intracellular cytokine staining and IFN-γ capture have been used to quantitate and obtain viral-specific T cells. Multimers are composed of several MHC molecules loaded with immunodominant peptides joined to a fluorescent molecule, which signal can be quantified by a flow cytometer. Multimer technology together with recent advances in flow cytometry, have facilitated the monitoring and selection of antigen-specific T cells without the need for in vitro cultures and manipulation. This has resulted in a better characterization of the function and phenotype of the different subpopulations of T cells involved in the immune recovery post allogeneic SCT. It is becoming a distinct possibility to isolate individual antigen-specific T cells, without long-term culture techniques, and potentially use them as adoptive immunotherapy in the SCT setting.
Collapse
|
46
|
La Gruta N, Kelso A, Brown LE, Chen W, Jackson DC, Turner SJ. Role of CD8(+) T-cell immunity in influenza infection: potential use in future vaccine development. Expert Rev Respir Med 2012; 3:523-37. [PMID: 20477341 DOI: 10.1586/ers.09.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continued circulation of the highly pathogenic avian H5N1 influenza A virus has many people worried that an influenza pandemic is imminent. Compounding this is the realization that H5N1 vaccines based on current influenza vaccine technology (designed to generate protective antibody responses) may be suboptimal at providing protection. As a consequence, there is recent interest in vaccine strategies that elicit cellular immunity, particularly the cytotoxic T lymphocyte response, in an effort to provide protection against a potential pandemic. A major issue is the lack of information about the precise role that these 'hitmen' of the immune system have in protecting against both pandemic and seasonal influenza. We need to know more about how the induction and maintenance of cytotoxic T lymphocytes after influenza infection can impact protection from further infection. The challenge is then to use this information in the design of vaccines that will protect against pandemic influenza and will help optimize CD8(+) killer T-cell responses in other infections.
Collapse
Affiliation(s)
- Nicole La Gruta
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Riou C, Treurnicht F, Abrahams MR, Mlisana K, Liu MKP, Goonetilleke N, Koup R, Roederer M, Abdool Karim S, de Bruyn G, Williamson C, Gray CM, Burgers WA. Increased memory differentiation is associated with decreased polyfunctionality for HIV but not for cytomegalovirus-specific CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:3838-47. [PMID: 22966086 DOI: 10.4049/jimmunol.1201488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The generation of polyfunctional CD8(+) T cells, in response to vaccination or natural infection, has been associated with improved protective immunity. However, it is unclear whether the maintenance of polyfunctionality is related to particular cellular phenotypic characteristics. To determine whether the cytokine expression profile is linked to the memory differentiation stage, we analyzed the degree of polyfunctionality of HIV-specific CD8(+) T cells within different memory subpopulations in 20 antiretroviral therapy-naive HIV-1-infected individuals at ∼34 wk postinfection. These profiles were compared with CMV-specific CD8(+) T cell responses in HIV-uninfected control subjects and in individuals chronically infected with HIV. Our results showed that the polyfunctional abilities of HIV-specific CD8(+) T cells differed according to their memory phenotype. Early-differentiated cells (CD45RO(+)CD27(+)) exhibited a higher proportion of cells positive for three or four functions (p < 0.001), and a lower proportion of monofunctional cells (p < 0.001) compared with terminally differentiated (TD; CD45RO(-)CD27(-)) HIV-specific CD8(+) T cells. The majority of TD HIV-specific CD8(+) T cells were monofunctional (median 69% [interquartile range: 57-83]), producing predominantly CD107a or MIP1β. Moreover, proportions of HIV-specific monofunctional CD8(+) T cells positively associated with proportions of TD HIV-specific CD8(+) T cells (p = 0.019, r = 0.54). In contrast, CMV-specific CD8(+) T cell polyfunctional capacities were similar across all memory subpopulations, with terminally and early-differentiated cells endowed with comparable polyfunctionality. Overall, these data show that the polyfunctional abilities of HIV-specific CD8(+) T cells are influenced by the stage of memory differentiation, which is not the case for CMV-specific responses.
Collapse
Affiliation(s)
- Catherine Riou
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Duffy KR, Hodgkin PD. Intracellular competition for fates in the immune system. Trends Cell Biol 2012; 22:457-64. [PMID: 22727035 DOI: 10.1016/j.tcb.2012.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
During an adaptive immune response, lymphocytes proliferate for five to 20 generations, differentiating to take on effector functions, before cessation and cell death become dominant. Recent experimental methodologies enable direct observation of individual lymphocytes and the times at which they adopt fates. Data from these experiments reveal diversity in fate selection, heterogeneity and involved correlation structures in times to fate, as well as considerable familial correlations. Despite the significant complexity, these data are consistent with the simple hypothesis that each cell possesses autonomous processes, subject to temporal competition, leading to each fate. This article addresses the evidence for this hypothesis, its hallmarks, and, should it be an appropriate description of a cell system, its ramifications for manipulation.
Collapse
Affiliation(s)
- Ken R Duffy
- Hamilton Institute, National University of Ireland, Maynooth, Ireland
| | | |
Collapse
|
49
|
Kaul V, Van Kaer L, Das G, Das J. Prostanoid receptor 2 signaling protects T helper 2 cells from BALB/c mice against activation-induced cell death. J Biol Chem 2012; 287:25434-9. [PMID: 22654101 PMCID: PMC3408175 DOI: 10.1074/jbc.c111.324707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T helper 2 (Th2) cells play a central role in the progression of many diseases such as allergic airway inflammation, autoimmune diseases, and infections caused by intracellular pathogens. Consequently, animals such as BALB/c mice, which exhibit a propensity for generating Th2 responses, are susceptible to allergic airway inflammation, type-II autoimmune diseases, and various infections induced by intracellular pathogens, namely, Leishmania. In contrast, C3H/OuJ mice have a tendency for generating T helper 1 (Th1) responses and show resistance to these diseases. Here, we show that prostaglandin endoperoxide E(2) selectively inhibits activation-induced cell death of Th2 cells by signaling through its receptor E-prostanoid receptor 2 (EP2). Consequently, Th2 cells derived from BALB/c mice expressed very high levels of EP2. On the other hand, Th2 cells derived from C3H/OuJ mice expressed very low levels of EP2, which failed to support the survival of Th2 cells. Furthermore, we found that this effect of EP2 on Th2 cells from BALB/c mice was executed by a granzyme B-mediated mechanism. EP2 belongs to a group of G-protein-coupled receptors that are amenable to therapeutic targeting. Our findings therefore identify EP2 as a promising target for small molecule-directed immunomodulation.
Collapse
Affiliation(s)
- Vandana Kaul
- Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
50
|
van den Ham HJ, de Boer RJ. Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation. Immunol Cell Biol 2012; 90:860-8. [PMID: 22565392 DOI: 10.1038/icb.2012.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Following activation by antigen, helper T cells differentiate into one of many effector phenotypes. Formulating mechanistic mathematical models combining regulatory networks at the transcriptional, translational and epigenetic level, we study how individual helper T cells may adopt their different phenotypes. For each cytokine phenotype, for example, T helper type 1 (Th1) and type 2 (Th2) cells, we find that the intracellular molecular network allows a cell to adopt one of the three states, which we interpret as naive, active and memory states. Cell division markedly speeds up the differentiation into a particular memory state because of DNA demythelation. In a memory state, cells readily resume production of the same cytokine they produced before. Using stochastic models we show that helper T-cell plasticity (that is, the ability to switch phenotype) is low during clonal expansion. Although most memory cells rapidly secrete the original cytokine upon restimulation, some adopt another phenotype and produce different cytokines, allowing for considerable diversity in the phenotypes that are adopted during a memory response. In summary, we show that helper T-cell division expedites cell differentiation by increasing DNA demethylation. We also show that plasticity is low during the clonal expansion phase, but that helper T cells may adopt alternative phenotypes during a memory response.
Collapse
Affiliation(s)
- Henk Jan van den Ham
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|