1
|
Li D, Zhang K, Xue X, Bai Z, Yang L, Qi J, Suolang S. An Epidemiological Study on Salmonella in Tibetan Yaks from the Qinghai-Tibet Plateau Area in China. Animals (Basel) 2024; 14:3697. [PMID: 39765601 PMCID: PMC11672581 DOI: 10.3390/ani14243697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonella is an important foodborne pathogen that can cause a range of illnesses in humans; it has also been a key focus for monitoring in the field of public health, including gastroenteritis, sepsis, and arthritis, and can also cause a decline in egg production in poultry and diarrhea and abortion in livestock, leading to death in severe cases, resulting in huge economic losses. This study aimed to investigate the isolation rate, antimicrobial resistance, serotypes, and genetic diversity of Salmonella isolated from yak feces in various regions on the Qinghai-Tibet Plateau. A total of 1222 samples of yak dung were collected from major cities in the Qinghai-Tibet Plateau area, and the sensitivity of the isolated bacteria to 10 major classes of antibiotics was determined using the K-B paper disk diffusion method for drug susceptibility. Meanwhile, the serotypes of the isolated bacteria were analyzed using the plate agglutination test for serum antigens, and their carriage of drug resistance and virulence genes was determined using PCR and gel electrophoresis experiments. The isolated bacteria were also classified using MLST (Multi-Locus Sequence Typing). The overall isolation rate for Salmonella was 18.25% (223/1222), and the results of the antibiotic susceptibility tests showed that 98.65% (220/223) of the isolated bacteria were resistant to multiple antibiotics. In the 223 isolates of Salmonella, eight classes of 20 different resistance genes, 30 serotypes, and 15 different types of virulence genes were detected. The MLST analysis identified 45 distinct sequence types (STs), including five clonal complexes, of which ST34, ST11, and ST19 were the most common. These findings contribute valuable information about strain resources, genetic profiles, and typing data for Salmonella in the Qinghai-Tibet Plateau area, facilitating improved bacterial surveillance, identification, and control in yak populations. They also provide certain data supplements for animal Salmonella infections globally, filling research gaps.
Collapse
Affiliation(s)
- Dengyu Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Kaiqin Zhang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Xiaofeng Xue
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Zhanchun Bai
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - La Yang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences China, Shanghai 200241, China
| | - Sizhu Suolang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
- “Fourteenth Five-Year Plan” China Agricultural Rural Ministry Key Laboratory (Jointly Built by the Ministry and Provincial Government), Nyingchi 860000, China
| |
Collapse
|
2
|
Scaife K, Vo TD, Dommels Y, Leune E, Albermann K, Pařenicová L. In silico and in vitro safety assessment of a fungal biomass from Rhizomucor pusillus for use as a novel food ingredient. Food Chem Toxicol 2023; 179:113972. [PMID: 37532172 DOI: 10.1016/j.fct.2023.113972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
To address the growing world population and reduce the impact of environmental changes on the global food supply, ingredients are being produced using microorganisms to yield sustainable and innovative products. Food ingredients manufactured using modern biotechnology must be produced by non-toxigenic and nonpathogenic production organisms that do not harbor antimicrobial resistance (AMR). Several fungal species represent attractive targets as sources of alternative food products. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus strain CBS 143028. The whole genome sequence of this strain was annotated and subjected to sequence homology searches and in silico phenotype prediction tools to identify genetic elements encoding for protein toxins active via oral consumption, virulence factors associated with pathogenicity, and determinants of AMR. The in silico investigation revealed no genetic elements sharing significant sequence homology with putative virulence factors, protein toxins, or AMR determinants, including the absence of mucoricin, an essential toxin in the pathogenesis of mucormycosis. These in silico findings were corroborated in vitro based on the absence of clinically relevant mycotoxin or antibacterial secondary metabolites. Consequently, it is unlikely that R. pusillis strain CBS 143028 would pose a safety concern for use in food for human consumption.
Collapse
Affiliation(s)
- Kevin Scaife
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 21, Mississauga, ON, L5N 2X7, Canada.
| | - Trung D Vo
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 21, Mississauga, ON, L5N 2X7, Canada
| | - Yvonne Dommels
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands
| | - Elisa Leune
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands
| | - Kaj Albermann
- Labvantage - Biomax GmbH, Robert-Koch-Str. 2, 82152, Planegg, Germany
| | - Lucie Pařenicová
- The Protein Brewery B.V., Goeseelsstraat 10, 4817, MV, Breda, the Netherlands; BioXact, Böttgerwater 44, 2497, ZJ, Den Haag, Netherlands
| |
Collapse
|
3
|
Ling C, Liang S, Li Y, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Wang W, Zuo J. A Potential Adhesin/Invasin STM0306 Participates in Host Cell Inflammation Induced by Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2023; 24:ijms24098170. [PMID: 37175877 PMCID: PMC10179656 DOI: 10.3390/ijms24098170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella enterica serovar typhimurium (S. Typhimurium) is a common Gram-negative foodborne pathogenic bacterium that causes gastrointestinal disease in humans and animals. It is well known that adhesins and invasins play crucial roles in the infection mechanism of S. Typhimurium. S. Typhimurium STM0306 has been denoted as a putative protein and its functions have rarely been reported. In this study, we constructed the STM0306 gene mutant strain of S. Typhimurium and purified the recombinant STM0306 from Escherichia coli. Deletion of the STM0306 gene resulted in reduced adhesion and invasion of S. Typhimurium to IPEC-J2, Caco-2, and RAW264.7 cells. In addition, STM0306 could bind to intestinal epithelial cells and induced F-actin modulation in IPEC-J2 cells. Furthermore, we found that STM0306 activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the mRNA expression of pro-inflammatory cytokines such as IL-1β, TNF-α, as well as chemokine CXCL2, thus resulting in cellular inflammation in host cells. In vivo, the deletion of the STM0306 gene led to reduced pathogenicity of S. Typhimurium, as evidenced by lower fecal bacterial counts and reduced body weight loss in S. Typhimurium infected mice. In conclusion, the STM0306 of S. Typhimurium is an important adhesin/invasin involved in the pathogenic process and cellular inflammation of the host.
Collapse
Affiliation(s)
- Chong Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shujie Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Pavon RDN, Mendoza PDG, Flores CAR, Calayag AMB, Rivera WL. Genotypic virulence profiles and associations in Salmonella isolated from meat samples in wet markets and abattoirs of Metro Manila, Philippines. BMC Microbiol 2022; 22:292. [PMID: 36474155 PMCID: PMC9724337 DOI: 10.1186/s12866-022-02697-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella are pathogenic foodborne bacteria with complex pathogenicity from numerous virulence genes housed in Salmonella pathogenicity islands (SPIs), plasmids, and other gene cassettes. However, Salmonella virulence gene distributions and mechanisms remain unestablished. In the Philippines, studies mainly report Salmonella incidences and antimicrobial resistance, but little to none on virulence profiles, their associations to animal sources, collection sites and Salmonella serogroups. Hence, a total of 799 Salmonella isolates, previously obtained from pig, cow, and chicken meat samples in wet markets and abattoirs (wet markets: 124 chicken, 151 cow, and 352 pig meat isolates; abattoirs: 172 pig tonsil and jejunum isolates) in Metro Manila, Philippines, were revived and confirmed as Salmonella through invA gene polymerase chain reaction (PCR). Isolates were then screened for eight virulence genes, namely avrA, hilA, sseC, mgtC, spi4R, pipB, spvC and spvR, by optimized multiplex PCR and significant pair associations between virulence genes were determined through Fisher's exact test. Gene frequency patterns were also determined. Salmonella serogroups in addition to animal sources and location types were also used to predict virulence genes prevalence using binary logistic regression. RESULTS High frequencies (64 to 98%) of SPI virulence genes were detected among 799 Salmonella isolates namely mgtC, pipB, avrA, hilA, spi4R and sseC, from most to least. However, only one isolate was positive for plasmid-borne virulence genes, spvC and spvR. Diversity in virulence genes across Salmonella serogroups for 587 Salmonella isolates (O:3 = 250, O:4 = 133, O:6,7 = 99, O:8 = 93, O:9 = 12) was also demonstrated through statistical predictions, particularly for avrA, hilA, sseC, and mgtC. mgtC, the most frequent virulence gene, was predicted by serogroup O:9, while sseC, the least frequent, was predicted by serogroup O:4 and chicken animal source. The highest virulence gene pattern involved SPIs 1-5 genes which suggests the wide distribution and high pathogenic potential of Salmonella. Statistical analyses showed five virulence gene pair associations, namely avrA and hilA, avrA and spi4R, hilA and spi4R, sseC and spi4R, and mgtC and pipB. The animal sources predicted the presence of virulence genes, sseC and pipB, whereas location type for hilA and spi4R, suggesting that these factors may contribute to the type and pathogenicity of Salmonella present. CONCLUSION The high prevalence of virulence genes among Salmonella in the study suggests the high pathogenic potential of Salmonella from abattoirs and wet markets of Metro Manila, Philippines which poses food safety and public health concerns and threatens the Philippine food animal industry. Statistical associations between virulence genes and prediction analyses across Salmonella serogroups and external factors such as animal source and location type and presence of virulence genes suggest the diversity of Salmonella virulence and illustrate determining factors to Salmonella pathogenicity. This study recommends relevant agencies in the Philippines to improve standards in food animal industries and increase efforts in monitoring of foodborne pathogens.
Collapse
Affiliation(s)
- Rance Derrick N. Pavon
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Paolo D. G. Mendoza
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Camille Andrea R. Flores
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Alyzza Marie B. Calayag
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| | - Windell L. Rivera
- grid.11134.360000 0004 0636 6193Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101 Philippines
| |
Collapse
|
5
|
Egorova A, Mikhaylova Y, Saenko S, Tyumentseva M, Tyumentsev A, Karbyshev K, Chernyshkov A, Manzeniuk I, Akimkin V, Shelenkov A. Comparative Whole-Genome Analysis of Russian Foodborne Multidrug-Resistant Salmonella Infantis Isolates. Microorganisms 2021; 10:89. [PMID: 35056538 PMCID: PMC8781764 DOI: 10.3390/microorganisms10010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Non-typhoidal Salmonella infections remain a significant public health problem worldwide. In this study, we present the first detailed genomic analysis report based on short-read (Illumina) whole-genome sequencing (WGS) of 45 multidrug-resistant (MDR) Salmonella enterica subsp. enterica serotype Infantis isolates from poultry and meat product samples obtained in Russia during 2018-2020, and long-read (MinION) WGS of five more representative isolates. We sought to determine whether foodborne S. Infantis have acquired new characteristics, traits, and dynamics in MDR growth in recent years. All sequenced isolates belonged to the sequence type ST32 and more than the half of isolates was characterized by six similar antimicrobial susceptibility profiles, most of which corresponded well with the antimicrobial resistance determinants to aminoglycosides, sulphonamides, tetracycline, and chloramphenicol revealed in silico. Some of the isolates were characterized by the presence of several types of plasmids simultaneously. Plasmid typing using WGS revealed Col440I, ColpVC, ColRNAI, IncFIB, IncFII, IncX1, IncHI2, IncHI2A, and IncN replicons. The identified virulence genes for 45 whole genomes of S. Infantis were similar and included 129 genes encoding structural components of the cell, factors responsible for successful invasion of the host, and secreted products. These data will be a valuable contribution to further comparative genomics of S. Infantis circulating in Russia, as well as to epidemiological surveillance of foodborne Salmonella isolates and investigations of Salmonella outbreaks.
Collapse
Affiliation(s)
- Anna Egorova
- Central Research Institute of Epidemiology, Novogireevskaya str., 3a, 111123 Moscow, Russia; (Y.M.); (S.S.); (M.T.); (A.T.); (K.K.); (A.C.); (I.M.); (V.A.); (A.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Roche SM, Holbert S, Le Vern Y, Rossignol C, Rossignol A, Velge P, Virlogeux-Payant I. A large panel of chicken cells are invaded in vivo by Salmonella Typhimurium even when depleted of all known invasion factors. Open Biol 2021; 11:210117. [PMID: 34784793 PMCID: PMC8596019 DOI: 10.1098/rsob.210117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poultry are the main source of human infection by Salmonella. As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host-cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.
Collapse
Affiliation(s)
- S. M. Roche
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - S. Holbert
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Y. Le Vern
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - C. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - A. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - P. Velge
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | | |
Collapse
|
7
|
Characterization of a New and Efficient Polyvalent Phage Infecting E. coli O157:H7, Salmonella spp., and Shigella sonnei. Microorganisms 2021; 9:microorganisms9102105. [PMID: 34683426 PMCID: PMC8540833 DOI: 10.3390/microorganisms9102105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Ongoing outbreaks of foodborne diseases remain a significant public health concern. Lytic phages provide promising attributes as biocontrol agents. This study characterized KFS-EC3, a polyvalent and lytic phage, which was isolated from slaughterhouse sewage and purified by cesium chloride density centrifugation. Host range and efficiency of plating analyses revealed that KFS-EC3 is polyvalent and can efficiently infect E. coli O157:H7, Salmonella spp., and Shigella sonnei. KFS-EC3 had a latent time of 20 min and burst size of ~71 phages/infected cell. KFS-EC3 was stable and infectious following storage at a pH range of 3 to 11 and a temperature range of -70 °C to 60 °C. KFS-EC3 could inhibit E. coli O157:H7 growth by 2 logs up to 52 h even at the lowest MOI of 0.001. Genomic analysis of KFS-EC3 revealed that it consisted of 167,440 bp and 273 ORFs identified as functional genes, without any genes associated with antibiotic resistance, virulence, allergenicity, and lysogenicity. This phage was finally classified into the Tequatrovirus genus of the Myoviridae family. In conclusion, KFS-EC3 could simultaneously infect E. coli O157:H7, S. sonnei, and Salmonella spp. with the lowest MOI values over long periods, suggesting its suitability for simultaneous pathogen control in foods.
Collapse
|
8
|
Millar JA, Raghavan R. Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Front Cell Infect Microbiol 2021; 10:596277. [PMID: 33747974 PMCID: PMC7968456 DOI: 10.3389/fcimb.2020.596277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
9
|
Wang Z, Sun J, Tian M, Xu Z, Liu Y, Fu J, Yan A, Liu X. Proteomic Analysis of FNR-Regulated Anaerobiosis in Salmonella Typhimurium. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1001-1012. [PMID: 30903387 DOI: 10.1007/s13361-019-02145-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Bacterial pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) have to cope with fluctuating oxygen levels during infection within host gastrointestinal tracts. The global transcription factor FNR (fumarate nitrate reduction) plays a vital role in the adaptation of enteric bacteria to the low oxygen environment. Nevertheless, a comprehensive profile of the FNR regulon on the proteome level is still lacking in S. Typhimurium. Herein, we quantitatively profiled S. Typhimurium proteome of an fnr-deletion mutant during anaerobiosis in comparison to its parental strain. Notably, we found that FNR represses the expression of virulence genes of Salmonella pathogenicity island 1 (SPI-1) and negatively regulates propanediol utilization by directly binding to the promoter region of the pdu operon. Importantly, we provided evidence that S. Typhimurium lacking fnr exhibited increased antibiotics susceptibility and membrane permeability as well. Furthermore, genetic deletion of fnr leads to decreased bacterial survival in a Caenorhabditis elegans infection model, highlighting an important role of this regulator in mediating host-pathogen interactions.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jingjing Sun
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China
| | - Mengdan Tian
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China
| | - Zeling Xu
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Rd, Hong Kong SAR, China.
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Rd, Haidian District, Beijing, China.
| |
Collapse
|
10
|
A Bacterial Microcompartment Is Used for Choline Fermentation by Escherichia coli 536. J Bacteriol 2018; 200:JB.00764-17. [PMID: 29507086 DOI: 10.1128/jb.00764-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 01/16/2023] Open
Abstract
Bacterial choline degradation in the human gut has been associated with cancer and heart disease. In addition, recent studies found that a bacterial microcompartment is involved in choline utilization by Proteus and Desulfovibrio species. However, many aspects of this process have not been fully defined. Here, we investigate choline degradation by the uropathogen Escherichia coli 536. Growth studies indicated E. coli 536 degrades choline primarily by fermentation. Electron microscopy indicated that a bacterial microcompartment was used for this process. Bioinformatic analyses suggested that the choline utilization (cut) gene cluster of E. coli 536 includes two operons, one containing three genes and a main operon of 13 genes. Regulatory studies indicate that the cutX gene encodes a positive transcriptional regulator required for induction of the main cut operon in response to choline supplementation. Each of the 16 genes in the cut cluster was individually deleted, and phenotypes were examined. The cutX, cutY, cutF, cutO, cutC, cutD, cutU, and cutV genes were required for choline degradation, but the remaining genes of the cut cluster were not essential under the conditions used. The reasons for these varied phenotypes are discussed.IMPORTANCE Here, we investigate choline degradation in E. coli 536. These studies provide a basis for understanding a new type of bacterial microcompartment and may provide deeper insight into the link between choline degradation in the human gut and cancer and heart disease. These are also the first studies of choline degradation in E. coli 536, an organism for which sophisticated genetic analysis methods are available. In addition, the cut gene cluster of E. coli 536 is located in pathogenicity island II (PAI-II536) and hence might contribute to pathogenesis.
Collapse
|
11
|
Schardt J, Jones G, Müller-Herbst S, Schauer K, D'Orazio SEF, Fuchs TM. Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection. Sci Rep 2017; 7:17821. [PMID: 29259308 PMCID: PMC5736727 DOI: 10.1038/s41598-017-17570-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the “Listeria sensu stricto” clade. The members of the second clade, “Listeria sensu lato”, are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were investigated further in vitro and in vivo. A mutant lacking an ATP-binding cassette transporter exhibited defective adhesion and invasion of human Caco-2 cells. Using a mouse model of foodborne L. monocytogenes infection, a reduced number of the mutant strain compared to the parental strain was observed in the small intestine and the liver. Another mutant with a defective 1,2-propanediol degradation pathway showed reduced persistence in the stool of infected mice, suggesting a role of 1,2-propanediol as a carbon and energy source of listeriae during infection. These findings reveal the relevance of novel factors for the colonization process of L. monocytogenes.
Collapse
Affiliation(s)
- Jakob Schardt
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Grant Jones
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Stefanie Müller-Herbst
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Kristina Schauer
- Lehrstuhl für Hygiene und Technologie der Milch, Tiermedizinische Fakultät, Ludwig-Maximilians-Universität München, Schönleutner Str. 8, 85764, Oberschleißheim, Germany
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Thilo M Fuchs
- ZIEL-Institute for Food & Health, and Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany. .,Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
12
|
Rakitina DV, Manolov AI, Kanygina AV, Garushyants SK, Baikova JP, Alexeev DG, Ladygina VG, Kostryukova ES, Larin AK, Semashko TA, Karpova IY, Babenko VV, Ismagilova RK, Malanin SY, Gelfand MS, Ilina EN, Gorodnichev RB, Lisitsyna ES, Aleshkin GI, Scherbakov PL, Khalif IL, Shapina MV, Maev IV, Andreev DN, Govorun VM. Genome analysis of E. coli isolated from Crohn's disease patients. BMC Genomics 2017; 18:544. [PMID: 28724357 PMCID: PMC5517970 DOI: 10.1186/s12864-017-3917-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. RESULTS We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. CONCLUSIONS Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.
Collapse
Affiliation(s)
- Daria V. Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander I. Manolov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Sofya K. Garushyants
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Julia P. Baikova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry G. Alexeev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute for Physics and Technology, Moscow, Russia
| | - Valentina G. Ladygina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elena S. Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrei K. Larin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Tatiana A. Semashko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina Y. Karpova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vladislav V. Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ruzilya K. Ismagilova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Fundamental Medicine and Biology of Kazan Federal University, Kazan, Russia
| | - Sergei Y. Malanin
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Fundamental Medicine and Biology of Kazan Federal University, Kazan, Russia
| | - Mikhail S. Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Elena N. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Roman B. Gorodnichev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Eugenia S. Lisitsyna
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Gennady I. Aleshkin
- The Gamaleya Research Institute for Epidemiology and Microbiology of the Russian Academy of Medical Science, Moscow, Russia
| | - Petr L. Scherbakov
- Central Scientific Institute of Gastroenterology, Moscow Clinical Research Centre, Moscow, Russia
| | - Igor L. Khalif
- State Scientific Center of Coloproctology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Marina V. Shapina
- State Scientific Center of Coloproctology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Igor V. Maev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Ministry of Health of Russian Federation, Moscow, Russia
| | - Dmitry N. Andreev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Ministry of Health of Russian Federation, Moscow, Russia
| | - Vadim M. Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute for Physics and Technology, Moscow, Russia
| |
Collapse
|
13
|
Tasmin R, Hasan NA, Grim CJ, Grant A, Choi SY, Alam MS, Bell R, Cavanaugh C, Balan KV, Babu US, Parveen S. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses. PLoS One 2017; 12:e0176938. [PMID: 28481935 PMCID: PMC5421757 DOI: 10.1371/journal.pone.0176938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at 24 hours post-infection in chicken granulosa cells while SK222_32B was unable to replicate in these cells. These results suggest that Salmonella Typhimurium can survive host defenses better and could be more invasive than Salmonella Kentucky and provide some insights into the genomic determinants responsible for these differences.
Collapse
Affiliation(s)
- Rizwana Tasmin
- Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland, United States of America
| | - Nur A. Hasan
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, United States of America
- CosmosID Inc., Rockville, Maryland, United States of America
| | - Christopher J. Grim
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Ar’Quette Grant
- Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland, United States of America
| | - Seon Young Choi
- CosmosID Inc., Rockville, Maryland, United States of America
| | - M. Samiul Alam
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Rebecca Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, United States of America
| | - Christopher Cavanaugh
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Uma S. Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, United States of America
| | - Salina Parveen
- Agriculture, Food and Resource Sciences, University of Maryland, Eastern Shore, Princess Anne, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core. J Bacteriol 2017; 199:JB.00785-16. [PMID: 28138097 DOI: 10.1128/jb.00785-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial microcompartments (MCPs) are extremely large proteinaceous organelles that consist of an enzymatic core encapsulated within a complex protein shell. A key question in MCP biology is the nature of the interactions that guide the assembly of thousands of protein subunits into a well-ordered metabolic compartment. In this report, we show that the N-terminal 37 amino acids of the PduB protein have a critical role in binding the shell of the 1,2-propanediol utilization (Pdu) microcompartment to its enzymatic core. Several mutations were constructed that deleted short regions of the N terminus of PduB. Growth tests indicated that three of these deletions were impaired MCP assembly. Attempts to purify MCPs from these mutants, followed by gel electrophoresis and enzyme assays, indicated that the protein complexes isolated consisted of MCP shells depleted of core enzymes. Electron microscopy substantiated these findings by identifying apparently empty MCP shells but not intact MCPs. Analyses of 13 site-directed mutants indicated that the key region of the N terminus of PduB required for MCP assembly is a putative helix spanning residues 6 to 18. Considering the findings presented here together with prior work, we propose a new model for MCP assembly.IMPORTANCE Bacterial microcompartments consist of metabolic enzymes encapsulated within a protein shell and are widely used to optimize metabolic process. Here, we show that the N-terminal 37 amino acids of the PduB shell protein are essential for assembly of the 1,2-propanediol utilization microcompartment. The results indicate that it plays a key role in binding the outer shell to the enzymatic core. We propose that this interaction might be used to define the relative orientation of the shell with respect to the core. This finding is of fundamental importance to our understanding of microcompartment assembly and may have application to engineering microcompartments as nanobioreactors for chemical production.
Collapse
|
15
|
Tsai WC, Zhuang ZJ, Lin CY, Chen WJ. Novel antimicrobial peptides with promising activity against multidrug resistant Salmonella enterica serovar Choleraesuis and its stress response mechanism. J Appl Microbiol 2016; 121:952-65. [PMID: 27280957 DOI: 10.1111/jam.13203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 12/19/2022]
Abstract
AIMS To evaluate the antibacterial efficacy of novel antimicrobial peptides (AMPs) against multidrug-resistant (MDR) Salmonella enterica serovar Choleraesuis (Salm. Choleraesuis) and to delineate the AMP-responsive mechanisms of wild-type (WT) and MDR strains. METHODS AND RESULTS Proteomic approaches were performed based on two-dimensional gel electrophoresis and liquid chromatography-electrospray ionization-quadrupole- time-of-flight tandem mass spectrometry to analyse the protein profiles of these two strains upon exposure to AMP GW-Q6. Quantitative real-time PCR was conducted to determine the mRNA expression level of the target genes. Furthermore, lipopolysaccharide (LPS) competition analysis was used to verify whether LPS may serve as the potential binding target when AMP approach and adhere to the bacterial surface. CONCLUSIONS The minimal inhibitory concentration assay revealed that our AMPs were even more effective against the MDR strains (4-32 μg ml(-1) ), compared with those for the WT (8-64 μg ml(-1) ). LPS dose-dependently suppressed the GW-Q6 antimicrobial activity. Clusters of orthologous groups analysis showed that the majority of the AMP-responsive proteins were involved in cell envelope biogenesis and outer membrane, translation and chaperones. SIGNIFICANCE AND IMPACT OF THE STUDY These results indicated that the novel AMP GW-Q6 serves as a potential candidate for antimicrobial drug development against MDR strains. These findings will also be helpful for expanding our knowledge on the molecular mechanisms of AMP-microbe interaction and the pathogenicity of salmonellosis caused by MDR strains of Salm. Choleraesuis.
Collapse
Affiliation(s)
- W-C Tsai
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Z-J Zhuang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - C-Y Lin
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - W-J Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
| |
Collapse
|
16
|
Orsi RH, Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 2016; 100:5273-87. [PMID: 27129530 PMCID: PMC4875933 DOI: 10.1007/s00253-016-7552-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 11/30/2022]
Abstract
The genus Listeria is currently comprised of 17 species, including 9 Listeria species newly described since 2009. Genomic and phenotypic data clearly define a distinct group of six species (Listeria sensu strictu) that share common phenotypic characteristics (e.g., ability to grow at low temperature, flagellar motility); this group includes the pathogen Listeria monocytogenes. The other 11 species (Listeria sensu lato) represent three distinct monophyletic groups, which may warrant recognition as separate genera. These three proposed genera do not contain pathogens, are non-motile (except for Listeria grayi), are able to reduce nitrate (except for Listeria floridensis), and are negative for the Voges-Proskauer test (except for L. grayi). Unlike all other Listeria species, species in the proposed new genus Mesolisteria are not able to grow below 7 °C. While most new Listeria species have only been identified in a few countries, the availability of molecular tools for rapid characterization of putative Listeria isolates will likely lead to future identification of isolates representing these new species from different sources. Identification of Listeria sensu lato isolates has not only allowed for a better understanding of the evolution of Listeria and virulence characteristics in Listeria but also has practical implications as detection of Listeria species is often used by the food industry as a marker to detect conditions that allow for presence, growth, and persistence of L. monocytogenes. This review will provide a comprehensive critical summary of our current understanding of the characteristics and distribution of the new Listeria species with a focus on Listeria sensu lato.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Genomic diversity of EPEC associated with clinical presentations of differing severity. Nat Microbiol 2016; 1:15014. [PMID: 27571975 DOI: 10.1038/nmicrobiol.2015.14] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 01/01/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are diarrhoeagenic E. coli, and are a significant cause of gastrointestinal illness among young children in developing countries. Typical EPEC are identified by the presence of the bundle-forming pilus encoded by a virulence plasmid, which has been linked to an increased severity of illness, while atypical EPEC lack this feature. Comparative genomics of 70 total EPEC from lethal (LI), non-lethal symptomatic (NSI) or asymptomatic (AI) cases of diarrhoeal illness in children enrolled in the Global Enteric Multicenter Study was used to investigate the genomic differences in EPEC isolates obtained from individuals with various clinical outcomes. A comparison of the genomes of isolates from different clinical outcomes identified genes that were significantly more prevalent in EPEC isolates of symptomatic and lethal outcomes than in EPEC isolates of asymptomatic outcomes. These EPEC isolates exhibited previously unappreciated phylogenomic diversity and combinations of virulence factors. These comparative results highlight the diversity of the pathogen, as well as the complexity of the EPEC virulence factor repertoire.
Collapse
|
18
|
Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen. Appl Environ Microbiol 2015; 82:328-39. [PMID: 26497459 DOI: 10.1128/aem.02870-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB.
Collapse
|
19
|
Staib L, Fuchs TM. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 6:1116. [PMID: 26528264 PMCID: PMC4600919 DOI: 10.3389/fmicb.2015.01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose.
Collapse
Affiliation(s)
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Institute for Food and Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|
20
|
Bobik TA, Lehman BP, Yeates TO. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol 2015; 98:193-207. [PMID: 26148529 PMCID: PMC4718714 DOI: 10.1111/mmi.13117] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2015] [Indexed: 12/15/2022]
Abstract
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid-based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best-studied MCPs highlighting atomic-level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.
Collapse
Affiliation(s)
- Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Brent P. Lehman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Todd O. Yeates
- Molecular Biology Institute, University of California, Los Angeles
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| |
Collapse
|
21
|
Kubicek-Sutherland JZ, Heithoff DM, Ersoy SC, Shimp WR, House JK, Marth JD, Smith JW, Mahan MJ. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure. EBioMedicine 2015; 2:1169-78. [PMID: 26501114 PMCID: PMC4588393 DOI: 10.1016/j.ebiom.2015.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023] Open
Abstract
Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies. Standard MIC testing does not consider the influence of the host milieu, potentially hindering therapeutic intervention. Salmonella induce polymyxin resistance during infection at levels of drug that far exceed dosages determined by MIC testing. Polymyxin treatment failed to control Salmonella infection and promotes the emergence of drug-resistant mutants.
Physicians rely on laboratory antimicrobial susceptibility testing of clinical isolates to identify a suitable antibiotic for therapy. Although the recommended antibiotics clear most bacterial infections, some patients fail to respond and require prolonged therapy, higher dosing or different antibiotics. Why does this occur and what are the possible implications? By studying antibiotic resistance in the context of infection, we identified a host-dependent mechanism that promotes antibiotic resistance at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. These findings question current antibiotic testing methods that have guided physician treatment practices and drug development for the last several decades.
Collapse
Affiliation(s)
| | - Douglas M Heithoff
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA ; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA
| | - Selvi C Ersoy
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - William R Shimp
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - John K House
- University of Sydney, Faculty of Veterinary Science, Camden, NSW, Australia
| | - Jamey D Marth
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA ; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA ; Sanford-Burnham Medical Research Institute, Cancer Research Center, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Sanford-Burnham Medical Research Institute, Cancer Research Center, La Jolla, CA 92037, USA
| | - Michael J Mahan
- Dept. of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA ; Center for Nanomedicine, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
22
|
Solórzano C, Srikumar S, Canals R, Juárez A, Paytubi S, Madrid C. Hha has a defined regulatory role that is not dependent upon H-NS or StpA. Front Microbiol 2015; 6:773. [PMID: 26284052 PMCID: PMC4519777 DOI: 10.3389/fmicb.2015.00773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.
Collapse
Affiliation(s)
- Carla Solórzano
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | | | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Antonio Juárez
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain ; Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona Barcelona, Spain
| | - Sonia Paytubi
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
23
|
Chiara M, Caruso M, D'Erchia AM, Manzari C, Fraccalvieri R, Goffredo E, Latorre L, Miccolupo A, Padalino I, Santagada G, Chiocco D, Pesole G, Horner DS, Parisi A. Comparative Genomics of Listeria Sensu Lato: Genus-Wide Differences in Evolutionary Dynamics and the Progressive Gain of Complex, Potentially Pathogenicity-Related Traits through Lateral Gene Transfer. Genome Biol Evol 2015; 7:2154-72. [PMID: 26185097 PMCID: PMC4558849 DOI: 10.1093/gbe/evv131] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Historically, genome-wide and molecular characterization of the genus Listeria has concentrated on the important human pathogen Listeria monocytogenes and a small number of closely related species, together termed Listeria sensu strictu. More recently, a number of genome sequences for more basal, and nonpathogenic, members of the Listeria genus have become available, facilitating a wider perspective on the evolution of pathogenicity and genome level evolutionary dynamics within the entire genus (termed Listeria sensu lato). Here, we have sequenced the genomes of additional Listeria fleischmannii and Listeria newyorkensis isolates and explored the dynamics of genome evolution in Listeria sensu lato. Our analyses suggest that acquisition of genetic material through gene duplication and divergence as well as through lateral gene transfer (mostly from outside Listeria) is widespread throughout the genus. Novel genetic material is apparently subject to rapid turnover. Multiple lines of evidence point to significant differences in evolutionary dynamics between the most basal Listeria subclade and all other congeners, including both sensu strictu and other sensu lato isolates. Strikingly, these differences are likely attributable to stochastic, population-level processes and contribute to observed variation in genome size across the genus. Notably, our analyses indicate that the common ancestor of Listeria sensu lato lacked flagella, which were acquired by lateral gene transfer by a common ancestor of Listeria grayi and Listeria sensu strictu, whereas a recently functionally characterized pathogenicity island, responsible for the capacity to produce cobalamin and utilize ethanolamine/propane-2-diol, was acquired in an ancestor of Listeria sensu strictu.
Collapse
Affiliation(s)
- Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Marta Caruso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Anna Maria D'Erchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Caterina Manzari
- Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Elisa Goffredo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura Latorre
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Iolanda Padalino
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Gianfranco Santagada
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Doriano Chiocco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
24
|
The PduL Phosphotransacylase Is Used To Recycle Coenzyme A within the Pdu Microcompartment. J Bacteriol 2015; 197:2392-9. [PMID: 25962918 DOI: 10.1128/jb.00056-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/20/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED In Salmonella enterica, 1,2-propanediol (1,2-PD) utilization (Pdu) is mediated by a bacterial microcompartment (MCP). The Pdu MCP consists of a multiprotein shell that encapsulates enzymes and cofactors for 1,2-PD catabolism, and its role is to sequester a reactive intermediate (propionaldehyde) to minimize cellular toxicity and DNA damage. For the Pdu MCP to function, the enzymes encapsulated within must be provided with a steady supply of substrates and cofactors. In the present study, Western blotting assays were used to demonstrate that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that the N-terminal 20-residue-long peptide of PduL is necessary and sufficient for targeting PduL and enhanced green fluorescent protein (eGFP) to the lumen of the Pdu MCP. We present the results of genetic tests that indicate that PduL plays a role in the recycling of coenzyme A internally within the Pdu MCP. However, the results indicate that some coenzyme A recycling occurs externally to the Pdu MCP. Hence, our results support a model in which a steady supply of coenzyme A is provided to MCP lumen enzymes by internal recycling by PduL as well as by the movement of coenzyme A across the shell by an unknown mechanism. These studies expand our understanding of the Pdu MCP, which has been linked to enteric pathogenesis and which provides a possible basis for the development of intracellular bioreactors for use in biotechnology. IMPORTANCE Bacterial MCPs are widespread organelles that play important roles in pathogenesis and global carbon fixation. Here we show that the PduL phosphotransacylase is a component of the Pdu MCP. We also show that PduL plays a key role in cofactor homeostasis by recycling coenzyme A internally within the Pdu MCP. Further, we identify a potential N-terminal targeting sequence using a bioinformatic approach and show that this short sequence extension is necessary and sufficient for directing PduL as well as heterologous proteins to the lumen of the Pdu MCP. These findings expand our general understanding of bacterial MCP assembly and cofactor homeostasis.
Collapse
|
25
|
Hsu CY, Hsu BM, Ji WT, Chen JS, Hsu TK, Ji DD, Tseng SF, Chiu YC, Kao PM, Huang YL. Antibiotic resistance pattern and gene expression of non-typhoid Salmonella in riversheds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7843-7850. [PMID: 25563835 DOI: 10.1007/s11356-014-4033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
In this study, antibiotic resistance and major phenol and genotypes of non-typhoid Salmonella spp. from riversheds in Taiwan were examined. In 236 water samples tested, 54 (22.9%) contained Salmonella spp. Fifteen Salmonella serovars were identified from the Salmonella isolates, and some common serovars are associated with infections of human and livestock, including Albany (27.8%), Newport (14.8%), Bareilly (13.0%), Derby (11.1%), and Typhimurium (7.4%). Various environmental factors may also affect the presence and proportion of different serovars in the receiving waters. In contrast, serovars with narrower range of hosts, e.g., Dublin, were rarely detected. The Salmonella isolates were subjected to eight antibiotics for drug resistance, and 51.9% of the samples were resistant to at least one tested antibiotics. Tetracycline and sulfadiazine were the two most ineffective antibiotics against the Salmonella isolates, and the results were indicative of long-term antibiotics abuse as fodder supplements in animal husbandry. The more commonly detected serovars such as Albany, Derby, and Typhimurium were also more likely to be resistant to multiple antibiotics. Finally, a significant correlation was observed between resistance to chloramphenicol and the resistance gene cmlA, suggesting that the resistance genotypes could persist in the environment even long after prohibition of the drug use. The high prevalence of antibiotic-resistant Salmonella spp. infers elevated infection risks that must be further examined.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
|
27
|
Lim S, Han A, Kim D, Seo HS. Transcriptional Profiling of an AttenuatedSalmonellaTyphimuriumptsIMutant Strain Under Low-oxygen Conditions using Microarray Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ahreum Han
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Dongho Kim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
28
|
Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis 2014; 20:1919-32. [PMID: 25230163 DOI: 10.1097/mib.0000000000000183] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Perturbations of the intestinal microbiome, termed dysbiosis, are linked to intestinal inflammation. Isolation of adherent-invasive Escherichia coli (AIEC) from intestines of patients with Crohn's disease (CD), dogs with granulomatous colitis, and mice with acute ileitis suggests these bacteria share pathoadaptive virulence factors that promote inflammation. METHODS To identify genes associated with AIEC, we sequenced the genomes of phylogenetically diverse AIEC strains isolated from people with CD (4), dogs with granulomatous colitis (2), and mice with ileitis (2) and 1 non-AIEC strain from CD ileum and compared them with 38 genome sequences of E. coli and Shigella. We then determined the prevalence of AIEC-associated genes in 49 E. coli strains from patients with CD and controls and correlated genotype with invasion of intestinal epithelial cells, persistence within macrophages, AIEC pathotype, and growth in standardized conditions. RESULTS Genes encoding propanediol utilization (pdu operon) and iron acquisition (yersiniabactin, chu operon) were overrepresented in AIEC relative to nonpathogenic E. coli. PduC (propanediol dehydratase) was enriched in CD-derived AIEC, correlated with increased cellular invasion, and persistence in vitro and was increasingly expressed in fucose-containing media. Growth of AIEC required iron, and the presence of chuA (heme acquisition) correlated with persistence in macrophages. CD-associated AIEC with lpfA 154 (long polar fimbriae) demonstrated increased invasion of epithelial cells and translocation across M cells. CONCLUSIONS Our findings provide novel insights into the genetic basis of the AIEC pathotype, supporting the concept that AIEC are equipped to exploit and promote intestinal inflammation and reveal potential targets for intervention against AIEC and inflammation-associated dysbiosis.
Collapse
|
29
|
Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 2014. [PMID: 25184561 DOI: 10.1128/mmbr.00009–14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Sunny Chun
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Todd O Yeates
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, USA Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
30
|
Staib L, Fuchs TM. From food to cell: nutrient exploitation strategies of enteropathogens. MICROBIOLOGY-SGM 2014; 160:1020-1039. [PMID: 24705229 DOI: 10.1099/mic.0.078105-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upon entering the human gastrointestinal tract, foodborne bacterial enteropathogens encounter, among numerous other stress conditions, nutrient competition with the host organism and the commensal microbiota. The main carbon, nitrogen and energy sources exploited by pathogens during proliferation in, and colonization of, the gut have, however, not been identified completely. In recent years, a huge body of literature has provided evidence that most enteropathogens are equipped with a large set of specific metabolic pathways to overcome nutritional limitations in vivo, thus increasing bacterial fitness during infection. These adaptations include the degradation of myo-inositol, ethanolamine cleaved from phospholipids, fucose derived from mucosal glycoconjugates, 1,2-propanediol as the fermentation product of fucose or rhamnose and several other metabolites not accessible for commensal bacteria or present in competition-free microenvironments. Interestingly, the data reviewed here point to common metabolic strategies of enteric pathogens allowing the exploitation of nutrient sources that not only are present in the gut lumen, the mucosa or epithelial cells, but also are abundant in food. An increased knowledge of the metabolic strategies developed by enteropathogens is therefore a key factor to better control foodborne diseases.
Collapse
Affiliation(s)
- Lena Staib
- ZIEL, Abteilung Mikrobiologie, and Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany
| | - Thilo M Fuchs
- ZIEL, Abteilung Mikrobiologie, and Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany
| |
Collapse
|
31
|
Kakoschke T, Kakoschke S, Magistro G, Schubert S, Borath M, Heesemann J, Rossier O. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica. PLoS One 2014; 9:e86113. [PMID: 24454955 PMCID: PMC3893282 DOI: 10.1371/journal.pone.0086113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.
Collapse
Affiliation(s)
- Tamara Kakoschke
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Sara Kakoschke
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Giuseppe Magistro
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Sören Schubert
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Marc Borath
- Protein Analysis Unit, Adolf-Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
32
|
Saraoui T, Parayre S, Guernec G, Loux V, Montfort J, Le Cam A, Boudry G, Jan G, Falentin H. A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment. BMC Genomics 2013; 14:911. [PMID: 24365073 PMCID: PMC3880035 DOI: 10.1186/1471-2164-14-911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/11/2013] [Indexed: 02/08/2023] Open
Abstract
Background Propionibacterium freudenreichii is a food grade bacterium consumed both in cheeses and in probiotic preparations. Its promising probiotic potential, relying largely on the active release of beneficial metabolites within the gut as well as the expression of key surface proteins involved in immunomodulation, deserves to be explored more deeply. Adaptation to the colon environment is requisite for the active release of propionibacterial beneficial metabolites and constitutes a bottleneck for metabolic activity in vivo. Mechanisms allowing P. freudenreichii to adapt to digestive stresses have been only studied in vitro so far. Our aim was therefore to study P. freudenreichii metabolic adaptation to intra-colonic conditions in situ. Results We maintained a pure culture of the type strain P. freudenreichii CIRM BIA 1, contained in a dialysis bag, within the colon of vigilant piglets during 24 hours. A transcriptomic analysis compared gene expression to identify the metabolic pathways induced by this environment, versus control cultures maintained in spent culture medium. We observed drastic changes in the catabolism of sugars and amino-acids. Glycolysis, the Wood-Werkman cycle and the oxidative phosphorylation pathways were down-regulated but induction of specific carbohydrate catabolisms and alternative pathways were induced to produce NADH, NADPH, ATP and precursors (utilizing of propanediol, gluconate, lactate, purine and pyrimidine and amino-acids). Genes involved in stress response were down-regulated and genes specifically expressed during cell division were induced, suggesting that P. freudenreichii adapted its metabolism to the conditions encountered in the colon. Conclusions This study constitutes the first molecular demonstration of P. freudenreichii activity and physiological adaptation in vivo within the colon. Our data are likely specific to our pig microbiota composition but opens an avenue towards understanding probiotic action within the gut in further studies comparing bacterial adaptation to different microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hélène Falentin
- INRA, UMR1253, Science et Technologie du Lait et de l'Œuf, F 35042 Rennes, France.
| |
Collapse
|
33
|
Cummins J, Casey PG, Joyce SA, Gahan CGM. A mariner transposon-based signature-tagged mutagenesis system for the analysis of oral infection by Listeria monocytogenes. PLoS One 2013; 8:e75437. [PMID: 24069416 PMCID: PMC3771922 DOI: 10.1371/journal.pone.0075437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes.
Collapse
Affiliation(s)
- Joanne Cummins
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Pat G. Casey
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Susan A. Joyce
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Cormac G. M. Gahan
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
34
|
Charles RC, Sultana T, Alam MM, Yu Y, Wu-Freeman Y, Bufano MK, Rollins SM, Tsai L, Harris JB, LaRocque RC, Leung DT, Brooks WA, Nga TVT, Dongol S, Basnyat B, Calderwood SB, Farrar J, Khanam F, Gunn JS, Qadri F, Baker S, Ryan ET. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal. PLoS Negl Trop Dis 2013; 7:e2335. [PMID: 23936575 PMCID: PMC3731212 DOI: 10.1371/journal.pntd.0002335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background Salmonella enterica serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic S. Typhi carriage. Methodology/Principal Findings To study host-pathogen interactions in the biliary tract during S. Typhi carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT), to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the in vivo environment, and we hypothesized that S. Typhi surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen S. Typhi antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid endemic area, were identified. The identified antigens included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins. YncE (STY1479), an uncharacterized protein with an ATP-binding motif, gave prominent responses in our screen. The response to YncE in patients whose biliary tract contained S. Typhi was compared to responses in patients whose biliary tract did not contain S. Typhi, patients with acute typhoid fever, and healthy controls residing in a typhoid endemic area. Seven of 10 (70%) chronic carriers, 0 of 8 bile culture-negative controls (0%), 0 of 8 healthy Bangladeshis (0%), and 1 of 8 (12.5%) Bangladeshis with acute typhoid fever had detectable anti-YncE IgG in blood. IgA responses were also present. Conclusions/Significance Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic S. Typhi carriers. Salmonella enterica serotype Typhi is the cause of typhoid fever and infects over 21 million individuals and causes 200,000 deaths each year. With adequate treatment, most patients recover from their acute stage of illness and clear infection. However, a small percentage of S. Typhi infected individuals develop a chronic but asymptomatic infection in the biliary tract that can persist for decades. Since S. Typhi is a human-restricted pathogen, chronic carriers may act as reservoirs of infection. Correctly identifying and treating asymptomatic chronic carriers could be critical for ultimate control of typhoid fever. Using an immunoscreening technique called in vivo-induced antigen technology (IVIAT), we have identified potential biomarkers unique to S. Typhi chronic carriers. Further evaluation of these antigens could lead to the development of improved diagnostic assays to detect asymptomatic S. Typhi carriers in typhoid endemic zones, and to an improved understanding of the pathogenesis of S. Typhi in the chronic carrier state.
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang Y, Wan C, Xu H, Aguilar ZP, Tan Q, Xu F, Lai W, Xiong Y, Wei H. Identification of an outer membrane protein of Salmonella enterica serovar Typhimurium as a potential vaccine candidate for Salmonellosis in mice. Microbes Infect 2013; 15:388-98. [PMID: 23485513 DOI: 10.1016/j.micinf.2013.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/10/2013] [Accepted: 02/18/2013] [Indexed: 12/27/2022]
Abstract
We report our investigation of the functions of PagN in Salmonella pathogenesis and its potential as a vaccine candidate. Further investigation conducted in this study indicates that the outer membrane protein PagN is important for Salmonella adhesion/invasion of epithelial cells as well as bacterial virulence. When pagN was deleted from Salmonella enterica serovar Typhimurium (S. Typhimurium), the adhesion and invasion of HT-29 epithelial cells was significantly decreased compared with the wild type strain. Mice infected with the pagN mutant strain exhibited less pathological signs in the intestine and survived longer than the wild-type-infected mice. PagN is widely distributed and conserved among clinical isolates of different Salmonella serovars, making PagN a potential vaccine candidate for Salmonella infection. To elucidate the potential of PagN as a vaccine, we expressed and purified recombinant PagN (rPagN). When rPagN was tested in mice, it provided significant protection against Salmonella infection in vivo. In vitro, anti-PagN serum enhanced clearance of Salmonella, indicating a contribution of PagN-specific antibodies to the killing process. This correlates well with the observed protection of mice immunized with rPagN. Our preliminary results indicate more functions of PagN in S. Typhimurium virulence as well as its potential as a protective vaccine.
Collapse
Affiliation(s)
- Youjun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheng S, Fan C, Sinha S, Bobik TA. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD+ internally within the Pdu microcompartment of Salmonella enterica. PLoS One 2012; 7:e47144. [PMID: 23077559 PMCID: PMC3471927 DOI: 10.1371/journal.pone.0047144] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/11/2012] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica uses a bacterial microcompartment (MCP) for coenzyme B(12)-dependent 1,2-propanediol (1,2-PD) utilization (Pdu). The Pdu MCP consists of a protein shell that encapsulates enzymes and cofactors required for metabolizing 1,2-PD as a carbon and energy source. Here we show that the PduQ protein of S. enterica is an iron-dependent alcohol dehydrogenase used for 1,2-PD catabolism. PduQ is also demonstrated to be a new component of the Pdu MCP. In addition, a series of in vivo and in vitro studies show that a primary function of PduQ is to recycle NADH to NAD(+) internally within the Pdu MCP in order to supply propionaldehyde dehydrogenase (PduP) with its required cofactor (NAD(+)). Genetic tests determined that a pduQ deletion mutant grew slower than wild-type Salmonella on 1,2-PD and that this phenotype was not complemented by a non-MCP associated Adh2 from Zymomonas that catalyzes the same reaction. This suggests that PduQ has a MCP-specific function. We also found that a pduQ deletion mutant had no growth defect in a genetic background having a second mutation that prevents MCP formation which further supports a MCP-specific role for PduQ. Moreover, studies with purified Pdu MCPs demonstrated that the PduQ enzyme can convert NADH to NAD(+) to supply the PduP reaction in vitro. Cumulatively, these studies show that the PduQ enzyme is used to recycle NADH to NAD(+) internally within the Pdu MCP. To our knowledge, this is the first report of internal recycling as a mechanism for cofactor homeostasis within a bacterial MCP.
Collapse
Affiliation(s)
- Shouqiang Cheng
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chenguang Fan
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Sharmistha Sinha
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas A. Bobik
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
37
|
Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci U S A 2012; 109:14995-5000. [PMID: 22927404 DOI: 10.1073/pnas.1207516109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial microcompartments (MCPs) are a widespread family of proteinaceous organelles that consist of metabolic enzymes encapsulated within a protein shell. For MCPs to function specific enzymes must be encapsulated. We recently reported that a short N-terminal targeting sequence of propionaldehyde dehydrogenase (PduP) is necessary and sufficient for the packaging of enzymes into a MCP that functions in 1,2-propanediol (1,2-PD) utilization (Pdu) by Salmonella enterica. Here we show that encapsulation is mediated by binding of the PduP targeting sequence to a short C-terminal helix of the PduA shell protein. In vitro studies indicated binding between PduP and PduA (and PduJ) but not other MCP shell proteins. Alanine scanning mutagenesis determined that the key residues involved in binding are E7, I10, and L14 of PduP and H81, V84, and L88 of PduA. In vivo targeting studies indicated that the binding between the N terminus of PduP and the C terminus of PduA is critical for encapsulation of PduP within the Pdu MCP. Structural models suggest that the N terminus of PduP and C terminus of PduA both form helical structures that bind one another via the key residues identified by mutagenesis. Cumulatively, these results show that the N-terminal targeting sequence of PduP promotes its encapsulation by binding to MCP shell proteins. This is a unique report determining the mechanism by which a MCP targeting sequence functions. We propose that specific interactions between the termini of shell proteins and lumen enzymes have general importance for guiding the assembly and the higher level organization of bacterial MCPs.
Collapse
|
38
|
Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012; 1:243-58. [PMID: 23170225 PMCID: PMC3496970 DOI: 10.1002/mbo3.28] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/27/2023] Open
Abstract
The Salmonella enterica species includes about 2600 diverse serotypes, most of which cause a wide range of food- and water-borne diseases ranging from self-limiting gastroenteritis to typhoid fever in both humans and animals. Moreover, some serotypes are restricted to a few animal species, whereas other serotypes are able to infect plants as well as cold- and warm-blooded animals. An essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of phagocytic and nonphagocytic cells. The aim of this review is to describe the different entry pathways used by Salmonella serotypes to enter different nonphagocytic cell types. Until recently, it was accepted that Salmonella invasion of eukaryotic cells required only the type III secretion system (T3SS) encoded by the Salmonella pathogenicity island-1. However, recent evidence shows that Salmonella can cause infection in a T3SS-1-independent manner. Currently, two outer membrane proteins Rck and PagN have been clearly identified as Salmonella invasins. As Rck mediates a Zipper-like entry mechanism, Salmonella is therefore the first bacterium shown to be able to induce both Zipper and Trigger mechanisms to invade host cells. In addition to these known entry pathways, recent data have shown that unknown entry routes could be used according to the serotype, the host and the cell type considered, inducing either Zipper-like or Trigger-like entry processes. The new paradigm presented here should change our classic view of Salmonella pathogenicity. It could also modify our understanding of the mechanisms leading to the different Salmonella-induced diseases and to Salmonella-host specificity.
Collapse
Affiliation(s)
- P Velge
- INRA, UMR1282 Infectiologie et Santé Publique F-37380, Nouzilly, France ; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique F-37000, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Intraspecies variation in the emergence of hyperinfectious bacterial strains in nature. PLoS Pathog 2012; 8:e1002647. [PMID: 22511871 PMCID: PMC3325197 DOI: 10.1371/journal.ppat.1002647] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/01/2012] [Indexed: 12/29/2022] Open
Abstract
Salmonella is a principal health concern because of its endemic prevalence in food and water supplies, the rise in incidence of multi-drug resistant strains, and the emergence of new strains associated with increased disease severity. Insights into pathogen emergence have come from animal-passage studies wherein virulence is often increased during infection. However, these studies did not address the prospect that a select subset of strains undergo a pronounced increase in virulence during the infective process- a prospect that has significant implications for human and animal health. Our findings indicate that the capacity to become hypervirulent (100-fold decreased LD50) was much more evident in certain S. enterica strains than others. Hyperinfectious salmonellae were among the most virulent of this species; restricted to certain serotypes; and more capable of killing vaccinated animals. Such strains exhibited rapid (and rapidly reversible) switching to a less-virulent state accompanied by more competitive growth ex vivo that may contribute to maintenance in nature. The hypervirulent phenotype was associated with increased microbial pathogenicity (colonization; cytotoxin production; cytocidal activity), coupled with an altered innate immune cytokine response within infected cells (IFN-β; IL-1β; IL-6; IL-10). Gene expression analysis revealed that hyperinfectious strains display altered transcription of genes within the PhoP/PhoQ, PhoR/PhoB and ArgR regulons, conferring changes in the expression of classical virulence functions (e.g., SPI-1; SPI-2 effectors) and those involved in cellular physiology/metabolism (nutrient/acid stress). As hyperinfectious strains pose a potential risk to human and animal health, efforts toward mitigation of these potential food-borne contaminants may avert negative public health impacts and industry-associated losses. Salmonellosis continues to compromise human health, animal welfare, and modern agriculture. Developing a comprehensive control plan requires an understanding of how pathogens emerge and express traits that confer increased incidence and severity of disease. It is well-established that animal passage often results in increased virulence; however, our findings indicate that the capacity to undergo a pronounced increase in virulence after passage was much more prevalent in certain Salmonella isolates than in others. The resultant hyperinfectious strains are among the most virulent salmonellae reported; were restricted to certain serotypes; and were able to override the immunity conferred in vaccinated animals. The induction of hypervirulence was responsive to subtle changes in environmental conditions and, potentially, may occur in other salmonellae serotypes after passage through certain hosts and/or exposure to certain environmental variables; a response that may be common across the microbial realm. Thus, management practices and environmental conditions inherent to livestock production have the potential to inadvertently trigger hypervirulence (e.g., diet; herd size; exposure to livestock waste and/or antimicrobials). From a farm management perspective, careful consideration must be given to risk-management strategies that reduce emergence/persistence of these potential food-borne contaminants to safeguard public health and reduce industry-associated losses.
Collapse
|
40
|
The PduM protein is a structural component of the microcompartments involved in coenzyme B(12)-dependent 1,2-propanediol degradation by Salmonella enterica. J Bacteriol 2012; 194:1912-8. [PMID: 22343294 DOI: 10.1128/jb.06529-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diverse bacteria use proteinaceous microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of metabolic enzymes encased within a protein shell that provides a defined environment. In Salmonella enterica, a MCP is involved in B(12)-dependent 1,2-propanediol utilization (Pdu MCP). In this report, we show that the protein PduM is required for the assembly and function of the Pdu MCP. The results of tandem mass spectrometry and Western blot analyses show that PduM is a component of the Pdu MCP. Electron microscopy shows that a pduM deletion mutant forms MCPs with abnormal morphology. Growth tests and metabolite measurements establish that a pduM deletion mutant is unable to form functional MCPs. PduM is unrelated in sequence to proteins of known function and hence may represent a new class of MCP structural proteins. We also report a modified protocol for the purification of Pdu MCP from Salmonella which allows isolation of milligram amounts of MCPs in about 4 h. We believe that this protocol can be extended or modified for the purification of MCPs from diverse bacteria.
Collapse
|
41
|
Mohler VL, Heithoff DM, Mahan MJ, Hornitzky MA, Thomson PC, House JK. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep. Vaccine 2011; 30:1481-91. [PMID: 22214887 DOI: 10.1016/j.vaccine.2011.12.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/11/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Intensive livestock production is associated with an increased incidence of salmonellosis. The risk of infection and the subsequent public health concern is attributed to increased pathogen exposure and disease susceptibility due to multiple stressors experienced by livestock from farm to feedlot. Traditional parenteral vaccine methods can further stress susceptible populations and cause carcass damage, adverse reactions, and resultant increased production costs. As a potential means to address these issues, in-water delivery of live attenuated vaccines affords a low cost, low-stress method for immunization of livestock populations that is not associated with the adverse handling stressors and injection reactions associated with parenteral administration. We have previously established that in-water administration of a Salmonella enterica serovar Typhimurium dam vaccine conferred significant protection in livestock. While these experimental trials hold significant promise, the ultimate measure of the vaccine will not be established until it has undergone clinical testing in the field wherein environmental and sanitary conditions are variable. Here we show that in-water administration of a S. Typhimurium dam attenuated vaccine was safe, stable, and well-tolerated in adult sheep. The dam vaccine did not alter water consumption or vaccine dosing; remained viable under a wide range of temperatures (21-37°C); did not proliferate within fecal-contaminated trough water; and was associated with minimal fecal shedding and clinical disease as a consequence of vaccination. The capacity of Salmonella dam attenuated vaccines to be delivered in drinking water to protect livestock from virulent Salmonella challenge offers an effective, economical, stressor-free Salmonella prophylaxis for intensive livestock production systems.
Collapse
Affiliation(s)
- V L Mohler
- University of Sydney, Faculty of Veterinary Science, Camden, NSW 2570, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB, Bhuiyan MS, Arifuzzaman M, Khanam F, Bukka A, Kalsy A, Porwollik S, Leung DT, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl Trop Dis 2011; 5:e1419. [PMID: 22180799 PMCID: PMC3236720 DOI: 10.1371/journal.pntd.0001419] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. Methodology/Principal Findings We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. Conclusions/Significance We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection. Salmonella enterica serotype Typhi is the cause of typhoid fever and infects over 21 million cases and causes 200,000 deaths each year. S. Typhi only infects humans and this has greatly limited studies of S. Typhi pathogenesis. To study bacterial gene expression in human hosts, we used Selective Capture of Transcribed Sequences (SCOTS) and array hybridization to identify S. Typhi mRNAs expressed in the blood of 5 patients with S. Typhi infection. In total, we detected the expression of 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; of these, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures. Our results provide insight into S. Typhi pathogenesis, identifying both previously described and novel interactions occurring between host and microbe during the natural course of human infection. Further study of these genes, especially those of unknown function, may further our understanding of S. Typhi pathogenesis and aid in vaccine, diagnostic, and/or drug target development.
Collapse
Affiliation(s)
- Alaullah Sheikh
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Nusrat Sharmeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Sean M. Rollins
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Md. Saruar Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mohammad Arifuzzaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Archana Bukka
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Steffen Porwollik
- The Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - W. Abdullah Brooks
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth L. Hohmann
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alejandro Cravioto
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Tanya Logvinenko
- Division of Biostatistics, Institute for Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael McClelland
- The Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - James E. Graham
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
43
|
Paiva JB, Penha Filho RAC, Junior AB, Lemos MVF. Requirement for cobalamin by Salmonella enterica serovars Typhimurium, Pullorum, Gallinarum and Enteritidis during infection in chickens. Braz J Microbiol 2011; 42:1409-18. [PMID: 24031771 PMCID: PMC3768742 DOI: 10.1590/s1517-838220110004000024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 01/26/2011] [Accepted: 05/16/2011] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium synthesizes cobalamin (vitamin B12) only during anaerobiosis. Two percent of the S. Typhimurium genome is devoted to the synthesis and uptake of vitamin B12 and to B12-dependent reactions. To understand the requirement for cobalamin synthesis better, we constructed mutants of Salmonella serovars Enteritidis and Pullorum that are double-defective in cobalamin biosynthesis (ΔcobSΔcbiA). We compared the virulence of these mutants to that of their respective wild type strains and found no impairment in their ability to cause disease in chickens. We then assessed B12 production in these mutants and their respective wild type strains, as well as in S. Typhimurium ΔcobSΔcbiA, Salmonella Gallinarum ΔcobSΔcbiA, and their respective wild type strains. None of the mutants was able to produce detectable B12. B12 was detectable in S. Enteritidis, S. Pullorum and S. Typhimurium wild type strains but not in S. Gallinarum. In conclusion, the production of vitamin B12in vitro differed across the tested Salmonella serotypes and the deletion of the cbiA and cobS genes resulted in different levels of alteration in the host parasite interaction according to Salmonella serotype tested.
Collapse
Affiliation(s)
- Jacqueline Boldrin Paiva
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista , Jaboticabal, SP , Brasil
| | | | | | | |
Collapse
|
44
|
Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 2011; 11:58. [PMID: 21418628 PMCID: PMC3075218 DOI: 10.1186/1471-2180-11-58] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/21/2011] [Indexed: 12/18/2022] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT) strain (ATCC 14028s) and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome); of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis) were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV), Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784). In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s) We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella biosynthesis, and motility. Furthermore, ArcA and Fnr share in the regulation of 120 S. Typhimurium genes.
Collapse
Affiliation(s)
- Matthew R Evans
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Comparative genomics of Escherichia coli strains causing urinary tract infections. Appl Environ Microbiol 2011; 77:3268-78. [PMID: 21421782 DOI: 10.1128/aem.02970-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The virulence determinants of uropathogenic Escherichia coli have been studied extensively over the years, but relatively little is known about what differentiates isolates causing various types of urinary tract infections. In this study, we compared the genomic profiles of 45 strains from a range of different clinical backgrounds, i.e., urosepsis, pyelonephritis, cystitis, and asymptomatic bacteriuria (ABU), using comparative genomic hybridization analysis. A microarray based on 31 complete E. coli sequences was used. It emerged that there is little correlation between the genotypes of the strains and their disease categories but strong correlation between the genotype and the phylogenetic group association. Also, very few genetic differences may exist between isolates causing symptomatic and asymptomatic infections. Only relatively few genes that could potentially differentiate between the individual disease categories were identified. Among these were two genomic islands, namely, pathogenicity island (PAI)-CFT073-serU and PAI-CFT073-pheU, which were significantly more associated with the pyelonephritis and urosepsis isolates than with the ABU and cystitis isolates. These two islands harbor genes encoding virulence factors, such as P fimbriae (pyelonephritis-associated fimbriae) and an important immunomodulatory protein, TcpC. It seems that both urovirulence and growth fitness can be attributed to an assortment of genes rather than to a specific gene set. Taken together, urovirulence and fitness are the results of the interplay of a mixture of factors taken from a rich menu of genes.
Collapse
|
46
|
Salmonella phage ST64B encodes a member of the SseK/NleB effector family. PLoS One 2011; 6:e17824. [PMID: 21445262 PMCID: PMC3060822 DOI: 10.1371/journal.pone.0017824] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/11/2011] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions.
Collapse
|
47
|
Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella. J Bacteriol 2011; 193:1385-92. [PMID: 21239588 DOI: 10.1128/jb.01473-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hundreds of bacterial species use microcompartments (MCPs) to optimize metabolic pathways that have toxic or volatile intermediates. MCPs consist of a protein shell encapsulating specific metabolic enzymes. In Salmonella, an MCP is used for 1,2-propanediol utilization (Pdu MCP). The shell of this MCP is composed of eight different types of polypeptides, but their specific functions are uncertain. Here, we individually deleted the eight genes encoding the shell proteins of the Pdu MCP. The effects of each mutation on 1,2-PD degradation and MCP structure were determined by electron microscopy and growth studies. Deletion of the pduBB', pduJ, or pduN gene severely impaired MCP formation, and the observed defects were consistent with roles as facet, edge, or vertex protein, respectively. Metabolite measurements showed that pduA, pduBB', pduJ, or pduN deletion mutants accumulated propionaldehyde to toxic levels during 1,2-PD catabolism, indicating that the integrity of the shell was disrupted. Deletion of the pduK, pduT, or pduU gene did not substantially affect MCP structure or propionaldehyde accumulation, suggesting they are nonessential to MCP formation. However, the pduU or pduT deletion mutants grew more slowly than the wild type on 1,2-PD at saturating B(12), indicating that they are needed for maximal activity of the 1,2-PD degradative enzymes encased within the MCP shell. Considering recent crystallography studies, this suggests that PduT and PduU may mediate the transport of enzyme substrates/cofactors across the MCP shell. Interestingly, a pduK deletion caused MCP aggregation, suggesting a role in the spatial organization of MCP within the cytoplasm or perhaps in segregation at cell division.
Collapse
|
48
|
Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol 2010; 77:281-90. [PMID: 21037291 DOI: 10.1128/aem.01403-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Only three pathogenic bacterial species, Salmonella enterica, Clostridium perfringens, and Listeria monocytogenes, are able to utilize both ethanolamine and 1,2-propanediol as a sole carbon source. Degradation of these substrates, abundant in food and the gut, depends on cobalamin, which is synthesized de novo only under anaerobic conditions. Although the eut, pdu, and cob-cbi gene clusters comprise 40 kb, the conditions under which they confer a selection advantage on these food-borne pathogens remain largely unknown. Here we used the luciferase reporter system to determine the response of the Salmonella enterica serovar Typhimurium promoters P(eutS), P(pocR), P(pduF), and P(pduA) to a set of carbon sources, to egg yolk, to whole milk, and to milk protein or fat fractions. Depending on the supplements, specific inductions up to 3 orders of magnitude were observed for P(eutS) and P(pduA), which drive the expression of most eut and pdu genes. To correlate these significant expression data with growth properties, nonpolar deletions of pocR, regulating the pdu and cob-cbi genes, and of eutR, involved in eut gene activation, were constructed in S. Typhimurium strain 14028. During exponential growth of the mutants 14028ΔpocR and 14028ΔeutR, 2- to 3-fold-reduced proliferation in milk and egg yolk was observed. Using the Caenorhabditis elegans infection model, we could also demonstrate that the proliferation of S. Typhimurium in the nematode is supported by an active ethanolamine degradation pathway. Taking these findings together, this study quantifies the differential expression of eut and pdu genes under distinct conditions and provides experimental evidence that the ethanolamine utilization pathway allows salmonellae to occupy specific metabolic niches within food environments and within their host organisms.
Collapse
|
49
|
Evaluation of virulence factor profiling in the characterization of veterinary Escherichia coli isolates. Appl Environ Microbiol 2010; 76:7509-13. [PMID: 20889790 DOI: 10.1128/aem.00726-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli has been used as an indicator organism for fecal contamination of water and other environments and is often a commensal organism in healthy animals, yet a number of strains can cause disease in young or immunocompromised animals. In this study, 281 E. coli isolates from bovine, porcine, chicken, canine, equine, feline, and other veterinary sources were analyzed by BOXA1R PCR and by virulence factor profiling of 35 factors to determine whether they had utility in identifying the animal source of the isolates. The results of BOXA1R PCR analysis demonstrated a high degree of diversity; less than half of the isolates fell into one of 27 clusters with at least three isolates (based on 90% similarity). Nearly 60% of these clusters contained isolates from more than one animal source. Conversely, the results of virulence factor profiling demonstrated clustering by animal source. Three clusters, named Bovine, Chicken, and Porcine, based on discriminant components analysis, were represented by 90% or more of the respective isolates. A fourth group, termed Companion, was the most diverse, containing at least 84% of isolates from canine, feline, equine, and other animal sources. Based on these results, it appears that virulence factor profiling may have utility, helping identify the likely animal host species sources of certain E. coli isolates.
Collapse
|
50
|
Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci U S A 2010; 107:7509-14. [PMID: 20308536 DOI: 10.1073/pnas.0913199107] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of bacterial species produce proteinaceous microcompartments (MCPs) that act as simple organelles by confining the enzymes of metabolic pathways that have toxic or volatile intermediates. A fundamental unanswered question about bacterial MCPs is how enzymes are packaged within the protein shell that forms their outer surface. Here, we report that a short N-terminal peptide is necessary and sufficient for packaging enzymes into the lumen of an MCP involved in B(12)-dependent 1,2-propanediol utilization (Pdu MCP). Deletion of 10 or 14 amino acids from the N terminus of the propionaldehyde dehydrogenase (PduP) enzyme, which is normally found within the Pdu MCP, substantially impaired packaging, with minimal effects on its enzymatic activity. Fusion of the 18 N-terminal amino acids from PduP to GFP, GST, or maltose-binding protein resulted in their encapsulation within MCPs. Bioinformatic analyses revealed N-terminal extensions in two additional Pdu proteins and three proteins from two unrelated MCPs, suggesting that N-terminal peptides may be used to package proteins into diverse MCPs. The potential uses of MCP assembly principles in nature and in biotechnology are discussed.
Collapse
|