1
|
Beas JZ, Folgosa F, Karavaeva V, Sousa FL, Saraiva LM. A novel type of hemoglobin confers host-derived nitric oxide resistance to the opportunistic pathogen Acinetobacter baumannii. Sci Rep 2025; 15:5969. [PMID: 39966482 PMCID: PMC11836069 DOI: 10.1038/s41598-025-88123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen responsible for various infections, such as those of the bloodstream and lungs, which often resist antibiotic therapy. In the course of an infection, the human innate immune system's phagocytic cells are activated producing nitric oxide (NO) that cause bacterial injury. While the antimicrobial effects of nitrosative stress and the bacterial resistance mechanisms are well-characterized for several pathogens, the adaptations of Acinetobacter spp. to NO have not been studied. In this work, we define the transcriptional response of A. baumannii to nitrosative stress induced by NO donor exposure. A. baumannii triggers the expression of several transporters, including those involved in iron and siderophore synthesis. One of the most significantly NO-induced genes is a putative flavohemoglobin. The loss of function of this gene in the mutant strain led to decreased fitness of A. baumannii under NO stress. We also identified the A. baumannii nitric oxide sensor NsrR and demonstrated that NsrR regulates the hemoglobin gene. Combining biochemical, kinetic, and structural prediction studies we show that A. baumannii hemoglobin exhibits nitric oxide dioxygenase and reductase activities and has an atypical structural domain composition. Moreover, we reveal that Acinetobacter hemoglobins have evolved into an independent branch and are phylogenetically distant from other bacterial hemoglobins. Altogether, our findings demonstrate that A. baumannii hemoglobins represent a novel class of NO-detoxifying defense proteins that evolve from flavohemoglobin.
Collapse
Affiliation(s)
- Jordi Zamarreño Beas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), Oeiras, 2780-157, Portugal
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), Oeiras, 2780-157, Portugal
| | - Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), Oeiras, 2780-157, Portugal.
| |
Collapse
|
2
|
Chilamakuru NB, Singirisetty T, Bodapati A, Kallam SDM, Nelson VK, Suryadevara PR, Thangaswamy S. Schiff Base Mediated Synthesis of Novel Imidazolidine-4-One Derivatives for Potential Antimicrobial and Anthelmintic Activities. LUMINESCENCE 2024; 39:e70026. [PMID: 39529222 DOI: 10.1002/bio.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study focuses on developing novel antimicrobials to combat drug-resistant pathogens, addressing compounds failing clinical trials due to inadequate physicochemical properties. Sixteen imidazolidine-4-one derivatives were synthesized by extensive evaluation using molecular docking, absorption, distribution, metabolism, excretion (ADME) predictions, and antimicrobial testing. Molecular docking studies conducted with Schrödinger's Glide revealed that compounds S4 and G8 exhibited superior docking scores of -7.839 and -7.776, respectively. The G series outperformed the S series in scores. ADME analysis confirmed all compounds adhered to Lipinski's rule of five. In addition, IR and NMR provided details about the structure of the compounds. Antimicrobial activity was assessed against Escherichia coli, Staphylococcus aureus, and Candida albicans, with compounds G2 and S2 showing exceptional minimum inhibitory concentration (MIC) values of 6.25 μg/mL against E. coli. S2 also demonstrated impressive activity against S. aureus (MIC 3.12 μg/mL), and S4 exhibited potent activity against C. albicans (MIC 0.8 μg/mL) than fluconazole (1.6 μg/mL). Additionally, antihelmintic activity was evaluated, with G1, G3, G8, S2, S4, S7, and S8 showing effective paralysis and death time 20 min and below at 50 mg/mL concentration. These results underscore the potential of new imidazolidine-4-one derivatives as suitable sources to develop a drug candidate to treat resistant infections.
Collapse
Affiliation(s)
- Naresh Babu Chilamakuru
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Triveni Singirisetty
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India
| | - Anoop Bodapati
- Department of Pharmaceutical Sciences Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Andhra Pradesh, India
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Selvankumar Thangaswamy
- Center for Global Health Research, Saveetha Medical College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Litwin A, Mironenka J, Bernat P, Soboń A, Różalska S. Accumulation of pyrethroids induces changes in metabolism of the entomopathogenic fungus Beauveria bassiana-Proteomic and lipidomic background. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114418. [PMID: 36527849 DOI: 10.1016/j.ecoenv.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Advances in the agrochemical industry, such as using plant protection products e.g. pyrethroid insecticides, lead to environmental pollution via the accumulation of toxic compounds in soil. An interesting approach to overcoming this threat is using biopreparations based on entomopathogenic fungi that come into contact with the residues of the insecticides in the environment. The aim of this study was to determine whether the soil-dwelling entomopathogenic fungus Beauveria bassiana ARSEF 2860 is capable of accumulating pyrethroids (λ-cyhalothrin, α-cypermethrin and deltamethrin) and to identify the metabolomics and proteomic implications of this process. In this work, we demonstrated for the first time that the tested fungus accumulated pyrethroids as early as on day 2 of incubation with an average efficiency of 90%. Pyrethroids accumulated in large quantities in the mycelium of B. bassiana induced oxidative stress and interacted differently with the enzymes of the basic metabolic pathways, enzymes associated with the organization of the actin cytoskeleton and cell walls, as well as extracellular enzymes responsible for the infectious abilities (α-cypermethrin caused a 61% decrease in PR1, λ-cyhalothrin - a 31% decrease in PR2, which are proteolytic enzymes with a confirmed role in the infectious process). This study also revealed that the accumulated pyrethroids decreased the activity of phospholipase C, which increased the triacylglycerols/diacylglycerols (TAG/DAG) ratio, especially in mycelium in which α-cypermethrin was accumulated. It should be emphasized that the accumulation of pyrethroids in the environment is not fully understood, and current research suggests that entomopathogenic fungi may be part of the process.
Collapse
Affiliation(s)
- Anna Litwin
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | | | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
4
|
Shino S, Nasuno R, Takagi H. S-glutathionylation of fructose-1,6-bisphosphate aldolase confers nitrosative stress tolerance on yeast cells via a metabolic switch. Free Radic Biol Med 2022; 193:319-329. [PMID: 36272668 DOI: 10.1016/j.freeradbiomed.2022.10.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide as a signaling molecule exerts cytotoxicity known as nitrosative stress at its excess concentrations. In the yeast Saccharomyces cerevisiae, the cellular responses to nitrosative stress and their molecular mechanisms are not fully understood. Here, focusing on the posttranslational modifications that are associated with nitrosative stress response, we show that nitrosative stress increased the protein S-glutathionylation level in yeast cells. Our proteomic and immunochemical analyses demonstrated that the fructose-1,6-bisphosphate aldolase Fba1 underwent S-glutathionylation at Cys112 in response to nitrosative stress. The enzyme assay using a recombinant Fba1 demonstrated that S-glutathionylation at Cys112 inhibited the Fba1 activity. Moreover, we revealed that the cytosolic glutaredoxin Grx1 reduced S-glutathionylation of Fba1 and then recovered its activity. The intracellular contents of fructose-1,6-bisphosphate and 6-phosphogluconate, which are a substrate of Fba1 and an intermediate of the pentose phosphate pathway (PPP), respectively, were increased in response to nitrosative stress, suggesting that the metabolic flow was switched from glycolysis to PPP. The cellular level of NADPH, which is produced in PPP and functions as a reducing force for nitric oxide detoxifying enzymes, was also elevated under nitrosative stress conditions, but this increase was canceled by the amino acid substitution of Cys112 to Ser in Fba1. Furthermore, the viability of yeast cells expressing Cys112Ser-Fba1 was significantly lower than that of the wild-type cells under nitrosative stress conditions. These results indicate that the inhibition of Fba1 by its S-glutathionylation changes metabolism from glycolysis to PPP to increase NADPH production, leading to nitrosative stress tolerance in yeast cells.
Collapse
Affiliation(s)
- Seiya Shino
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ryo Nasuno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
5
|
An Ultrafast Fluorescent Probe for the Detection of Peroxynitrite in Living Cells. J CHEM-NY 2022. [DOI: 10.1155/2022/8995440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peroxynitrite (ONOO−), a highly reactive nitrogen species, which plays a crucial role in numerous physiological and pathological processes of cell functionalization. The anomalous concentration of ONOO− may result in a range of diseases, such as arthritis, neurological disorders, and even cancer. Therefore, it is urgent to develop a simple and effective tool to monitor the fluctuation of ONOO− levels in biological systems. Herein, an ultrafast fluorescent probe (HND-ONOO) is proposed to detect ONOO−, which displays brilliant fluorescence in less than 30 s with a large Stokes shift. Furthermore, the probe exhibited the lower detection limit (48 nM) and satisfactory results in differentiating ONOO− from other related species. The probe that possesses good biocompatibility and low toxicity was employed to monitor the level of exogenous and endogenous ONOO− in living cells. Thus, the probe HND-ONOO could be served as a potential imaging tool to visualize intracellular ONOO− and understand the relationship between ONOO− and inflammation.
Collapse
|
6
|
De Simone G, di Masi A, Ascenzi P. Strategies of Pathogens to Escape from NO-Based Host Defense. Antioxidants (Basel) 2022; 11:2176. [PMID: 36358549 PMCID: PMC9686644 DOI: 10.3390/antiox11112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/22/2024] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule present in most living organisms including bacteria, fungi, plants, and animals. NO participates in a wide range of biological processes including vasomotor tone, neurotransmission, and immune response. However, NO is highly reactive and can give rise to reactive nitrogen and oxygen species that, in turn, can modify a broad range of biomolecules. Much evidence supports the critical role of NO in the virulence and replication of viruses, bacteria, protozoan, metazoan, and fungi, thus representing a general mechanism of host defense. However, pathogens have developed different mechanisms to elude the host NO and to protect themselves against oxidative and nitrosative stress. Here, the strategies evolved by viruses, bacteria, protozoan, metazoan, and fungi to escape from the NO-based host defense are overviewed.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Via della Vasca Navale 79, 00146 Roma, Italy
| |
Collapse
|
7
|
Anta-Fernández F, Santander-Gordón D, Becerra S, Santamaría R, Díaz-Mínguez JM, Benito EP. Nitric Oxide Metabolism Affects Germination in Botrytis cinerea and Is Connected to Nitrate Assimilation. J Fungi (Basel) 2022; 8:jof8070699. [PMID: 35887455 PMCID: PMC9324006 DOI: 10.3390/jof8070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide regulates numerous physiological processes in species from all taxonomic groups. Here, its role in the early developmental stages of the fungal necrotroph Botrytis cinerea was investigated. Pharmacological analysis demonstrated that NO modulated germination, germ tube elongation and nuclear division rate. Experimental evidence indicates that exogenous NO exerts an immediate but transitory negative effect, slowing down germination-associated processes, and that this effect is largely dependent on the flavohemoglobin BCFHG1. The fungus exhibited a “biphasic response” to NO, being more sensitive to low and high concentrations than to intermediate levels of the NO donor. Global gene expression analysis in the wild-type and ΔBcfhg1 strains indicated a situation of strong nitrosative and oxidative stress determined by exogenous NO, which was much more intense in the mutant strain, that the cells tried to alleviate by upregulating several defense mechanisms, including the simultaneous upregulation of the genes encoding the flavohemoglobin BCFHG1, a nitronate monooxygenase (NMO) and a cyanide hydratase. Genetic evidence suggests the coordinated expression of Bcfhg1 and the NMO coding gene, both adjacent and divergently arranged, in response to NO. Nitrate assimilation genes were upregulated upon exposure to NO, and BCFHG1 appeared to be the main enzymatic system involved in the generation of the signal triggering their induction. Comparative expression analysis also showed the influence of NO on other cellular processes, such as mitochondrial respiration or primary and secondary metabolism, whose response could have been mediated by NmrA-like domain proteins.
Collapse
Affiliation(s)
- Francisco Anta-Fernández
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Daniela Santander-Gordón
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), Carrera de Ingeniería en Biotecnología, Universidad de las Américas (UDLA), Quito 170513, Ecuador;
| | - Sioly Becerra
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Rodrigo Santamaría
- Department of Computer Science, University of Salamanca, 37008 Salamanca, Spain;
| | - José María Díaz-Mínguez
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Ernesto Pérez Benito
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
- Correspondence:
| |
Collapse
|
8
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
9
|
Chen M, Wang J, Lin L, Xu X, Wei W, Shen Y, Wei D. Synergistic Regulation of Metabolism by Ca 2+/Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synth Biol 2022; 11:273-285. [PMID: 34941247 DOI: 10.1021/acssynbio.1c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.
Collapse
Affiliation(s)
- Mianhui Chen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People’s Republic of China
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People’s Republic of China
| | - Xiangyang Xu
- Zaozhuang jie nuo enzyme co. ltd, Zaozhuang 277100, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
10
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
11
|
The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas fluorescens. mSystems 2021; 6:e0091121. [PMID: 34726491 PMCID: PMC8562477 DOI: 10.1128/msystems.00911-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichiacoli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ. Moreover, we show that phosphorylation of the conserved Asp52 residue in RstA greatly enhances RstA-DNA interaction, and regulation of the multidrug resistance by RstA/RstB is dependent on the phosphorylation of the RstA Asp52 residue by RstB. Proteome analysis reveals RstA/RstB also positively regulates the efflux pump MexEF-OprN and enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. Our results suggest that, by coupling the expression of multiple efflux pumps and anaerobic nitrate respiration, RstA/RstB could play a role in defense against nitrosative stress caused by anaerobic nitrate respiration. IMPORTANCE Microenvironmental hypoxia typically increases bacterial multidrug resistance by elevating expression of multidrug efflux pumps, but the precise mechanism is currently not well understood. Here, we showed that the two-component system RstA/RstB not only positively regulated expression of several efflux pumps involved in multidrug resistance, but also promoted expression of enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. These results suggested that, by upregulating expression of efflux pumps and pyoverdine biosynthesis-related enzymes, RstA/RstB could play a role in promoting bacterial tolerance to hypoxia by providing protection against nitrosative stress.
Collapse
|
12
|
Massa CM, Liu Z, Taylor S, Pettit AP, Stakheyeva MN, Korotkova E, Popova V, Atochina-Vasserman EN, Gow AJ. Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved? Antioxidants (Basel) 2021; 10:antiox10071111. [PMID: 34356344 PMCID: PMC8301044 DOI: 10.3390/antiox10071111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
The modification of protein cysteine residues underlies some of the diverse biological functions of nitric oxide (NO) in physiology and disease. The formation of stable nitrosothiols occurs under biologically relevant conditions and time scales. However, the factors that determine the selective nature of this modification remain poorly understood, making it difficult to predict thiol targets and thus construct informatics networks. In this review, the biological chemistry of NO will be considered within the context of nitrosothiol formation and degradation whilst considering how specificity is achieved in this important post-translational modification. Since nitrosothiol formation requires a formal one-electron oxidation, a classification of reaction mechanisms is proposed regarding which species undergoes electron abstraction: NO, thiol or S-NO radical intermediate. Relevant kinetic, thermodynamic and mechanistic considerations will be examined and the impact of sources of NO and the chemical nature of potential reaction targets is also discussed.
Collapse
Affiliation(s)
- Christopher M. Massa
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ziping Liu
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Sheryse Taylor
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ashley P. Pettit
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Marena N. Stakheyeva
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena Korotkova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Valentina Popova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Correspondence: ; Tel.: +1-848-445-4612
| |
Collapse
|
13
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
14
|
Cole JA. Anaerobic bacterial response to nitric oxide stress: Widespread misconceptions and physiologically relevant responses. Mol Microbiol 2021; 116:29-40. [PMID: 33706420 DOI: 10.1111/mmi.14713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/27/2022]
Abstract
How anaerobic bacteria protect themselves against nitric oxide-induced stress is controversial, not least because far higher levels of stress were used in the experiments on which most of the literature is based than bacteria experience in their natural environments. This results in chemical damage to enzymes that inactivates their physiological function. This review illustrates how transcription control mechanisms reveal physiological roles of the encoded gene products. Evidence that the hybrid cluster protein, Hcp, is a major high affinity NO reductase in anaerobic bacteria is reviewed: if so, its trans-nitrosation activity is a nonspecific secondary consequence of chemical inactivation. Whether the flavorubredoxin, NorV, is equally effective at such low [NO] is unknown. YtfE is proposed to be an enzyme rather than a source of iron for the repair of iron-sulfur proteins damaged by nitrosative stress. Any reaction catalyzed by YtfE needs to be revealed. The concentration of NO that accumulates in the cytoplasm of anaerobic bacteria is unknown, but indirect evidence indicates that it is in the pM to low nM range. Also unknown are the functions of the NO-inducible cytoplasmic proteins YgbA, YeaR, or YoaG. Experiments to resolve some of these questions are proposed.
Collapse
Affiliation(s)
- J A Cole
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr Res 2021; 89:738-745. [PMID: 32563183 DOI: 10.1038/s41390-020-1017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Apart from its known actions as a pulmonary vasodilator, nitric oxide (NO) is a key signal mediator in the neonatal brain. Despite the extensive use of NO for pulmonary artery hypertension (PAH), its actions in the setting of brain hypoxia and ischemia, which co-exists with PAH in 20-30% of affected infants, are not well established. This review focuses on the mechanisms of actions of NO covering the basic, translational, and clinical evidence of its neuroprotective and neurotoxic properties. In this first part, we present the physiology of transport and delivery of NO to the brain and the regulation of cerebrovascular and systemic circulation by NO, as well the role of NO in the development of the immature brain. IMPACT: NO can be transferred from the site of production to the site of action rapidly and affects the central nervous system. Inhaled NO (iNO), a commonly used medication, can have significant effects on the neonatal brain. NO regulates the cerebrovascular and systemic circulation and plays a role in the development of the immature brain. This review describes the properties of NO under physiologic conditions and under stress. The impact of this review is that it describes the effects of NO, especially regarding the vulnerable neonatal brain, and helps understand the conditions that could contribute to neurotoxicity or neuroprotection.
Collapse
|
16
|
Tosha T, Yamagiwa R, Sawai H, Shiro Y. NO Dynamics in Microbial Denitrification System. CHEM LETT 2021. [DOI: 10.1246/cl.200629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Takehiko Tosha
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Raika Yamagiwa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hitomi Sawai
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
17
|
Seth D, Hausladen A, Stamler JS. Anaerobic Transcription by OxyR: A Novel Paradigm for Nitrosative Stress. Antioxid Redox Signal 2020; 32:803-816. [PMID: 31691575 PMCID: PMC7074925 DOI: 10.1089/ars.2019.7921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: S-nitrosylation, the post-translational modification by nitric oxide (NO) to form S-nitrosothiols (SNOs), regulates diverse aspects of cellular function, and aberrant S-nitrosylation (nitrosative stress) is implicated in disease, from neurodegeneration to cancer. Essential roles for S-nitrosylation have been demonstrated in microbes, plants, and animals; notably, bacteria have often served as model systems for elucidation of general principles. Recent Advances: Recent conceptual advances include the idea of a molecular code through which proteins sense and differentiate S-nitrosothiol (SNO) from alternative oxidative modifications, providing the basis for specificity in SNO signaling. In Escherichia coli, S-nitrosylation relies on an enzymatic cascade that regulates, and is regulated by, the transcription factor OxyR under anaerobic conditions. S-nitrosylated OxyR activates an anaerobic regulon of >100 genes that encode for enzymes that both mediate S-nitrosylation and protect against nitrosative stress. Critical Issues: Mitochondria originated from endosymbiotic bacteria and generate NO under hypoxic conditions, analogous to conditions in E. coli. Nitrosative stress in mitochondria has been implicated in Alzheimer's and Parkinson's disease, among others. Many proteins that are S-nitrosylated in mitochondria are also S-nitrosylated in E. coli. Insights into enzymatic regulation of S-nitrosylation in E. coli may inform the identification of disease-relevant regulatory machinery in mammalian systems. Future Directions: Using E. coli as a model system, in-depth analysis of the anaerobic response controlled by OxyR may lead to the identification of enzymatic mechanisms regulating S-nitrosylation in particular, and hypoxic signaling more generally, providing novel insights into analogous mechanisms in mammalian cells and within dysfunctional mitochondria that characterize neurodegenerative diseases.
Collapse
Affiliation(s)
- Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
18
|
Zhao Y, Lim J, Xu J, Yu J, Zheng W. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol Microbiol 2020; 113:872-882. [DOI: 10.1111/mmi.14465] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| | - Jieyin Lim
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jianyang Xu
- Department of Traditional Chinese Medicine General Hospital of Shenzhen University Shenzhen China
| | - Jae‐Hyuk Yu
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Systems Biotechnology Konkuk University Seoul Republic of Korea
| | - Weifa Zheng
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| |
Collapse
|
19
|
Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.
Collapse
Affiliation(s)
- Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
20
|
Chen HY, Kouadio Fodjo E, Jiang L, Chang S, Li JB, Zhan DS, Gu HX, Li DW. Simultaneous Detection of Intracellular Nitric Oxide and Peroxynitrite by a Surface-Enhanced Raman Scattering Nanosensor with Dual Reactivity. ACS Sens 2019; 4:3234-3239. [PMID: 31736302 DOI: 10.1021/acssensors.9b01740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A functional surface-enhanced Raman scattering (SERS) nanosensor which can simultaneously detect nitric oxide (NO) and peroxynitrite (ONOO-) in living cells is explored. The SERS nanosensor is fabricated through modifying gold nanoparticles (AuNPs) with newly synthesized 3,4-diaminophenylboronic acid pinacol ester (DAPBAP), which has two reactive groups. The simultaneous detection achieved in this work is not only because of the SERS spectral changes of the nanosensor resulting from the dual reactivity of DAPBAP on AuNPs with NO and ONOO- but also by the narrow SERS bands suitable for multiplex detection. Owing to the combination of SERS fingerprinting information and chemical reaction specificity, the nanosensor has great selectivity for NO and ONOO-, respectively. In addition, the nanosensor has a wide linearity range from 0 to 1.0 × 10-4 M with a submicromolar sensitivity. More importantly, simultaneous monitoring of NO and ONOO- in the Raw264.7 cells has been fulfilled by this functional nanosensor, which shows that the SERS strategy will be promising in comprehension of the physiological issues related with NO and ONOO-.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Laboratory of Physical Chemistry, Felix Houphouet Boigny University, Abidjan 00225, Cote d’Ivoire
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jia-Bin Li
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - De-Sheng Zhan
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hai-Xin Gu
- Shanghai Fire Research Institute of Ministry of MEM, Shanghai 200438, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Saghaug CS, Klotz C, Kallio JP, Brattbakk HR, Stokowy T, Aebischer T, Kursula I, Langeland N, Hanevik K. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist 2019; 12:1221-1235. [PMID: 31190910 PMCID: PMC6519707 DOI: 10.2147/idr.s177997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Treatment-refractory Giardia cases have increased rapidly within the last decade. No markers of resistance nor a standardized susceptibility test have been established yet, but several enzymes and their pathways have been associated with metronidazole (MTZ) resistant Giardia. Very limited data are available regarding genetic variation in these pathways. We aimed to investigate genetic variation in metabolic pathway genes proposed to be involved in MTZ resistance in recently acquired, cultured clinical isolates. Methods: Whole genome sequencing of 12 assemblage A2 and 8 assemblage B isolates was done, to decipher genomic variation in Giardia. Twenty-nine genes were identified in a literature search and investigated for their single nucleotide variants (SNVs) in the coding/non-coding regions of the genes, either as amino acid changing (non-synonymous SNVs) or non-changing SNVs (synonymous). Results: In Giardia assemblage B, several genes involved in MTZ activation or oxidative stress management were found to have higher numbers of non-synonymous SNVs (thioredoxin peroxidase, nitroreductase 1, ferredoxin 2, NADH oxidase, nitroreductase 2, alcohol dehydrogenase, ferredoxin 4 and ferredoxin 1) than the average variation. For Giardia assemblage A2, the highest genetic variability was found in the ferredoxin 2, ferredoxin 6 and in nicotinamide adenine dinucleotide phosphate (NADPH) oxidoreductase putative genes. SNVs found in the ferredoxins and nitroreductases were analyzed further by alignment and homology modeling. SNVs close to the iron-sulfur cluster binding sites in nitroreductase-1 and 2 and ferredoxin 2 and 4 could potentially affect protein function. Flavohemoprotein seems to be a variable-copy gene, due to higher, but variable coverage compared to other genes investigated. Conclusion: In clinical Giardia isolates, genetic variability is common in important genes in the MTZ metabolizing pathway and in the management of oxidative and nitrosative stress and includes high numbers of non-synonymous SNVs. Some of the identified amino acid changes could potentially affect the respective proteins important in the MTZ metabolism.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway
| | - Hans-Richard Brattbakk
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Hordaland, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| |
Collapse
|
22
|
Transcriptome analysis of Burkholderia pseudomallei SCV reveals an association with virulence, stress resistance and intracellular persistence. Genomics 2019; 112:501-512. [PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 01/16/2023]
Abstract
Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
Collapse
|
23
|
Chen XX, Niu LY, Shao N, Yang QZ. BODIPY-Based Fluorescent Probe for Dual-Channel Detection of Nitric Oxide and Glutathione: Visualization of Cross-Talk in Living Cells. Anal Chem 2019; 91:4301-4306. [PMID: 30829471 DOI: 10.1021/acs.analchem.9b00169] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) and glutathione (GSH) have interplaying roles in oxidant-antioxidant balance. In this work, we developed the first example of a single fluorescent probe that displayed a turn-on fluorescence response toward NO and GSH from dual emission channels. The probe was synthesized by introducing 4-amino-3-(methylamino)-phenol to a BODIPY scaffold. Specifically, the NO-mediated transformation of diamine into a triazole triggered the fluorescence in the green channel, and the GSH-induced SNAr substitution reaction led to the red-shifted emission in the red channel. The probe was successfully applied to detect the exogenous and endogenous NO and GSH in macrophage cells. More importantly, the probe revealed that NO induced by interferon-γ (IFN-γ), lipopolysaccharide (LPS), and l-arginine (l-Arg) could also elicit the augmentation of intracellular GSH. We anticipate the probe would hold great potential for investigating the redox balance in biological processes.
Collapse
Affiliation(s)
- Xiao-Xiao Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Na Shao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
24
|
Chou WK, Brynildsen MP. Loss of DksA leads to multi-faceted impairment of nitric oxide detoxification by Escherichia coli. Free Radic Biol Med 2019; 130:288-296. [PMID: 30366060 DOI: 10.1016/j.freeradbiomed.2018.10.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Human immune cells use a battery of toxic chemicals to eliminate invading bacteria. One of those compounds is nitric oxide (NO) and pathogens have evolved various strategies to defend themselves against this immune effector. Enzymatic detoxification is a common approach used by many bacteria, and Escherichia coli employs several enzymes to deal with NO, such as Hmp a flavohemoprotein. In addition to nitrosative stress, nutrient deprivation has been found to play an important role in phagosomal antimicrobial activity. Interestingly, recent work in Salmonella has suggested that DksA, a transcription regulator associated with the stringent response, is a molecular node for integration of nutritional and nitrosative stress signals. Here, we found that, in E. coli, loss of DksA profoundly impairs aerobic NO detoxification, approaching the detoxification capacity of Δhmp, which exhibits little-to-no NO detoxification within aerobic conditions. Investigation of this phenotype revealed that under NO stress ΔdksA suffered from low hmp transcript levels, considerably impaired protein output from the hmp promoter, and reduced catalysis by Hmp when present. These data demonstrate that DksA is critical for NO detoxification by E. coli and that loss of this regulator leads to NO defense deficiencies that span multiple levels.
Collapse
Affiliation(s)
- Wen Kang Chou
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 United States
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 United States.
| |
Collapse
|
25
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Van Stappen C, Lehnert N. Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Inorg Chem 2018; 57:4252-4269. [DOI: 10.1021/acs.inorgchem.7b02333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
27
|
Nitric Oxide-Mediated Induction of Dispersal in Pseudomonas aeruginosa Biofilms Is Inhibited by Flavohemoglobin Production and Is Enhanced by Imidazole. Antimicrob Agents Chemother 2018; 62:AAC.01832-17. [PMID: 29263060 DOI: 10.1128/aac.01832-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The biological signal molecule nitric oxide (NO) was found to induce biofilm dispersal across a range of bacterial species, which led to its consideration for therapeutic strategies to treat biofilms and biofilm-related infections. However, biofilms are often not completely dispersed after exposure to NO. To better understand this phenomenon, we investigated the response of Pseudomonas aeruginosa biofilm cells to successive NO treatments. When biofilms were first pretreated with a low, noneffective dose of NO, a second dose of the signal molecule at a concentration usually capable of inducing dispersal did not have any effect. Amperometric analysis revealed that pretreated P. aeruginosa cells had enhanced NO-scavenging activity, and this effect was associated with the production of the flavohemoglobin Fhp. Further, quantitative real-time reverse transcription-PCR (qRT-PCR) analysis showed that fhp expression increased by over 100-fold in NO-pretreated biofilms compared to untreated biofilms. Biofilms of mutant strains harboring mutations in fhp or fhpR, encoding a NO-responsive regulator of fhp, were not affected in their dispersal response after the initial pretreatment with NO. Overall, these results suggest that FhpR can sense NO to trigger production of the flavohemoglobin Fhp and inhibit subsequent dispersal responses to NO. Finally, the addition of imidazole, which can inhibit the NO dioxygenase activity of flavohemoglobin, attenuated the prevention of dispersal after NO pretreatment and improved the dispersal response in older, starved biofilms. This study clarifies the underlying mechanisms of impaired dispersal induced by repeated NO treatments and offers a new perspective for improving the use of NO in biofilm control strategies.
Collapse
|
28
|
Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation. Mol Cell 2018; 69:451-464.e6. [PMID: 29358078 DOI: 10.1016/j.molcel.2017.12.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.
Collapse
Affiliation(s)
- Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
30
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
31
|
Pacia MZ, Pukalski J, Turnau K, Baranska M, Kaczor A. Lipids, hemoproteins and carotenoids in alive Rhodotorula mucilaginosa cells under pesticide decomposition - Raman imaging study. CHEMOSPHERE 2016; 164:1-6. [PMID: 27568366 DOI: 10.1016/j.chemosphere.2016.08.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Various species of yeasts are gaining attention as producers of nutraceuticals and biofuels and due to their capacity to biodegrade chemical waste. Rhodotorula mucilaginosa is one of the most oleaginous species of yeast, an efficient de novo carotenoid producer and was reported to be capable of decomposing of organic pesticides. In this work we studied the influence of a toxic pesticide, diazinone, on production of storage (lipids) and protective (carotenoids, hemoproteins) compounds by Rh. mucilaginosa alive cells with the help of Raman imaging. It occurred that the yeast in non-oleaginous phase and aerobic environment was rich in carotenoids and their level increased significantly under incubation with diazinone, while anaerobic environment resulted in production of both carotenoids and hemoproteins and the level of the latter decreased under the influence of the pesticide. For yeasts in oleaginous phase, it was concluded that lipid production (via triggering of NAD+ accumulation and increase of the NO level) resulted in nitrosative stress leading to flavohemoprotein synthesis and was associated with the increase of the mitochondrial activity.
Collapse
Affiliation(s)
- Marta Z Pacia
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Jan Pukalski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences and Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| |
Collapse
|
32
|
Chou WK, Brynildsen MP. A biochemical engineering view of the quest for immune-potentiating anti-infectives. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Shipovskov S, Bonamore A, Boffi A, Ferapontova EE. Electrocatalytic interconversion of NADH and NAD(+) by Escherichia coli flavohemoglobin. Chem Commun (Camb) 2016; 51:16096-8. [PMID: 26389555 DOI: 10.1039/c5cc06317e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
E. coli flavohemoglobin, oriented at electrodes via amphiphilic polymyxin B, electrocatalytically interconverts NADH and NAD(+) at its heme potentials operating as an electron transfer relay between the electrode and the protein FAD, where NADH/NAD(+) is transformed. The results are crucial for the development of NAD(+)-dependent bioelectrodes for biosynthesis, biosensors and biofuel cells.
Collapse
Affiliation(s)
- S Shipovskov
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - A Bonamore
- Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University "La Sapienza", 00185 Rome, Italy
| | - A Boffi
- Department of Biochemical Sciences and CNR Institute of Molecular Biology and Pathology, University "La Sapienza", 00185 Rome, Italy
| | - E E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
34
|
Mo Q, Zhang H, Liu Q, Tang X, Zhao L, Zan X, Song Y. Enhancing nosiheptide production in Streptomyces actuosus
by heterologous expression of haemoprotein from Sinorhizobium meliloti. Lett Appl Microbiol 2016; 62:480-7. [DOI: 10.1111/lam.12575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Q. Mo
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - H. Zhang
- Colin Ratledge Center for Microbial Lipids; School of Agricultural Engineering and Food Science; Shandong University of Technology; Zibo China
| | - Q. Liu
- Colin Ratledge Center for Microbial Lipids; School of Agricultural Engineering and Food Science; Shandong University of Technology; Zibo China
| | - X. Tang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - L. Zhao
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - X. Zan
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Y. Song
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
- Colin Ratledge Center for Microbial Lipids; School of Agricultural Engineering and Food Science; Shandong University of Technology; Zibo China
| |
Collapse
|
35
|
Robinson JL, Brynildsen MP. Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:E1757-66. [PMID: 26951670 PMCID: PMC4812703 DOI: 10.1073/pnas.1521354113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The virulence of many pathogens depends upon their ability to cope with immune-generated nitric oxide (NO·). In Escherichia coli, the major NO· detoxification systems are Hmp, an NO· dioxygenase (NOD), and NorV, an NO· reductase (NOR). It is well established that Hmp is the dominant system under aerobic conditions, whereas NorV dominates anaerobic conditions; however, the quantitative contributions of these systems under the physiologically relevant microaerobic regime remain ill defined. Here, we investigated NO· detoxification in environments ranging from 0 to 50 μM O2, and discovered a regime in which E. coli NO· defenses were severely compromised, as well as conditions that exhibited oscillations in the concentration of NO·. Using an integrated computational and experimental approach, E. coli NO· detoxification was found to be extremely impaired at low O2 due to a combination of its inhibitory effects on NorV, Hmp, and translational activities, whereas oscillations were found to result from a kinetic competition for O2 between Hmp and respiratory cytochromes. Because at least 777 different bacterial species contain the genetic requirements of this stress response oscillator, we hypothesize that such oscillatory behavior could be a widespread phenomenon. In support of this hypothesis,Pseudomonas aeruginosa, whose respiratory and NO· response networks differ considerably from those of E. coli, was found to exhibit analogous oscillations in low O2 environments. This work provides insight into how bacterial NO· defenses function under the low O2 conditions that are likely to be encountered within host environments.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
36
|
Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol Biochem Parasitol 2016; 206:56-66. [DOI: 10.1016/j.molbiopara.2015.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 01/03/2023]
|
37
|
Sewelam N, Kazan K, Schenk PM. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. FRONTIERS IN PLANT SCIENCE 2016; 7:187. [PMID: 26941757 PMCID: PMC4763064 DOI: 10.3389/fpls.2016.00187] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide.
Collapse
Affiliation(s)
- Nasser Sewelam
- Botany Department, Faculty of Science, Tanta UniversityTanta, Egypt
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Queensland Bioscience Precinct, St LuciaQLD, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
38
|
Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae. INTERNATIONAL JOURNAL OF PROTEOMICS 2016; 2016:8302423. [PMID: 26881076 PMCID: PMC4737026 DOI: 10.1155/2016/8302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin.
Collapse
|
39
|
Robinson JL, Brynildsen MP. Construction and Experimental Validation of a Quantitative Kinetic Model of Nitric Oxide Stress in Enterohemorrhagic Escherichia coli O157:H7. Bioengineering (Basel) 2016; 3:E9. [PMID: 28952571 PMCID: PMC5597167 DOI: 10.3390/bioengineering3010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are responsible for large outbreaks of hemorrhagic colitis, which can progress to life-threatening hemolytic uremic syndrome (HUS) due to the release of Shiga-like toxins (Stx). The presence of a functional nitric oxide (NO·) reductase (NorV), which protects EHEC from NO· produced by immune cells, was previously found to correlate with high HUS incidence, and it was shown that NorV activity enabled prolonged EHEC survival and increased Stx production within macrophages. To enable quantitative study of EHEC NO· defenses and facilitate the development of NO·-potentiating therapeutics, we translated an existing kinetic model of the E. coli K-12 NO· response to an EHEC O157:H7 strain. To do this, we trained uncertain model parameters on measurements of [NO·] and [O₂] in EHEC cultures, assessed parametric and prediction uncertainty with the use of a Markov chain Monte Carlo approach, and confirmed the predictive accuracy of the model with experimental data from genetic mutants lacking NorV or Hmp (NO· dioxygenase). Collectively, these results establish a methodology for the translation of quantitative models of NO· stress in model organisms to pathogenic sub-species, which is a critical step toward the application of these models for the study of infectious disease.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
41
|
Abstract
Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.
Collapse
|
42
|
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (K.T.S., H.C.C., H.A.)
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (K.T.S., H.C.C., H.A.)
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (K.T.S., H.C.C., H.A.)
| |
Collapse
|
43
|
Sasaki Y, Takaya N, Morita A, Nakamura A, Shoun H. Nitrite formation from organic nitrogen by Streptomyces antibioticus supporting bacterial cell growth and possible involvement of nitric oxide as an intermediate. Biosci Biotechnol Biochem 2014; 78:1603-10. [PMID: 25209510 DOI: 10.1080/09168451.2014.932665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The actinomycete Streptomyces antibioticus was shown to produce nitrite (NO-(2)) and ammonium (NH+(4)]) when aerobically incubated in an organic nitrogen-rich medium. The production of NO-(2) was synchronized with rapid cell growth, whereas most NH+(4)] was produced after cell proliferation had ceased. Intracellular formation of nitric oxide (NO) was also observed during the incubation. The production of these inorganic nitrogen compounds along with cell growth was prevented by several enzyme inhibitors (of nitric oxide synthase or nitrate reductase) or glucose. Distinct, membrane-bound nitrate reductase was induced in the NO-(2)-producing cells. Tungstate (a potent inhibitor of this enzyme) prevented the NO-(2) production and cell growth, whereas it did not prevent the NO formation. These results revealed the occurrence of novel nitrogen metabolic pathway in S. antibioticus forming NO-(2) from organic nitrogen by which rapid cell growth is possible. NO synthase, NO dioxygenase (flavohemoglobin), and dissimilatory nitrate reductase are possible enzymes responsible for the NO-(2) formation.
Collapse
Affiliation(s)
- Yasuyuki Sasaki
- a Faculty of Applied Bioscience, Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | | | | | | | | |
Collapse
|
44
|
Kim DY, Hong MJ, Seo YW. Role of wheat trHb in nitric oxide scavenging. Mol Biol Rep 2014; 41:5931-41. [DOI: 10.1007/s11033-014-3468-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 06/14/2014] [Indexed: 12/21/2022]
|
45
|
Calderón PF, Morales EH, Acuña LG, Fuentes DN, Gil F, Porwollik S, McClelland M, Saavedra CP, Calderón IL. The small RNA RyhB homologs from Salmonella typhimurium participate in the response to S-nitrosoglutathione-induced stress. Biochem Biophys Res Commun 2014; 450:641-5. [PMID: 24937451 DOI: 10.1016/j.bbrc.2014.06.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 06/06/2014] [Indexed: 12/25/2022]
Abstract
Typically, the expression of sRNAs is activated in response to environmental stimuli in order to regulate gene expression through post-transcriptional mechanisms. In the present work we show that the Salmonellatyphimurium paralogous sRNAs RyhB-1 and RyhB-2 are induced in response to the nitrosating agent S-nitrosoglutathione (GSNO). Inactivation of these sRNAs decreased S. typhimurium resistance to GSNO and increased the levels of nitrosylated proteins. These results prompted us to evaluate a possible role of these sRNAs in nitrosative stress resistance. RNA profiling was used as a screen to identify novel RyhB-1 and RyhB-2 regulated targets. A subset of genes was filtered based on their potential role in the response to nitrosative stress and their expression was analyzed by quantitative RT-PCR in wild type, single and double mutant strains (ΔryhB1, ΔryhB2 and ΔryhB1 ΔryhB2) treated with GSNO. In response to GSNO RyhB-1 and RyhB-2 negatively regulate the expression of the genes cyoABC (cytochrome bo oxidase), cydB (cytochrome bd oxidase), cybC (cytochrome b-562), and positively regulate the nirBCD operon (nitrite reductase system). Together, these results suggest that RyhB-1 and RyhB-2 finely tune the expression of genes coding for cytochrome oxidases and the nitrate reductase system, allowing the cell to cope with GSNO-induced stress.
Collapse
Affiliation(s)
- Paulina F Calderón
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | - Eduardo H Morales
- Great Lakes Bioenergy Research Center and Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Lillian G Acuña
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia & Vida, Santiago, Chile.
| | - Danitza N Fuentes
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | - Fernando Gil
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | - S Porwollik
- Department of Microbiology and Molecular Genetics, B240 Medical Sciences Building, University of California, Irvine, CA 92697, USA.
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, B240 Medical Sciences Building, University of California, Irvine, CA 92697, USA.
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | - Iván L Calderón
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
46
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
47
|
Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 2013; 82:333-40. [PMID: 24166960 DOI: 10.1128/iai.01201-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Herein we report an important role for the ferric uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive nitrogen species produced by inducible nitric oxide (NO) synthase in an NRAMP1(r) murine model of acute systemic infection. The expression of fur protected Salmonella grown under normoxic and hypoxic conditions against the bacteriostatic activity of NO. The hypersusceptibility of fur-deficient Salmonella to the cytotoxic actions of NO coincides with a marked repression of respiratory activity and the reduced ability of the bacteria to detoxify NO. A fur mutant Salmonella strain contained reduced levels of the terminal quinol oxidases of the electron transport chain. Addition of the heme precursor δ-aminolevulinic acid restored the cytochrome content, respiratory activity, NO consumption, and wild-type growth in bacteria undergoing nitrosative stress. The innate antinitrosative defenses regulated by Fur added to the adaptive response associated with the NO-detoxifying activity of the flavohemoprotein Hmp. Our investigations indicate that, in addition to playing a critical role in iron homeostasis, Fur is an important antinitrosative determinant of Salmonella pathogenesis.
Collapse
|
48
|
Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J Bacteriol 2013; 196:60-9. [PMID: 24142248 DOI: 10.1128/jb.01004-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Corynebacterium glutamicum ArnR is a novel transcriptional regulator that represses expression of the nitrate reductase operon narKGHJI and the nitric oxide (NO)-detoxifying flavohemoglobin gene hmp under aerobic conditions. In a previous study, we showed that ArnR-mediated repression is relieved during anaerobic nitrate respiration, but we could not pinpoint the specific signal that ArnR senses. In this study, we show that in the absence of nitrate, ArnR-mediated repression is maintained under anaerobic conditions. The derepression in response to nitrate is eliminated by disruption of narG, suggesting that ArnR senses nitrate derivatives generated during nitrate respiration. Specifically, the hmp gene is upregulated in the presence of nitrite or nitric oxide (NO) in an ArnR-dependent manner, although the response of narK appears to be greatly affected by ArnR-independent regulation. In vitro binding of ArnR to the narK and hmp promoter regions is more strongly inhibited by NO than by nitrite. We previously showed that the UV-visible spectrum of ArnR is typical of a Fe-S cluster-containing protein. Site-directed mutagenesis of each of three cysteine residues, which are possibly involved in coordination of the cofactor in the ArnR protein, results in loss of the binding of this protein to its target promoters in vitro and eliminates the repression of the target genes in vivo under aerobic conditions. These observations suggest that the cofactor coordinated by these three cysteine residues in the ArnR protein plays a critical role in the NO-responsive expression of the narKGHJI operon and the hmp gene.
Collapse
|
49
|
Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins — A revised perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1789-800. [DOI: 10.1016/j.bbapap.2013.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
|
50
|
Lewinska A, Bartosz G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep 2013; 11:231-9. [PMID: 17132272 DOI: 10.1179/135100006x154987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The role of Saccharomyces cerevisiae flavohemoglobin (Yhb1) is controversial and far from understood. This study compares the effects of nitrosative and oxidative challenge on the yeast mutant lacking the YHB1 gene. Growth of the mutant was impaired by nitrosoglutathione and peroxynitrite, whereas increased sensitivity to reactive oxygen species was not observed. Increased levels of intracellular NO(*) after incubation with NO(*) donors were found in the mutants cells as compared to the wild-type cells. Deletion of the YHB1 gene was found to augment the reduction of Fe(3+) by yeast cells which suggests that flavohemoglobin participates in regulation of the activity of plasma membrane ferric reductase(s).
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland.
| | | |
Collapse
|