1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Ashkar Daw M, Azrad M, Peretz A. Associations between biofilm formation and virulence factors among clinical Helicobacter pylori isolates. Microb Pathog 2024; 196:106977. [PMID: 39321970 DOI: 10.1016/j.micpath.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) causes several gastrointestinal diseases. Its virulence factors contributing to disease development include biofilm formation, cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) proteins that induce host tissue damage. In addition, urease activity enables H. pylori growth in the gastric acidic environment. This work aimed to characterize bacterial factors associated with biofilm production among 89 clinical H. pylori isolates, collected from patient gastric biopsies. METHODS Biofilm production was detected using the crystal violet method. PCR was performed to determine vacA genotype (s1m1, s1m2, s2m1 and s2m2) and cagA gene presence. Urease activity was measured via the phenol red method. Susceptibility to six antibiotics was assessed by the Etest method. RESULTS Most H. pylori isolates produced biofilm. No association was found between biofilm-formation capacity and cagA presence or vacA genotype. Urease activity levels varied across isolates; no association was found between biofilm-formation and urease activity. Clarithromycin resistance was measured in 49 % of the isolates. Isolates susceptible to tetracycline were more commonly strong biofilm producers. In contrast, a significantly higher rate of strong biofilm producers was observed among resistant isolates to amoxicillin, levofloxacin and rifampicin, compared to susceptible isolates. Non-biofilm producers were more common among isolates sensitive to rifampicin and metronidazole, compared to resistant isolates. CONCLUSIONS Further studies are needed to understand the factors that regulate biofilm production in order to search for treatments for H. pylori biofilm destruction.
Collapse
Affiliation(s)
- Mariam Ashkar Daw
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
| | - Maya Azrad
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| |
Collapse
|
3
|
Nguyen TMN, Tran VH, Ha TMT. Helicobacter pylori cagA, vacA, and iceA genotypes and clinical outcomes: a cross-sectional study in central Vietnam. Braz J Microbiol 2024; 55:1393-1404. [PMID: 38676790 PMCID: PMC11153385 DOI: 10.1007/s42770-024-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/01/2024] [Indexed: 04/29/2024] Open
Abstract
Helicobacter pylori is the most common cause of gastroduodenal diseases. The concept that cagA-positive H. pylori is a risk factor for gastric cancer appears to be true only for H. pylori strains from Western countries. Other virulent genes may have a synergistic interaction with cagA during pathogenesis. This study aims to investigate H. pylori cagA, vacA, and iceA prevalence, genotypes, and their association to clinical outcomes in Vietnamese patients. The cagA status and vacA and iceA genotypes were determined using the PCR technique on DNA extracted from gastric biopsies of 141 patients with gastroduodenal diseases. After performing molecular analysis for cagA, vacA, and iceA genes, samples with mixed H. pylori strains, positivity, or negativity for both cagA and cagPAI-empty site, or unidentified genotypes were excluded. Finally, 107 samples were examined. The presence of the cagA, vacA, and iceA genes were detected in 77.6%, 100%, and 80.4% of cases, respectively. Notably, cagA( +) with EPIYA-ABD, vacA s1i1m1, vacA s1i1m2, iceA1, and iceA2 accounted for 73.8%, 44.9%, 33.6%, 48.6%, and 31.8% of cases, respectively. Four iceA2 subtypes (24-aa, 59-aa, 94-aa, and 129-aa variants) were found, with the 59-aa variant the most prevalent (70.6%). The cagA( +)/vacAs1i1m1/iceA1 and cagA( +)/vacAs1i1m2/iceA1 combinations were found in 26.2% and 25.1% of cases, respectively. A multivariable logistic regression analysis was performed, after adjusting for age and gender, with the gastritis group was used as a reference control. Statistically significant associations were found between the vacA s1i1m2 genotype, the iceA1 variant, and the cagA( +)/vacAs1i1m2/iceA1 combination and gastric cancer; the adjusted ORs were estimated as 18.02 (95% CI: 3.39-95.81), 4.09 (95% CI: 1.1-15.08), and 16.19 (95% CI: 3.42-76.66), respectively. Interestingly, for the first time, our study found that vacA s1i1m2, but not vacA s1i1m1, was a risk factor for gastric cancer. This study illustrates the genetic diversity of the H. pylori cagA, vacA, and iceA genes across geographical regions and contributes to understanding the importance of these genotypes for clinical outcomes.
Collapse
Affiliation(s)
- Thi Mai Ngan Nguyen
- Department of Medical Genetics, University of Medicine and Pharmacy, Hue University, 6, Ngo Quyen Street, Hue City, 49100, Vietnam
| | - Van Huy Tran
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
- Centre of Gastroenterology and Endoscopy, University of Medicine and Pharmacy Hospital, Hue University, Hue City, Vietnam
| | - Thi Minh Thi Ha
- Department of Medical Genetics, University of Medicine and Pharmacy, Hue University, 6, Ngo Quyen Street, Hue City, 49100, Vietnam.
- Institute of Biomedicine, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam.
| |
Collapse
|
4
|
Chu Y, Chen F, Pan Q, Cheng N, Liu X, Feng J. Helicobacter pylori vacA affects the expression of COX-2 in the duodenal mucosa of patients with duodenitis. Histol Histopathol 2024; 39:391-398. [PMID: 37382210 DOI: 10.14670/hh-18-645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Duodenitis refers to inflammation that occurs in the duodenum. Helicobacter pylori (Hp) is a known risk factor for duodenitis. This paper attempted to analyze the correlation between Hp virulence genotypes and the initiation and development of duodenal bulbar inflammation (DBI) to lay the foundation for the management of duodenitis induced by Hp infection. Total RNA was extracted from duodenal samples of 156 Hp-positive patients [70 with DBI and 86 with duodenal bulbar ulcer (DBU)] and 80 Hp-free DBI patients, followed by RT-qPCR detection of COX-2 mRNA expression and the presence of virulence factors. The cagA positive (62.2%), vacAs1 (21.79%), vacAm2 (23.72%), vacAs1m2 (19.87%) and iceA1 (55.80%) genotypes were dominant in 156 Hp-positive samples. Statistical difference was observed in vacAs and vacA mixtures between DBI and DBU patients. Gastric metaplasia had an association with vacA allelotypes, and its occurrence had strong correlations with vacAs1 and vacAs1m2 genotypes. The vacAs1 and vacAs1m2 genotypes were correlated with gastric metaplasia occurrence (all p<0.05). There were significant correlations between vacAs and vacA mixtures with cagA genotypes, and between iceA genotypes with vacA mixtures (all p<0.05). COX-2 was strongly expressed in Hp-infected duodenal mucosa and showed correlations with vacA genotype. COX-2 was differentially expressed in vacAs1- and vacAs2-positive patients. COX-2 was more highly upregulated in vacAs1m1- and vacAs1m2-positive patients than vacAs2m2-positive patients. Overall, Hp virulence genotype vacA was correlated with DBI and DBU initiation and development.
Collapse
Affiliation(s)
- Yan Chu
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Fengyuan Chen
- Department of Gastroenterology, Shanghai Punan Hospital of Pudong New Distinct, Shanghai, China.
| | - Qincong Pan
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Nuo Cheng
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiuping Liu
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jie Feng
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Jarzab M, Skorko-Glonek J. There Are No Insurmountable Barriers: Passage of the Helicobacter pylori VacA Toxin from Bacterial Cytoplasm to Eukaryotic Cell Organelle. MEMBRANES 2023; 14:11. [PMID: 38248700 PMCID: PMC10821523 DOI: 10.3390/membranes14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
The Gram-negative bacterium Helicobacter pylori is a very successful pathogen, one of the most commonly identified causes of bacterial infections in humans worldwide. H. pylori produces several virulence factors that contribute to its persistence in the hostile host habitat and to its pathogenicity. The most extensively studied are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA). VacA is present in almost all H. pylori strains. As a secreted multifunctional toxin, it assists bacterial colonization, survival, and proliferation during long-lasting infections. To exert its effect on gastric epithelium and other cell types, VacA undergoes several modifications and crosses multiple membrane barriers. Once inside the gastric epithelial cell, VacA disrupts many cellular-signaling pathways and processes, leading mainly to changes in the efflux of various ions, the depolarization of membrane potential, and perturbations in endocytic trafficking and mitochondrial function. The most notable effect of VacA is the formation of vacuole-like structures, which may lead to apoptosis. This review focuses on the processes involved in VacA secretion, processing, and entry into host cells, with a particular emphasis on the interaction of the mature toxin with host membranes and the formation of transmembrane pores.
Collapse
Affiliation(s)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
6
|
Muñoz-Ramirez ZY, Pascoe B, Mendez-Tenorio A, Mourkas E, Sandoval-Motta S, Perez-Perez G, Morgan DR, Dominguez RL, Ortiz-Princz D, Cavazza ME, Rocha G, Queiroz DMM, Catalano M, Palma GZD, Goldman CG, Venegas A, Alarcon T, Oleastro M, Vale FF, Goodman KJ, Torres RC, Berthenet E, Hitchings MD, Blaser MJ, Sheppard SK, Thorell K, Torres J. A 500-year tale of co-evolution, adaptation, and virulence: Helicobacter pylori in the Americas. THE ISME JOURNAL 2021; 15:78-92. [PMID: 32879462 PMCID: PMC7853065 DOI: 10.1038/s41396-020-00758-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.
Collapse
Affiliation(s)
- Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
- Laboratorio de Bioinformática y Biotecnología Genómica, Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Ben Pascoe
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Alfonso Mendez-Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Evangelos Mourkas
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Santiago Sandoval-Motta
- Instituto Nacional de Medicina Genomica, Ciudad de México, México
- Consejo Nacional de Ciencia y Tecnologia, Catedras CONACYT, Ciudad de México, México
| | | | - Douglas R Morgan
- UAB Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham, Birmingham, UK
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, TN, USA
| | - Ricardo Leonel Dominguez
- Western Honduras Gastric Cancer Prevention Initiative Hospital de Occidente Santa Rosa de Copan, Santa Rosa de Copan, Honduras
| | - Diana Ortiz-Princz
- Laboratorio de Microbiología Molecular, Servicio Instituto de Biomedicina MPPS-UCV, Caracas, Venezuela
| | - Maria Eugenia Cavazza
- Laboratorio de Microbiología Molecular, Servicio Instituto de Biomedicina MPPS-UCV, Caracas, Venezuela
| | - Gifone Rocha
- Faculdade de Medicina da UFMG, Belo Horizonte, Brazil
| | | | - Mariana Catalano
- Facultad de Medicina, Instituto de Microbiología y Parasitología Médica (IMPAM, UBA-CONICET), Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Rosa de Copan, Honduras
| | - Gerardo Zerbetto De Palma
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", IQUIFIB UBA-CONICET, Santa Rosa de Copan, Honduras
| | - Cinthia G Goldman
- Facultad de Farmacia y Bioquímica, Cátedra de Física, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), C1425FQB, Buenos Aires, Argentina
| | - Alejandro Venegas
- Laboratorio de Patogénesis Microbiana, Centro de Investigación Biomédica, Universidad Diego Portales, Ejército, 141, Santiago, Chile
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Monica Oleastro
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Faculty of Pharmacy, Research Institute for Medicines (iMed-ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Karen J Goodman
- Division of Gastroenterology, Centre of Excellence for Gastrointestinal Inflammation & Immunity Research, University of Alberta, Edmonton, AB, Canada
| | - Roberto C Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Elvire Berthenet
- Swansea University Medical School, Swansea University, Swansea, UK
| | | | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Samuel K Sheppard
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Kaisa Thorell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Optimized high-purity protein preparation of biologically active recombinant VacA cytotoxin variants from Helicobacter pylori. Protein Expr Purif 2020; 175:105696. [PMID: 32681955 DOI: 10.1016/j.pep.2020.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 11/23/2022]
Abstract
Vacuolating cytotoxin A (VacA) is a highly polymorphic virulence protein produced by the human gastric pathogen Helicobacter pylori which can cause gastritis, peptic ulcer and gastric cancer. Here, we present an optimized protein preparation of the mature full-length VacA variants (m1-and m2-types) and their 33-kDa N-terminal and 55/59-kDa C-terminal domains as biologically active recombinant proteins fused with an N-terminal His(6) tag. All recombinant VacA constructs were over-expressed in Escherichia coli as insoluble inclusions which were soluble when phosphate buffer (pH 7.4) was supplemented with 5-6 M urea. Upon immobilized-Ni2+ affinity purification under 5-M urea denaturing conditions, homogenous products (>95% purity) of 55/59-kDa domains were consistently obtained while only ~80% purity of both mature VacA variants and the 33-kDa truncate was achieved, thus requiring additional purification by size-exclusion chromatography. After successive refolding via optimized stepwise dialysis, all refolded VacA proteins were proven to possess both cytotoxic and vacuolating activity against cultured human gastric epithelial cells albeit the activity observed for VacA-m2 was lower than the m1-type variant. Such an optimized protocol described herein was effective for production of high-purity recombinant VacA proteins in large amounts (~30-40 mg per liter culture) that would pave the way for further studies on sequence-structure and function relationships of different VacA variants.
Collapse
|
8
|
Ansari S, Yamaoka Y. Role of vacuolating cytotoxin A in Helicobacter pylori infection and its impact on gastric pathogenesis. Expert Rev Anti Infect Ther 2020; 18:987-996. [PMID: 32536287 DOI: 10.1080/14787210.2020.1782739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction Helicobacter pylori causes, via the influence of several virulence factors, persistent infection of the stomach, which leads to severe complications. Vacuolating cytotoxin A (VacA) is observed in almost all clinical strains of H. pylori; however, only some strains produce the toxigenic and pathogenic VacA, which is influenced by the gene sequence variations. VacA exerts its action by causing cell vacuolation and apoptosis. We performed a PubMed search to review the latest literatures published in English language. Areas covered Articles regarding H. pylori VacA and its genotypes, architecture, internalization, and role in gastric infection and pathogenicity are reviewed. We included the search for recently published literature until January 2020. Expert opinion H. pylori VacA plays a crucial role in severe gastric pathogenicity. In addition, VacA mediated in vivo bacterial survival leads to persistent infection and an enhanced bacterial evasion from the action of antibiotics and the innate host defense system, which leads to drug evasion. VacA as a co-stimulator for the CagA phosphorylation may exert a synergistic effect playing an important role in the CagA-mediated pathogenicity.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College , Bharatpur, Nepal
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine , Yufu, Oita, Japan.,Global Oita Medical Advanced Research Center for Health , Yufu, Oita, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine , Houston, TX, USA.,Borneo Medical and Health Research Centre, Universiti Malaysia Sabah , Kota Kinabaru, Malaysia
| |
Collapse
|
9
|
Functional Properties of Helicobacter pylori VacA Toxin m1 and m2 Variants. Infect Immun 2020; 88:IAI.00032-20. [PMID: 32284370 DOI: 10.1128/iai.00032-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).
Collapse
|
10
|
Su M, Erwin AL, Campbell AM, Pyburn TM, Salay LE, Hanks JL, Lacy DB, Akey DL, Cover TL, Ohi MD. Cryo-EM Analysis Reveals Structural Basis of Helicobacter pylori VacA Toxin Oligomerization. J Mol Biol 2019; 431:1956-1965. [PMID: 30954575 PMCID: PMC6625667 DOI: 10.1016/j.jmb.2019.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.
Collapse
Affiliation(s)
- Min Su
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda L Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne M Campbell
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Lauren E Salay
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Jessica L Hanks
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Chauhan N, Tay ACY, Marshall BJ, Jain U. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: An overview. Helicobacter 2019; 24:e12544. [PMID: 30324717 DOI: 10.1111/hel.12544] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori, gastric cancer-causing bacteria, survive in their gastric environment of more than 50% of the world population. The presence of H. pylori in the gastric vicinity promotes the development of various diseases including peptic ulcer and gastric carcinoma. H. pylori produce and secret Vacuolating cytotoxin A (VacA), a major toxin facilitating the bacteria against the host defense system. The toxin causes multiple effects in epithelial cells and immune cells, especially T cells, B cells, and Macrophages. METHODS This review describes the diverse functionalities of protein toxin VacA. The specific objective of this review is to address the overall structure, mechanism, and functions of VacA in various cell types. The recent advancements are summarized and discussed and thus conclusion is drawn based on the overall reported evidences. RESULTS The searched articles on H. pylori VacA were evaluated and limited up to 66 articles for this review. The articles were divided into four major categories including articles on vacA gene, VacA toxin, distinct effects of VacA toxin, and their effects on various cells. Based on these studies, the review article was prepared. CONCLUSIONS This review describes an overview of how VacA is secreted by H. pylori and contributes to colonization and virulence in multiple ways by affecting epithelial cells, T cells, Dendritic cells, B cells, and Macrophages. The reported evidence suggests that the comprehensive outlook need to be developed for understanding distinctive functionalities of VacA.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Alfred Chin Yen Tay
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, Western Australia, Australia.,Shenzhen Dapeng New District Kuichong People Hospital, Shenzhen, Guangdong, China
| | - Barry J Marshall
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Whitmire JM, Merrell DS. Helicobacter pylori Genetic Polymorphisms in Gastric Disease Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:173-194. [DOI: 10.1007/5584_2019_365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
INAGAKI TOMOKO, NISHIUMI SHIN, ITO YOSHIYUKI, YAMAKAWA AKIYO, YAMAZAKI YUKINAO, YOSHIDA MASARU, AZUMA TAKESHI. Associations Between CagA, VacA, and the Clinical Outcomes of Helicobacter Pylori Infections in Okinawa, Japan. THE KOBE JOURNAL OF MEDICAL SCIENCES 2017; 63:E58-E67. [PMID: 29434176 PMCID: PMC5826021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/25/2017] [Indexed: 06/08/2023]
Abstract
Helicobacter pylori, which is involved in the pathogenesis of gastroduodenal disease, produces CagA and VacA as major virulence factors. CagA is classified into East Asian and Western types based on the number and sequences of its Glu-Pro-Ile-Tyr-Ala motifs. The vacA gene has three polymorphic regions: the signal (s), intermediate (i), and middle (m) regions. The lowest gastric cancer mortality rate is seen in Okinawa. On the Japanese mainland (Honshu), most H. pylori produce s1/m1-VacA, which exhibits strong toxicity, and East Asian-type CagA. However, the H. pylori detected in Okinawa produces s1/m2-VacA, which exhibits weak toxicity, or s2/m2-VacA, which is non-toxic, and Western-type CagA. Studies about the i-region of vacA have been performed around the world, but there have been few such studies in Japan. Therefore, the aim of this study was to assess the relationships between the clinical outcomes of H. pylori infections in Okinawa, vacA (especially the i-region genotype), and cagA. H. pylori strains that were collected from patients with gastric cancer or gastric ulcers in Okinawa only produced the i1-type VacA virulence factor. The vacuolating cytotoxin activity of i1-type VacA was stronger than that of i2-type VacA, suggesting that the i-region genotype of vacA is closely associated with vacuolating cytotoxin activity. These results indicate that the i-region genotype of vacA is a useful marker of both H. pylori virulence and the clinical outcomes of H. pylori infections in Okinawa, Japan.
Collapse
Affiliation(s)
- TOMOKO INAGAKI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SHIN NISHIUMI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | - MASARU YOSHIDA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TAKESHI AZUMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel) 2017; 9:toxins9100316. [PMID: 29023421 PMCID: PMC5666363 DOI: 10.3390/toxins9100316] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer.
Collapse
Affiliation(s)
- Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Amber C Beckett
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
15
|
Mirzaei N, Poursina F, Moghim S, Rashidi N, Ghasemian Safaei H. The study of H. pylori putative candidate factors for single- and multi-component vaccine development. Crit Rev Microbiol 2017; 43:631-650. [PMID: 28581361 DOI: 10.1080/1040841x.2017.1291578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.
Collapse
Affiliation(s)
- Nasrin Mirzaei
- a Department of Microbiology , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Farkhondeh Poursina
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Sharareh Moghim
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Niloufar Rashidi
- c Department of Laboratory Sciences , Ahvaz University of Medical Sciences , Ahvaz , Iran
| | | |
Collapse
|
16
|
Silva B, Nunes A, Vale FF, Rocha R, Gomes JP, Dias R, Oleastro M. The expression of Helicobacter pylori tfs plasticity zone cluster is regulated by pH and adherence, and its composition is associated with differential gastric IL-8 secretion. Helicobacter 2017; 22. [PMID: 28436598 DOI: 10.1111/hel.12390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Helicobacter pylori virulence is associated with different clinical outcomes. The existence of an intact dupA gene from tfs4b cluster has been suggested as a predictor for duodenal ulcer development. However, the role of tfs plasticity zone clusters in the development of ulcers remains unclear. We studied several H. pylori strains to characterize the gene arrangement of tfs3 and tfs4 clusters and their impact in the inflammatory response by infected gastric cells. METHODS The genome of 14 H. pylori strains isolated from Western patients, pediatric (n=10) and adult (n=4), was fully sequenced using the Illumina platform MiSeq, in addition to eight pediatric strains previously sequenced. These strains were used to infect human gastric cells, and the secreted interleukin-8 (IL-8) was quantified by ELISA. The expression of virB2, dupA, virB8, virB10, and virB6 was assessed by quantitative PCR in adherent and nonadherent fractions of H. pylori during in vitro co-infection, at different pH values. RESULTS We have found that cagA-positive H. pylori strains harboring a complete tfs plasticity zone cluster significantly induce increased production of IL-8 from gastric cells. We have also found that the region spanning from virB2 to virB10 genes constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions. CONCLUSIONS A complete tfs plasticity zone cluster is a virulence factor that may be important for the colonization of H. pylori and to the development of severe outcomes of the infection with cagA-positive strains.
Collapse
Affiliation(s)
- Bruno Silva
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Rocha
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Ricardo Dias
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
17
|
Mendoza-Elizalde S, Arteaga-Resendiz NK, Valencia-Mayoral P, Luna RC, Moreno-Espinosa S, Arenas-Huertero F, Zúñiga G, Velázquez-Guadarrama N. Diversification of the vacAs1m1 and vacAs2m2 Strains of Helicobacter pylori in Meriones unguiculatus. Front Microbiol 2016; 7:1758. [PMID: 27877163 PMCID: PMC5100360 DOI: 10.3389/fmicb.2016.01758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/19/2016] [Indexed: 01/14/2023] Open
Abstract
The bacterium Helicobacter pylori exhibits great genetic diversity, and the pathogenic roles of its virulence factors have been widely studied. However, the evolutionary dynamics of H. pylori strains during stomach colonization are not well-characterized. Here, we analyzed the microevolutionary dynamics of the toxigenic strain vacAs1m1, the non-toxigenic strain vacAs2m2, and a combination of both strains in an animal model over time. Meriones unguiculatus were inoculated with the following bacteria: group 1-toxigenic strain vacAs1m1/cagA+/cagE+/babA2+; ST181, group 2-non-toxigenic strain vacAs2m2/cagA+/cagE+/babA2+; ST2901, and group 3-both strains. The gerbils were euthanized at different time points (3, 6, 12, and 18 months). In group 1, genetic alterations were observed at 6 and 12 months. With the combination of both strains, group 3 also exhibited genetic alterations at 3 and 18 months; moreover, a chimera, vacA m1-m2, was detected. Additionally, four new sequence types (STs) were reported in the PubMLST database for H. pylori. Synonymous and non-synonymous mutations were analyzed and associated with alterations in amino acids. Microevolutionary analysis of the STs (PHYLOViZ) identified in each group revealed many mutational changes in the toxigenic (vacAs1m1) and non-toxigenic (vacAs2m2) strains. Phylogenetic assessments (eBURST) did not reveal clonal complexes. Our findings indicate that the toxigenic strain, vacAs1m1, and a combination of toxigenic and non-toxigenic strains acquired genetic material by recombination. The allelic combination, vacAs2m1, displayed the best adaptation in the animal model over time, and a chimera, m1-m2, was also identified, which confirmed previous reports.
Collapse
Affiliation(s)
- Sandra Mendoza-Elizalde
- Laboratorio de Infectología, Departamento de Infectologia, Hospital Infantil de México Federico GómezCiudad de México, Mexico; Posgrado en Ciencias Químicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCiudad de México, Mexico; Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCiudad de México, Mexico
| | - Nancy K Arteaga-Resendiz
- Laboratorio de Infectología, Departamento de Infectologia, Hospital Infantil de México Federico GómezCiudad de México, Mexico; Posgrado en Ciencias en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalCiudad de México, Mexico
| | - Pedro Valencia-Mayoral
- Dirección de Planeación, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Raúl C Luna
- Bioterio, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Sarbelio Moreno-Espinosa
- Laboratorio de Infectología, Departamento de Infectologia, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de México, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Infectología, Departamento de Infectologia, Hospital Infantil de México Federico Gómez Ciudad de México, Mexico
| |
Collapse
|
18
|
Pyburn TM, Foegeding NJ, González-Rivera C, McDonald NA, Gould KL, Cover TL, Ohi MD. Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin. Mol Microbiol 2016; 102:22-36. [PMID: 27309820 PMCID: PMC5035229 DOI: 10.1111/mmi.13443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 01/08/2023]
Abstract
Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.
Collapse
Affiliation(s)
- Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Christian González-Rivera
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232.
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232.
| |
Collapse
|
19
|
Thi Huyen Trang T, Thanh Binh T, Yamaoka Y. Relationship between vacA Types and Development of Gastroduodenal Diseases. Toxins (Basel) 2016; 8:toxins8060182. [PMID: 27294955 PMCID: PMC4926148 DOI: 10.3390/toxins8060182] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) is a secreted pore-forming toxin and a major virulence factor in the pathogenesis of H. pylori infection. While VacA is present in almost all strains, only some forms are toxigenic and pathogenic. While vacA and its genotypes are considered as markers of H. pylori-related diseases or disorders, the pathophysiological mechanisms of VacA and its genotypes remain controversial. This review outlines key findings of publications regarding vacA with emphasis on the relationship between vacA genotypes and the development of human disease.
Collapse
Affiliation(s)
- Tran Thi Huyen Trang
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
- Department of Molecular Biology, 108 Hospital, Hanoi, Vietnam.
| | - Tran Thanh Binh
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins (Basel) 2016; 8:toxins8060173. [PMID: 27271669 PMCID: PMC4926140 DOI: 10.3390/toxins8060173] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022] Open
Abstract
The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease.
Collapse
Affiliation(s)
- Nora J Foegeding
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
21
|
Yahiro K, Hirayama T, Moss J, Noda M. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors. Toxins (Basel) 2016; 8:toxins8050152. [PMID: 27187473 PMCID: PMC4885067 DOI: 10.3390/toxins8050152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H. pylori), a major cause of gastroduodenal diseases, produces VacA, a vacuolating cytotoxin associated with gastric inflammation and ulceration. The C-terminal domain of VacA plays a crucial role in receptor recognition on target cells. We have previously identified three proteins (i.e., RPTPα, RPTPβ, and LRP1) that serve as VacA receptors. These receptors contribute to the internalization of VacA into epithelial cells, activate signal transduction pathways, and contribute to cell death and gastric ulceration. In addition, other factors (e.g., CD18, sphingomyelin) have also been identified as cell-surface, VacA-binding proteins. Since we believe that, following interactions with its host cell receptors, VacA participates in events leading to disease, a better understanding of the cellular function of VacA receptors may provide valuable information regarding the mechanisms underlying the pleiotropic actions of VacA and the pathogenesis of H. pylori-mediated disease. In this review, we focus on VacA receptors and their role in events leading to cell damage.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, Building 10, Room 6D03, MSC 1590, Bethesda, MD 20892-1590, USA.
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
22
|
Junaid M, Linn AK, Javadi MB, Al-Gubare S, Ali N, Katzenmeier G. Vacuolating cytotoxin A (VacA) - A multi-talented pore-forming toxin from Helicobacter pylori. Toxicon 2016; 118:27-35. [PMID: 27105670 DOI: 10.1016/j.toxicon.2016.04.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/12/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is associated with severe and chronic diseases of the stomach and duodenum such as peptic ulcer, non-cardial adenocarcinoma and gastric lymphoma, making Helicobacter pylori the only bacterial pathogen which is known to cause cancer. The worldwide rate of incidence for these diseases is extremely high and it is estimated that about half of the world's population is infected with H. pylori. Among the bacterial virulence factors is the vacuolating cytotoxin A (VacA), which represents an important determinant of pathogenicity. Intensive characterization of VacA over the past years has provided insight into an ample variety of mechanisms contributing to host-pathogen interactions. The toxin is considered as an important target for ongoing research for several reasons: i) VacA displays unique features and structural properties and its mechanism of action is unrelated to any other known bacterial toxin; ii) the toxin is involved in disease progress and colonization by H. pylori of the stomach; iii) VacA is a potential and promising candidate for the inclusion as antigen in a vaccine directed against H. pylori and iv) the vacA gene is characterized by a high allelic diversity, and allelic variants contribute differently to the pathogenicity of H. pylori. Despite the accumulation of substantial data related to VacA over the past years, several aspects of VacA-related activity have been characterized only to a limited extent. The biologically most significant effect of VacA activity on host cells is the formation of membrane pores and the induction of vacuole formation. This review discusses recent findings and advances on structure-function relations of the H. pylori VacA toxin, in particular with a view to membrane channel formation, oligomerization, receptor binding and apoptosis.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Pharmacy, Division of Pharmacology, University of Malakand, Khyber Pakhtunkhwa 18550, Pakistan; Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Aung Khine Linn
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Mohammad Bagher Javadi
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Sarbast Al-Gubare
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| | - Niaz Ali
- Department of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan.
| | - Gerd Katzenmeier
- Bacterial Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand.
| |
Collapse
|
23
|
Amieva M, Peek RM. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016; 150:64-78. [PMID: 26385073 PMCID: PMC4691563 DOI: 10.1053/j.gastro.2015.09.004] [Citation(s) in RCA: 623] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Colonization of the human stomach by Helicobacter pylori and its role in causing gastric cancer is one of the richest examples of a complex relationship among human cells, microbes, and their environment. It is also a puzzle of enormous medical importance given the incidence and lethality of gastric cancer worldwide. We review recent findings that have changed how we view these relationships and affected the direction of gastric cancer research. For example, recent data have indicated that subtle mismatches between host and microbe genetic traits greatly affect the risk of gastric cancer. The ability of H pylori and its oncoprotein CagA to reprogram epithelial cells and activate properties of stemness show the sophisticated relationship between H pylori and progenitor cells in the gastric mucosa. The observation that cell-associated H pylori can colonize the gastric glands and directly affect precursor and stem cells supports these observations. The ability to mimic these interactions in human gastric organoid cultures as well as animal models will allow investigators to more fully unravel the extent of H pylori control on the renewing gastric epithelium. Finally, our realization that external environmental factors, such as dietary components and essential micronutrients, as well as the gastrointestinal microbiota, can change the balance between H pylori's activity as a commensal or a pathogen has provided direction to studies aimed at defining the full carcinogenic potential of this organism.
Collapse
Affiliation(s)
- Manuel Amieva
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California; Department of Pediatrics, Stanford University, Palo Alto, California
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
24
|
Cover TL, Holland RL, Blanke SR. Helicobacter pylori Vacuolating Toxin. HELICOBACTER PYLORI RESEARCH 2016:113-141. [DOI: 10.1007/978-4-431-55936-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Kibria KMK, Hossain ME, Sultana J, Sarker SA, Bardhan PK, Rahman M, Nahar S. The Prevalence of Mixed Helicobacter pylori Infections in Symptomatic and Asymptomatic Subjects in Dhaka, Bangladesh. Helicobacter 2015; 20:397-404. [PMID: 25827337 DOI: 10.1111/hel.12213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Helicobacter pylori is a highly genetically diverse bacterial species, which can persist in the gastric environment for decades. Recent studies have shown that single infections predominate in developed countries, whereas mixed infections are more prevalent in developing countries. Mixed infections of this bacterium may be important for adaptation to the hostile gastric environment and may facilitate dyspeptic symptoms. MATERIALS AND METHODS To calculate the prevalence of mixed infections in symptomatic and asymptomatic subjects, 2010 H. pylori isolates collected from 83 symptomatic and 91 asymptomatic subjects from Dhaka, Bangladesh, were analyzed by (i) random amplified polymorphic DNA fingerprinting (RAPD) and (ii) multiplex PCR amplification for cagA and vacA virulence gene alleles. RESULTS The overall prevalence of mixed H. pylori infection was 60.15% (77/128), indicating substantial co-colonization in this population. We additionally found that symptomatic subjects (53%) had a significantly higher rate of mixed infection than asymptomatic individuals (36.3%) (p = .016) and that the prevalence of the cagA and vacA and vacA m1/s1 and vacA m2/s1 alleles were higher in subjects with mixed infection. CONCLUSION Our findings suggest that an increased diversity of the H. pylori strains in the gastric environment may contribute to the development of disease symptoms.
Collapse
Affiliation(s)
| | - Md Enayet Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Shafiqul A Sarker
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | - Motiur Rahman
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Shamsun Nahar
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
26
|
The biological functions of IL-17 in different clinical expressions of Helicobacter pylori-infection. Microb Pathog 2015; 81:33-8. [DOI: 10.1016/j.micpath.2015.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 02/06/2023]
|
27
|
Ferreira RM, Machado JC, Figueiredo C. Clinical relevance of Helicobacter pylori vacA and cagA genotypes in gastric carcinoma. Best Pract Res Clin Gastroenterol 2014; 28:1003-15. [PMID: 25439067 DOI: 10.1016/j.bpg.2014.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori infection is the major etiological factor of gastric carcinoma. This disease is the result of a long, multistep, and multifactorial process, which occurs only in a small proportion of patients infected with H. pylori. Gastric carcinoma development is influenced by host genetic susceptibility factors, environmental factors, and H. pylori virulence. H. pylori is genetically highly variable, and variability that affects H. pylori virulence factors may be useful to identify strains with different degrees of pathogenicity. This review will focus on VacA and CagA that have polymorphic regions that impact their functional properties. The characterization of H. pylori vacA and cagA-associated could be useful for identifying patients at highest risk of disease, who could be offered H. pylori eradication therapy and who could be included in programs of more intensive surveillance in an attempt to reduce gastric carcinoma incidence.
Collapse
Affiliation(s)
- Rui M Ferreira
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
| | - José C Machado
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Sequence and apoptotic activity of VacA cytotoxin cloned from a Helicobacter pylori Thai clinical isolate. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398350. [PMID: 24963483 PMCID: PMC4052787 DOI: 10.1155/2014/398350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 03/06/2014] [Accepted: 03/08/2014] [Indexed: 02/07/2023]
Abstract
The vacuolating cytotoxin VacA produced by Helicobacter pylori induces the formation of large cytoplasmic vacuoles in host gastric epithelial cells as well as a release of cytochrome C from mitochondria resulting in cell apoptosis. Considerable sequence diversity in VacA relating to different degrees of disease severity is observed with clinical samples from a multitude of geographic places. In this study we describe expression in Escherichia coli, purification to homogeneity and in vitro assay of its apoptotic activity of a VacA toxin from a H. pylori isolate of a Thai patient with gastrointestinal lymphoma. Sequencing revealed that the deduced amino acid sequence of the cloned Thai isolate VacA is similar to H. pylori s1/m2 type strains. The percent sequence similarity to the model strain 60190 was lower due to the presence of extra amino acids in the mid (m) region. The purified VacA toxin exhibited significant apoptotic activity on both T84 and MDCK epithelial cell lines, as revealed by DAPI staining, whereby the observed activity was significantly higher on MDCK cells. These findings could relate to a modulation of VacA activity on host cells in the Thai isolate-VacA toxin that may differ from those of the model strain.
Collapse
|
29
|
Abstract
Gastric adenocarcinoma is a leading cause of cancer-related death worldwide, and Helicobacter pylori infection is one of the strongest known risk factors for this malignancy. H. pylori strains exhibit a high level of genetic diversity, and the risk of gastric cancer is higher in persons carrying certain strain types (for example, those that contain a cag pathogenicity island or type s1 vacA alleles) than in persons carrying other strain types. Additional risk factors for gastric cancer include specific human genetic polymorphisms and specific dietary preferences (for example, a high-salt diet or a diet deficient in fruits and vegetables). Finally, iron-deficiency anemia is a risk factor for gastric cancer. Recent studies have provided evidence that several dietary risk factors for gastric cancer directly impact H. pylori virulence. In this review article, we discuss mechanisms by which diet can modulate H. pylori virulence and thereby influence gastric cancer risk.
Collapse
Affiliation(s)
- Timothy L Cover
- Division of Infectious Diseases; Vanderbilt University School of Medicine; Nashville, TN USA,Department of Pathology, Microbiology, and Immunology; Vanderbilt University School of Medicine; Nashville, TN USA,Veterans Affairs Tennessee Valley Healthcare System; Nashville, TN USA
| | - Richard M Peek, Jr
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA,Correspondence to: Richard M Peek, Jr,
| |
Collapse
|
30
|
Grijpstra J, Arenas J, Rutten L, Tommassen J. Autotransporter secretion: varying on a theme. Res Microbiol 2013; 164:562-82. [PMID: 23567321 DOI: 10.1016/j.resmic.2013.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Autotransporters are widely distributed among Gram-negative bacteria. They can have a large variety of functions and many of them have a role in virulence. They are synthesized as large precursors with an N-terminal signal sequence that mediates transport across the inner membrane via the Sec machinery and a translocator domain that mediates the transport of the connected passenger domain across the outer membrane to the bacterial cell surface. Like integral outer membrane proteins, the translocator domain folds in a β-barrel structure and requires the Bam machinery for its insertion into the outer membrane. After transport across the outer membrane, the passenger may stay connected via the translocator domain to the bacterial cell surface or it is proteolytically released into the extracellular milieu. Based on the size of the translocator domain and its position relative to the passenger in the precursor, autotransporters are divided into four sub-categories. We review here the current knowledge of the biogenesis, structure and function of various autotransporters.
Collapse
Affiliation(s)
- Jan Grijpstra
- Section Molecular Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Chambers MG, Pyburn TM, González-Rivera C, Collier SE, Eli I, Yip CK, Takizawa Y, Lacy DB, Cover TL, Ohi MD. Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J Mol Biol 2012. [PMID: 23178866 DOI: 10.1016/j.jmb.2012.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to peptic ulceration and gastric adenocarcinoma. H. pylori secretes a pore-forming exotoxin known as vacuolating toxin (VacA). VacA contains two distinct domains, designated p33 and p55, and assembles into large "snowflake"-shaped oligomers. Thus far, no structural data are available for the p33 domain, which is essential for membrane channel formation. Using single-particle electron microscopy and the random conical tilt approach, we have determined the three-dimensional structures of six VacA oligomeric conformations at ~15-Å resolution. The p55 domain, composed primarily of β-helical structures, localizes to the peripheral arms, while the p33 domain consists of two globular densities that localize within the center of the complexes. By fitting the VacA p55 crystal structure into the electron microscopy densities, we have mapped inter-VacA interactions that support oligomerization. In addition, we have examined VacA variants/mutants that differ from wild-type (WT) VacA in toxin activity and/or oligomeric structural features. Oligomers formed by VacA∆6-27, a mutant that fails to form membrane channels, lack an organized p33 central core. Mixed oligomers containing both WT and VacA∆6-27 subunits also lack an organized core. Oligomers formed by a VacA s2m1 chimera (which lacks cell-vacuolating activity) and VacAΔ301-328 (which retains vacuolating activity) each contain p33 central cores similar to those of WT oligomers. By providing the most detailed view of the VacA structure to date, these data offer new insights into the toxin's channel-forming component and the intermolecular interactions that underlie oligomeric assembly.
Collapse
Affiliation(s)
- Melissa G Chambers
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suzuki RB, Cola RF, Cola LTB, Ferrari CG, Ellinger F, Therezo AL, Silva LC, Eterovic A, Sperança MA. Different risk factors influence peptic ulcer disease development in a Brazilian population. World J Gastroenterol 2012; 18:5404-11. [PMID: 23082057 PMCID: PMC3471109 DOI: 10.3748/wjg.v18.i38.5404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate age, sex, histopathology and Helicobacter pylori (H. pylori) status, as risk factors for gastroduodenal disease outcome in Brazilian dyspeptic patients.
METHODS: From all 1466 consecutive dyspeptic patients submitted to upper gastroscopy at Hospital das Clinicas of Marilia, antral biopsy specimens were obtained and subjected to histopathology and H. pylori diagnosis. All patients presenting chronic gastritis (CG) and peptic ulcer (PU) disease localized in the stomach, gastric ulcer (GU) and/or duodenal ulcer (DU) were included in the study. Gastric biopsies (n = 668) positive for H. pylori by rapid urease test were investigated for vacuolating cytotoxin A (vacA) medium (m) region mosaicism by polymerase chain reaction. Logistic regression analysis was performed to verify the association of age, sex, histopathologic alterations, H. pylori diagnosis and vacA m region mosaicism with the incidence of DU, GU and CG in patients.
RESULTS: Of 1466 patients submitted to endoscopy, 1060 (72.3%) presented CG [male/female = 506/554; mean age (year) ± SD = 51.2 ± 17.81], 88 (6.0%) presented DU [male/female = 54/34; mean age (year) ± SD = 51.4 ± 17.14], and 75 (5.1%) presented GU [male/female = 54/21; mean age (year) ± SD = 51.3 ± 17.12] and were included in the comparative analysis. Sex and age showed no detectable effect on CG incidence (overall χ2 = 2.1, P = 0.3423). Sex [Odds ratios (OR) = 1.8631, P = 0.0058] but not age (OR = 0.9929, P = 0.2699) was associated with DU and both parameters had a highly significant effect on GU (overall χ2 = 30.5, P < 0.0001). The histopathological results showed a significant contribution of ageing for both atrophy (OR = 1.0297, P < 0.0001) and intestinal metaplasia (OR = 1.0520, P < 0.0001). Presence of H. pylori was significantly associated with decreasing age (OR = 0.9827, P < 0.0001) and with the incidence of DU (OR = 3.6077, P < 0.0001). The prevalence of m1 in DU was statistically significant (OR = 2.3563, P = 0.0018) but not in CG (OR = 2.678, P = 0.0863) and GU (OR = 1.520, P= 0.2863).
CONCLUSION: In our population, male gender was a risk factor for PU; ageing for GU, atrophy and metaplasia; and H. pylori of vacA m1 genotype for DU.
Collapse
|
33
|
González-Rivera C, Algood HMS, Radin JN, McClain MS, Cover TL. The intermediate region of Helicobacter pylori VacA is a determinant of toxin potency in a Jurkat T cell assay. Infect Immun 2012; 80:2578-88. [PMID: 22585965 PMCID: PMC3434591 DOI: 10.1128/iai.00052-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/04/2012] [Indexed: 02/08/2023] Open
Abstract
Colonization of the human stomach with Helicobacter pylori is a risk factor for peptic ulceration, noncardia gastric adenocarcinoma, and gastric lymphoma. The secreted VacA toxin is an important H. pylori virulence factor that causes multiple alterations in gastric epithelial cells and T cells. Several families of vacA alleles have been described, and H. pylori strains containing certain vacA types (s1, i1, and m1) are associated with an increased risk of gastric disease, compared to strains containing other vacA types (s2, i2, and m2). Thus far, there has been relatively little study of the role of the VacA intermediate region (i-region) in toxin activity. In this study, we compared the ability of i1 and i2 forms of VacA to cause functional alterations in Jurkat cells. To do this, we manipulated the chromosomal vacA gene in two H. pylori strains to introduce alterations in the region encoding the VacA i-region. We did not detect any differences in the capacity of i1 and i2 forms of VacA to cause vacuolation of RK13 cells. In comparison to i1 forms of VacA, i2 forms of VacA had a diminished capacity to inhibit the activation of nuclear factor of activated T cells (NFAT) and suppress interleukin-2 (IL-2) production. Correspondingly, i2 forms of VacA bound to Jurkat cells less avidly than did i1 forms of VacA. These results indicate that the VacA i-region is an important determinant of VacA effects on human T cell function.
Collapse
Affiliation(s)
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jana N. Radin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Palframan SL, Kwok T, Gabriel K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front Cell Infect Microbiol 2012; 2:92. [PMID: 22919683 PMCID: PMC3417644 DOI: 10.3389/fcimb.2012.00092] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
More than 50% of the world's population is infected with Helicobacter pylori (H. pylori). Chronic infection with this Gram-negative pathogen is associated with the development of peptic ulcers and is linked to an increased risk of gastric cancer. H. pylori secretes many proteinaceous factors that are important for initial colonization and subsequent persistence in the host stomach. One of the major protein toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA). After secretion from the bacteria via a type V autotransport secretion system, the 88 kDa VacA toxin (comprised of the p33 and p55 subunits) binds to host cells and is internalized, causing severe “vacuolation” characterized by the accumulation of large vesicles that possess hallmarks of both late endosomes and early lysosomes. The development of “vacuoles” has been attributed to the formation of VacA anion-selective channels in membranes. Apart from its vacuolating effects, it has recently become clear that VacA also directly affects mitochondrial function. Earlier studies suggested that the p33 subunit, but not the p55 subunit of VacA, could enter mitochondria to modulate organelle function. This raised the possibility that a mechanism separate from pore formation may be responsible for the effects of VacA on mitochondria, as crystallography studies and structural modeling predict that both subunits are required for a physiologically stable pore. It has also been suggested that the mitochondrial effects observed are due to indirect effects on pro-apoptotic proteins and direct effects on mitochondrial morphology-related processes. Other studies have shown that both the p55 and p33 subunits can indeed be efficiently imported into mammalian-derived mitochondria raising the possibility that they could re-assemble to form a pore. Our review summarizes and consolidates the recent advances in VacA toxin research, with focus on the outstanding controversies in the field and the key remaining questions that need to be addressed.
Collapse
Affiliation(s)
- Samuel L Palframan
- Host Pathogens Molecular Biology Group, Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC, Australia
| | | | | |
Collapse
|
35
|
Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol 2012; 2:37. [PMID: 22919629 PMCID: PMC3417592 DOI: 10.3389/fcimb.2012.00037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 12/13/2022] Open
Abstract
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important. Analogous to a number of H. pylori genes, the vacA gene exhibits allelic mosaicism, and human epidemiological studies have revealed that several families of toxin alleles are predictive of more severe disease. Animal model studies suggest that VacA may contribute to pathogenesis in several ways. VacA functions as an intracellular-acting protein exotoxin. However, VacA does not fit the current prototype of AB intracellular-acting bacterial toxins, which elaborate modulatory effects through the action of an enzymatic domain translocated inside host cells. Rather, VacA may represent an alternative prototype for AB intracellular acting toxins that modulate cellular homeostasis by forming ion-conducting intracellular membrane channels. Although VacA seems to form channels in several different membranes, one of the most important target sites is the mitochondrial inner membrane. VacA apparently take advantage of an unusual intracellular trafficking pathway to mitochondria, where the toxin is imported and depolarizes the inner membrane to disrupt mitochondrial dynamics and cellular energy homeostasis as a mechanism for engaging the apoptotic machinery within host cells. VacA remodeling of the gastric environment appears to be fine-tuned through the action of the Type IV effector protein CagA which, in part, limits the cytotoxic effects of VacA in cells colonized by H. pylori.
Collapse
Affiliation(s)
- Ik-Jung Kim
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana IL, USA
| | | |
Collapse
|
36
|
Yang ZM. Relationship between full-length sequence characteristics of the vacA gene from high-cytotoxic and low-cytotoxic Helicobacter pylori in China and VacA activities. Shijie Huaren Xiaohua Zazhi 2011; 19:3446-3451. [DOI: 10.11569/wcjd.v19.i33.3446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of vacA gene sequence variation on VacA activity by analyzing the full-length sequence of the vacA gene of high- and low-cytotoxic Helicobacter pylori (H. pylori) strains isolated from China.
METHODS: The full-length sequences of the vacA gene of four high- and four low-cytotoxic H. pylori strains were retrieved from GenBank database and analyzed using three bioinformatic programs (DNAMAN, Lasergene 7.0 and MEGA 5.0).
RESULTS: There existed significant sequence variations in the vacA gene among high- and low-cytotoxic H. pylori strains isolated from China and a high-cytotoxic H. pylori 60190 strain isolated from west country. These variations were mainly concentrated on the p55 domain of the vacA gene, resulting in transitions between hydrophobic and polar amino acids. Several insertion variations were detected in low-cytotoxic H. pylori strains compared to the H. pylori 60190 strain. High- and low-cytotoxic strains as well as strains isolated from China and west countrywere clustered as different H. pylori lineages.
CONCLUSION: Sequence and insert variation in the vacA gene might be an important reason resulting in VacA activity difference among H. pylori strains.
Collapse
|
37
|
Ayala G, Flores-Luna L, Hernández-Amaro D, Mendoza-Hernández G, Chihu-Amparán L, Bernal-Sahagún F, Camorlinga M, Lazcano-Ponce E, Torres J. Association of circulating VacA-neutralizing antibodies with gastric cancer and duodenal ulcer. Cancer Causes Control 2011; 22:1425-34. [PMID: 21779758 DOI: 10.1007/s10552-011-9817-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 07/05/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To study the association between anti-VacA antibodies and pre-neoplastic lesions (IM), gastric cancer (GC), and duodenal ulcer (DU). METHODS A case-control study that included 347 patients, 90 with IM, 60 with GC, 52 with DU, and 145 with non-atrophic gastritis was conducted. For the analysis, a polytomous logistic regression models were used. Anti-VacA antibodies were identified in sera from these patients, either by Western blot assay (WB), using antigens produced by H. pylori s1m1 strain, or by neutralization assay challenging HeLa cells with H. pylori VacA s1m1 cytotoxin. RESULTS Results of the WB assay showed no association between WB-anti-VacA antibodies and gastroduodenal diseases. In contrast, when antibodies that neutralize VacA cytotoxic activity were studied, a significant association was found with IM (OR 2.7, 95% CI 1.4-5.1) and DU (OR 2.3, 95% CI 1.1-4.9) and an even stronger association with GC (OR 3.9, 95% CI 1.8-8.5). A significant association with histological subtypes of GC (diffuse and intestinal) and of IM (complete and incomplete) was also found. In addition, the association showed a significant dose-response effect in the case of GC, but not of DU or IM. These associations did not change substantially after adjustment for confounding factors. MAIN CONCLUSION This study showed that VacA-neutralizing antibodies are significantly associated with gastroduodenal diseases, especially GC, and that they might be used as risk markers of GC and DU.
Collapse
Affiliation(s)
- Guadalupe Ayala
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Universidad No. 655, entre Cerrada Los Pinos y Caminera. Col. Santa María Ahuacatitlán, CP 62100, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
39
|
Jones KR, Whitmire JM, Merrell DS. A Tale of Two Toxins: Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease. Front Microbiol 2010; 1:115. [PMID: 21687723 PMCID: PMC3109773 DOI: 10.3389/fmicb.2010.00115] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/27/2010] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that colonizes more than 50% of the world's population, which leads to a tremendous medical burden. H. pylori infection is associated with such varied diseases as gastritis, peptic ulcers, and two forms of gastric cancer: gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. This association represents a novel paradigm for cancer development; H. pylori is currently the only bacterium to be recognized as a carcinogen. Therefore, a significant amount of research has been conducted to identify the bacterial factors and the deregulated host cell pathways that are responsible for the progression to more severe disease states. Two of the virulence factors that have been implicated in this process are cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA), which are cytotoxins that are injected and secreted by H. pylori, respectively. Both of these virulence factors are polymorphic and affect a multitude of host cellular pathways. These combined facts could easily contribute to differences in disease severity across the population as various CagA and VacA alleles differentially target some pathways. Herein we highlight the diverse types of cellular pathways and processes targeted by these important toxins.
Collapse
Affiliation(s)
- Kathleen R Jones
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | | |
Collapse
|
40
|
Polymorphisms in the intermediate region of VacA impact Helicobacter pylori-induced disease development. J Clin Microbiol 2010; 49:101-10. [PMID: 21084502 DOI: 10.1128/jcm.01782-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the etiological agent of diseases such as gastritis, gastric and duodenal ulcers, and two types of gastric cancers. While some insight has been gained into the etiology of these diverse manifestations, by and large, the reason that some individuals develop more severe disease remains elusive. Recent studies have focused on the roles of H. pylori toxins CagA and VacA on the disease process and have suggested that both toxins are intimately involved. Moreover, CagA and VacA are polymorphic within different H. pylori strains, and particular polymorphisms seem to show a correlation with the development of particular disease states. Among VacA polymorphisms, the intermediate region has recently been proposed to play a major role in disease outcome. In this article, we describe a detailed sequence analysis of the polymorphic intermediate region of vacA from strains obtained from a large South Korean population. We show that polymorphisms found at amino acid position 196 are associated with more severe disease manifestations. Additionally, polymorphisms found at amino acid position 231 are linked to disease in strains that carry the non-EPIYA-ABD allele of CagA. Collectively, these data help explain the impact of the VacA intermediate region on disease and lead to the hypothesis that there are allele-driven interactions between VacA and CagA.
Collapse
|
41
|
Abstract
Helicobacter pylori is a genetically diverse organism that is adapted for colonization of the human stomach. All strains contain a gene encoding a secreted, pore-forming toxin known as VacA. Genetic variation at this locus could be under strong selection as H. pylori adapts to the host immune response, colonizes new human hosts, or inhabits different host environments. Here, we analyze the molecular evolution of VacA. Phylogenetic reconstructions indicate the subdivision of VacA sequences into three main groups with distinct geographic distributions. Divergence of the three groups is principally due to positively selected sequence changes in the p55 domain, a central region required for binding of the toxin to host cells. Divergent amino acids map to surface-exposed sites in the p55 crystal structure. Comparative phylogenetic analyses of vacA sequences and housekeeping gene sequences indicate that vacA does not share the same evolutionary history as the core genome. Further, rooting the VacA tree with outgroup sequences from the close relative Helicobacter acinonychis reveals that the ancestry of VacA is different from the African origin that typifies the core genome. Finally, sequence analyses of the virulence determinant CagA reveal three main groups strikingly similar to the three groups of VacA sequences. Taken together, these results indicate that positive selection has shaped the phylogenetic structure of VacA and CagA, and each of these virulence determinants has evolved separately from the core genome.
Collapse
|
42
|
González-Rivera C, Gangwer KA, McClain MS, Eli IM, Chambers MG, Ohi MD, Lacy DB, Cover TL. Reconstitution of Helicobacter pylori VacA toxin from purified components. Biochemistry 2010; 49:5743-52. [PMID: 20527875 PMCID: PMC2910095 DOI: 10.1021/bi100618g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori VacA is a pore-forming toxin that causes multiple alterations in human cells and contributes to the pathogenesis of peptic ulcer disease and gastric cancer. The toxin is secreted by H. pylori as an 88 kDa monomer (p88) consisting of two domains (p33 and p55). While an X-ray crystal structure for p55 exists and p88 oligomers have been visualized by cryo-electron microscopy, a detailed analysis of p33 has been hindered by an inability to purify this domain in an active form. In this study, we expressed and purified a recombinant form of p33 under denaturing conditions and optimized conditions for the refolding of the soluble protein. We show that refolded p33 can be added to purified p55 in trans to cause vacuolation of HeLa cells and inhibition of IL-2 production by Jurkat cells, effects identical to those produced by the p88 toxin from H. pylori. The p33 protein markedly enhances the cell binding properties of p55. Size exclusion chromatography experiments suggest that p33 and p55 assemble into a complex consistent with the size of a p88 monomer. Electron microscopy of these p33/p55 complexes reveals small rod-shaped structures that can convert to oligomeric flower-shaped structures in the presence of detergent. We propose that the oligomerization observed in these experiments mimics the process by which VacA oligomerizes when in contact with membranes of host cells.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kelly A. Gangwer
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mark S. McClain
- Department of Medicine Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ilyas M. Eli
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melissa G. Chambers
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology Vanderbilt University School of Medicine, Nashville, TN 37232
| | - D. Borden Lacy
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy L. Cover
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Veterans Affairs Tennessee Valley Healthcare System Nashville, TN 37212
| |
Collapse
|
43
|
Isomoto H, Moss J, Hirayama T. Pleiotropic actions of Helicobacter pylori vacuolating cytotoxin, VacA. TOHOKU J EXP MED 2010; 220:3-14. [PMID: 20046046 DOI: 10.1620/tjem.220.3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori produces a vacuolating cytotoxin, VacA, and most virulent H. pylori strains secrete VacA. VacA binds to two types of receptor-like protein tyrosine phosphatase (RPTP), RPTPalpha and RPTPbeta, on the surface of host cells. VacA bound to RPTPbeta, relocates and concentrates in lipid rafts in the plasma membrane. VacA causes vacuolization, membrane anion-selective channel and pore formation, and disruption of endosomal and lysosomal activity in host cells. Secreted VacA is processed into p33 and p55 fragments. The p55 domain not only plays a role in binding to target cells but also in the formation of oligomeric structures and anionic membrane channels. Oral administration of VacA to wild-type mice, but not to RPTPbeta knockout mice, resulted in gastric ulcers, in agreement with the clinical effect of VacA. VacA with s1/m1 allele has more potent cytotoxic activity in relation to peptic ulcer disease and appears to be associated with human gastric cancer. VacA activates pro-apoptotic Bcl-2 family proteins, and induces apoptosis via a mitochondria-dependent pathway. VacA can disrupt other signal transduction pathways; VacA activates p38 MAPK, enhancing production of IL-8 and PGE(2), and PI3K/Akt, suppressing GSK-3beta activity. VacA has immunomodulatory actions on T cells and other immune cells, possibly contributing to the chronic infection seen with this organism. H. pylori virulence factors including VacA and CagA, which is encoded by cytotoxin-associated gene A, along with host genetic and environmental factors, constitute a complex network to regulate chronic gastric injury and inflammation, which is involved in a multistep process leading to gastric carcinogenesis.
Collapse
Affiliation(s)
- Hajime Isomoto
- Department of Endoscopy, Nagasaki University Hospital, Nagasaki, Japan
| | | | | |
Collapse
|
44
|
Jean-Marc Reyrat (29/04/1967-28/10/2009). Mol Microbiol 2010. [PMCID: PMC2848975 DOI: 10.1111/j.1365-2958.2010.07049.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ivie SE, McClain MS, Algood HMS, Lacy DB, Cover TL. Analysis of a beta-helical region in the p55 domain of Helicobacter pylori vacuolating toxin. BMC Microbiol 2010; 10:60. [PMID: 20178613 PMCID: PMC2836311 DOI: 10.1186/1471-2180-10-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/23/2010] [Indexed: 12/28/2022] Open
Abstract
Background Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. VacA, a toxin secreted by H. pylori, is comprised of two domains, designated p33 and p55. Analysis of the crystal structure of the p55 domain indicated that its structure is predominantly a right-handed parallel β-helix, which is a characteristic of autotransporter passenger domains. Substitution mutations of specific amino acids within the p33 domain abrogate VacA activity, but thus far, it has been difficult to identify small inactivating mutations within the p55 domain. Therefore, we hypothesized that large portions of the p55 domain might be non-essential for vacuolating toxin activity. To test this hypothesis, we introduced eight deletion mutations (each corresponding to a single coil within a β-helical segment spanning VacA amino acids 433-628) into the H. pylori chromosomal vacA gene. Results All eight of the mutant VacA proteins were expressed by the corresponding H. pylori mutant strains and underwent proteolytic processing to yield ~85 kDa passenger domains. Three mutant proteins (VacA Δ484-504, Δ511-536, and Δ517-544) were secreted and induced vacuolation of mammalian cells, which indicated that these β-helical coils were dispensable for vacuolating toxin activity. One mutant protein (VacA Δ433-461) exhibited reduced vacuolating toxin activity compared to wild-type VacA. Other mutant proteins, including those containing deletions near the carboxy-terminal end of the β-helical region (amino acids Val559-Asn628), exhibited marked defects in secretion and increased susceptibility to proteolytic cleavage by trypsin, which suggested that these proteins were misfolded. Conclusions These results indicate that within the β-helical segment of the VacA p55 domain, there are regions of plasticity that tolerate alterations without detrimental effects on protein secretion or activity, as well as a carboxy-terminal region in which similar alterations result in protein misfolding and impaired secretion. We propose that non-essential β-helical coils and a carboxy-terminal β-helical segment required for proper protein folding and secretion are features shared by numerous autotransporter passenger domains.
Collapse
Affiliation(s)
- Susan E Ivie
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
46
|
Backert S, Tegtmeyer N. the versatility of the Helicobacter pylori vacuolating cytotoxin vacA in signal transduction and molecular crosstalk. Toxins (Basel) 2010; 2:69-92. [PMID: 22069547 PMCID: PMC3206623 DOI: 10.3390/toxins2010069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/31/2009] [Accepted: 01/14/2010] [Indexed: 12/13/2022] Open
Abstract
By modulating important properties of eukaryotic cells, many bacterial protein toxins highjack host signalling pathways to create a suitable niche for the pathogen to colonize and persist. Helicobacter pylori VacA is paradigm of pore-forming toxins which contributes to the pathogenesis of peptic ulceration. Several cellular receptors have been described for VacA, which exert different effects on epithelial and immune cells. The crystal structure of VacA p55 subunit might be important for elucidating details of receptor interaction and pore formation. Here we discuss the multiple signalling activities of this important toxin and the molecular crosstalk between VacA and other virulence factors.
Collapse
Affiliation(s)
- Steffen Backert
- Ardmore House, School of Biomolecular and Biomedical Sciences, Belfield Campus, University College Dublin, Dublin-4, Ireland.
| | | |
Collapse
|
47
|
Diversity of VacA intermediate region among Helicobacter pylori strains from several regions of the world. J Clin Microbiol 2010; 48:690-6. [PMID: 20053862 DOI: 10.1128/jcm.01815-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is known to be a major cause of gastric carcinoma and peptic ulceration. cagA positivity and vacA's signal regions and mid-regions are well-characterized markers of H. pylori's virulence. Recently, an intermediate region has been identified as another strong marker of H. pylori-associated disease, and its i1 allele has been linked with severe diseases in colonized hosts. The goal of this study was to determine the prevalence of the intermediate alleles in H. pylori isolates from China, Turkey, and Uruguay and from U.S. Africans and to compare their distribution with other well-characterized virulence factors. Originally, 123 H. pylori strains were studied, but 3 were excluded due to the failure to amplify the intermediate region in these samples. Therefore, a total of 120 strains were analyzed: 30 Chinese isolates, 35 Turkish isolates, 30 Uruguayan isolates, and 25 U.S. African isolates. The s type and the m type were determined by PCR amplification. The i type was identified by PCR amplification and DNA sequencing. CagA status was determined by PCR methodology. There was a strong correlation among CagA positivity, s1, and i1 in Chinese, U.S. African, and Uruguayan isolates, but less correlation among these markers in Turkish isolates. A new intermediate variant (i3) was identified in 25.7% of Turkish strains and 3.3% of the Chinese strains. In summary, the distribution of CagA positivity and s1 correlated with the i1 in the three populations, except in the Turkish population, which showed a disproportionate representation of the i3 allele. Phylogenetic mapping confirmed the i-typing method previously defined and adopted for this study. The phylogenetic tree showed country-specific correlation with the intermediate region. Our results showed that the i1 allele is strongly associated with CagA positivity and the vacA s1 allele, suggesting its role as a virulence marker and potential predictor for clinical outcome.
Collapse
|
48
|
Epidemiological link between gastric disease and polymorphisms in VacA and CagA. J Clin Microbiol 2009; 48:559-67. [PMID: 19955279 DOI: 10.1128/jcm.01501-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gastritis, peptic ulcer disease, and gastric cancer are a few of the diverse disease manifestations that have been shown to be associated with infection by Helicobacter pylori. Why some individuals develop more severe forms of disease remains largely unknown. In this study, 225 South Korean strains were genotyped for vacA and then analyzed to determine if particular genotypes varied across disease state, sex, or cagA allele. Of these strains, 206 strains carried an s1/i1/m1 allele, 11 strains carried an s1/i1/m2 allele, and 8 strains carried an s1/i2/m2 allele. By using Fisher's exact test, a statistical association between variations in the cagA and vacA alleles was identified (P = 0.0007), and by using log linear modeling, this variation was shown to affect the severity of disease outcome (P = 0.027). Additionally, we present evidence that variation within the middle region of VacA contributes significantly to the distribution of vacA alleles across gender (P = 0.008) as well as the association with disease outcome (P = 0.011). In this South Korean population, the majority of H. pylori strains carry the vacA s1/i1/m1 allele and the CagA EPIYA-ABD allele. These facts may contribute to the high incidence of gastric maladies, including gastric cancer.
Collapse
|
49
|
Salehi Z, Abadi ASH, Ismail PBT, Kqueen CY, Jelodar MH, Kamalidehghan B. Evaluation of Helicobacter pylori vacA genotypes in Iranian patients with peptic ulcer disease. Dig Dis Sci 2009; 54:2399-403. [PMID: 19082887 DOI: 10.1007/s10620-008-0633-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 11/12/2008] [Indexed: 12/09/2022]
Abstract
Helicobacter pylori is the major cause of active chronic gastritis and peptic ulcers in humans and has been linked to gastric carcinoma and lymphoma. The vacuolating cytotoxin vacA and cag pathogenicity island (cag PAI) are two identified virulence factors that are considered to have an important role in the pathogenesis of H. pylori infection. The aim of this study is to investigate the H. pylori vacA alleles in Iranian patients with peptic ulcer disease. In order to investigate this, biopsy specimens were obtained from 84 patients with gastric ulcer, gastritis, and duodenal ulcer. DNA extraction and PCR were used to detect the presence or absence of glmM, cagA and to assess the polymorphism of vacA. Of the 77 glmM PCR-positive biopsy specimens, 55 (71%) had the vacA signal sequence genotype s1, and 22 (29%) had subtype s2. vacA mid-region analysis revealed that 31 (40%) were vacA m1 and 46 (60%) were m2. The presence of the cagA gene correlated with vacA signal sequence type s1, whereas type s2 was predominantly found in cagA-negative samples (P < 0.001). Thus, the detection of vacA and cagA, virulence markers described in several clinical outcomes may be used to help the treatment and prevention of H. pylori in Iran.
Collapse
Affiliation(s)
- Zivar Salehi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | | | | | | | | | | |
Collapse
|
50
|
Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 2009. [PMID: 19729845 DOI: 10.1172/jci38605.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Humans have been colonized by Helicobacter pylori for at least 50,000 years and probably throughout their evolution. H. pylori has adapted to humans, colonizing children and persisting throughout life. Most strains possess factors that subtly modulate the host environment, increasing the risk of peptic ulceration, gastric adenocarcinoma, and possibly other diseases. H. pylori genes encoding these and other factors rapidly evolve through mutation and recombination, changing the bacteria-host interaction. Although immune and physiologic responses to H. pylori also contribute to pathogenesis, humans have evolved in concert with the bacterium, and its recent absence throughout the life of many individuals has led to new human physiological changes. These may have contributed to recent increases in esophageal adenocarcinoma and, more speculatively, other modern diseases.
Collapse
Affiliation(s)
- John C Atherton
- Nottingham Digestive Diseases Centre Biomedical Research Unit and Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | |
Collapse
|