1
|
Gil-Gomez A, Rest JS. Wiring Between Close Nodes in Molecular Networks Evolves More Quickly Than Between Distant Nodes. Mol Biol Evol 2024; 41:msae098. [PMID: 38768245 PMCID: PMC11136681 DOI: 10.1093/molbev/msae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
As species diverge, a wide range of evolutionary processes lead to changes in protein-protein interaction (PPI) networks and metabolic networks. The rate at which molecular networks evolve is an important question in evolutionary biology. Previous empirical work has focused on interactomes from model organisms to calculate rewiring rates, but this is limited by the relatively small number of species and sparse nature of network data across species. We present a proxy for variation in network topology: variation in drug-drug interactions (DDIs), obtained by studying drug combinations (DCs) across taxa. Here, we propose the rate at which DDIs change across species as an estimate of the rate at which the underlying molecular network changes as species diverge. We computed the evolutionary rates of DDIs using previously published data from a high-throughput study in gram-negative bacteria. Using phylogenetic comparative methods, we found that DDIs diverge rapidly over short evolutionary time periods, but that divergence saturates over longer time periods. In parallel, we mapped drugs with known targets in PPI and cofunctional networks. We found that the targets of synergistic DDIs are closer in these networks than other types of DCs and that synergistic interactions have a higher evolutionary rate, meaning that nodes that are closer evolve at a faster rate. Future studies of network evolution may use DC data to gain larger-scale perspectives on the details of network evolution within and between species.
Collapse
Affiliation(s)
- Alejandro Gil-Gomez
- Department of Ecology and Evolution, Laufer Center for Physical and Quantitative Biology, Stony Brook University, 650 Life Sciences, Stony Brook, NY 11794-4254, USA
| | - Joshua S Rest
- Department of Ecology and Evolution, Laufer Center for Physical and Quantitative Biology, Stony Brook University, 650 Life Sciences, Stony Brook, NY 11794-4254, USA
| |
Collapse
|
2
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
3
|
|
4
|
Brahmachari S, Marko JF. Torque and buckling in stretched intertwined double-helix DNAs. Phys Rev E 2017; 95:052401. [PMID: 28618488 DOI: 10.1103/physreve.95.052401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 01/11/2023]
Abstract
We present a statistical-mechanical model for the behavior of intertwined DNAs, with a focus on their torque and extension as a function of their catenation (linking) number and applied force, as studied in magnetic tweezers experiments. Our model produces results in good agreement with available experimental data and predicts a catenation-dependent effective twist modulus distinct from what is observed for twisted individual double-helix DNAs. We find that buckling occurs near the point where experiments have observed a kink in the extension versus linking number, and that the subsequent "supercoiled braid" state corresponds to a proliferation of multiple small plectoneme structures. We predict a discontinuity in extension at the buckling transition corresponding to nucleation of the first plectoneme domain. We also find that buckling occurs for lower linking number at lower salt; the opposite trend is observed for supercoiled single DNAs.
Collapse
Affiliation(s)
- Sumitabha Brahmachari
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
5
|
Genome segregation and packaging machinery in Acanthamoeba polyphaga mimivirus is reminiscent of bacterial apparatus. J Virol 2014; 88:6069-75. [PMID: 24623441 DOI: 10.1128/jvi.03199-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Genome packaging is a critical step in the virion assembly process. The putative ATP-driven genome packaging motor of Acanthamoeba polyphaga mimivirus (APMV) and other nucleocytoplasmic large DNA viruses (NCLDVs) is a distant ortholog of prokaryotic chromosome segregation motors, such as FtsK and HerA, rather than other viral packaging motors, such as large terminase. Intriguingly, APMV also encodes other components, i.e., three putative serine recombinases and a putative type II topoisomerase, all of which are essential for chromosome segregation in prokaryotes. Based on our analyses of these components and taking the limited available literature into account, here we propose for the first time a model for genome segregation and packaging in APMV that can possibly be extended to NCLDV subfamilies, except perhaps Poxviridae and Ascoviridae. This model might represent a unique variation of the prokaryotic system acquired and contrived by the large DNA viruses of eukaryotes. It is also consistent with previous observations that unicellular eukaryotes, such as amoebae, are melting pots for the advent of chimeric organisms with novel mechanisms. IMPORTANCE Extremely large viruses with DNA genomes infect a wide range of eukaryotes, from human beings to amoebae and from crocodiles to algae. These large DNA viruses, unlike their much smaller cousins, have the capability of making most of the protein components required for their multiplication. Once they infect the cell, these viruses set up viral replication centers, known as viral factories, to carry out their multiplication with very little help from the host. Our sequence analyses show that there is remarkable similarity between prokaryotes (bacteria and archaea) and large DNA viruses, such as mimivirus, vaccinia virus, and pandoravirus, in the way that they process their newly synthesized genetic material to make sure that only one copy of the complete genome is generated and is meticulously placed inside the newly synthesized viral particle. These findings have important evolutionary implications about the origin and evolution of large viruses.
Collapse
|
6
|
Vos SM, Stewart NK, Oakley MG, Berger JM. Structural basis for the MukB-topoisomerase IV interaction and its functional implications in vivo. EMBO J 2013; 32:2950-62. [PMID: 24097060 PMCID: PMC3832749 DOI: 10.1038/emboj.2013.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023] Open
Abstract
Chromosome partitioning in Escherichia coli is assisted by two interacting proteins, topoisomerase (topo) IV and MukB. MukB stimulates the relaxation of negative supercoils by topo IV; to understand the mechanism of their action and to define this functional interplay, we determined the crystal structure of a minimal MukB-topo IV complex to 2.3 Å resolution. The structure shows that the so-called 'hinge' region of MukB forms a heterotetrameric assembly with a C-terminal DNA binding domain (CTD) on topo IV's ParC subunit. Biochemical studies show that the hinge stimulates topo IV by competing for a site on the CTD that normally represses activity on negatively supercoiled DNA, while complementation tests using mutants implicated in the interaction reveal that the cellular dependency on topo IV derives from a joint need for both strand passage and MukB binding. Interestingly, the configuration of the MukB·topo IV complex sterically disfavours intradimeric interactions, indicating that the proteins may form oligomeric arrays with one another, and suggesting a framework by which MukB and topo IV may collaborate during daughter chromosome disentanglement.
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Martha G Oakley
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - James M Berger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,Department of Molecular and Cell Biology, California Institute of Quantitative Biosciences, University of California at Berkeley, 374D Stanley Hall, Berkeley, CA 94720, USA. Tel.:+1 510 643 9483; Fax:+1 510 666 2768; E-mail:
| |
Collapse
|
7
|
Toueille M, Mirabella B, Guérin P, Bouthier de la Tour C, Boisnard S, Nguyen HH, Blanchard L, Servant P, de Groot A, Sommer S, Armengaud J. A comparative proteomic approach to better define Deinococcus nucleoid specificities. J Proteomics 2012; 75:2588-600. [DOI: 10.1016/j.jprot.2012.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/23/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|
8
|
Bogush M, Xenopoulos P, Piggot PJ. Separation of chromosome termini during sporulation of Bacillus subtilis depends on SpoIIIE. J Bacteriol 2007; 189:3564-72. [PMID: 17322320 PMCID: PMC1855901 DOI: 10.1128/jb.01949-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of the chromosome during spore formation. Only one ter region was observed at the time of sporulation division. A second ter region, indicative of chromosome separation, was not distinguishable until engulfment was nearing completion, when one was in the mother cell and the other in the prespore. Separation of the two ter regions depended on the DNA translocase SpoIIIE. It is concluded that SpoIIIE is required during spore formation for chromosome separation as well as for translocation; SpoIIIE is not required for separation during vegetative growth.
Collapse
Affiliation(s)
- Marina Bogush
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
9
|
Meile JC, Wu LJ, Ehrlich SD, Errington J, Noirot P. Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory. Proteomics 2006; 6:2135-46. [PMID: 16479537 DOI: 10.1002/pmic.200500512] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Construction and microscopic imaging of protein fusions to green fluorescent protein (GFP) have revolutionised our understanding of bacterial structure and function. We have undertaken a systematic study of the localisation of over 100 Bacillus subtilis proteins, following the development of high-throughput construction and analysis procedures. We focused on proteins linked in various ways to the DNA replication machinery, as well as on proteins exemplifying a range of other cellular functions and structures. The results validate the approach as a way of obtaining systematic protein localisation information. They also provide a range of novel biological insights, particularly through the identification of a number of proteins not previously known to be associated with the DNA replication factory.
Collapse
Affiliation(s)
- Jean-Christophe Meile
- Laboratoire de Génétique Microbienne UR895, INRA-Domaine de Vilvert, Jouy en Josas, France
| | | | | | | | | |
Collapse
|
10
|
Tadesse S, Graumann PL. Differential and dynamic localization of topoisomerases in Bacillus subtilis. J Bacteriol 2006; 188:3002-11. [PMID: 16585761 PMCID: PMC1446999 DOI: 10.1128/jb.188.8.3002-3011.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 01/20/2006] [Indexed: 11/20/2022] Open
Abstract
Visualization of topoisomerases in live Bacillus subtilis cells showed that Topo I, Topo IV, and DNA gyrase differentially localize on the nucleoids but are absent at cytosolic spaces surrounding the nucleoids, suggesting that these topoisomerases interact with many regions of the chromosome. While both subunits of Topo IV were uniformly distributed throughout the nucleoids, Topo I and gyrase formed discrete accumulations, or foci, on the nucleoids in a large fraction of the cells, which showed highly dynamic movements. Three-dimensional time lapse microscopy showed that gyrase foci accumulate and dissipate within a 1-min time scale, revealing dynamic assembly and disassembly of subcellular topoisomerase centers. Gyrase centers frequently colocalized with the central DNA replication machinery, suggesting a major role for gyrase at the replication fork, while Topo I foci were frequently close to or colocalized with the structural maintenance of chromosomes (SMC) chromosome segregation complex. The findings suggest that different areas of supercoiling exist on the B. subtilis nucleoids, which are highly dynamic, with a high degree of positive supercoiling attracting gyrase to the replication machinery and areas of negative supercoiling at the bipolar SMC condensation centers recruiting Topo I.
Collapse
Affiliation(s)
- Serkalem Tadesse
- Institut für Mikrobiologie, Stefan Meier Strasse 19, Albert-Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
11
|
Au N, Kuester-Schoeck E, Mandava V, Bothwell LE, Canny SP, Chachu K, Colavito SA, Fuller SN, Groban ES, Hensley LA, O'Brien TC, Shah A, Tierney JT, Tomm LL, O'Gara TM, Goranov AI, Grossman AD, Lovett CM. Genetic composition of the Bacillus subtilis SOS system. J Bacteriol 2005; 187:7655-66. [PMID: 16267290 PMCID: PMC1280312 DOI: 10.1128/jb.187.22.7655-7666.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.
Collapse
Affiliation(s)
- Nora Au
- Department of Chemistry, Williams College, Williamstown, MA 01267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Corbett KD, Schoeffler AJ, Thomsen ND, Berger JM. The Structural Basis for Substrate Specificity in DNA Topoisomerase IV. J Mol Biol 2005; 351:545-61. [PMID: 16023670 DOI: 10.1016/j.jmb.2005.06.029] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Most bacteria possess two type IIA topoisomerases, DNA gyrase and topo IV, that together help manage chromosome integrity and topology. Gyrase primarily introduces negative supercoils into DNA, an activity mediated by the C-terminal domain of its DNA binding subunit (GyrA). Although closely related to gyrase, topo IV preferentially decatenates DNA and relaxes positive supercoils. Here we report the structure of the full-length Escherichia coli ParC dimer at 3.0 A resolution. The N-terminal DNA binding region of ParC is highly similar to that of GyrA, but the ParC dimer adopts a markedly different conformation. The C-terminal domain (CTD) of ParC is revealed to be a degenerate form of the homologous GyrA CTD, and is anchored to the top of the N-terminal domains in a configuration different from that thought to occur in gyrase. Biochemical assays show that the ParC CTD controls the substrate specificity of topo IV, likely by capturing DNA segments of certain crossover geometries. This work delineates strong mechanistic parallels between topo IV and gyrase, while explaining how structural differences between the two enzyme families have led to distinct activity profiles. These findings in turn explain how the structures and functions of bacterial type IIA topoisomerases have evolved to meet specific needs of different bacterial families for the control of chromosome superstructure.
Collapse
Affiliation(s)
- Kevin D Corbett
- Department of Molecular and Cell Biology, 237 Hildebrand Hall #3206, University of California, Berkeley, Berkeley, CA 94720-3206, USA
| | | | | | | |
Collapse
|
13
|
Wang SC, Shapiro L. The topoisomerase IV ParC subunit colocalizes with the Caulobacter replisome and is required for polar localization of replication origins. Proc Natl Acad Sci U S A 2004; 101:9251-6. [PMID: 15178756 PMCID: PMC438962 DOI: 10.1073/pnas.0402567101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of bacterial DNA replication generates chromosomal topological constraints that are further confounded by simultaneous transcription. Topoisomerases play a key role in ensuring orderly replication and partition of DNA in the face of a continuously changing DNA tertiary structure. In addition to topological constraints, the cellular position of the replication origin is strictly controlled during the cell cycle. In Caulobacter crescentus, the origin of DNA replication is located at the cell pole. Upon initiation of DNA replication, one copy of the duplicated origin sequence rapidly appears at the opposite cell pole. To determine whether the maintenance of DNA topology contributes to the dynamic positioning of a specific DNA region within the cell, we examined origin localization in cells that express temperature-sensitive forms of either the ParC or ParE subunit of topoisomerase (Topo) IV. We found that in the absence of active Topo IV, replication initiation can occur but a significant percent of replication origins are either no longer moved to or maintained at the cell poles. During the replication process, the ParC subunit colocalizes with the replisome, whereas the ParE subunit is dispersed throughout the cell. However, an active ParE subunit is required for ParC localization to the replisome as it moves from the cell pole to the division plane during chromosome replication. We propose that the maintenance of DNA topology throughout the cell cycle contributes to the dynamic positioning of the origin sequence within the cell.
Collapse
Affiliation(s)
- Sherry C Wang
- Department of Developmental Biology, and Cancer Biology Program, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
14
|
Abstract
Recent studies have made great strides toward our understanding of the mechanisms of microbial chromosome segregation and partitioning. This review first describes the mechanisms that function to segregate newly replicated chromosomes, generating daughter molecules that are viable substrates for partitioning. Then experiments that address the mechanisms of bulk chromosome movement are summarized. Recent evidence indicates that a stationary DNA replication factory may be responsible for supplying the force necessary to move newly duplicated DNA toward the cell poles. Some factors contributing to the directionality of chromosome movement probably include centromere-like-binding proteins, DNA condensation proteins, and DNA translocation proteins.
Collapse
Affiliation(s)
- Geoffrey C Draper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, USA
| | | |
Collapse
|
15
|
Abstract
We isolated a mutant allele of dnaX, encoding the tau and gamma subunits of the DNA polymerase III holoenzyme, that causes extreme cell filamentation but does not affect either cell growth or DNA replication. This phenotype results from a defect in daughter chromosome decatenation during rapid growth. In these cells, ParC, one subunit of topoisomerase IV, no longer associated with the replication factory, as occurs in wild-type cells, and was instead distributed uniformly on the nucleoid; the distribution of ParE, the other subunit of topoisomerase IV, was unaffected. In addition, the majority of topoisomerase IV activity in synchronized cell populations was restricted to late in the cell cycle, when replication was essentially complete. These observations suggest that topoisomerase IV activity in vivo might be dependent on release of ParC from the replication factory.
Collapse
Affiliation(s)
- Olivier Espeli
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Resistance to fluoroquinolones among Gram-positive cocci has emerged as these antimicrobial agents have become extensively used in clinical medicine. Resistance is effected by changes in the bacterial target enzymes DNA gyrase and topoisomerase IV, which reduce drug binding, and by action of native bacterial membrane pumps that remove drug from the cell. In both cases, quinolone exposure selects for spontaneous mutants that are present in large bacterial populations, and which contain chromosomal mutations that alter the target protein or increase the level of pump expression. Resistance among clinical isolates has been greatest in Staphylococcus aureus and particularly among meticillin-resistant strains, in which both selection by quinolone exposure and transmission of clonal strains in health-care settings have contributed to high prevalence. Resistance in Streptococcus pneumoniae has also emerged in the community. Fluoroquinolone resistance has arisen in multidrug-resistant clones and its prevalence has been especially high in Hong Kong and Spain. Further spread and selection of such resistance could compromise the utility of a valuable class of antimicrobial agents, a point that emphasises the importance of the careful use of these agents in appropriate patients and doses, as well as careful infection-control practices.
Collapse
Affiliation(s)
- David C Hooper
- Division of Infectious Diseases, Infection Control Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA.
| |
Collapse
|
17
|
Maruyama R, Nishizawa M, Itoi Y, Ito S, Inoue M. The enzymes with benzil reductase activity conserved from bacteria to mammals. J Biotechnol 2002; 94:157-69. [PMID: 11796169 DOI: 10.1016/s0168-1656(01)00426-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The diketone compound, benzil is reduced to (S)-benzoin with living Bacillus cereus cells. Recently, we isolated a gene responsible for benzil reduction, and Escherichia coli cells in which this gene was overexpressed transformed benzil to (S)-benzoin. Although this benzil reductase showed high identity to the short-chain dehydrogenase/reductase (SDR) family, enzymological features were unknown. Here, we demonstrated that many B. cereus strains had benzil reductase activity in vivo, and that the benzil reductases shared 94-100% amino acid identities. Recombinant B. cereus benzil reductase produced optically pure (S)-benzoin with NADPH in vitro, and the ketone group distal to a benzene ring was asymmetrically reduced. B. cereus benzil reductase showed 31% amino acid identity to the yeast open reading frame YIR036C protein and 28-30% to mammalian sepiapterin reductases, sharing the seven residues consensus for the SDR family. We isolated the genes encoding yeast YIR036C protein and gerbil sepiapterin reductase, and both recombinant proteins also reduced benzil to (S)-benzoin in vitro. Green fluorescent protein-tagged B. cereus benzil reductase distributed in the bipolar cytoplasm in B. cereus cells. Asymmetric reduction with B. cereus benzil reductase, yeast YIR036C protein and gerbil sepiapterin reductase will be utilized to produce important chiral compounds.
Collapse
Affiliation(s)
- Reiji Maruyama
- Department of Cell Engineering, Faculty of Engineering, Toyama University, 3190 Gofuku, 930-8555, Toyama, Japan
| | | | | | | | | |
Collapse
|
18
|
Pan XS, Yague G, Fisher LM. Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob Agents Chemother 2001; 45:3140-7. [PMID: 11600369 PMCID: PMC90795 DOI: 10.1128/aac.45.11.3140-3147.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in DNA gyrase and/or topoisomerase IV genes are frequently encountered in quinolone-resistant mutants of Streptococcus pneumoniae. To investigate the mechanism of their effects at the molecular and cellular levels, we have used an Escherichia coli system to overexpress S. pneumoniae gyrase gyrA and topoisomerase IV parC genes encoding respective Ser81Phe and Ser79Phe mutations, two changes widely associated with quinolone resistance. Nickel chelate chromatography yielded highly purified mutant His-tagged proteins that, in the presence of the corresponding GyrB and ParE subunits, reconstituted gyrase and topoisomerase IV complexes with wild-type specific activities. In enzyme inhibition or DNA cleavage assays, these mutant enzyme complexes were at least 8- to 16-fold less responsive to both sparfloxacin and ciprofloxacin. The ciprofloxacin-resistant (Cip(r)) phenotype was silent in a sparfloxacin-resistant (Spx(r)) S. pneumoniae gyrA (Ser81Phe) strain expressing a demonstrably wild-type topoisomerase IV, whereas Spx(r) was silent in a Cip(r) parC (Ser79Phe) strain. These epistatic effects provide strong support for a model in which quinolones kill S. pneumoniae by acting not as enzyme inhibitors but as cellular poisons, with sparfloxacin killing preferentially through gyrase and ciprofloxacin through topoisomerase IV. By immunoblotting using subunit-specific antisera, intracellular GyrA/GyrB levels were a modest threefold higher than those of ParC/ParE, most likely insufficient to allow selective drug action by counterbalancing the 20- to 40-fold preference for cleavable-complex formation through topoisomerase IV observed in vitro. To reconcile these results, we suggest that drug-dependent differences in the efficiency by which ternary complexes are formed, processed, or repaired in S. pneumoniae may be key factors determining the killing pathway.
Collapse
Affiliation(s)
- X S Pan
- Molecular Genetics Group, Department of Biochemistry and Immunology, St. George's Hospital Medical School, University of London, London SW17 0RE, United Kingdom
| | | | | |
Collapse
|
19
|
Phillips GJ. Green fluorescent protein--a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 2001; 204:9-18. [PMID: 11682170 DOI: 10.1111/j.1574-6968.2001.tb10854.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Use of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for protein and DNA localization has provided sensitive, new approaches for studying the organization of the bacterial cell, leading to new insights into diverse cellular processes. GFP has many characteristics that make it useful for localization studies in bacteria, primarily its ability to fluoresce when fused to target polypeptides without the addition of exogenously added substrates. As an alternative to immunofluorescence microscopy, the expression of gfp gene fusions has been used to probe the function of cellular components fundamental for DNA replication, translation, protein export, and signal transduction, that heretofore have been difficult to study in living cells. Moreover, protein and DNA localization can now be monitored in real time, revealing that several proteins important for cell division, development and sporulation are dynamically localized throughout the cell cycle. The use of additional GFP variants that permit the labeling of multiple components within the same cell, and the use of GFP for genetic screens, should continue to make this a valuable tool for addressing complex questions about the bacterial cell.
Collapse
Affiliation(s)
- G J Phillips
- Department of Microbiology, 207 Science I Building, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
20
|
Fernandez-Moreira E, Balas D, Gonzalez I, de la Campa AG. Fluoroquinolones inhibit preferentially Streptococcus pneumoniae DNA topoisomerase IV than DNA gyrase native proteins. Microb Drug Resist 2001; 6:259-67. [PMID: 11272253 DOI: 10.1089/mdr.2000.6.259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genes encoding the subunits of DNA topoisomerase IV (parC and parE) and DNA gyrase (gyrA and gyrB) of Streptococcus pneumoniae were cloned and overproduced in Escherichia coli by using the T7promoter-T7 RNA polymerase system. The four subunits were separately purified to near homogeneity by column chromatography. Protein purification was achieved by DEAE-sepharose, heparin-agarose, and hydroxylapatite chromatography. DNA topoisomerase IV was reconstituted when ParC and ParE were combined at a 3.8-fold excess of ParE. The reconstituted topoisomerase IV showed to generate efficient ATP-dependent DNA decatenation activity. The DNA gyrase ATP-dependent supercoiling activity was reconstituted by mixing equimolar amounts of the two gyrase subunits. The inhibitory effects of four representative fluoroquinolones on the DNA decatenation activity of topoisomerase IV and DNA supercoiling of gyrase have been examined and compared. All four compounds were more active in inhibiting topoisomerase IV than gyrase. Moreover, there was a positive correlation between the inhibitory activity against topoisomerase IV decatenation and DNA gyrase supercoiling. The classification of the four fluoroquinolones, considering their inhibitory activities in decatenation, supercoiling and growth was the following: clinafloxacin > trovafloxacin > sparfloxacin > ciprofloxacin. These results suggest these drugs primarily target topoisomerase IV of S. pneumoniae, and gyrase secondarily, in agreement with genetic data.
Collapse
Affiliation(s)
- E Fernandez-Moreira
- Unidad de Genética Bacteriana, Consejo Superior de Investigaciones Científicas, Centro Nacional de Biologia Fundamental, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 2001; 32 Suppl 1:S9-S15. [PMID: 11249823 DOI: 10.1086/319370] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Five bacterial targets have been exploited in the development of antimicrobial drugs: cell wall synthesis, protein synthesis, ribonucleic acid synthesis, deoxyribonucleic acid (DNA) synthesis, and intermediary metabolism. Because resistance to drugs that interact with these targets is widespread, new antimicrobials and an understanding of their mechanisms of action are vital. The fluoroquinolones are the only direct inhibitors of DNA synthesis; by binding to the enzyme-DNA complex, they stabilize DNA strand breaks created by DNA gyrase and topoisomerase IV. Ternary complexes of drug, enzyme, and DNA block progress of the replication fork. Cytotoxicity of fluoroquinolones is likely a 2-step process involving (1) conversion of the topoisomerase-quinolone-DNA complex to an irreversible form and (2) generation of a double-strand break by denaturation of the topoisomerase. The molecular factors necessary for the transition from step 1 to step 2 remain unclear, but downstream pathways for cell death may overlap with those used by other bactericidal antimicrobials. Studies of fluoroquinolone-resistant mutants and purified topoisomerases indicate that many quinolones have differing activities against the two targets. Drugs with similar activities against both targets may prove less likely to select de novo resistance.
Collapse
Affiliation(s)
- D C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114-2696, USA.
| |
Collapse
|
22
|
Abstract
Recent years have witnessed a resurgence of interest in how the bacterial chromosome is organized and how newly replicated chromosomes are faithfully segregated into daughter cells on cell division. In the past, the problem with studying bacterial chromosomes was their lack of any obvious morphology, combined with the lack of ability to readily separate DNA replication and segregation functions into distinct stages like those observed in eukaryotic cells. This was due to the overlapping nature of these events in most bacterial systems used in the laboratory. The situation has now changed as new tools have become available that enable chromosomes and specific chromosomal sites to be labelled and monitored throughout the cell cycle, and this has led to rapid progress and the discovery of many unexpected results. Historically, chromosome segregation was thought to be achieved through passive processes where chromosomes were separated through some kind of membrane/cell wall attachment and were moved apart as the cell grew (Jacob et al., 1963). We now know that this is not the case and that there are specific mechanisms to actively partition chromosomes. This review will focus principally on the Gram-positive sporulating bacterium Bacillus subtilis, but will also cover work carried out on Escherichia coli, in which valuable information has been obtained, and will cover the events that occur on termination of chromosome replication, chromosome decatenation and chromosome separation.
Collapse
Affiliation(s)
- Peter J Lewis
- School of Biological and Chemical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia1
| |
Collapse
|
23
|
Abstract
Segregation of DNA in bacterial cells is an efficient process that assures that every daughter cell receives a copy of genomic and plasmid DNA. In this review, we focus primarily on observations in recent years, including the visualization of DNA and proteins at the subcellular level, that have begun to define the events that separate DNA molecules. Unlike the process of chromosome segregation in higher cells, segregation of the bacterial chromosome is a continuous process in which chromosomes are separated as they are replicated. Essential to separation is the initial movement of sister origins to opposite ends of the cell. Subsequent replication and controlled condensation of DNA are the driving forces that move sister chromosomes toward their respective origins, which establishes the polarity required for segregation. Final steps in the resolution and separation of sister chromosomes occur at the replication terminus, which is localized at the cell center. In contrast to the chromosome, segregation of low-copy plasmids, such as Escherichia coli F, P1, and R1, is by mechanisms that resemble those used in eukaryotic cells. Each plasmid has a centromere-like site to which plasmid-specified partition proteins bind to promote segregation. Replication of plasmid DNA, which occurs at the cell center, is followed by rapid partition protein-mediated separation of sister plasmids, which become localized at distinct sites on either side of the division plane. The fundamental similarity between chromosome and plasmid segregation-placement of DNA to specific cell sites-implies an underlying cellular architecture to which both DNA and proteins refer.
Collapse
Affiliation(s)
- G S Gordon
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
24
|
Exley R, Zouine M, Pernelle JJ, Beloin C, Le Hégarat F, Deneubourg AM. A possible role for L24 of Bacillus subtilis in nucleoid organization and segregation. Biochimie 2001; 83:269-75. [PMID: 11278078 DOI: 10.1016/s0300-9084(00)01228-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The condensation of DNA in bacterial nucleoids during cell cycle is a complex and dynamic process. Proteins displaying the physico-chemical properties of histones are known to contribute to this process. During a search for B. subtilis nucleoid associated proteins, HBsu and L24 were identified as the most abundant proteins in nucleoid containing fractions. Purified L24 binds and condenses DNA in vitro. In this paper we describe immunofluorescence studies that demonstrated that L24 is located at the poles of the nucleoids in exponentially growing cells. In contrast, the protein is dispersed in the cytoplasm during stationary phase. Moreover, overexpression of the rplX gene encoding L24 disrupts nucleoid segregation and positioning.
Collapse
Affiliation(s)
- R Exley
- Institut de Génétique et Microbiologie, Bâtiment 360, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
25
|
Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli NR. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev 2000; 14:2881-92. [PMID: 11090135 PMCID: PMC317058 DOI: 10.1101/gad.838900] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that positively supercoiled [(+) SC] DNA is the preferred substrate for Escherichia coli topoisomerase IV (topo IV). We measured topo IV relaxation of (-) and (+) supercoils in real time on single, tethered DNA molecules to complement ensemble experiments. We find that the preference for (+) SC DNA is complete at low enzyme concentration. Otherwise, topo IV relaxed (+) supercoils at a 20-fold faster rate than (-) supercoils, due primarily to about a 10-fold increase in processivity with (+) SC DNA. The preferential cleavage of (+) SC DNA in a competition experiment showed that substrate discrimination can take place prior to strand passage in the presence or absence of ATP. We propose that topo IV discriminates between (-) and (+) supercoiled DNA by recognition of the geometry of (+) SC DNA. Our results explain how topo IV can rapidly remove (+) supercoils to support DNA replication without relaxing the essential (-) supercoils of the chromosome. They also show that the rate of supercoil relaxation by topo IV is several orders of magnitude faster than hitherto appreciated, so that a single enzyme may suffice at each replication fork.
Collapse
Affiliation(s)
- N J Crisona
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
26
|
Sciochetti SA, Piggot PJ. A tale of two genomes: resolution of dimeric chromosomes in Escherichia coli and Bacillus subtilis. Res Microbiol 2000; 151:503-11. [PMID: 11037128 DOI: 10.1016/s0923-2508(00)00220-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimeric chromosomes can be formed during replication of circular bacterial chromosomes by an odd number of homologous recombination events between sister chromosomes. In the absence of a compensating recombination reaction such dimers cannot be segregated from each other as the cell divides. This review highlights the shared and divergent mechanisms employed by Escherichia coli and Bacillus subtilis in their effort to resolve and partition dimeric chromosomes safely. In particular, we discuss the Xer-type recombinases, RecA, FtsK/SpoIIIE, and dif.
Collapse
Affiliation(s)
- S A Sciochetti
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
27
|
Margolin W. Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods 2000; 20:62-72. [PMID: 10610805 DOI: 10.1006/meth.1999.0906] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Green fluorescent protein (GFP) is a highly useful fluorescent tag for studying the localization, structure, and dynamics of macromolecules in living cells, and has quickly become a primary tool for analysis of DNA and protein localization in prokaryotes. Several properties of GFP make it an attractive and versatile reporter. It is fluorescent and soluble in a wide variety of species, can be monitored noninvasively by external illumination, and needs no external substrates. Localization of GFP fusion proteins can be analyzed in live bacteria, therefore eliminating potential fixation artifacts and enabling real-time monitoring of dynamics in situ. Such real-time studies have been facilitated by brighter, more soluble GFP variants. In addition, red-shifted GFPs that can be excited by blue light have lessened the problem of UV-induced toxicity and photobleaching. The self-contained domain structure of GFP reduces the chance of major perturbations to GFP fluorescence by fused proteins and, conversely, to the activities of the proteins to which it is fused. As a result, many proteins fused to GFP retain their activities. The stability of GFP also allows detection of its fluorescence in vitro during protein purification and in cells fixed for indirect immunofluorescence and other staining protocols. Finally, the different properties of GFP variants have given rise to several technological innovations in the study of cellular physiology that should prove useful for studies in live bacteria. These include fluorescence resonance energy transfer (FRET) for studying protein-protein interactions and specially engineered GFP constructs for direct determination of cellular ion fluxes.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
28
|
Abstract
The mode of action of quinolones involves interactions with both DNA gyrase, the originally recognised drug target, and topoisomerase IV, a related type II topoisomerase. In a given bacterium these 2 enzymes often differ in their relative sensitivities to many quinolones, and commonly DNA gyrase is more sensitive in gram-negative bacteria and topoisomerase IV more sensitive in gram-positive bacteria. Usually the more sensitive enzyme represents the primary drug target determined by genetic tests, but poorly understood exceptions have been documented. The formation of the ternary complex of quinolone, DNA, and either DNA gyrase or topoisomerase IV occurs through interactions in which quinolone binding appears to induce changes in both DNA and the topoisomerase that occur separately from the DNA cleavage that is the hallmark of quinolone action. X-ray crystallographic studies of a fragment of the gyrase A subunit, as well as of yeast topoisomerase IV, which has homology to the subunits of both DNA gyrase and topoisomerase IV, have revealed domains that are likely to constitute quinolone binding sites, but no topoisomerase crystal structures that include DNA and quinolone have been reported to date. Inhibition of DNA synthesis by quinolones requires the targeted topoisomerase to have DNA cleavage capability, and collisions of the replication fork with reversible quinolone-DNA-topoisomerase complexes convert them to an irreversible form. However, the molecular factors that subsequently generate DNA double-strand breaks from the irreversible complexes and that probably initiate cell death have yet to be defined.
Collapse
Affiliation(s)
- D C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston 02114-2696, USA.
| |
Collapse
|
29
|
Sciochetti SA, Piggot PJ, Sherratt DJ, Blakely G. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J Bacteriol 1999; 181:6053-62. [PMID: 10498718 PMCID: PMC103633 DOI: 10.1128/jb.181.19.6053-6062.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ripX gene encodes a protein that has 37 and 44% identity with the XerC and XerD site-specific recombinases of Escherichia coli. XerC and XerD are hypothesized to act in concert at the dif site to resolve dimeric chromosomes formed by recombination during replication. Cultures of ripX mutants contained a subpopulation of unequal-size cells held together in long chains. The chains included anucleate cells and cells with aberrantly dense or diffuse nucleoids, indicating a chromosome partitioning failure. This result is consistent with RipX having a role in the resolution of chromosome dimers in B. subtilis. Spores contain a single uninitiated chromosome, and analysis of germinated, outgrowing spores showed that the placement of FtsZ rings and septa is affected in ripX strains by the first division after the initiation of germination. The introduction of a recA mutation into ripX strains resulted in only slight modifications of the ripX phenotype, suggesting that chromosome dimers can form in a RecA-independent manner in B. subtilis. In addition to RipX, the CodV protein of B. subtilis shows extensive similarity to XerC and XerD. The RipX and CodV proteins were shown to bind in vitro to DNA containing the E. coli dif site. Together they functioned efficiently in vitro to catalyze site-specific cleavage of an artificial Holliday junction containing a dif site. Inactivation of codV alone did not cause a discernible change in phenotype, and it is speculated that RipX can substitute for CodV in vivo.
Collapse
Affiliation(s)
- S A Sciochetti
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
30
|
Abstract
When fluoroquinolones bind to gyrase or topoisomerase IV in the presence of DNA, they alter protein conformation. DNA cleavage results with diminished religation, so the enzymes are trapped in ternary complexes with drug and cleaved DNA. Preferential localization of gyrase ahead of replication forks and topoisomerase IV behind them causes fluoroquinolone-mediated complexes with the two enzymes to have different physiological consequences.
Collapse
Affiliation(s)
- K Drlica
- Public Health Research Institute 455 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
31
|
Abstract
We previously reported that overexpression of SopB, an Escherichia coli F plasmid-encoded partition protein, led to silencing of genes linked to, but well-separated from, a cluster of SopB-binding sites termed sopC. We show here that in this SopB-mediated repression of sopC-linked genes, all but the N-terminal 82 amino acids of SopB can be replaced by the DNA-binding domain of a sequence-specific DNA-binding protein, provided that the sopC locus is also replaced by the recognition sequence of the DNA-binding domain. These results, together with our previous finding that the N-terminal fragment of SopB is responsible for its polar localization in cells, suggest a mechanism of gene silencing: patches of closely packed DNA-binding domains are formed if a sequence-specific DNA-binding protein is localized to specific cellular sites; such a patch can capture a DNA carrying the recognition site of the DNA-binding domain and sequestrate genes adjacent to the recognition site through nonspecific binding of DNA. The generalization of this model to gene silencing in eukaryotes is discussed.
Collapse
Affiliation(s)
- S K Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
32
|
Ward DV, Newton A. Cell cycle expression and transcriptional regulation of DNA topoisomerase IV genes in caulobacter. J Bacteriol 1999; 181:3321-9. [PMID: 10348842 PMCID: PMC93797 DOI: 10.1128/jb.181.11.3321-3329.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA replication and differentiation are closely coupled during the Caulobacter crescentus cell cycle. We have previously shown that DNA topoisomerase IV (topo IV), which is encoded by the parE and parC genes, is required for chromosomal partitioning, cell division, and differentiation in this bacterium (D. Ward and A. Newton, Mol. Microbiol. 26:897-910, 1997). We have examined the cell cycle regulation of parE and parC and report here that transcription of these topo IV genes is induced during the swarmer-to-stalked-cell transition when cells prepare for initiation of DNA synthesis. The regulation of parE and parC expression is not strictly coordinated, however. The rate of parE transcription increases ca. 20-fold during the G1-to-S-phase transition and in this respect, its pattern of regulation is similar to those of several other genes required for chromosome duplication. Transcription from the parC promoter, by contrast, is induced only two- to threefold during this cell cycle period. Steady-state ParE levels are also regulated, increasing ca. twofold from low levels in swarmer cells to a maximum immediately prior to cell division, while differences in ParC levels during the cell cycle could not be detected. These results suggest that topo IV activity may be regulated primarily through parE expression. The presumptive promoters of the topo IV genes display striking similarities to, as well as differences from, the consensus promoter recognized by the major Caulobacter sigma factor sigma73. We also present evidence that a conserved 8-mer sequence motif located in the spacers between the -10 and -35 elements of the parE and parC promoters is required for maximum levels of parE transcription, which raises the possibility that it may function as a positive regulatory element. The pattern of parE transcription and the parE and parC promoter architecture suggest that the topo IV genes belong to a specialized subset of cell cycle-regulated genes required for chromosome replication.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Caulobacter crescentus/cytology
- Caulobacter crescentus/enzymology
- Caulobacter crescentus/genetics
- Caulobacter crescentus/physiology
- Cell Cycle
- Cell Division
- Consensus Sequence/genetics
- Conserved Sequence/genetics
- DNA Replication/genetics
- DNA Topoisomerase IV
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Enzyme Induction/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Sequence Deletion
- Sigma Factor/physiology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- D V Ward
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
33
|
Pan XS, Fisher LM. Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones. Antimicrob Agents Chemother 1999; 43:1129-36. [PMID: 10223925 PMCID: PMC89122 DOI: 10.1128/aac.43.5.1129] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 03/03/1999] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae gyrA and gyrB genes specifying the DNA gyrase subunits have been cloned into pET plasmid vectors under the control of an inducible T7 promoter and have been separately expressed in Escherichia coli. Soluble 97-kDa GyrA and 72-kDa GyrB proteins bearing polyhistidine tags at their respective C-terminal and N-terminal ends were purified to apparent homogeneity by one-step nickel chelate column chromatography and were free of host E. coli topoisomerase activity. Equimolar amounts of the gyrase subunits reconstituted ATP-dependent DNA supercoiling with comparable activity to gyrase of E. coli and Staphylococcus aureus. In parallel, S. pneumoniae topoisomerase IV ParC and ParE subunits were similarly expressed in E. coli, purified to near homogeneity as 93- and 73-kDa proteins, and shown to generate efficient ATP-dependent DNA relaxation and DNA decatenation activities. Using the purified enzymes, we examined the inhibitory effects of three paradigm fluoroquinolones-ciprofloxacin, sparfloxacin, and clinafloxacin-which previous genetic studies with S. pneumoniae suggested act preferentially through topoisomerase IV, through gyrase, and through both enzymes, respectively. Surprisingly, all three quinolones were more active in inhibiting purified topoisomerase IV than gyrase, with clinafloxacin showing the greatest inhibitory potency. Moreover, the tested agents were at least 25-fold more effective in stabilizing a cleavable complex (the relevant cytotoxic lesion) with topoisomerase IV than with gyrase, with clinafloxacin some 10- to 32-fold more potent against either enzyme, in line with its superior activity against S. pneumoniae. The uniform target preference of the three fluoroquinolones for topoisomerase IV in vitro is in apparent contrast to the genetic data. We interpret these results in terms of a model for bacterial killing by quinolones in which cellular factors can modulate the effects of target affinity to determine the cytotoxic pathway.
Collapse
Affiliation(s)
- X S Pan
- Molecular Genetics Group, Department of Biochemistry, St. George's Hospital Medical School, University of London, London SW17 0RE, United Kingdom
| | | |
Collapse
|
34
|
Abstract
Recent advances have completely overturned the classical view of chromosome segregation in bacteria. Far from being a passive process involving gradual separation of the chromosomes, an active, possibly mitotic-like machinery is now known to exist. Soon after the initiation of DNA replication, the newly replicated copies of the oriC region, behaving rather like eukaryotic centromeres, move rapidly apart towards opposite poles of the cell. They then determine the positions that will be taken up by the newly formed sister nucleoids when DNA replication has been completed. Thus, the gradual expansion of the diffuse nucleoid camouflages an underlying active mechanism. Several genes involved in chromosome segregation in bacteria have now been defined; their possible functions are discussed.
Collapse
Affiliation(s)
- M E Sharpe
- Sir William Dunn School of Pathology, University of Oxford, UK.
| | | |
Collapse
|
35
|
Graumann PL, Losick R, Strunnikov AV. Subcellular localization of Bacillus subtilis SMC, a protein involved in chromosome condensation and segregation. J Bacteriol 1998; 180:5749-55. [PMID: 9791128 PMCID: PMC107637 DOI: 10.1128/jb.180.21.5749-5755.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Accepted: 08/10/1998] [Indexed: 11/20/2022] Open
Abstract
We have investigated the subcellular localization of the SMC protein in the gram-positive bacterium Bacillus subtilis. Recent work has shown that SMC is required for chromosome condensation and faithful chromosome segregation during the B. subtilis cell cycle. Using antibodies against SMC and fluorescence microscopy, we have shown that SMC is associated with the chromosome but is also present in discrete foci near the poles of the cell. DNase treatment of permeabilized cells disrupted the association of SMC with the chromosome but not with the polar foci. The use of a truncated smc gene demonstrated that the C-terminal domain of the protein is required for chromosomal binding but not for the formation of polar foci. Regular arrays of SMC-containing foci were still present between nucleoids along the length of aseptate filaments generated by depleting cells of the cell division protein FtsZ, indicating that the formation of polar foci does not require the formation of septal structures. In slowly growing cells, which have only one or two chromosomes, SMC foci were principally observed early in the cell cycle, prior to or coincident with chromosome segregation. Cell cycle-dependent release of stored SMC from polar foci may mediate segregation by condensation of chromosomes.
Collapse
Affiliation(s)
- P L Graumann
- Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|