1
|
Wątor E, Wilk P, Kochanowski P, Grudnik P. Structural characterization of the (deoxy)hypusination in Trichomonas vaginalis questions the bifunctionality of deoxyhypusine synthase. FEBS J 2024; 291:3856-3869. [PMID: 38923395 DOI: 10.1111/febs.17207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Trichomonas vaginalis, the causative agent of trichomoniasis, is a prevalent anaerobic protozoan parasite responsible for the most common nonviral sexually transmitted infection globally. While metronidazole and its derivatives are approved drugs for this infection, rising resistance necessitates the exploration of new antiparasitic therapies. Protein posttranslational modifications (PTMs) play crucial roles in cellular processes, and among them, hypusination, involving eukaryotic translation factor 5A (eIF5A), has profound implications. Despite extensive studies in various organisms, the role of hypusination in T. vaginalis and its potential impact on parasite biology and pathogenicity remain poorly understood. This study aims to unravel the structural basis of the hypusination pathway in T. vaginalis using X-ray crystallography and cryo-electron microscopy. The results reveal high structural homology between T. vaginalis and human orthologs, providing insights into the molecular architecture of eIF5A and deoxyhypusine synthase (DHS) and their interaction. Contrary to previous suggestions of bifunctionality, our analyses indicate that the putative hydroxylation site in tvDHS is nonfunctional, and biochemical assays demonstrate exclusive deoxyhypusination capability. These findings challenge the notion of tvDHS functioning as both deoxyhypusine synthase and hydroxylase. The study enhances understanding of the hypusination pathway in T. vaginalis, shedding light on its functional relevance and potential as a drug target, and contributing to the development of novel therapeutic strategies against trichomoniasis.
Collapse
Affiliation(s)
- Elżbieta Wątor
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Wilk
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł Kochanowski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Przemysław Grudnik
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Mudryi V, Peske F, Rodnina M. Translation Factor Accelerating Peptide Bond Formation on the Ribosome: EF-P and eIF5A as Entropic Catalysts and a Potential Drug Targets. BBA ADVANCES 2023; 3:100074. [PMID: 37082265 PMCID: PMC10074943 DOI: 10.1016/j.bbadva.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Elongation factor P (EF-P) and its eukaryotic homolog eIF5A are auxiliary translation factors that facilitate peptide bond formation when several sequential proline (Pro) residues are incorporated into the nascent chain. EF-P and eIF5A bind to the exit (E) site of the ribosome and contribute to favorable entropy of the reaction by stabilizing tRNA binding in the peptidyl transferase center of the ribosome. In most organisms, EF-P and eIF5A carry a posttranslational modification that is crucial for catalysis. The chemical nature of the modification varies between different groups of bacteria and between pro- and eukaryotes, making the EF-P-modification enzymes promising targets for antibiotic development. In this review, we summarize our knowledge of the structure and function of EF-P and eIF5A, describe their modification enzymes, and present an approach for potential drug screening aimed at EarP, an enzyme that is essential for EF-P modification in several pathogenic bacteria.
Collapse
|
3
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
4
|
Pálfi P, Bakacsy L, Kovács H, Szepesi Á. Hypusination, a Metabolic Posttranslational Modification of eIF5A in Plants during Development and Environmental Stress Responses. PLANTS 2021; 10:plants10071261. [PMID: 34206171 PMCID: PMC8309165 DOI: 10.3390/plants10071261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022]
Abstract
Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.
Collapse
|
5
|
Kaiser A, Heiss K, Mueller AK, Fimmers R, Matthes J, Njuguna JT. Inhibition of EIF-5A prevents apoptosis in human cardiomyocytes after malaria infection. Amino Acids 2020; 52:693-710. [PMID: 32367435 DOI: 10.1007/s00726-020-02843-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.
Collapse
Affiliation(s)
- Annette Kaiser
- Medical Research Centre, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Rolf Fimmers
- Institut für Medizinische Biometrie, Informatik Und Epedimologie, Sigmund-Freud-Strasse 25, 53107, Bonn, Germany
| | - Jan Matthes
- Centre of Pharmcology, University of Cologne, Gleueler Strasse 24, 50931, Köln, Germany
| | | |
Collapse
|
6
|
Complex Structure of Pseudomonas aeruginosa Arginine Rhamnosyltransferase EarP with Its Acceptor Elongation Factor P. J Bacteriol 2019; 201:JB.00128-19. [PMID: 31010899 DOI: 10.1128/jb.00128-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
A bacterial inverting glycosyltransferase EarP transfers rhamnose from dTDP-β-l-rhamnose (TDP-Rha) to Arg32 of translation elongation factor P (EF-P) to activate its function. We report here the structural and biochemical characterization of Pseudomonas aeruginosa EarP. In contrast to recently reported Neisseria meningitidis EarP, P. aeruginosa EarP exhibits differential conformational changes upon TDP-Rha and EF-P binding. Sugar donor binding enhances acceptor binding to EarP, as revealed by structural comparison between the apo-, TDP-Rha-, and TDP/EF-P-bound forms and isothermal titration calorimetry experiments. In vitro EF-P rhamnosylation combined with active-site geometry indicates that Asp16 corresponding to Asp20 of N. meningitidis EarP is the catalytic base, whereas Glu272 is another putative catalytic residue. Our study should provide the basis for EarP-targeted inhibitor design against infections from P. aeruginosa and other clinically relevant species.IMPORTANCE Posttranslational rhamnosylation of EF-P plays a key role in Pseudomonas aeruginosa, establishing virulence and antibiotic resistance, as well as survival. The detailed structural and biochemical characterization of the EF-P-specific rhamnosyltransferase EarP from P. aeruginosa not only demonstrates that sugar donor TDP-Rha binding enhances acceptor EF-P binding to EarP but also should provide valuable information for the structure-guided development of its inhibitors against infections from P. aeruginosa and other EarP-containing pathogens.
Collapse
|
7
|
Park MH, Wolff EC. Hypusine, a polyamine-derived amino acid critical for eukaryotic translation. J Biol Chem 2018; 293:18710-18718. [PMID: 30257869 DOI: 10.1074/jbc.tm118.003341] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The natural amino acid hypusine (N ϵ-4-amino-2-hydroxybutyl(lysine)) is derived from the polyamine spermidine, and occurs only in a single family of cellular proteins, eukaryotic translation factor 5A (eIF5A) isoforms. Hypusine is formed by conjugation of the aminobutyl moiety of spermidine to a specific lysine residue of this protein. The posttranslational synthesis of hypusine involves two enzymatic steps, catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusine is essential for eIF5A activity. Inactivation of either the eIF5A or the DHPS gene is lethal in yeast and mouse, underscoring the vital role of eIF5A hypusination in eukaryotic cell growth and animal development. The long and basic side chain of the hypusine residue promotes eIF5A-mediated translation elongation by facilitating peptide bond formation at polyproline stretches and at many other ribosome-pausing sites. It also enhances translation termination by stimulating peptide release. By promoting translation, the hypusine modification of eIF5A provides a key link between polyamines and cell growth regulation. eIF5A has been implicated in several human pathological conditions. Recent genetic data suggest that eIF5A haploinsufficiency or impaired deoxyhypusine synthase activity is associated with neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Myung Hee Park
- From the NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Edith C Wolff
- From the NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
9
|
Carvajal-Gamez BI, Carrillo LV, Torres-Romero JC, Camacho-Nuez M, Ponce-Regalado MD, Camarillo CL, Alvarez-Sánchez ME. Recombinant Trichomonas vaginalis eIF-5A protein expressed from a eukaryotic system binds specifically to mammalian and putative trichomonal eIF-5A response elements (EREs). Parasitol Int 2016; 65:625-631. [PMID: 27620329 DOI: 10.1016/j.parint.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Trichomonas vaginalis eIF-5A-like protein (TveIF-5A) belongs to the highly conserved eIF-5A family of proteins that contains a unique polyamine-derived amino acid, hypusine. Recently, we determined that the polyamine putrescine is required for tveif-5a mRNA stability, and it is necessary for stability and maturation of the TveIF-5A protein. Eukaryotic eIF-5A is known to be involved in mRNA turnover and is capable of sequence-specific RNA binding to eIF-5A response elements (EREs). These ERE sequences are present in diverse mammalian mRNAs, including human cyclooxygenase-2 (cox-2). Here, we cloned the complete coding sequence of TveIF-5A and overexpressed it in a eukaryotic system. The recombinant protein (rTveIF-5A) was purified in soluble form using size-exclusion chromatography. Because of the polyamine-dependent regulation of TvCP39 (a protease of T. vaginalis) at the protein and RNA messenger (mRNA) levels, we looked for an ERE-like structure in the 3' region of tvcp39 mRNA. In RNA gel-shift assays, rTveIF-5A bound to transcripts at the EREs of cox-2 or tvcp39 mRNAs. This work shows the eIF-5A/ERE-like interaction in T. vaginalis.
Collapse
Affiliation(s)
- Bertha Isabel Carvajal-Gamez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México
| | - Laura Vázquez Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química de la Universidad Autónoma de Yucatán, Calle 43 No. 613 x C. 90 Col. Inalámbrica, CP 97069 Mérida, Yucatán, México
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México
| | - María Dolores Ponce-Regalado
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - César López Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México.
| |
Collapse
|
10
|
Barbosa NM, Boldrin PEG, Rossi D, Yamamoto PA, Watanabe TF, Serrão VH, Hershey JWB, Fraser CS, Valentini SR, Zanelli CF. Mapping surface residues of eIF5A that are important for binding to the ribosome using alanine scanning mutagenesis. Amino Acids 2016; 48:2363-74. [PMID: 27388480 PMCID: PMC5897047 DOI: 10.1007/s00726-016-2279-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/11/2016] [Indexed: 01/15/2023]
Abstract
The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question. We generated four new mutants of yeast eIF5A: tif51A-4, tif51A-6, tif51A-7 and tif51A-11, and complementation analysis revealed that tif51A-4 and tif51A-7 could not sustain cell growth in a strain lacking wild-type eIF5A. Moreover, the allele tif51A-4 also displayed negative dominance over wild-type eIF5A. Both in vivo GST-pulldowns and in vitro fluorescence anisotropy demonstrated that eIF5A from mutant tif51A-7 exhibited an importantly reduced affinity for the ribosome, implicating the charged residues in cluster 7 as determinant features on the eIF5A surface for contacting the ribosome. Notably, modified eIF5A from mutant tif51A-4, despite exhibiting the most severe growth phenotype, did not abolish ribosome interactions as with mutant tif51A-7. Taking into account the modeling eIF5A + 80S + P-tRNA complex, our data suggest that interactions of eIF5A with ribosomal protein L1 are more important to stabilize the interaction with the ribosome as a whole than the contacts with P-tRNA. Finally, the ability of eIF5A from tif51A-4 to bind to the ribosome while potentially blocking physical interaction with P-tRNA could explain its dominant negative phenotype.
Collapse
Affiliation(s)
- Natália M Barbosa
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Paulo E G Boldrin
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Priscila A Yamamoto
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Tatiana F Watanabe
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Vitor H Serrão
- Physics and Interdisciplinary Science Department, Physics Institute of Sao Carlos, University of Sao Paulo-USP, Sao Carlos, SP, 13563-120, Brazil
| | - John W B Hershey
- Molecular and Cellular Biology Department, University of California, Davis, CA, 95616, USA
| | - Christopher S Fraser
- Molecular and Cellular Biology Department, University of California, Davis, CA, 95616, USA
| | - Sandro R Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Cleslei F Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
11
|
Martinez-Rocha AL, Woriedh M, Chemnitz J, Willingmann P, Kröger C, Hadeler B, Hauber J, Schäfer W. Posttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence. Sci Rep 2016; 6:24698. [PMID: 27098988 PMCID: PMC4838825 DOI: 10.1038/srep24698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 04/04/2016] [Indexed: 11/14/2022] Open
Abstract
Activation of eukaryotic translation initiation factor eIF5A requires a posttranslational modification, forming the unique amino acid hypusine. This activation is mediated by two enzymes, deoxyhypusine synthase, DHS, and deoxyhypusine hydroxylase, DOHH. The impact of this enzymatic complex on the life cycle of a fungal pathogen is unknown. Plant pathogenic ascomycetes possess a single copy of the eIF5A activated by hypusination. We evaluated the importance of imbalances in eIF5A hypusination in Fusarium graminearum, a devastating fungal pathogen of cereals. Overexpression of DHS leads to increased virulence in wheat, elevated production of the mycotoxin deoxynivalenol, more infection structures, faster wheat tissue invasion in plants and increases vegetatively produced conidia. In contrast, overexpression of DOHH completely prevents infection structure formation, pathogenicity in wheat and maize, leads to overproduction of ROS, reduced DON production and increased sexual reproduction. Simultaneous overexpression of both genes restores wild type-like phenotypes. Analysis of eIF5A posttranslational modification displayed strongly increased hypusinated eIF5A in DOHH overexpression mutant in comparison to wild type, and the DHS overexpression mutants. These are the first results pointing to different functions of differently modified eIF5A.
Collapse
Affiliation(s)
- Ana Lilia Martinez-Rocha
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Mayada Woriedh
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department Antiviral Strategies, Hamburg, D-20251, Germany
| | - Peter Willingmann
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Cathrin Kröger
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Birgit Hadeler
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Department Antiviral Strategies, Hamburg, D-20251, Germany
- German Center for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| | - Wilhelm Schäfer
- University of Hamburg, Biocenter Klein Flottbek, Molecular Phytopathology and Genetics, Hamburg, D-22609, Germany
| |
Collapse
|
12
|
Lassak J, Wilson DN, Jung K. Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol Microbiol 2015; 99:219-35. [PMID: 26416626 DOI: 10.1111/mmi.13233] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
Synthesis of polyproline proteins leads to translation arrest. To overcome this ribosome stalling effect, bacteria depend on a specialized translation elongation factor P (EF-P), being orthologous and functionally identical to eukaryotic/archaeal elongation factor e/aIF-5A (recently renamed 'EF5'). EF-P binds to the stalled ribosome between the peptidyl-tRNA binding and tRNA-exiting sites, and stimulates peptidyl-transferase activity, thus allowing translation to resume. In their active form, both EF-P and e/aIF-5A are post-translationally modified at a positively charged residue, which protrudes toward the peptidyl-transferase center when bound to the ribosome. While archaeal and eukaryotic IF-5A strictly depend on (deoxy-) hypusination (hypusinylation) of a conserved lysine, bacteria have evolved diverse analogous modification strategies to activate EF-P. In Escherichia coli and Salmonella enterica a lysine is extended by β-lysinylation and subsequently hydroxylated, whereas in Pseudomonas aeruginosa and Shewanella oneidensis an arginine in the equivalent position is rhamnosylated. Inactivation of EF-P, or the corresponding modification systems, reduces not only bacterial fitness, but also impairs virulence. Here, we review the function of EF-P and IF-5A and their unusual posttranslational protein modifications.
Collapse
Affiliation(s)
- Jürgen Lassak
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| | - Daniel N Wilson
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Kirsten Jung
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, D-81377, Munich, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, D-82152, Martinsried, Germany
| |
Collapse
|
13
|
Quintas-Granados LI, Carvajal Gamez BI, Villalpando JL, Ortega-Lopez J, Arroyo R, Azuara-Liceaga E, Álvarez-Sánchez ME. Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis. Biochimie 2015; 123:37-51. [PMID: 26410361 DOI: 10.1016/j.biochi.2015.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
Abstract
The Trichomonas vaginalis genome analysis suggested the presence of a putative deoxyhypusine synthase (TvDHS) that catalyzes the posttranslational modification of eIF-5A. Herein, we expressed and purified the recombinant TvDHS (rTvDHS) protein (43 kDa) and the recombinant TveIF-5A (rTveIF-5A) precursor protein (46 kDa). A 41 kDa band of the native TvDHS was recognized by western blot analysis in T. vaginalis total protein extract by a mouse polyclonal anti-rTvDHS antibody. The enzymatic activity of rTvDHS was determined by in vitro rTveIF-5A precursor modification. The modification reaction was performed by using ((3)H)-spermidine, and the biochemical analysis showed that rTvDHS exhibited Km value of 0.6 μM. The rTvDHS activity was inhibited by the spermidine analog, N″-guanyl-1,7-diamino-heptane (GC7). Native gel electrophoresis analysis showed two bands corresponding to an rTvDHS-rTveIF-5A complex and an intermediate form of rTveIF-5A. The two forms were subsequently separated by ion exchange chromatography to identify the hypusine residue by MS/MS analysis. Moreover, mutations in TvDHS showed that the putative HE motif present in this enzyme is involved in the hydroxylation of TveIF-5A. We observed that only hypusine-containing TveIF-5A was bound to an RNA hairpin ERE structure from the cox-2 gene, which contains the AAAUGUCACAC consensus sequence. Interestingly, 2DE-WB assays, using parasites that were grown in DAB-culture conditions and transferred to exogenous putrescine, showed the new isoform of TveIF-5A. In summary, our results indicate that T. vaginalis contains an active TvDHS capable of modifying the precursor TveIF-5A protein, which subsequently exhibits RNA binding activity.
Collapse
Affiliation(s)
- Laura Itzel Quintas-Granados
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Bertha Isabel Carvajal Gamez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Jose Luis Villalpando
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - Jaime Ortega-Lopez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco CP 07360, Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco CP 07360, Mexico City, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico
| | - María Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo #290, Col. Del Valle, CP 03100, Mexico City, Mexico.
| |
Collapse
|
14
|
Seko Y, Fujimura T, Yao T, Taka H, Mineki R, Okumura K, Murayama K. Secreted tyrosine sulfated-eIF5A mediates oxidative stress-induced apoptosis. Sci Rep 2015; 5:13737. [PMID: 26348594 PMCID: PMC4562266 DOI: 10.1038/srep13737] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/04/2015] [Indexed: 11/11/2022] Open
Abstract
Oxidative stress plays a critical role in ischemia/reperfusion-injury, atherosclerosis, and aging. It causes cell damage that leads to apoptosis via uncertain mechanisms. Because conditioned medium from cardiac myocytes subjected to hypoxia/reoxygenation induces extensive apoptosis of cardiac myocytes under normoxia, we hypothesized that a humoral factor released from the hypoxic/reoxygenated cardiac myocytes mediates apoptosis. We identified an apoptosis-inducing humoral factor in the hypoxia/reoxygenation-conditioned medium. Here, we found that eIF5A undergoes tyrosine sulfation in the trans-Golgi and is rapidly secreted from cardiac myocytes in response to hypoxia/reoxygenation; then, eIF5A induces apoptosis by acting as a pro-apoptotic ligand. The apoptosis of cardiac myocytes induced by hypoxia/reoxygenation or ultraviolet irradiation was suppressed by anti-eIF5A neutralizing monoclonal antibodies (mAbs) in vitro. Myocardial ischemia/reperfusion (but not ischemia alone) markedly increased the plasma levels of eIF5A, and treatment with anti-eIF5A neutralizing mAbs significantly reduced myocardial injury. These results identify an important, novel specific biomarker and a critical therapeutic target for oxidative stress-induced cell injury.
Collapse
Affiliation(s)
- Yoshinori Seko
- Department of Cardiovascular Medicine, The Institute for Adult Diseases, Asahi Life Foundation, 2-2-6 Nihonbashi-Bakurocho, Chuo-ku, Tokyo 103-0002, Japan
- Department of Immunology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsutomu Fujimura
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takako Yao
- Department of Cardiovascular Medicine, The Institute for Adult Diseases, Asahi Life Foundation, 2-2-6 Nihonbashi-Bakurocho, Chuo-ku, Tokyo 103-0002, Japan
| | - Hikari Taka
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Reiko Mineki
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Department of Immunology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kimie Murayama
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
15
|
Evaluation of sodium selenite effects on the potential probiotic Saccharomyces cerevisiae UFMG A-905: A physiological and proteomic analysis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Gharechahi J, Hajirezaei MR, Salekdeh GH. Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:48-58. [PMID: 25506766 DOI: 10.1016/j.jplph.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 05/02/2023]
Abstract
Tobacco plants expressing cyanobacterial flavodoxin (Fld) show enhanced tolerance to a wide range of abiotic stresses including drought, temperature and UV. The mechanisms of adaptation to stress conditions under Fld expression are largely unknown. Here, we applied comparative proteomic analysis to uncover the changes in the proteome profile of Fld-expressing plants in response to drought stress. Using high-resolution two-dimensional gel electrophoresis, we were able to detect 930 protein spots and compare their abundance. We found changes up to 1.5 fold for 52 spots under drought in transgenic and/or wild type plants. Using combined MALDI-TOF/TOF and ESI-Q/TOF analysis 39 (24 in wild type, 11 in transgenic, and 4 in both) drought-responsive proteins (DRPs) could be identified. The majority of DRPs are known to be involved in photosynthesis, carbohydrate and energy metabolism, amino acid and protein synthesis and processing, and oxidative stress responses. Among candidate DRPs, the abundance of remurin, ferredoxin-NADP reductase, chloroplast manganese stabilizing protein-II, phosphoglycerate mutase, and glutathione S-transferase decreased in drought stressed Fld-tobacco while S-formylglutathione hydrolase and pyridoxine biosynthesis protein abundance increased. In wild type plants, drought caused a reduction of proteins related to carbohydrate metabolism. These results suggest that the stress tolerance conferred by Fld expression is strongly related to control mechanisms regarding carbohydrate and energy metabolism as well as oxidative stress responses.
Collapse
Affiliation(s)
- Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (Leibniz-IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran.
| |
Collapse
|
17
|
Kobayashi K, Katz A, Rajkovic A, Ishii R, Branson OE, Freitas MA, Ishitani R, Ibba M, Nureki O. The non-canonical hydroxylase structure of YfcM reveals a metal ion-coordination motif required for EF-P hydroxylation. Nucleic Acids Res 2014; 42:12295-305. [PMID: 25274739 PMCID: PMC4231759 DOI: 10.1093/nar/gku898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any other hydroxylase structures reported so far. The structure of YfcM is similar to that of the ribonuclease YbeY, even though they do not share sequence homology. Furthermore, YfcM has a metal ion-coordinating motif, similar to YbeY. The metal ion-coordinating motif of YfcM resembles a 2-His-1-carboxylate motif, which coordinates an Fe(II) ion and forms the catalytic site of non-heme iron enzymes. Our findings showed that the metal ion-coordinating motif of YfcM plays an essential role in the hydroxylation of the β-lysylated lysine residue of EF-P. Taken together, our results suggested the potential catalytic mechanism of hydroxylation by YfcM.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Assaf Katz
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Andrei Rajkovic
- Molecular, Cell, and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Ryohei Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Owen E Branson
- Department of Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Global Research Cluster, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
18
|
Abstract
In addition to the small and large ribosomal subunits, aminoacyl-tRNAs, and an mRNA, cellular protein synthesis is dependent on translation factors. The eukaryotic translation initiation factor 5A (eIF5A) and its bacterial ortholog elongation factor P (EF-P) were initially characterized based on their ability to stimulate methionyl-puromycin (Met-Pmn) synthesis, a model assay for protein synthesis; however, the function of these factors in cellular protein synthesis has been difficult to resolve. Interestingly, a conserved lysine residue in eIF5A is post-translationally modified to hypusine and the corresponding lysine residue in EF-P from at least some bacteria is modified by the addition of a β-lysine moiety. In this review, we provide a summary of recent data that have identified a novel role for the translation factor eIF5A and its hypusine modification in the elongation phase of protein synthesis and more specifically in stimulating the production of proteins containing runs of consecutive proline residues.
Collapse
Affiliation(s)
- Thomas E. Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erik Gutierrez
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Singh S, Raju K, Jatekar D, Dinesh N, Paul MS, Sobhia ME. Leishmania donovani eukaryotic initiation factor 5A: molecular characterization, localization and homology modelling studies. Microb Pathog 2014; 73:37-46. [PMID: 24909104 DOI: 10.1016/j.micpath.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 11/16/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is a small acidic protein highly conserved from archaea to mammals. eIF5A is the only protein which undergoes a unique lysine residue modification to hypusine. Hypusinylation is important for the function of eIF5A which is reported to be essential for cell viability. eIF5A promotes formation of the first peptide bond at the onset of protein synthesis. However, its function in Leishmania donovani is unclear. The present study focuses on the characterization and localization of L. donovani eIF5A protein. The eIF5A gene contains an ORF of 501×bp encoding 166 amino acid residues with a predicted molecular mass and isoelectric point of 17.8 kDa and 4.83 respectively. A phylogenetic tree analysis revealed its close proximity to trypanosomes however it is distantly located from Trichomonas vaginalis and Plasmodium falciparum. The L. donovani eIF5A was expressed as a 6× His tagged protein whose identity was confirmed by western blot and MALDI. Biophysical investigation by CD revealed the predominant presence of 49% β sheet structure which correlated well with secondary structure prediction. To gain insight into the role of eIF5A in L. donovani, we investigated the subcellular distribution of eIF5A. A GFP-fusion of L. donovani eIF5A was found to be localized in cytoplasm as confirmed by subcellular fractionation. Our studies indicated that eIF5A is primarily localized to cytoplasm and is undetectable in nuclear fraction. The homology model of eIF5A of L. donovani was built and the resulting model showed acceptable Ramachandran statistics. The model is reliable and can be used to study eIF5A binding with its effector molecules.
Collapse
Affiliation(s)
- Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India.
| | - K Raju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Deepika Jatekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Neeradi Dinesh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - M Stanley Paul
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali 160062, Punjab, India
| | - M E Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar Mohali 160062, Punjab, India
| |
Collapse
|
20
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Rossi D, Kuroshu R, Zanelli CF, Valentini SR. eIF5A and EF-P: two unique translation factors are now traveling the same road. WILEY INTERDISCIPLINARY REVIEWS. RNA 2014; 5:209-22. [PMID: 24402910 DOI: 10.1002/wrna.1211] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 11/09/2022]
Abstract
Translational control is extremely important in all organisms, and some of its aspects are highly conserved among all primary kingdoms, such as those related to the translation elongation step. The previously classified translation initiation factor 5A (eIF5A) and its bacterial homologue elongation factor P (EF-P) were discovered in the late 70's and have recently been the object of many studies. eIF5A and EF-P are the only cellular proteins that undergo hypusination and lysinylation, respectively, both of which are unique posttranslational modifications. Herein, we review all the important discoveries related to the biochemical and functional characterization of these factors, highlighting the implication of eIF5A in translation elongation instead of initiation. The findings that eIF5A and EF-P are important for specific cellular processes and play a role in the relief of ribosome stalling caused by specific amino acid sequences, such as those containing prolines reinforce the hypothesis that these factors are involved in specialized translation. Although there are some divergences between these unique factors, recent studies have clarified that they act similarly during protein synthesis. Further studies may reveal their precise mechanism of ribosome activity modulation as well as the mRNA targets that require eIF5A and EF-P for their proper translation.
Collapse
Affiliation(s)
- Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, Univ Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | | | | |
Collapse
|
22
|
Chen KY, Jao DL. Chemistry of Hypusine Formation on Eukaryotic Initiation Factor 5A in Biological Systems. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Galvão FC, Rossi D, Silveira WDS, Valentini SR, Zanelli CF. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLoS One 2013; 8:e60140. [PMID: 23573236 PMCID: PMC3613415 DOI: 10.1371/journal.pone.0060140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.
Collapse
Affiliation(s)
- Fabio Carrilho Galvão
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, Univ Estadual Paulista – UNESP, Araraquara-Saõ Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
25
|
Park JH, Johansson HE, Aoki H, Huang BX, Kim HY, Ganoza MC, Park MH. Post-translational modification by β-lysylation is required for activity of Escherichia coli elongation factor P (EF-P). J Biol Chem 2011; 287:2579-90. [PMID: 22128152 DOI: 10.1074/jbc.m111.309633] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial elongation factor P (EF-P) is the ortholog of archaeal and eukaryotic initiation factor 5A (eIF5A). EF-P shares sequence homology and crystal structure with eIF5A, but unlike eIF5A, EF-P does not undergo hypusine modification. Recently, two bacterial genes, yjeA and yjeK, encoding truncated homologs of class II lysyl-tRNA synthetase and of lysine-2,3-aminomutase, respectively, have been implicated in the modification of EF-P to convert a specific lysine to a hypothetical β-lysyl-lysine. Here we present biochemical evidence for β-lysyl-lysine modification in Escherichia coli EF-P and for its role in EF-P activity by characterizing native and recombinant EF-P proteins for their modification status and activity in vitro. Mass spectrometric analyses confirmed the lysyl modification at lysine 34 in native and recombinant EF-P proteins. The β-lysyl-lysine isopeptide was identified in the exhaustive Pronase digests of native EF-P and recombinant EF-P isolated from E. coli coexpressing EF-P, YjeA, and YjeK but not in the digests of proteins derived from the vectors encoding EF-P alone or EF-P together with YjeA, indicating that both enzymes, YjeA and YjeK, are required for β-lysylation of EF-P. Endogenous EF-P as well as the recombinant EF-P preparation containing β-lysyl-EF-P stimulated N-formyl-methionyl-puromycin synthesis ∼4-fold over the preparations containing unmodified EF-P and/or α-lysyl-EF-P. The mutant lacking the modification site lysine (K34A) was inactive. This is the first report of biochemical evidence for the β-lysylation of EF-P in vivo and the requirement for this modification for the activity of EF-P.
Collapse
Affiliation(s)
- Jong-Hwan Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Henderson A, Hershey JW. Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2011; 108:6415-9. [PMID: 21451136 PMCID: PMC3081013 DOI: 10.1073/pnas.1008150108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the field of eukaryotic protein synthesis, one factor remained putative for decades: eukaryotic translation initiation factor (eIF) 5A. Because eIF5A is an essential protein required for cell proliferation, and one easily targeted by inhibitors, identifying its role in the cell remains important and urgent. Recent reports support early findings that eIF5A stimulates protein synthesis and newly assign the factor a role in elongation rather than initiation. Here we show that eIF5A directly stimulates protein synthesis on native mRNAs, that rapid depletion of eIF5A in vivo immediately leads to a 2-fold inhibition of protein synthesis, and that both the immediate and lasting effects of eIF5A depletion are a reduction in polysome size concomitant with eIF5A depletion. Addition of purified eIF5A to a depleted lysate results in a roughly 2-fold stimulation of protein synthesis in vitro, a result consistent with both older methionyl-puromycin synthesis data and more recently published findings. We find that although eIF5A is not required for protein synthesis, it stimulates the process by about 2- to 3-fold. Our data, along with other published results, reinforce the conclusion that eIF5A stimulates protein synthesis with one important difference: Polysome profiles observed immediately after eIF5A depletion are diagnostic for a role in initiation. This discrepancy is discussed.
Collapse
Affiliation(s)
- Allen Henderson
- Department of Microbiology and Immunology, University of California, 513 Parnassus Avenue, Room S-472, San Francisco, CA 94143; and
| | - John W. Hershey
- Department of Biochemistry and Molecular Medicine, University of California, 4408 Tupper Hall, Davis, CA 95616
| |
Collapse
|
27
|
Choi S, Choe J. Crystal structure of elongation factor P from Pseudomonas aeruginosa at 1.75 Å resolution. Proteins 2011; 79:1688-93. [PMID: 21365687 DOI: 10.1002/prot.22992] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/13/2010] [Accepted: 01/05/2011] [Indexed: 11/05/2022]
Affiliation(s)
- Sarah Choi
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | | |
Collapse
|
28
|
Ma Y, Miura E, Ham BK, Cheng HW, Lee YJ, Lucas WJ. Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:536-50. [PMID: 20807213 DOI: 10.1111/j.1365-313x.2010.04347.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In yeast, eIF5A, in combination with eEF2, functions at the translation step, during the protein elongation cycle. This result is of significance with respect to functioning of the enucleate sieve tube system, as eIF5A was recently detected in Cucurbita maxima (pumpkin) phloem sap. In the present study, we further characterized four CmeIF5A isoforms, encoding three proteins, all of which were present in the phloem sap. Although hypusination of CmeIF5A was not necessary for entry into the sieve elements, this unique post-translational modification was necessary for RNA binding. The two enzymes required for hypusination were detected in pumpkin phloem sap, where presumably this modification takes place. A combination of gel-filtration chromatography and protein overlay assays demonstrated that, as in yeast, CmeIF5A interacts with phloem proteins, like eEF2, known to be involved in protein synthesis. These findings are discussed in terms of a potential role for eIF5A in regulating protein synthesis within the enucleate sieve tube system of the angiosperms.
Collapse
Affiliation(s)
- Yi Ma
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ma F, Liu Z, Wang TW, Hopkins MT, Peterson CA, Thompson JE. Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. PLANT, CELL & ENVIRONMENT 2010; 33:1682-96. [PMID: 20492553 DOI: 10.1111/j.1365-3040.2010.02173.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
AteIF5A3, one of three genes encoding eukaryotic translation initiation factor 5A (eIF5A) in Arabidopsis thaliana, and corresponding genes PdeIF5A3 from Populus deltoides (eastern cottonwood) and SleIF5A4 from Solanum lycopersicum (tomato) were constitutively over-expressed in A. thaliana. The resultant transgenic plants exhibited enhanced vegetative and reproductive growth. Indeed, the increase in seed yield relative to empty vector controls for the PdeIF5A3 over-expressing plants ranged from 50% to 300% depending on the line. The PdeIF5A3 over-expressing plants also exhibited enhanced fitness when exposed to osmotic and nutrient (N, P and K) stress. The spatial localization of AteIF5A3 was visualized by confocal microscopy using transgenic plants expressing P(AteIF5A3) :GFP-AteIF5A3. GFP fluorescence reflecting expression of AteIF5A3 was detectable in the phloem, particularly companion cells, of roots, stems and leaves, in the epidermal cells of the root tip, in the columella cells of the root cap and in the chalazal tissue of fertilized ovules, which all play a pivotal role in nutrient or hormone translocation. Thus, AteIF5A3 appears to be involved in supporting growth and to play a regulatory role in the response of plants to sub-lethal osmotic and nutrient stress.
Collapse
Affiliation(s)
- Fengshan Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Mihailovich M, Militti C, Gabaldón T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 2010; 32:109-18. [PMID: 20091748 DOI: 10.1002/bies.200900122] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cold shock domain (CSD)-containing proteins have been found in all three domains of life and function in a variety of processes that are related, for the most part, to post-transcriptional gene regulation. The CSD is an ancient beta-barrel fold that serves to bind nucleic acids. The CSD is structurally and functionally similar to the S1 domain, a fold with otherwise unrelated primary sequence. The flexibility of the CSD/S1 domain for RNA recognition confers an enormous functional versatility to the proteins that contain them. This review summarizes the current knowledge on eukaryotic CSD/S1 domain-containing proteins with a special emphasis on UNR (upstream of N-ras), a member of this family with multiple copies of the CSD.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Carvajal-Gamez B, Arroyo R, Lira R, López-Camarillo C, Alvarez-Sánchez ME. Identification of two novel Trichomonas vaginalis eif-5a genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:284-91. [PMID: 20060503 DOI: 10.1016/j.meegid.2009.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/17/2009] [Accepted: 12/25/2009] [Indexed: 11/19/2022]
Abstract
The eukaryotic translation initiation factor 5A (eIF-5A) is highly conserved and is the only protein that is known to contain the unique and essential amino acid residue hypusine. Synthesis of hypusine is essential for the function of eIF5A in eukaryotic cell proliferation and survival. In this study, we identified two novel eukaryotic translation initiation factor 5A (eIF-5A) genes in Trichomonas vaginalis. The tveif-5a1 and tveif-5a2 putative genes were localized in different contigs, both containing ORFs encoding proteins of 168 amino acids that share high sequence identity with eIF-5A sequences from other eukaryotic organisms. A phylogenetic tree constructed with TveIF-5A1 and TveIF-5A2 from T. vaginalis and 13 other eIF-5A sequences of eukaryotic and archaebacterial origin revealed that both trichomonal TveIF-5As show the highest degree of similarity to bacteria. Using an anti-TveIF-5A antibody, we detected two protein bands and spots of 19 and 20kDa with isoelectric points (pI) of 5.2 and 5.5, respectively, by one and two-dimensional Western blot assays. In addition, we used reverse transcription polymerase chain reaction (RT-PCR) to demonstrate that both of these tveif-5a genes are expressed in T. vaginalis. Immunofluorescence assays showed that the TveIF-5A protein was dispersed throughout the parasite cytoplasm. In conclusion, T. vaginalis has two eif-5a genes, and both genes are expressed as highly conserved proteins of 19kDa, which are localized in the cytoplasm of this parasite.
Collapse
Affiliation(s)
- B Carvajal-Gamez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM). San Lorenzo # 290, Col. Del Valle, CP 03100 Mexico City, Mexico
| | | | | | | | | |
Collapse
|
32
|
Teng YB, Ma XX, He YX, Jiang YL, Du J, Xiang C, Chen Y, Zhou CZ. Crystal structure of Arabidopsis translation initiation factor eIF-5A2. Proteins 2010; 77:736-40. [PMID: 19676114 DOI: 10.1002/prot.22530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan-Bin Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tong Y, Park I, Hong BS, Nedyalkova L, Tempel W, Park HW. Crystal structure of human eIF5A1: insight into functional similarity of human eIF5A1 and eIF5A2. Proteins 2009; 75:1040-5. [PMID: 19280598 DOI: 10.1002/prot.22378] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7 Canada
| | | | | | | | | | | |
Collapse
|
34
|
Yuan J, Jiang N, Jin C, Zhang X, Yan X. Backbone and sidechain 1H, 15N, and 13C assignments of the human eIF5A. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:25-8. [PMID: 19636939 DOI: 10.1007/s12104-008-9133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/02/2008] [Indexed: 05/28/2023]
Abstract
The putative translation initiation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. Although this protein may be involved in many important physiological functions, the precise molecular functions of eIF-5A remain to be clarified. To determine the solution structure and the protein interactions of eIF5A with its potential substrates, we performed NMR studies. Here, we report the nearly complete assignment of the eIF5A.
Collapse
Affiliation(s)
- Jinqiao Yuan
- National Center of Biomedical Analysis, Beijing, 100850, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Gentz PM, Blatch GL, Dorrington RA. Dimerization of the yeast eukaryotic translation initiation factor 5A requires hypusine and is RNA dependent. FEBS J 2009; 276:695-706. [PMID: 19120453 DOI: 10.1111/j.1742-4658.2008.06817.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modification of the highly conserved K51 residue of the Saccharomyces cerevisiae eukaryotic translation initiation factor 5A (eIF5A) to form hypusine, is essential for its many functions including the binding of specific mRNAs. We characterized hypusinated yeast eIF5A by size-exclusion chromatography and native PAGE, showing that the protein exists as a homodimer. A K51R mutant, which was not functional in vivo eluted as a monomer and inhibition of hypusination abolished dimerization. Furthermore, treatment of dimeric eIF5A with RNase A resulted in disruption of the dimer, leading us to conclude that RNA binding is also required for dimerization of eIF5A. We present a model of dimerization, based on the Neurospora crassa structural analogue, HEX-1.
Collapse
Affiliation(s)
- Petra M Gentz
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | |
Collapse
|
36
|
Dias CAO, Cano VSP, Rangel SM, Apponi LH, Frigieri MC, Muniz JRC, Garcia W, Park MH, Garratt RC, Zanelli CF, Valentini SR. Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis. FEBS J 2008; 275:1874-88. [PMID: 18341589 PMCID: PMC5278519 DOI: 10.1111/j.1742-4658.2008.06345.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins--eIF5A(K56A) and eIF5A(Q22H,L93F)--and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.
Collapse
Affiliation(s)
- Camila A O Dias
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rodovia Araraquara-Jaú km. 1, Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cano VSP, Jeon GA, Johansson HE, Henderson CA, Park JH, Valentini SR, Hershey JWB, Park MH. Mutational analyses of human eIF5A-1--identification of amino acid residues critical for eIF5A activity and hypusine modification. FEBS J 2008; 275:44-58. [PMID: 18067580 PMCID: PMC2536608 DOI: 10.1111/j.1742-4658.2007.06172.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain. Growth-supporting activity was abolished in only a few mutant eIF5As (K47D, G49A, K50A, K50D, K50I, K50R, G52A and K55A), with substitutions at or near the hypusine modification site or with truncation of 21 amino acids from either the N-terminus or C-terminus. The inactivity of the Lys50 substitution proteins is obviously due to lack of deoxyhypusine modification. In contrast, K47D and G49A were effective substrates for deoxyhypusine synthase, yet failed to support growth, suggesting critical roles of Lys47 and Gly49 in eIF5A activity, possibly in its interaction with effector(s). By use of a UBHY-R strain harboring genetically engineered unstable eIF5A, we present evidence for the primary function of eIF5A in protein synthesis. When selected eIF5A mutant proteins were tested for their activity in protein synthesis, a close correlation was observed between their ability to enhance protein synthesis and growth, lending further support for a central role of eIF5A in translation.
Collapse
Affiliation(s)
- Veridiana S. P. Cano
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Geoung A Jeon
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | | - Jong-Hwan Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
38
|
Kaiser A, Hammels I, Gottwald A, Nassar M, Zaghloul MS, Motaal BA, Hauber J, Hoerauf A. Modification of eukaryotic initiation factor 5A from Plasmodium vivax by a truncated deoxyhypusine synthase from Plasmodium falciparum: An enzyme with dual enzymatic properties. Bioorg Med Chem 2007; 15:6200-7. [PMID: 17591443 DOI: 10.1016/j.bmc.2007.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 11/24/2022]
Abstract
The increasing resistance of the malaria parasites enforces alternative directions in finding new drug targets. Present findings from the malaria parasite Plasmodium vivax, causing tertiary malaria, suggest eukaryotic initiation factor 5A (eIF-5A) to be a promising target for the treatment of malaria. Previously we presented the 162 amino acid sequence of eukaryotic initiation factor 5A (eIF-5A) from Plasmodium vivax. In the present study, we have expressed and purified the 20kDa protein performed by one-step Nickel chelate chromatography. In Western blot experiments eIF-5A from P. vivax crossreacts with a polyclonal anti-eIF-5A antiserum from the plant Nicotiana plumbaginifolia (Solanaceae). Transcription of eIF-5A can be observed in both different developmental stages of the parasite being prominent in trophozoites. We recently published the nucleic acid sequence from a genomic clone of P. falciparum strain NF54 encoding a putative deoxyhypusine synthase (DHS), an enzyme that catalyzes the post-translational modification of eIF-5A. After removal of 22 amino acids DHS was expressed as a Histidin fusion protein and purified by Nickel affinity chromatography. Truncated DHS from P. falciparum modifies eIF-5A from P. vivax. DHS from P. falciparum NF54 is a bi-functional protein with dual enzymatic specificities, that is, DHS activity and homospermidine synthase activity (HSS) (0.047 pkatal/mg protein) like in other eukaryotes. Inhibition of DHS from P. falciparum resulted in a K(i) of 0.1 microM for the inhibitor GC7 being 2000-fold less than the nonguanylated derivative 1,7-diaminoheptane. Dhs transcription occurs in both develomental stages suggesting its necessity in cell proliferation.
Collapse
Affiliation(s)
- Annette Kaiser
- Institute for Medical Parasitology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
40
|
Zanelli CF, Valentini SR. Is there a role for eIF5A in translation? Amino Acids 2007; 33:351-8. [PMID: 17578650 DOI: 10.1007/s00726-007-0533-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/01/2007] [Indexed: 12/14/2022]
Abstract
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. This review focuses on the functional characterization of eIF5A. Although this protein was originally identified as a translation initiation factor, subsequent studies did not support a role for eIF5A in general translation initiation. eIF5A has also been implicated in nuclear export of HIV-1 Rev and mRNA decay, but these findings are controversial in the literature and may reflect secondary effects of eIF-5A function. Next, the involvement of eIF5A and hypusination in the control of the cell cycle and proliferation in various organisms is reviewed. Finally, recent evidence in favor of reconsidering the role of eIF5A as a translation factor is discussed. Future studies may reveal the specific mechanism by which eIF5A affects protein synthesis.
Collapse
Affiliation(s)
- C F Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil
| | | |
Collapse
|
41
|
Wagner S, Klug G. An archaeal protein with homology to the eukaryotic translation initiation factor 5A shows ribonucleolytic activity. J Biol Chem 2007; 282:13966-76. [PMID: 17369252 DOI: 10.1074/jbc.m701166200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify proteins that are involved in RNA degradation and processing in Halobacterium sp. NRC-1, we purified proteins with RNA-degrading activity by classical biochemical techniques. One of these proteins showed strong homology to the eukaryotic initiation factor 5A (eIF-5A) and was accordingly named archaeal initiation factor 5A (aIF-5A). Eukaryotic IF-5A is known to be involved in mRNA turnover and to bind RNA. Hypusination of eIF-5A is required for sequence-specific binding of RNA. This unique post-translational modification is restricted to Eukarya and Archaea. The exact function of eIF-5A in RNA turnover remained obscure. Here we show for the first time that aIF-5A from Halobacterium sp. NRC-1 exhibits RNA cleavage activity, preferentially cleaving adjacent to A nucleotides. Detectable RNA binding could be shown for aIF-5A purified from Halobacterium sp. NRC-1 but not from Escherichia coli, while both proteins possess RNA cleavage activity, indicating that hypusination of aIF-5A is required for RNA binding but not for its RNA cleavage activity. Furthermore, we show that the hypusinated form of eIF-5A also shows RNase activity while the unmodified protein does not. Charged amino acids in the N-terminal domain of aIF-5A as well as in the C-terminal domain, which is highly similar to the cold shock protein A (CspA), an RNA chaperone of E. coli, are important for RNA cleavage activity. Moreover our results reveal that activity of aIF-5A depends on its oligomeric state.
Collapse
Affiliation(s)
- Steffen Wagner
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | |
Collapse
|
42
|
Kang KR, Kim YS, Wolff EC, Park MH. Specificity of the deoxyhypusine hydroxylase-eukaryotic translation initiation factor (eIF5A) interaction: identification of amino acid residues of the enzyme required for binding of its substrate, deoxyhypusine-containing eIF5A. J Biol Chem 2007; 282:8300-8. [PMID: 17213197 PMCID: PMC1852541 DOI: 10.1074/jbc.m607495200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deoxyhypusine hydroxylase (DOHH) is a novel metalloenzyme that catalyzes the final step of the post-translational synthesis of hypusine (Nepsilon-(4-amino-2-hydroxybutyl)lysine) in the eukaryotic translation initiation factor 5A (eIF5A). Hypusine synthesis is unique in that it occurs in only one protein, denoting the strict specificity of the modification enzymes toward the substrate protein. The specificity of the interaction between eIF5A and DOHH was investigated using human eIF5A (eIF5A-1 isoform) and human recombinant DOHH. DOHH displayed a strong preference for binding the deoxyhypusine-containing form of eIF5A, over the eIF5A precursor or the hypusine-containing eIF5A, indicating a role for the deoxyhypusine residue in binding. In addition to the deoxyhypusine residue, a large portion of the eIF5A polypeptide (>20-90 amino acids) is required for effective modification by DOHH. We have identified the amino acid residues of DOHH that are critical for substrate binding by alanine substitution of 36 conserved amino acid residues. Of these, alanine substitution at Glu57, Glu90, Glu208, Glu241, Gly63, or Gly214 caused a severe impairment in eIF5A(Dhp) binding, with a complete loss of binding and activity in the E57A and E208A mutant enzymes. Only aspartate substitution mutants, E57D or E208D, retained partial activity and substrate binding, whereas alanine, glutamine, or asparagine mutants did not. These findings support a proposed model of DOHH-eIF5A binding in which the amino group(s) of the deoxyhypusine side chain of the substrate is primarily anchored by gamma-carboxyl groups of Glu57 and Glu208 at the DOHH active site.
Collapse
Affiliation(s)
| | | | - Edith C. Wolff
- From the Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Myung Hee Park
- From the Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
43
|
Schrader R, Young C, Kozian D, Hoffmann R, Lottspeich F. Temperature-sensitive eIF5A mutant accumulates transcripts targeted to the nonsense-mediated decay pathway. J Biol Chem 2006; 281:35336-46. [PMID: 16987817 DOI: 10.1074/jbc.m601460200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved protein eIF5A found in Archaea and all eukaryotes uniquely contains the posttranslationally formed amino acid hypusine. Despite being essential the functions of this protein and its modification remain unclear. To gain more insight into these functions temperature-sensitive mutants of the human EIF5A1 were characterized in the yeast Saccharomyces cerevisiae. Expression of the point mutated form V81G in a DeltaeIF5A strain of yeast led to a strongly temperature-sensitive phenotype and to a significantly reduced protein level at restrictive temperature. The mutant showed accumulation of a subset of mRNAs that was also observed in nonsense-mediated decay (NMD)-deficient yeast strains. After short incubation at restrictive temperature the mutant exhibited increased half-lives of the intron containing CYH2 pre-mRNA and mature transcripts of NMD-dependent genes. Reduced telomere silencing and shortening was detected in the V81G mutant further supporting similarities to NMD-deficient strains. Our data suggest that eIF5A mediates important cellular processes like cell viability and senescence through its effects on the stability of certain mRNAs.
Collapse
Affiliation(s)
- Rainer Schrader
- Department for Protein Analytics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
44
|
Costa-Neto CM, Parreiras-E-Silva LT, Ruller R, Oliveira EB, Miranda A, Oliveira L, Ward RJ. Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses. Biochem Biophys Res Commun 2006; 347:634-40. [PMID: 16842744 DOI: 10.1016/j.bbrc.2006.06.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/26/2022]
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance.
Collapse
Affiliation(s)
- Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen X, Pavlish K, Zhang HY, Benoit JN. Effects of chronic portal hypertension on agonist-induced actin polymerization in small mesenteric arteries. Am J Physiol Heart Circ Physiol 2006; 290:H1915-21. [PMID: 16339838 DOI: 10.1152/ajpheart.00643.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of arterial smooth muscle to respond to vasoconstrictor stimuli is reduced in chronic portal hypertension (PHT). Additional evidence supports the existence of a postreceptor defect in vascular smooth muscle excitation contraction coupling. However, the nature of this defect is unclear. Recent studies have shown that vasoconstrictor stimuli induce actin polymerization in smooth muscle and that the associated increase in F-actin is necessary for force development. In the present study we have tested the hypothesis that impaired actin polymerization contributes to reduced vasoconstrictor function in small mesenteric arteries derived from rats with chronic prehepatic PHT. In vitro studies were conducted on small mesenteric artery vessel rings isolated from normal and PHT rats. Isometric tension responses to incremental concentrations of phenylephrine were significantly reduced in PHT arteries. The ability to polymerize actin in portal hypertensive mesenteric arteries stimulated by phenylephrine was attenuated compared with control. Inhibition of cAMP-dependent protein kinase (PKA) restored agonist-induced actin polymerization of arteries from PHT rats to normal levels. Depolymerization of actin in arteries from normal rats reduced maximal contractile force but not myosin phosphorylation, suggesting a key role for the dynamic regulation of actin polymerization in the maintenance of vascular smooth muscle contraction. We conclude that reductions in agonist-induced maximal force development of PHT vascular smooth muscle is due, in part, to impaired actin polymerization, and prolonged PKA activation may underlie these changes.
Collapse
Affiliation(s)
- Xuesong Chen
- Deparment of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | | | |
Collapse
|
46
|
Saeftel M, Sarite RS, Njuguna T, Holzgrabe U, Ulmer D, Hoerauf A, Kaiser A. Piperidones with activity against Plasmodium falciparum. Parasitol Res 2006; 99:281-6. [PMID: 16550432 DOI: 10.1007/s00436-006-0173-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
The increasing resistance of the malaria parasites has enforced new strategies of finding new drug targets. We have isolated two genes involved in spermidine metabolism, encoding deoxyhypusine synthase (DHS) and eukaryotic initiation factor 5A (eIF-5A) in the malaria parasites. eIF-5A is activated by the formation of the unusual amino acid hypusine. This process occurs in two steps. DHS transfers an aminobutyl moiety from the triamine spermidine to a specific lysine residue in the eIF-5A precursor protein to form deoxyhypusine. In a second step, deoxyhypusine hydroxylase (DHH), completes hypusine biosynthesis. We used DHH inhibitors, being effective in mammalian cells, to study an antiplasmodicidal effect in Plasmodium falciparum. Experiments with the antifungal drug ciclopiroxolamine, an alpha-hydroxypyridone, and the plant amino acid L: -mimosine, a 4-pyridone, resulted in an antiplasmodial effect in vitro. Using mimosine as a lead structure, alkyl 4-oxo-piperidine 3-carboxylates were found to have the most efficient antiplasmodial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Saeftel
- Institute for Medical Microbiology, Immunology and Parasitology, D-53105, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Chatterjee I, Gross SR, Kinzy TG, Chen KY. Rapid depletion of mutant eukaryotic initiation factor 5A at restrictive temperature reveals connections to actin cytoskeleton and cell cycle progression. Mol Genet Genomics 2006; 275:264-76. [PMID: 16408210 DOI: 10.1007/s00438-005-0086-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 11/24/2005] [Indexed: 11/29/2022]
Abstract
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure-function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aDelta tif51bDelta) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.
Collapse
Affiliation(s)
- Ishita Chatterjee
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, Piscataway, NJ 08854-8087, USA
| | | | | | | |
Collapse
|
48
|
Jao DLE, Chen KY. Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 2006; 97:583-98. [PMID: 16215987 DOI: 10.1002/jcb.20658] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid formed post-translationally in two steps by deoxyhypusine synthase and deoxyhypusine hydroxylase. Genes encoding eIF5A or deoxyhypusine synthase are essential for cell survival and proliferation. To determine the physiological function of eIF5A, we have employed the tandem affinity purification (TAP) method and mass spectrometry to search for and identify the potential eIF5A-interacting proteins. The TAP-tag was fused in-frame to chromosomal TIF51A gene and eIF5A-TAP fusion protein expressed at its natural level was used as the bait to fish out its interacting partners. At salt concentrations of 150 mM, deoxyhypusine synthase was the only protein bound to eIF5A. As salt concentrations were lowered to 125 mM or less, eIF5A interacted with a set of proteins, which were identified as the components of the 80S ribosome complex. The eIF5A-ribosome interaction was sensitive to RNase and EDTA treatments, indicating the requirement of RNA and the joining of 40S and 60S ribosomal subunits for the interaction. Importantly, a single mutation of hypusine to arginine completely abolished the eIF5A-ribosome interaction. Sucrose gradient sedimentation analysis of log versus stationary phase cells and eIF3 mutant strain showed that the endogenous eIF5A co-sedimented with the actively translating 80S ribosomes and polyribosomes in an RNase- and EDTA-sensitive manner. Our study demonstrates for the first time that eIF5A interacts in a hypusine-dependent manner with a molecular complex rather than a single protein, suggesting that the essential function of eIF5A is mostly likely mediated through its interaction with the actively translating ribosomes.
Collapse
Affiliation(s)
- David Li-En Jao
- Department of Chemistry and Chemical Biology, Rutgers-The State University of New Jersey, Piscataway, NJ 08854-8087, USA
| | | |
Collapse
|
49
|
Park MH. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 2006; 139:161-9. [PMID: 16452303 PMCID: PMC2494880 DOI: 10.1093/jb/mvj034] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unique polyamine-derived amino acid, hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed in eIF5A by a novel post-translational modification reaction that involves two enzymatic steps. In the first step, deoxyhypusine synthase catalyzes the cleavage of the polyamine spermidine and transfer of its 4-aminobutyl moiety to the epsilon-amino group of one specific lysine residue of the eIF5A precursor to form a deoxyhypusine intermediate. In the second step, deoxyhypusine hydroxylase converts the deoxyhypusine-containing intermediate to the hypusine-containing mature eIF5A. The structure and mechanism of deoxyhypusine synthase have been extensively characterized. Deoxyhypusine hydroxylase is a HEAT-repeat protein with a symmetrical superhelical structure consisting of 8 helical hairpins (HEAT motifs). It is a novel metalloenzyme containing tightly bound iron at the active sites. Four strictly conserved His-Glu pairs were identified as iron coordination sites. The structural fold of deoxyhypusine hydroxylase is entirely different from those of the other known protein hydroxylases such as prolyl 4-hydroxylase and lysyl hydroxylases. The eIF5A protein and deoxyhypusine/hypusine modification are essential for eukaryotic cell proliferation. Thus, hypusine synthesis represents the most specific protein modification known to date, and presents a novel target for intervention in mammalian cell proliferation.
Collapse
Affiliation(s)
- Myung Hee Park
- The Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD 20892-4340, USA.
| |
Collapse
|
50
|
Park JH, Aravind L, Wolff EC, Kaevel J, Kim YS, Park MH. Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. Proc Natl Acad Sci U S A 2006; 103:51-6. [PMID: 16371467 PMCID: PMC1324997 DOI: 10.1073/pnas.0509348102] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Indexed: 01/21/2023] Open
Abstract
The eukaryotic initiation factor 5A (eIF5A), a factor essential for eukaryotic cell proliferation, is the only cellular protein containing the polyamine-derived amino acid hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed in a posttranslational modification that involves two sequential enzymatic steps catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase (DOHH). By screening a Saccharomyces cerevisiae GST-ORF library for expression of DOHH activity, we have cloned YJR070C as the gene encoding DOHH and identified the human homolog DOHH gene, HLRC1. Purified recombinant yeast and human DOHH enzymes effectively catalyzed hydroxylation of the deoxyhypusine residue in the eIF5A intermediate. Overexpression of human DOHH along with eIF5A precursor and deoxyhypusine synthase was required for overproduction of mature, hypusine-containing eIF5A in 293T and other mammalian cells. The Saccharomyces cerevisiae strain with deletion of YJR070C contained only deoxyhypusine but no hypusine, indicating that YJR070C was the single DOHH gene in this organism. One highly conserved DOHH homolog gene is found in a variety of eukaryotes from yeast to human. Sequence and structural analyses reveal that DOHH belongs to a family of HEAT-repeat-containing proteins, consisting of eight tandem repeats of an alpha-helical pair (HEAT motif) organized in a symmetrical dyad. The predicted structure is unrelated to the double-stranded beta-helix type structures of the Fe(II)- and 2-oxoacid-dependent dioxygenases, such as collagen prolyl or lysyl hydroxylases. However, metal coordination sites composed of four strictly conserved histidine-glutamate sequences were identified, suggesting that DOHH enzymes have convergently evolved an iron-dependent hydroxylation mechanism.
Collapse
Affiliation(s)
- Jong-Hwan Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research and National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|