1
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
2
|
Godinho LF, Reis CR, van Merkerk R, Poelarends GJ, Quax WJ. An Esterase with Superior Activity and Enantioselectivity towards 1,2-O-Isopropylideneglycerol Esters Obtained by Protein Design. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Roterman I, Konieczny L, Jurkowski W, Prymula K, Banach M. Two-intermediate model to characterize the structure of fast-folding proteins. J Theor Biol 2011; 283:60-70. [PMID: 21635900 DOI: 10.1016/j.jtbi.2011.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 01/15/2023]
Abstract
This paper introduces a new model that enables researchers to conduct protein folding simulations. A two-step in silico process is used in the course of structural analysis of a set of fast-folding proteins. The model assumes an early stage (ES) that depends solely on the backbone conformation, as described by its geometrical properties--specifically, by the V-angle between two sequential peptide bond planes (which determines the radius of curvature, also called R-radius, according to a second-degree polynomial form). The agreement between the structure under consideration and the assumed model is measured in terms of the magnitude of dispersion of both parameters with respect to idealized values. The second step, called late-stage folding (LS), is based on the "fuzzy oil drop" model, which involves an external hydrophobic force field described by a three-dimensional Gauss function. The degree of conformance between the structure under consideration and its idealized model is expressed quantitatively by means of the Kullback-Leibler entropy, which is a measure of disparity between the observed and expected hydrophobicity distributions. A set of proteins, representative of the fast-folding group - specifically, cold shock proteins - is shown to agree with the proposed model.
Collapse
Affiliation(s)
- I Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Lazarza 16, 31-530 Krakow, Poland.
| | | | | | | | | |
Collapse
|
4
|
Kuhl A, Korkmaz B, Utecht B, Kniepert A, Schönermarck U, Specks U, Jenne DE. Mapping of conformational epitopes on human proteinase 3, the autoantigen of Wegener's granulomatosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:387-99. [PMID: 20530264 DOI: 10.4049/jimmunol.0903887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anti-neutrophil cytoplasmic Abs (cANCAs) against conformational epitopes of proteinase 3 (PR3) are regarded as an important pathogenic marker in Wegener's granulomatosis (WG). Although the three-dimensional structure of PR3 is known, binding sites of mAbs and cANCAs have not been mapped to date. Competitive binding and biosensor experiments suggested the existence of four nonoverlapping areas on the PR3 surface. In this paper, we present an approach to identify these discontinuous surface regions that cannot be mimicked by linear peptides. The very few surface substitutions found in closely related PR3 homologs from primates, which were further varied by the construction of functional human-gibbon hybrids, resulted in the differential loss of three Ab binding sites, two of which were mapped to the N-terminal beta-barrel and one to the linker segment connecting the N- and C-terminal barrels of PR3. The sera from WG patients differed in their binding to gibbon PR3 and the gibbon-human PR3 hybrid, and could be divided into two groups with similar or significantly reduced binding to gibbon PR3. Binding of almost all sera to PR3-alpha1-protease inhibitor (alpha1-PI) complexes was even more reduced and often absent, indicating that major antigenic determinants overlap with the active site surface on PR3 that associates with alpha1-PI. Similarly, the mouse mAbs CLB12.8 and 6A6 also did not react with gibbon PR3 and PR3-alpha1-PI complexes. Our data strongly suggest that cANCAs from WG patients at least in part recognize similar surface structures as do mouse mAbs and compete with the binding of alpha1-PI to PR3.
Collapse
Affiliation(s)
- Angelika Kuhl
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg/Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Page MJ, Di Cera E. Combinatorial enzyme design probes allostery and cooperativity in the trypsin fold. J Mol Biol 2010; 399:306-19. [PMID: 20399789 DOI: 10.1016/j.jmb.2010.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/05/2023]
Abstract
Converting one enzyme into another is challenging due to the uneven distribution of important amino acids for function in both protein sequence and structure. We report a strategy for protein engineering allowing an organized mixing and matching of genetic material that leverages lower throughput with increased quality of screens. Our approach successfully tested the contribution of each surface-exposed loop in the trypsin fold alone and the cooperativity of their combinations towards building the substrate selectivity and Na(+)-dependent allosteric activation of the protease domain of human coagulation factor Xa into a bacterial trypsin. As the created proteases lack additional protein domains and protein co-factor activation mechanism requisite for the complexity of blood coagulation, they are stepping-stones towards further understanding and engineering of artificial clotting factors.
Collapse
Affiliation(s)
- Michael J Page
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
6
|
Chen Y, Li S, Chen T, Hua H, Lin Z. Random dissection to select for protein split sites and its application in protein fragment complementation. Protein Sci 2009; 18:399-409. [PMID: 19165722 PMCID: PMC2708047 DOI: 10.1002/pro.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 10/23/2008] [Accepted: 11/25/2008] [Indexed: 11/11/2022]
Abstract
To identify protein split sites quickly, a selection procedure by using chloramphenicol acetyl transferase (CAT) as reporter was introduced to search for folded protein fragments from libraries generated by random digestion and reassembly of the target gene, which yielded an abundant amount of DNA fragments with controllable lengths. Experimental results of tryptophan synthase alpha subunit (TSalpha) and TEM-1 beta-lactamase agreed well with what the literature has reported. The solubility of these fragments correlated roughly with the minimum inhibitory concentrations of the CAT fusions. The application of this dissection protocol to protein fragment complementation assay (PCA) was evaluated using aminoglycoside-3'-phosphotransferase I (APH(3')-I) as a model protein. Three nearly bisectional sites and a number of possible split points were identified, and guided by this result, four novel pairs of fragments were tested for complementation. Three out of four pairs partially restored the APH activity with the help of leucine zippers, and a truncated but active APH(3')-I (Delta1-25) was also found. Finally, the weakly active APH(3')-I-(1-253)NZ/CZ (254-271) containing a short 18 residue tag was further improved by error-prone PCR, and a best mutant was obtained showing a fourfold improvement after just one round of evolution. These results demonstrate that protein random dissection based on the CAT selection can provide an efficient search for protein breakage points and guide the design of fragments for protein complementation assay. Furthermore, more active fragment pairs can be achieved with the classical directed evolution approach.
Collapse
Affiliation(s)
| | | | | | | | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University1 Tsinghua Garden Road, Beijing 100084, China
| |
Collapse
|
7
|
Schweiker KL, Makhatadze GI. Protein stabilization by the rational design of surface charge-charge interactions. Methods Mol Biol 2009; 490:261-83. [PMID: 19157087 DOI: 10.1007/978-1-59745-367-7_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The design of proteins with increased stability has many important applications in biotechnology. In recent years, strategies involving directed evolution, sequence-based design, or computational design have proven successful for generating stabilized proteins. A brief overview of the various methods that have been used to increase protein stability is presented, followed by a detailed example of how the rational design of surface charge-charge interactions has provided a robust method for protein stabilization.
Collapse
Affiliation(s)
- Katrina L Schweiker
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
8
|
Korkmaz B, Kuhl A, Bayat B, Santoso S, Jenne DE. A hydrophobic patch on proteinase 3, the target of autoantibodies in Wegener granulomatosis, mediates membrane binding via NB1 receptors. J Biol Chem 2008; 283:35976-82. [PMID: 18854317 DOI: 10.1074/jbc.m806754200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase 3 (PR3), the target antigen of antineutrophil cytoplasm autoantibodies, which are found in patients with Wegener granulomatosis, is a neutrophil serine protease localized within cytoplasmic granules. Recently, the human neutrophil antigen NB1 was identified as a specific neutrophil cell surface receptor of PR3. We hypothesized that the unique hydrophobic cluster of PR3 that is not present on human neutrophil elastase and cathepsin G and presumably is also missing in other human PR3 homologs accounts for its binding to the NB1 receptor expressed on the cellular surface of NB1 cells. Instead of generating and testing various artificial human PR3 mutants, we cloned and expressed the very closely related gibbon (Hylobates pileatus) PR3 homolog, which did not bind to the human NB1 receptor. Moreover, a human-gibbon hybrid constructed from the N- and C-terminal half of the human and gibbon PR3, respectively, also did not interact with human NB1. The C-terminal half of gibbon PR3 differs only by 9 residues from human PR3, among which four closely spaced hydrophobic residues are substituted in a nonconservative manner (F166L, W218R, G219A, and L223H). The NB1-bound PR3 was active and was cleared from the surface by alpha-1-protease inhibitor. Conformational distortion of the hydrophobic 217-225 loop by alpha-1-protease inhibitor most likely triggers rapid solubilization.
Collapse
Affiliation(s)
- Brice Korkmaz
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
9
|
Highly active and selective endopeptidases with programmed substrate specificities. Nat Chem Biol 2008; 4:290-4. [PMID: 18391948 DOI: 10.1038/nchembio.80] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/30/2008] [Indexed: 11/08/2022]
Abstract
A family of engineered endopeptidases has been created that is capable of cleaving a diverse array of peptide sequences with high selectivity and catalytic efficiency (kcat/KM > 10(40 M(- 1) s(- 1)). By screening libraries with a selection-counterselection substrate method, protease variants were programmed to recognize amino acids having altered charge, size and hydrophobicity properties adjacent to the scissile bond of the substrate, including GluArg, a specificity that to our knowledge has not been observed among natural proteases. Members of this artificial protease family resulted from a relatively small number of amino acid substitutions that (at least in one case) proved to be epistatic.
Collapse
|
10
|
Park SY, Lee SH, Lee J, Nishi K, Kim YS, Jung CH, Kim JS. High-resolution structure of ybfF from Escherichia coli K12: a unique substrate-binding crevice generated by domain arrangement. J Mol Biol 2008; 376:1426-37. [PMID: 18215690 DOI: 10.1016/j.jmb.2007.12.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/08/2007] [Accepted: 12/23/2007] [Indexed: 11/30/2022]
Abstract
Esterases are one of the most common enzymes and are involved in diverse cellular functions. ybfF protein from Escherichia coli (Ec_ybfF) belongs to the esterase family for the large substrates, palmitoyl coenzyme A and malonyl coenzyme A, which are important cellular intermediates for energy conversion and biomolecular synthesis. To obtain molecular information on ybfF esterase, which is found in a wide range of microorganisms, we elucidated the crystal structures of Ec_ybfF in complexes with small molecules at resolutions of 1.1 and 1.68 A, respectively. The structure of Ec_ybfF is composed of a globular alpha/beta hydrolase domain with a three-helical bundle cap, which is linked by a kinked helix to the alpha/beta hydrolase domain. It contains a catalytic tetrad of Ser-His-Asp-Ser with the first Ser acting as a nucleophile. The unique spatial arrangement and orientation of the helical cap with respect to the alpha/beta hydrolase domain form a substrate-binding crevice for large substrates. The helical cap is also directly involved in catalysis by providing a substrate anchor, viz., the conserved residues of Arg123 and Tyr208. The high-resolution structure of Ec_ybfF shows that the inserted helical bundle structure and its spatial orientation with respect to the alpha/beta hydrolase domain are critical for creating a large inner space and constituting a specific active site, thereby providing the broad substrate spectrum toward large biomolecules.
Collapse
Affiliation(s)
- Suk-Youl Park
- Department of Chemistry and Institute of Basic Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Moreno-Risueno MA, Martínez M, Vicente-Carbajosa J, Carbonero P. The family of DOF transcription factors: from green unicellular algae to vascular plants. Mol Genet Genomics 2006; 277:379-90. [PMID: 17180359 DOI: 10.1007/s00438-006-0186-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
This article deals with the origin and evolution of the DOF transcription factor family through a phylogenetic analysis of those DOF sequences identified from a variety of representative organisms from different taxonomic groups: the green unicellular alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the fern Selaginella moellendorffii, the gymnosperm Pinus taeda, the dicotyledoneous Arabidopsis thaliana and the monocotyledoneous angiosperms Oryza sativa and Hordeum vulgare. In barley, we have identified 26 different DOF genes by sequence analyses of clones isolated from the screening of genomic libraries and of ESTs, whereas a single DOF gene was identified by bioinformatics searches in the Chlamydomonas genome. The phylogenetic analysis groups all these genes into six major clusters of orthologs originated from a primary basal grade. Our results suggest that duplications of an ancestral DOF, probably formed in the photosynthetic eukaryotic ancestor, followed by subsequent neo-, sub-functionalization and pseudogenization processes would have triggered the expansion of the DOF family. Loss, acquisition and shuffling of conserved motifs among the new DOFs likely underlie the mechanism of formation of the distinct subfamilies.
Collapse
Affiliation(s)
- Miguel Angel Moreno-Risueno
- Laboratorio de Bioquímica y Biología Molecular, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
12
|
Betat H, Rammelt C, Martin G, Mörl M. Exchange of regions between bacterial poly(A) polymerase and the CCA-adding enzyme generates altered specificities. Mol Cell 2004; 15:389-98. [PMID: 15304219 DOI: 10.1016/j.molcel.2004.06.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 05/21/2004] [Accepted: 05/26/2004] [Indexed: 11/16/2022]
Abstract
Bacterial poly(A) polymerases (PAP) and tRNA nucleotidyltransferases are highly similar in sequence but display different activities: whereas tRNA nucleotidyltransferase catalyzes the addition of CCA to 3' ends of tRNAs, PAP adds poly(A) tails to a variety of transcripts. Using domain substitution experiments, we show that these enzymes follow a modular concept: exchange of N- and C-terminal regions leads to chimeric enzymes with unexpected activities, indicating that tRNA nucleotidyltransferase carries an "anchor domain" in the C-terminal section that restricts polymerization to three nucleotides. A 27 amino acid region was identified that determines whether poly(A) or CCA is synthesized by the enzyme chimeras. Sequence alignments suggest that the catalytic cores of both enzymes carry identical components involved in nucleotide recognition and incorporation. This seems to be the prerequisite for the observed reprogramming of the catalytic center of PAP to incorporate a sequence of defined length and composition instead of long stretches of A residues.
Collapse
Affiliation(s)
- Heike Betat
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | | | | | | |
Collapse
|
13
|
Lorentsen RH, Møller CH, Etzerodt M, Thøgersen HC, Holtet TL. Substrate turnover and inhibitor binding as selection parameters in directed evolution of blood coagulation factor Xa. Org Biomol Chem 2003; 1:1657-63. [PMID: 12926352 DOI: 10.1039/b210149a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of blood coagulation factor Xa (FXa)-trypsin hybrid proteases was generated and displayed on phage for selection of derivatives with the domain "architecture" of trypsin and the specificity of FXa. Selection based on binding to soybean trypsin inhibitor only provided enzymatically inactive derivatives, due to a specific mutation of serine 195 of the catalytic triad to a glycine, revealing a significant selection pressure for proteolytic inactive derivatives. By including a FXa peptide substrate in the selection mixture, the majority of the clones had retained serine at position 195 and were enzymatically active after selection. Further, with the inclusion of bovine pancreatic trypsin inhibitor, in addition to the peptide substrate, the selected clones also retained FXa specificity after selection. This demonstrates that affinity selection combined with appropriate deselection provides a simple strategy for selection of enzyme derivatives that catalyse a specific reaction.
Collapse
Affiliation(s)
- Rikke H Lorentsen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
14
|
Reyda S, Sohn C, Klebe G, Rall K, Ullmann D, Jakubke HD, Stubbs MT. Reconstructing the binding site of factor Xa in trypsin reveals ligand-induced structural plasticity. J Mol Biol 2003; 325:963-77. [PMID: 12527302 DOI: 10.1016/s0022-2836(02)01337-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to investigate issues of selectivity and specificity in protein-ligand interactions, we have undertaken the reconstruction of the binding pocket of human factor Xa in the structurally related rat trypsin by site-directed mutagenesis. Three sequential regions (the "99"-, the "175"- and the "190"- loops) were selected as representing the major structural differences between the ligand binding sites of the two enzymes. Wild-type rat trypsin and variants X99rT and X(99/175/190)rT were expressed in yeast, and analysed for their interaction with factor Xa and trypsin inhibitors. For most of the inhibitors studied, progressive loop replacement at the trypsin surface resulted in inhibitory profiles akin to factor Xa. Crystals of the variants were obtained in the presence of benzamidine (3), and could be soaked with the highly specific factor Xa inhibitor (1). Binding of the latter to X99rT results in a series of structural adaptations to the ligand, including the establishment of an "aromatic box" characteristic of factor Xa. In X(99/175/190)rT, introduction of the 175-loop results in a surprising re-orientation of the "intermediate helix", otherwise common to trypsin and factor Xa. The re-orientation is accompanied by an isomerisation of the Cys168-Cys182 disulphide bond, and burial of the critical Phe174 side-chain. In the presence of (1), a major re-organisation of the binding site takes place to yield a geometry identical to that of factor Xa. In all, binding of (1) to trypsin and its variants results in significant structural rearrangements, inducing a binding surface strongly reminiscent of factor Xa, against which the inhibitor was optimised. The structural data reveal a plasticity of the intermediate helix, which has been implicated in the functional cofactor dependency of many trypsin-like serine proteinases. This approach of grafting loops onto scaffolds of known related structures may serve to bridge the gap between structural genomics and drug design.
Collapse
Affiliation(s)
- Sabine Reyda
- Institut für Pharmazeutische Chemie der Philipps-Universität Marburg, Marbacher Weg 6, D35032, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Soejima K, Yuguchi M, Mizuguchi J, Tomokiyo K, Nakashima T, Nakagaki T, Iwanaga S. The 99 and 170 loop-modified factor VIIa mutants show enhanced catalytic activity without tissue factor. J Biol Chem 2002; 277:49027-35. [PMID: 12364340 DOI: 10.1074/jbc.m203091200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To elucidate the functions of the surface loops of VIIa, we prepared two mutants, VII-30 and VII-39. The VII-30 mutant had all of the residues in the 99 loop replaced with those of trypsin. In the VII-39 mutant, both the 99 and 170 loops were replaced with those of trypsin. The k(cat)/K(m) value for hydrolysis of the chromogenic peptidyl substrate S-2288 by VIIa-30 (103 mm(-)1s(-)1) was 3-fold higher than that of wild-type VIIa (30.3 mm(-)1 s(-)1) in the presence of soluble tissue factor (sTF). This enhancement was due to a decrease in the K(m) value but not to an increase in the k(cat) value. On the other hand, the k(cat)/K(m) value for S-2288 hydrolysis by VIIa-39 (17.9 mm(-)1 s(-)1) was 18-fold higher than that of wild-type (1.0 mm(-)1 s(-)1) in the absence of sTF, and the value was almost the same as that of wild-type measured in the presence of sTF. This enhancement was due to not only a decrease in the K(m) value but also to an increase in the k(cat) value. These results were in good agreement with their susceptibilities to a subsite 1-directed serine protease inhibitor. In our previous paper (Soejima, K., Mizuguchi, J., Yuguchi, M., Nakagaki, T., Higashi, S., and Iwanaga, S. (2001) J. Biol. Chem. 276, 17229-17235), the replacement of the 170 loop of VIIa with that of trypsin induced a 10-fold enhancement of the k(cat) value for S-2288 hydrolysis as compared with that of wild-type VIIa in the absence of sTF. These results suggested that the 99 and the 170 loop structures of VIIa independently affect the K(m) and k(cat) values, respectively. Furthermore, we studied the effect of mutations on proteolytic activity toward S-alkylated lysozyme as a macromolecular substrate and the activation of natural macromolecular substrate factor X.
Collapse
Affiliation(s)
- Kenji Soejima
- First Research Department, The Chemo-Sero-Therapeutic Research Institute, Kumamoto 869-1298, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen DT, Lin A. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity. Protein Eng Des Sel 2002; 15:997-1003. [PMID: 12601139 DOI: 10.1093/protein/15.12.997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mutant of ribonuclease T1 (RNase T1), denoted RNase Talpha, that is designed to recognize double-stranded ribonucleic acid was created. RNase Talpha carries the structure of RNase T1 except for a part of its loop L3 domain, which has been swapped for a corresponding domain from alpha-sarcin. The RNase Talpha maintains the pleated beta-sheet structure and retains the guanyl-specific ribonuclease activity of the wild-type RNase T1. A steady-state kinetic study on the RNase Talpha-catalyzed transesterification of GpU dinucleoside phosphates reveals a slightly reduced K(m) value of 6.94 x 10(-7) M. When the stranded specificity is examined, RNase Talpha catalyzes the hydrolysis of guanine base not only of single-stranded but also, as by design, of double-stranded RNA. The change of stranded specificity suggests the feasibility of using domain swapping to make a substrate-specific ribonuclease. This study suggests that the loop L3 in RNase T1 can be used as a 'cassette player' for inserting a functional domain to make ribonuclease of various specificities.
Collapse
Affiliation(s)
- Dow-Tien Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | |
Collapse
|
17
|
Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002; 102:4639-750. [PMID: 12475205 DOI: 10.1021/cr010182v] [Citation(s) in RCA: 818] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- James C Powers
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | | | | | | |
Collapse
|
18
|
Sichler K, Hopfner KP, Kopetzki E, Huber R, Bode W, Brandstetter H. The influence of residue 190 in the S1 site of trypsin-like serine proteases on substrate selectivity is universally conserved. FEBS Lett 2002; 530:220-4. [PMID: 12387896 DOI: 10.1016/s0014-5793(02)03495-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the influence of Ser/Ala190 in the S1 site on P1 substrate selectivity in several serine proteases. The impact of residue 190 on the selectivity was constant, regardless of differences in original selectivity or reactivity. Substrate binding in S1 was optimised in all wild-type enzymes, while the effects on k(cat) depended on the combination of residue 190 and substrate. Mutagenesis of residue 190 did not affect the S2-S4 sites. Pronounced selectivity for arginine residues was coupled with low enzymatic activity, in particular in recombinant factor IXa. This is due to the dominance of the S1-P1 interaction over substrate binding in the S2-S4 sites.
Collapse
Affiliation(s)
- Katrin Sichler
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Sichler K, Banner DW, D'Arcy A, Hopfner KP, Huber R, Bode W, Kresse GB, Kopetzki E, Brandstetter H. Crystal structures of uninhibited factor VIIa link its cofactor and substrate-assisted activation to specific interactions. J Mol Biol 2002; 322:591-603. [PMID: 12225752 DOI: 10.1016/s0022-2836(02)00747-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Factor VIIa initiates the extrinsic coagulation cascade; this event requires a delicately balanced regulation that is implemented on different levels, including a sophisticated multi-step activation mechanism of factor VII. Its central role in hemostasis and thrombosis makes factor VIIa a key target of pharmaceutical research. We succeeded, for the first time, in recombinantly producing N-terminally truncated factor VII (rf7) in an Escherichia coli expression system by employing an oxidative, in vitro, folding protocol, which depends critically on the presence of ethylene glycol. Activated recombinant factor VIIa (rf7a) was crystallised in the presence of the reversible S1-site inhibitor benzamidine. Comparison of this 1.69A crystal structure with that of an inhibitor-free and sulphate-free, but isomorphous crystal form identified structural details of factor VIIa stimulation. The stabilisation of Asp189-Ser190 by benzamidine and the capping of the intermediate helix by a sulphate ion appear to be sufficient to mimic the disorder-order transition conferred by the cofactor tissue factor (TF) and the substrate factor X. Factor VIIa shares with the homologous factor IXa, but not factor Xa, a bell-shaped activity modulation dependent on ethylene glycol. The ethylene glycol-binding site of rf7a was identified in the vicinity of the 60 loop. Ethylene glycol binding induces a significant conformational rearrangement of the 60 loop. This region serves as a recognition site of the physiologic substrate, factor X, which is common to both factor VIIa and factor IXa. These results provide a mechanistic framework of substrate-assisted catalysis of both factor VIIa and factor IXa.
Collapse
Affiliation(s)
- Katrin Sichler
- Max-Planck-Institut für Biochemie, D-82152, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Summa CM, Rosenblatt MM, Hong JK, Lear JD, DeGrado WF. Computational de novo design, and characterization of an A(2)B(2) diiron protein. J Mol Biol 2002; 321:923-38. [PMID: 12206771 DOI: 10.1016/s0022-2836(02)00589-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diiron proteins are found throughout nature and have a diverse range of functions; proteins in this class include methane monooxygenase, ribonucleotide reductase, Delta(9)-acyl carrier protein desaturase, rubrerythrin, hemerythrin, and the ferritins. Although each of these proteins has a very different overall fold, in every case the diiron active site is situated within a four-helix bundle. Additionally, nearly all of these proteins have a conserved Glu-Xxx-Xxx-His motif on two of the four helices with the Glu and His residues ligating the iron atoms. Intriguingly, subtle differences in the active site can result in a wide variety of functions. To probe the structural basis for this diversity, we designed an A(2)B(2) heterotetrameric four-helix bundle with an active site similar to those found in the naturally occurring diiron proteins. A novel computational approach was developed for the design, which considers the energy of not only the desired fold but also alternatively folded structures. Circular dichroism spectroscopy, analytical ultracentrifugation, and thermal unfolding studies indicate that the A and B peptides specifically associate to form an A(2)B(2) heterotetramer. Further, the protein binds Zn(II) and Co(II) in the expected manner and shows ferroxidase activity under single turnover conditions.
Collapse
Affiliation(s)
- Christopher M Summa
- Department of Biochemistry and Biophysics, School of Medicine, The University of Pennsylvania, 1010 Stellar-Chance Bldg, 421 Curie Blvd, Philadelphia 19104-6059, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Presented here is the development a semi-rational protein engineering approach that uses information from protein structure coupled with established DNA manipulation techniques to design and create multiple crossover libraries from non-homologous genes. The utility of structure-based combinatorial protein engineering (SCOPE) was demonstrated by its application to two distantly related members of the X-family of DNA polymerases: rat DNA polymerase beta (Pol beta) and African swine fever virus DNA polymerase X (Pol X). These proteins share similar folds but have low sequence identity, and differ greatly in both size and activity. "Equivalent" subdomain elements of structure were designed on the basis of the tertiary structure of Pol beta and the corresponding regions of Pol X were inferred from homology modeling and sequence alignment analysis. Libraries of chimeric genes with up to five crossovers were synthesized in a series of PCR reactions by employing hybrid oligonucleotides that code for variable connections between structural elements. Genetic complementation in Escherichia coli enabled identification of several novel DNA polymerases with enhanced phenotypes. Both the composition of structural elements and the manner in which they were linked were shown to be essential for this property, indicating the importance of these aspects of design.
Collapse
Affiliation(s)
- Paul E O'Maille
- Ohio State Biochemistry Program, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210-1173, USA
| | | | | |
Collapse
|
22
|
Maeda M, Hamada D, Hoshino M, Onda Y, Hase T, Goto Y. Partially folded structure of flavin adenine dinucleotide-depleted ferredoxin-NADP+ reductase with residual NADP+ binding domain. J Biol Chem 2002; 277:17101-7. [PMID: 11872744 DOI: 10.1074/jbc.m112002200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maize ferredoxin-NADP(+) reductase (FNR) consists of flavin adenine dinucleotide (FAD) and NADP(+) binding domains with a FAD molecule bound noncovalently in the cleft between these domains. The structural changes of FNR induced by dissociation of FAD have been characterized by a combination of optical and biochemical methods. The CD spectrum of the FAD-depleted FNR (apo-FNR) suggested that removal of FAD from holo-FNR produced an intermediate conformational state with partially disrupted secondary and tertiary structures. Small angle x-ray scattering indicated that apo-FNR assumes a conformation that is less globular in comparison with holo-FNR but is not completely chain-like. Interestingly, the replacement of tyrosine 95 responsible for FAD binding with alanine resulted in a molecular form similar to apo-protein of the wild-type enzyme. Both apo- and Y95A-FNR species bound to Cibacron Blue affinity resin, indicating the presence of a native-like conformation for the NADP(+) binding domain. On the other hand, no evidence was found for the existence of folded conformations in the FAD binding domains of these proteins. These results suggested that FAD-depleted FNR assumes a partially folded structure with a residual NADP(+) binding domain but a disordered FAD binding domain.
Collapse
Affiliation(s)
- Masahiro Maeda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Sroga GE, Dordick JS. Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression. PROTEIN ENGINEERING 2001; 14:929-37. [PMID: 11742113 DOI: 10.1093/protein/14.11.929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Concomitant activity improvement of an evolved enzyme toward two very different ester substrates was achieved when a unique combination of functional periplasmic enzyme expression in Escherichia coli, random mutagenesis, DNA shuffling and cell-based kinetic screenings was applied. Specifically, we focused on the conversion of subtilisin E into an enzyme with broader esterase activity as opposed to its native amidase activity. Cell-based microtiter assays were performed on N-acetyl-D,L-phenylalanine p-nitrophenyl ester (Phe-NPE) and sucrose 1'-adipate (S1'A), as well as on the tetrapeptide amide substrate N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide. After a single modified cycle of directed molecular evolution, we isolated a number of clones exhibiting increased activity toward Phe-NPE. In the following rounds of screenings, mutants with improved activity on Phe-NPE were also tested on S1'A. Three mutants were identified with increased esterolytic activity on Phe-NPE and S1'A, while having similar amidase activity to that of the parental enzymes. Because the two ester substrates are structurally distinct, we have evolved a more general esterolytic subtilisin and this may have important applications in synthesis.
Collapse
Affiliation(s)
- G E Sroga
- Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | |
Collapse
|
24
|
Kim GJ, Cheon YH, Park MS, Park HS, Kim HS. Generation of protein lineages with new sequence spaces by functional salvage screen. PROTEIN ENGINEERING 2001; 14:647-54. [PMID: 11707610 DOI: 10.1093/protein/14.9.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is first constructed by genetically disrupting a predetermined region(s) of the protein and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from Escherichia coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E.coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional properties. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.
Collapse
Affiliation(s)
- G J Kim
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Paldal-gu, Suwon, 442-749, Korea
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Khumtaveeporn K, Ullmann A, Matsumoto K, Davis BG, Jones J. Expanding the utility of proteases in synthesis: broadening the substrate acceptance in non-coded amide bond formation using chemically modified mutants of subtilisin. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0957-4166(01)00024-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Abstract
Directed evolution is becoming a widely used technique for modifying or enhancing protein performance. Ultimately, the success of directed protein evolution experiments hinges on the efficiency of the methods used to screen libraries for mutants with properties of interest. Although there is still a paucity of general methods for enzyme library screening, in recent years a number of promising strategies have emerged and are increasingly being used to explore challenging issues in protein engineering.
Collapse
Affiliation(s)
- M Olsen
- Department of Chemistry and Biochemistry, University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
28
|
Abstract
Is structure, rather than sequence, the key to the successful generation of truly novel proteins? While protein evolution by homologous recombination has become an established tool to explore confined regions in sequence space, the generation of functional hybrid proteins by homology-independent methods further expands the scope of protein engineering.
Collapse
Affiliation(s)
- S Lutz
- Department of Chemistry, The Pennsylvania State University, University Park 16802-6300, USA
| | | |
Collapse
|
29
|
Cicek M, Blanchard D, Bevan DR, Esen A. The aglycone specificity-determining sites are different in 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (Maize beta -glucosidase) and dhurrinase (Sorghum beta -glucosidase). J Biol Chem 2000; 275:20002-11. [PMID: 10748038 DOI: 10.1074/jbc.m001609200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maize beta-glucosidase isozyme Glu1 hydrolyzes a broad spectrum of substrates in addition to its natural substrate DIMBOAGlc (2-O-beta-d-glucopyranosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-on e), whereas the sorghum beta-glucosidase isozyme Dhr1 hydrolyzes exclusively its natural substrate dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucose). To study the mechanism of substrate specificity further, eight chimeric beta-glucosidases were constructed by replacing peptide sequences within the C-terminal region of Glu1 with the homologous peptide sequences of Dhr1 or vice versa, where the two enzymes differ by 4 to 22 amino acid substitutions, depending on the length of the swapped regions. Five Glu1/Dhr1 chimeras hydrolyzed substrates that are hydrolyzed by both parental enzymes, including dhurrin, which is not hydrolyzed by Glu1. In contrast, three Dhr1/Glu1 chimeras hydrolyzed only dhurrin but with lower catalytic efficiency than Dhr1. Additional domain-swapping within the C-terminal domain of Glu1 showed that replacing the peptide (466)FAGFTERY(473) of Glu1 with the homologous peptide (462)SSGYTERF(469) of Dhr1 or replacing the peptide (481)NNNCTRYMKE(490) in Glu1 with the homologous peptide (477)ENGCERTMKR(486) of Dhr1 was sufficient to confer to Glu1 the ability to hydrolyze dhurrin. Data from various reciprocal chimeras, sequence comparisons, and homology modeling suggest that the Dhr1-specific Ser-462-Ser-463 and Phe-469 play a key role in dhurrin hydrolysis. Similar data suggest that DIMBOAGlc hydrolysis determinants are not located within the extreme 47-amino acid-long C-terminal domain of Glu1.
Collapse
Affiliation(s)
- M Cicek
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0406, USA
| | | | | | | |
Collapse
|
30
|
Nixon AE, Benkovic SJ. Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme. PROTEIN ENGINEERING 2000; 13:323-7. [PMID: 10835105 DOI: 10.1093/protein/13.5.323] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A hybrid glycinamide ribonucleotide transformylase was assembled from two protein domains that were treated as discrete modules. One module contained the ribonucleotide binding domain from the purN glycinamide ribonucleotide transformylase; the second module contained the catalytic machinery and the formyl tetrahydrofolate binding domain from the enzyme encoded by purU, formyl tetrahydrofolate hydrolase. The resultant enzyme showed 0.1% catalytic activity of the wild-type glycinamide ribonucleotide transformylase enzyme but had a formyl transfer efficiency of 10%. A combinatorial mutagenesis approach was used to improve the solubility and formyl transfer properties of the hybrid enzyme. The mutagenized hybrid glycinamide ribonucleotide transformylase was initially expressed as a fusion to the alpha-peptide of beta-galactosidase. Clones were selected for improvement in solubility by determining which clones were capable of alpha-complementation using a blue/white screen. One clone was further characterized and found to have an improved efficiency of transfer of the ribonucleotide increasing this property to >95%.
Collapse
Affiliation(s)
- A E Nixon
- 152 Davey Laboratory, Department of Chemistry, The Pennsylvania State University, University Park, PA 16802-6300, USA
| | | |
Collapse
|
31
|
Ostermeier M, Shim JH, Benkovic SJ. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol 1999; 17:1205-9. [PMID: 10585719 DOI: 10.1038/70754] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a methodology, termed incremental truncation for the creation of hybrid enzymes (ITCHY), that creates combinatorial fusion libraries between genes in a manner that is independent of DNA homology. We compared the ability of ITCHY and DNA shuffling to create interspecies fusion libraries between fragments of the Escherichia coli and human glycinamide ribonucleotide transformylase genes, which have only 50% identity on the DNA level. Sequencing of several randomly selected positives from each library illustrated that ITCHY identified a more diverse set of active fusion points including those in regions of nonhomology and those with crossover points that diverged from the sequence alignment. Furthermore, some of the hybrids found by ITCHY that were fused at nonhomologous locations had activities that were greater than or equal to the activity of the hybrids found by DNA shuffling.
Collapse
Affiliation(s)
- M Ostermeier
- The Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
32
|
Hopfner KP, Lang A, Karcher A, Sichler K, Kopetzki E, Brandstetter H, Huber R, Bode W, Engh RA. Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure 1999; 7:989-96. [PMID: 10467148 DOI: 10.1016/s0969-2126(99)80125-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.
Collapse
Affiliation(s)
- K P Hopfner
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grasberger H, Buettner C, Janssen OE. Modularity of serpins. A bifunctional chimera possessing alpha1-proteinase inhibitor and thyroxine-binding globulin properties. J Biol Chem 1999; 274:15046-51. [PMID: 10329708 DOI: 10.1074/jbc.274.21.15046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An exciting application of protein engineering is the creation of proteins with novel functions by the retrofitting of native proteins. Such attempts might be facilitated by the idea of a mosaic architecture of proteins out of structural units. Even though numerous theoretical concepts deal with the delineation of structural "modules," their potential in the design of proteins has not yet been sufficiently exploited. To address this question we used a gain of function approach by designing modular chimeric molecules out of two structurally homologous but functionally diverse members of the superfamily of serine-proteinase inhibitors, alpha1-proteinase inhibitor and thyroxine-binding globulin. Substitution of two of four alpha1-proteinase inhibitor modules (Lys222 to Leu288 and Pro362 to Lys394, respectively), identified by alpha-backbone distance analysis, with their thyroxine-binding globulin homologues resulted in a bifunctional chimera with inhibition of human leukocyte elastase and high affinity thyroxine binding. To our knowledge, this is the first report on a bifunctional chimera engineered from modules of homologous globular proteins. Our results demonstrate how a modular concept can facilitate the design of new functional proteins by swapping structural units chosen from members of a protein superfamily.
Collapse
Affiliation(s)
- H Grasberger
- Department of Medicine, Klinikum Innenstadt, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | | | | |
Collapse
|
34
|
Czapinska H, Otlewski J. Structural and energetic determinants of the S1-site specificity in serine proteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:571-95. [PMID: 10102985 DOI: 10.1046/j.1432-1327.1999.00160.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years the number of determined three-dimensional structures of serine proteases that are accompanied by detailed mutational studies has grown rapidly. In particular, spatial structures have been described for enzymes involved in processes of critical medical significance, often related to severe pathophysiological diseases. There has also been significant progress in the understanding of the structural grounds for the substrate specificity of serine proteases. This review is concerned mainly with primary structural determinants of the S1 specificity, the crucial component of substrate selectivity, often in relation to more distant specificity elements, which cooperatively influence the S1 site.
Collapse
Affiliation(s)
- H Czapinska
- Institute of Biochemistry, University of Wroclaw, Poland
| | | |
Collapse
|