1
|
Ambastha V, Sopory SK, Tripathy BC, Tiwari BS. Salt induced programmed cell death in rice: evidence from chloroplast proteome signature. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:8-27. [PMID: 32702286 DOI: 10.1071/fp19356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity, depending on its intensity, drives a challenged plant either to death, or survival with compromised productivity. On exposure to moderate salinity, plants can often survive by sacrificing some of their cells 'in target' following a route called programmed cell death (PCD). In animals, PCD has been well characterised, and involvement of mitochondria in the execution of PCD events has been unequivocally proven. In plants, mechanistic details of the process are still in grey area. Previously, we have shown that in green tissues of rice, for salt induced PCD to occur, the presence of active chloroplasts and light are equally important. In the present work, we have characterised the chloroplast proteome in rice seedlings at 12 and 24 h after salt exposure and before the time point where the signature of PCD was observed. We identified almost 100 proteins from chloroplasts, which were divided in to 11 categories based on the biological functions in which they were involved. Our results concerning the differential expression of chloroplastic proteins revealed involvement of some novel candidates. Moreover, we observed maximum phosphorylation pattern of chloroplastic proteins at an early time point (12 h) of salt exposure.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudhir K Sopory
- Plant Molecular Biology, International Centre of Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; and Corresponding author. ; ;
| | - Budhi Sagar Tiwari
- Institute of Advanced Research, Gandhinagar, Gujrat 482007, India; and Corresponding author. ; ;
| |
Collapse
|
2
|
Zoschke R, Bock R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. THE PLANT CELL 2018; 30:745-770. [PMID: 29610211 PMCID: PMC5969280 DOI: 10.1105/tpc.18.00016] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplast translation is essential for cellular viability and plant development. Its positioning at the intersection of organellar RNA and protein metabolism makes it a unique point for the regulation of gene expression in response to internal and external cues. Recently obtained high-resolution structures of plastid ribosomes, the development of approaches allowing genome-wide analyses of chloroplast translation (i.e., ribosome profiling), and the discovery of RNA binding proteins involved in the control of translational activity have greatly increased our understanding of the chloroplast translation process and its regulation. In this review, we provide an overview of the current knowledge of the chloroplast translation machinery, its structure, organization, and function. In addition, we summarize the techniques that are currently available to study chloroplast translation and describe how translational activity is controlled and which cis-elements and trans-factors are involved. Finally, we discuss how translational control contributes to the regulation of chloroplast gene expression in response to developmental, environmental, and physiological cues. We also illustrate the commonalities and the differences between the chloroplast and bacterial translation machineries and the mechanisms of protein biosynthesis in these two prokaryotic systems.
Collapse
Affiliation(s)
- Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Hong S, Harris KA, Fanning KD, Sarachan KL, Frohlich KM, Agris PF. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity. J Biol Chem 2015; 290:19273-86. [PMID: 26060252 DOI: 10.1074/jbc.m115.655092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 12/11/2022] Open
Abstract
Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 μM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.
Collapse
Affiliation(s)
- Seoyeon Hong
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kimberly A Harris
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kathryn D Fanning
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kathryn L Sarachan
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Kyla M Frohlich
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| | - Paul F Agris
- From The RNA Institute and the Department of Biological Sciences, University at Albany, Albany, New York 12222
| |
Collapse
|
4
|
Overexpression of ribosome elongation factor G and recycling factor increases L-isoleucine production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:4795-805. [PMID: 25707863 DOI: 10.1007/s00253-015-6458-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Ribosome elongation factor G encoded by fusA promotes the translocation step of protein synthesis in bacteria; ribosome recycling factor encoded by frr, together with the elongation factor G, dissociates ribosomes from messenger RNA after the termination of translation. Both factors play important roles during protein synthesis in bacteria. In this study, we found that overexpression of fusA and/or frr led to the increase of L-isoleucine production in Corynebacterium glutamicum IWJ001, an L-isoleucine production strain generated by random mutagenesis. Reverse transcription polymerase chain reaction analysis showed that transcriptional levels of genes lysC, hom, thrB, ilvA, ilvBN, and ilvE encoding the key enzymes in the biosynthetic pathway of L-isoleucine increased in C. glutamicum IWJ001 when fusA and/or frr were overexpressed. Co-overexpression of fusA and frr, together with genes ilvA, ilvB, ilvN, and ppnk in C. glutamicum IWJ001, led to 76.5 % increase of L-isoleucine production in flask cultivation and produced 28.5 g/L L-isoleucine in 72-h fed-batch fermentation. The results demonstrate that overexpressing ribosome elongation factor G and ribosome recycling factor is an efficient approach to enhance L-isoleucine production in C. glutamicum.
Collapse
|
5
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
6
|
Abstract
Proteomics of chloroplast ribosomes in spinach and Chlamydomonas revealed unique protein composition and structures of plastid ribosomes. These studies have suggested the presence of some ribosomal proteins unique to plastid ribosomes which may be involved in plastid-unique translation regulation. Considering the strong background of genetic analysis and molecular biology in Arabidopsis, the in-depth proteomic characterization of Arabidopsis plastid ribosomes would facilitate further understanding of plastid translation in higher plants. Here, I describe simple and rapid methods for the preparation of plastid ribosomes from Chlamydomonas and Arabidopsis using sucrose gradients. I also describe purity criteria and methods for yield estimation of the purified plastid ribosomes and subunits, methods for the preparation of plastid ribosomal proteins, as well as the identification of some Arabidopsis plastid ribosomal proteins by matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
|
7
|
Wang L, Ouyang M, Li Q, Zou M, Guo J, Ma J, Lu C, Zhang L. The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. PLANT MOLECULAR BIOLOGY 2010; 74:47-59. [PMID: 20521084 DOI: 10.1007/s11103-010-9653-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/19/2010] [Indexed: 05/27/2023]
Abstract
To gain insight into the functions of the nuclear-encoded factors involved in chloroplast development, we characterized the high chlorophyll fluorescence and pale green mutant 108-1 (designated as hfp108-1) of Arabidopsis thaliana. Map-based cloning revealed that the mutant contains a tandem repeat of part of the sequence (including 116 nucleotides from 631 to 746 bp downstream of the ATG) of At3g63190, which encodes a chloroplast ribosome recycling factor homologue and was named AtcpRRF. The chloroplasts of hfp108-1 plants contain few internal thylakoid membranes and are severely defective in the accumulation of chloroplast-encoded proteins. In vivo labeling experiments showed a drastic decrease in the synthesis of the chloroplast-encoded proteins, which may be attributed primarily to reduced translation of the corresponding mRNA molecules. The level of the HFP108 transcript was greatly reduced in hfp108-1, so hfp108-1 showed a weak phenotype, and null alleles of HFP108 (hfp108-2) were embryonic lethal. Observations with cleared seeds in the same silique showed that homozygous hfp108-2 seeds were blocked at the heart stage and did not develop further. Thus, these results suggest that AtcpRRF is essential for embryogenesis and chloroplast biogenesis.
Collapse
Affiliation(s)
- Liyuan Wang
- Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. Proc Natl Acad Sci U S A 2010; 107:10854-9. [PMID: 20534490 DOI: 10.1073/pnas.1006247107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated under ionic conditions close to those existing in vivo, suggesting that they are ready to enter the initiation process. Based on our experimental techniques used in this paper, the release of mRNA and tRNA and ribosome dissociation took place simultaneously. No 40S*mRNA complex was observed, indicating that eEF3 action promotes ribosome recycling, not reinitiation.
Collapse
|
9
|
Di Carli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R, Scaloni A, Benvenuto E, Desiderio A. Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res 2009; 8:838-48. [PMID: 19099506 DOI: 10.1021/pr800359d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of exogenous antibodies in plant is an effective strategy to confer protection against viral infection or to produce molecules with pharmaceutical interest. However, the acceptance of the transgenic technology to obtain self-protecting plants depends on the assessment of their substantial equivalence compared to non-modified crops with an established history of safe use. In fact, the possibility exists that the introduction of transgenes in plants may alter expression of endogenous genes and/or normal production of metabolites. In this study, we investigated whether the expression in plant of recombinant antibodies directed against viral proteins may influence the host leaf proteome. Two transgenic plant models, generated by Agrobacterium tumefaciens-mediated transformation, were analyzed for this purpose, namely, Lycopersicon esculentum cv. MicroTom and Nicotiana benthamiana, expressing recombinant antibodies against cucumber mosaic virus and tomato spotted wilt virus, respectively. To obtain a significant representation of plant proteomes, optimized extraction procedures have been devised for each plant species. The proteome repertoire of antibody-expressing and control plants was compared by 2-DE associated to DIGE technology. Among the 2000 spots detected within the gels, about 10 resulted differentially expressed in each transgenic model and were identified by MALDI-TOF PMF and muLC-ESI-IT-MS/MS procedures. Protein variations were restricted to a limited number of defined differences with an average ratio below 2.4. Most of the differentially expressed proteins were related to photosynthesis or defense function. The overall results suggest that the expression of recombinant antibodies in both systems does not significantly alter the leaf proteomic profile, contributing to assess the biosafety of resistant plants expressing antiviral antibodies.
Collapse
Affiliation(s)
- Mariasole Di Carli
- Sezione Genetica e Genomica Vegetale, Dipartimento BAS-BIOTEC, ENEA Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 2008; 283:15932-45. [PMID: 18408011 PMCID: PMC3259626 DOI: 10.1074/jbc.m801406200] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/03/2008] [Indexed: 11/06/2022] Open
Abstract
In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting. The down-regulation of copper/zinc superoxide dismutase expression in response to low copper involves a microRNA, miR398. Interestingly, in Arabidopsis and other plants, three additional microRNA families, miR397, miR408, and miR857, are predicted to target the transcripts for the copper protein plantacyanin and members of the laccase copper protein family. We confirmed the predicted targets of miR397, miR408, and miR857 experimentally by cleavage site analysis. To study the spatial expression pattern of these microRNAs and the effect of copper on their expression, we analyzed Arabidopsis grown hydroponically on different copper regimes. On low amounts of copper the plants accumulated miR397, miR408, and miR857. The microRNA expression pattern was negatively correlated with the accumulation of transcripts for plantacyanin and laccases. Furthermore, the expression of other laccases that are not predicted targets for known microRNAs was similarly regulated in response to copper. For some of these laccases, the regulation was disrupted in a microRNA maturation mutant (hen1-1), suggesting the presence of other copper-regulated microRNAs. Thus, in Arabidopsis, microRNA-mediated down-regulation is a general mechanism to regulate nonessential copper proteins. We propose that this mechanism allows plants to save copper for the most essential functions during limited copper supply.
Collapse
Affiliation(s)
- Salah E. Abdel-Ghany
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| | - Marinus Pilon
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
11
|
Zhang LQ, Zhang HJ, Guo P, Xue P, Xie ZS, Chen Z, Jing GZ. C-terminal effect of Thermoanaerobacter tengcongensis ribosome recycling factor on its activity and conformation changes. Arch Biochem Biophys 2007; 466:211-20. [PMID: 17697668 DOI: 10.1016/j.abb.2007.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 11/24/2022]
Abstract
The in vivo activities and conformational changes of ribosome recycling factor from Thermoanaerobacter tengcongensis (TteRRF) with 12 successive C-terminal deletions were compared. The results showed that TteRRF mutants lacking one to four amino acid residues are inactive, those lacking five to nine are reactivated to a similar or a little higher level than wild-type TteRRF, and those lacking ten to twelve are inactivated again gradually. Conformational studies indicated that only the ANS binding fluorescence change is correlated well with the RRF in vivo activity change, while the secondary structure and local structure at the aromatic residues are not changed significantly. Trypsin cleavage site identification and protein stability measurement suggested that mutation only induced subtle conformation change and increased flexibility of the protein. Our results indicated that the ANS-detected local conformation changes of TteRRF and mutants are one verified direct reason of the in vivo inactivation and reactivation in Escherichia coli.
Collapse
Affiliation(s)
- Li-Qiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A, Cate JHD. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 2007; 14:727-32. [PMID: 17660832 DOI: 10.1038/nsmb1271] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/11/2007] [Indexed: 11/09/2022]
Abstract
Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.
Collapse
Affiliation(s)
- Maria A Borovinskaya
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Motohashi R, Yamazaki T, Myouga F, Ito T, Ito K, Satou M, Kobayashi M, Nagata N, Yoshida S, Nagashima A, Tanaka K, Takahashi S, Shinozaki K. Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. PLANT MOLECULAR BIOLOGY 2007; 64:481-97. [PMID: 17450416 DOI: 10.1007/s11103-007-9166-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/20/2007] [Indexed: 05/08/2023]
Abstract
To study the functions of nuclear genes involved in chloroplast development, we systematically analyzed albino and pale green Arabidopsis thaliana mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on one of these albino mutants, designated apg3-1 (for a lbino or p ale g reen mutant 3). A gene encoding a ribosome release factor 1 (RF1) homologue was disrupted by the insertion of a Ds transposon into the APG3 gene; a T-DNA insertion into the same gene caused a similar phenotype (apg3-2). The APG3 gene (At3g62910) has 15 exons and encodes a protein (422-aa) with a transit peptide that functions in targeting the protein to chloroplasts. The amino acid sequence of APG3 showed 40.6% homology with an RF1 of Escherichia coli, and complementation analysis using the E. coli rf1 mutant revealed that APG3 functions as an RF1 in E. coli, although complementation was not successful in the RF2-deficient (rf2) mutants of E. coli. These results indicate that the APG3 protein is an orthologue of E. coli RF1, and is essential for chloroplast translation machinery; it was accordingly named AtcpRF1. Since the chloroplasts of apg3-1 plants contained few internal thylakoid membranes, and chloroplast proteins related to photosynthesis were not detected by immunoblot analysis, AtcpRF1 is thought to be essential for chloroplast development.
Collapse
Affiliation(s)
- Reiko Motohashi
- Faculty of Agriculture, University of Shizuoka, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
15
|
Van Hoewyk D, Abdel-Ghany SE, Cohu CM, Herbert SK, Kugrens P, Pilon M, Pilon-Smits EAH. Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc Natl Acad Sci U S A 2007; 104:5686-91. [PMID: 17372218 PMCID: PMC1838476 DOI: 10.1073/pnas.0700774104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Indexed: 11/18/2022] Open
Abstract
NifS-like proteins provide the sulfur (S) for the formation of iron-sulfur (Fe-S) clusters, an ancient and essential type of cofactor found in all three domains of life. Plants are known to contain two distinct NifS-like proteins, localized in the mitochondria (MtNifS) and the chloroplast (CpNifS). In the chloroplast, five different Fe-S cluster types are required in various proteins. These plastid Fe-S proteins are involved in a variety of biochemical pathways including photosynthetic electron transport and nitrogen and sulfur assimilation. In vitro, the chloroplastic cysteine desulfurase CpNifS can release elemental sulfur from cysteine for Fe-S cluster biogenesis in ferredoxin. However, because of the lack of a suitable mutant allele, the role of CpNifS has not been studied thus far in planta. To study the role of CpNifS in Fe-S cluster biogenesis in vivo, the gene was silenced by using an inducible RNAi (interference) approach. Plants with reduced CpNifS expression exhibited chlorosis, a disorganized chloroplast structure, and stunted growth and eventually became necrotic and died before seed set. Photosynthetic electron transport and carbon dioxide assimilation were severely impaired in the silenced plant lines. The silencing of CpNifS decreased the abundance of all chloroplastic Fe-S proteins tested, representing all five Fe-S cluster types. Mitochondrial Fe-S proteins and respiration were not affected, suggesting that mitochondrial and chloroplastic Fe-S assembly operate independently. These findings indicate that CpNifS is necessary for the maturation of all plastidic Fe-S proteins and, thus, essential for plant growth.
Collapse
Affiliation(s)
- Douglas Van Hoewyk
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Salah E. Abdel-Ghany
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Christopher M. Cohu
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Stephen K. Herbert
- Department of Botany, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071
| | - Paul Kugrens
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Marinus Pilon
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Elizabeth A. H. Pilon-Smits
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| |
Collapse
|
16
|
Kiel MC, Kaji H, Kaji A. Ribosome recycling: An essential process of protein synthesis. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 35:40-44. [PMID: 21591054 DOI: 10.1002/bmb.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the release of the polypeptide, ribosomes remain bound to the mRNA and tRNA. It is only during the fourth step of translation that ribosomes are ultimately released from the mRNA, split into subunits, and are free to bind new mRNA, thus the term "ribosome recycling." This step is essential to the viability of cells. In bacteria, it is catalyzed by two proteins, elongation factor G and ribosome recycling factor, a near perfect structural mimic of tRNA. Eukaryotic organelles such as mitochondria and chloroplasts possess ribosome recycling factor and elongation factor G homologues, but the nature of ribosome recycling in eukaryotic cytoplasm is still under investigation. In this review, the discovery of ribosome recycling and the basic mechanisms involved are discussed so that textbook writers and teachers can include this vital step, which is just as important as the three conventional steps, in sections dealing with protein synthesis.
Collapse
Affiliation(s)
- Michael C Kiel
- Science Department, Marywood University, Scranton, Pennsylvania 18509.
| | | | | |
Collapse
|
17
|
Rochaix JD. The Role of Nucleus- and Chloroplast-Encoded Factors in the Synthesis of the Photosynthetic Apparatus. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-1-4020-4061-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Yukawa M, Kuroda H, Sugiura M. A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:367-76. [PMID: 17156414 DOI: 10.1111/j.1365-313x.2006.02948.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We previously developed an in vitro translation system derived from tobacco chloroplasts. Here, we report a significantly improved in vitro translation system. By modifying preparation procedures for chloroplast extracts and reaction conditions, we achieved 100-fold higher translation activity than the previous system. The new system does not require the supplement of Escherichia coli tRNAs due to the omission of micrococcal nuclease treatment, thus the tRNA population reflects the intrinsic tRNA population in tobacco chloroplasts. The rate of translation initiation from a variety of chloroplast mRNAs may be measured by monitoring the fluorescence intensity of synthesized green fluorescent protein, which is a non-radioactive detection method. Incorporation of an amino acid linked to a fluorescent dye also allows detection of the translation products in vitro. Using our new system, we found that mRNAs carrying unprocessed or processed atpH and rbcL 5'-UTRs were efficiently translated at similar rates, whereas translation of mRNAs with processed atpB and psbB 5'-UTRs was more efficient than those with unprocessed 5'-UTRs. These results suggest that the role of 5'-UTR processing in the regulation of chloroplast gene expression differs between mRNAs. The new in vitro translation system will be a powerful tool to investigate the mechanism of chloroplast mRNA translation.
Collapse
Affiliation(s)
- Maki Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501, Japan
| | | | | |
Collapse
|
19
|
Hosaka T, Xu J, Ochi K. Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol 2006; 61:883-97. [PMID: 16859496 DOI: 10.1111/j.1365-2958.2006.05285.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
K88E mutation within rpsL, which encodes the S12 ribosomal protein, enhanced the protein synthetic activity of Streptomyces coelicolor during the late growth phase, resulting in overproduction of the deep blue-pigmented polyketide antibiotic actinorhodin. In vitro cross-mixing experiments using the ribosomal and S-150 fractions derived from wild-type and K88E mutant strains suggested that one or more translation factors are enriched in the mutant's S-150 fraction, while Western analysis using antibodies against various translation factors revealed ribosome recycling factor (RRF) to be one of the enriched mediators. RRF purified from overexpressing cells stimulated mRNA-directed green fluorescent protein (GFP) synthesis in an in vitro protein synthesis system. GFP synthesis rates were complemented by RRF addition into wild-type cell's S-150 fraction, eliminating the difference between wild-type and mutant S-150 fractions. The frr gene encoding RRF was found to be transcribed from two distinct start points (frrp1 and frrp2), and increased expression from frrp1 could account for the elevated level of RRF in the K88E mutant during the late growth phase. Moreover, introduction of a plasmid harbouring a high copy number of frr gene into wild-type S. coelicolor induced remarkable overproduction of antibiotic, demonstrating that the increased levels of RRF caused by the K88E mutation is responsible for an aberrant stationary-phase event: overproduction of antibiotic.
Collapse
Affiliation(s)
- Takeshi Hosaka
- National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
20
|
Majeran W, Cai Y, Sun Q, van Wijk KJ. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. THE PLANT CELL 2005; 17:3111-40. [PMID: 16243905 PMCID: PMC1276033 DOI: 10.1105/tpc.105.035519] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 09/05/2005] [Accepted: 09/24/2005] [Indexed: 05/05/2023]
Abstract
Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
21
|
Hirokawa G, Inokuchi H, Kaji H, Igarashi K, Kaji A. In vivo effect of inactivation of ribosome recycling factor - fate of ribosomes after unscheduled translation downstream of open reading frame. Mol Microbiol 2005; 54:1011-21. [PMID: 15522083 DOI: 10.1111/j.1365-2958.2004.04324.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Without RRF, the ribosome is not released from mRNA at the termination codon and reinitiates translation downstream. This is called unscheduled translation. Here, we show that at the non-permissive temperature of a temperature-sensitive RRF strain, RRF is lost quickly, and some ribosomes reach the 3' end of mRNA. However, instead of accumulating at the 3' end of mRNA, ribosomes are released as monosomes. Some ribosomes are transferred to transfer-messenger RNA from the 3' end of mRNA. The monosomes thus produced are able to translate synthetic homopolymer but not natural mRNA with leader and canonical initiation signal. The pellet containing ribosomes appears to be responsible for rapid but reversible inhibition of most but not all of protein synthesis in vivo closely followed by decrease of cellular RNA and DNA synthesis.
Collapse
Affiliation(s)
- Go Hirokawa
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | |
Collapse
|
22
|
Raj VS, Kaji H, Kaji A. Interaction of RRF and EF-G from E. coli and T. thermophilus with ribosomes from both origins--insight into the mechanism of the ribosome recycling step. RNA (NEW YORK, N.Y.) 2005; 11:275-84. [PMID: 15661844 PMCID: PMC1370717 DOI: 10.1261/rna.7201805] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 11/30/2004] [Indexed: 05/20/2023]
Abstract
Ribosome recycling factor (RRF), elongation factor-G (EF-G), and ribosomes from Thermus thermophilus (tt-) and Escherichia coli (ec-) were used to study the disassembly mechanism of post-termination ribosomal complexes by these factors. With tt-RRF, ec-EF-G can release bound-tRNA from ec-model post-termination complexes. However, tt-RRF is not released by ec-EF-G from ec-ribosomes. This complex with tt-RRF and ec-ribosomes after the tRNA release by ec-EF-G is regarded as an intermediate of the disassembly reaction. Not only tt-RRF, but also mRNA, cannot be released from ec-ribosomes by tt-RRF and ec-EF-G. These data suggest that the release of RRF from ribosomes is coupled or closely related to the release of mRNA during disassembly of post-termination complexes. With tt-ribosomes, ec-EF-G cannot release ribosome-bound ec-RRF even though they are from the same species, showing that proper interaction of ec-RRF and ec-EF-G does not occur on tt-ribosomes. On the other hand, in contrast to a published report, tt-EF-G functions with ec-RRF to disassemble ec-post-termination complexes. In support of this finding, tt-EF-G translocates peptidyl tRNA on ec-ribosomes and catalyzes ec-ribosome-dependent GTPase, showing that tt-EF-G has in vitro translocation activity with ec-ribosomes. Since tt-EF-G with ec-RRF can release tRNA from ec-post-termination complexes, the data are consistent with the hypothesis that the release of tRNA by RRF and EF-G from post-termination complexes is a result of a translocation-like activity of EF-G on RRF.
Collapse
Affiliation(s)
- V Samuel Raj
- Department of Microbiology, School of Medicine, University of Pennsylvania, Room 203B, Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
23
|
Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G, Lobréaux S. Nfu2: a scaffold protein required for [4Fe-4S] and ferredoxin iron-sulphur cluster assembly in Arabidopsis chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:101-11. [PMID: 15361144 DOI: 10.1111/j.1365-313x.2004.02189.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nfu proteins are candidates to act as scaffold protein in vivo for iron-sulphur cluster biogenesis. In this work, Nfu2 protein function in the chloroplast was investigated in vivo using T-DNA insertion lines disrupted in AtNfu2 gene. Both alleles characterized presented the same dwarf phenotype due to photosynthetic and metabolic limitations. Nfu2 cDNA expression in nfu2.1 mutant rescued this phenotype. Photosynthesis study of these mutants revealed an altered photosystem I (PSI) activity together with a decrease in PSI amount confirmed by immunodetection experiments, and leading to an over reduction of the plastoquinol pool. Decrease of plastid 4Fe-4S sulphite reductase activity correlates with PSI amount decrease and supports an alteration of 4Fe-4S cluster biogenesis in nfu2 chloroplasts. The decrease of electron flow from the PSI is combined with a decrease in ferredoxin amount in nfu2 mutants. Our results are therefore in favour of a requirement of Nfu2 protein for 4Fe-4S and 2Fe-2S ferredoxin cluster assembly, conferring to this protein an important function for plant growth and photosynthesis as demonstrated by nfu2 mutant phenotype. As glutamate synthase and Rieske Fe-S proteins are not affected in nfu2 mutants, these data indicate that different pathways are involved in Fe-S biogenesis in Arabidopsis chloroplasts.
Collapse
Affiliation(s)
- Brigitte Touraine
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier-II, Institut National de la Recherche Agronomique et Ecole Nationale Supérieure d'Agronomie, 2 place Viala, F-34060 Montpellier cedex 1, France
| | | | | | | | | | | |
Collapse
|
24
|
Teyssier E, Hirokawa G, Tretiakova A, Jameson B, Kaji A, Kaji H. Temperature-sensitive mutation in yeast mitochondrial ribosome recycling factor (RRF). Nucleic Acids Res 2003; 31:4218-26. [PMID: 12853640 PMCID: PMC165964 DOI: 10.1093/nar/gkg449] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The yeast protein Rrf1p encoded by the FIL1 nuclear gene bears significant sequence similarity to Escherichia coli ribosome recycling factor (RRF). Here, we call FIL1 Ribosome Recycling Factor of yeast, RRF1. Its gene product, Rrf1p, was localized in mitochondria. Deletion of RRF1 leads to a respiratory incompetent phenotype and to instability of the mitochondrial genome (conversion to rho(-)/rho(0) cytoplasmic petites). Yeast with intact mitochondria and with deleted genomic RRF1 that harbors a plasmid carrying RRF1 was prepared from spores of heterozygous diploid yeast. Such yeast with a mutated allele of RRF1, rrf1-L209P, grew on a non-fermentable carbon source at 30 but not at 36 degrees C, where mitochondrial but not total protein synthesis was 90% inhibited. We propose that Rrf1p is essential for mitochondrial protein synthesis and acts as a RRF in mitochondria.
Collapse
Affiliation(s)
- Emeline Teyssier
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-5541, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kaji A, Kiel MC, Hirokawa G, Muto AR, Inokuchi Y, Kaji H. The fourth step of protein synthesis: disassembly of the posttermination complex is catalyzed by elongation factor G and ribosome recycling factor, a near-perfect mimic of tRNA. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:515-29. [PMID: 12762054 DOI: 10.1101/sqb.2001.66.515] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Kaji
- Microbiology Department, Medical School, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
26
|
Todorova RT, Saihara Y. Specific binding of ribosome recycling factor (RRF) with the Escherichia coli ribosomes by BIACORE. Mol Biol Rep 2003; 30:113-9. [PMID: 12841582 DOI: 10.1023/a:1023991026045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The direct assays on Biacore with immobilised RRF and purified L11 from E. coli in the flow trough have shown unspecific binding between the both proteins. The interaction of RRF with GTPase domain of E. coli ribosomes, a functionally active complex of L11 with 23S r RNA and L10.(L7/L12)4 was studied by Biacore. In the experiments of binding of RRF with 30S, 50S and 70S ribosomes from E. coli were used the antibiotics thiostrepton, tetracycline and neomycin and factors, influencing the 70S dissociation Mg2+, NH4Cl, EDTA. The binding is strongly dependent from the concentrations of RRF, Mg2+, NH4Cl, EDTA and is inhibited by thiostrepton. The effect is most specific for 50S subunits and indicates that the GTPase centre can be considered as a possible site of interaction of RRF with the ribosome. We can consider an electrostatic character of the interactions with most probable candidate 16S and 23S r RNA at the interface of 30S and 50S ribosomal subunits.
Collapse
Affiliation(s)
- Roumiana T Todorova
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | |
Collapse
|
27
|
Léon S, Touraine B, Ribot C, Briat JF, Lobréaux S. Iron-sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J 2003; 371:823-30. [PMID: 12553879 PMCID: PMC1223333 DOI: 10.1042/bj20021946] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 01/24/2003] [Accepted: 01/28/2003] [Indexed: 11/17/2022]
Abstract
Recent results are in favour of a role for NFU-like proteins in Fe-S cluster biogenesis. These polypeptides share a conserved CXXC motif in their NFU domain. In the present study, we have characterized Arabidopsis thaliana NFU1-5 genes. AtNFU proteins are separated into two classes. NFU4 and NFU5 are part of the mitochondrial type, presenting a structural organization similar to Saccharomyces cerevisiae Nfu1p. These proteins complement a Delta isu1 Delta nfu1 yeast mutant and NFU4 mitochondrial localization was confirmed by green fluorescent protein fusion analysis. AtNFU1-3 represent a new class of NFU proteins, unique to plants. These polypeptides are made of two NFU domains, the second having lost its CXXC motif. AtNFU1-3 proteins are more related to Synechocystis PCC6803 NFU-like proteins and are localized to plastids when fused with the green fluorescent protein. NFU2 and/or NFU3 were detected in leaf chloroplasts by immunoblotting. NFU1 and NFU2 are functional NFU capable of restoring the growth of a Delta isu1 Delta nfu1 yeast mutant, when addressed to yeast mitochondria. Furthermore, NFU2 recombinant protein is capable of binding a labile 2Fe-2S cluster in vitro. These results demonstrate the presence of distinct NFU proteins in Arabidopsis mitochondria and plastids. Such results suggest the existence of two different Fe-S assembly machineries in plant cells.
Collapse
Affiliation(s)
- Sébastien Léon
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, Unité Mixte de Recherche 5004, Institut National de la Recherche Agronomique et Ecole Nationale Supérieure d'Agronomie, Université Montpellier-II, 2 place Viala, F-34060 Montpellier cedex 1, France
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Meurer J, Lezhneva L, Amann K, Gödel M, Bezhani S, Sherameti I, Oelmüller R. A peptide chain release factor 2 affects the stability of UGA-containing transcripts in Arabidopsis chloroplasts. THE PLANT CELL 2002; 14:3255-69. [PMID: 12468741 PMCID: PMC151216 DOI: 10.1105/tpc.006809] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 09/12/2002] [Indexed: 05/18/2023]
Abstract
Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2-like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at the last nucleotide of the second intron causes a new splice site farther downstream, resulting in a deletion of seven amino acid residues in the N-terminal region of the Hcf109 protein. The mutation causes decreased stability of UGA-containing mRNAs. Our data suggest that transcripts with UGA stop codons are terminated exclusively by AtprfB in chloroplasts and that AtprfB is involved in the regulation of both mRNA stability and protein synthesis. Furthermore, sequence data reveal a +1 frameshift at an internal in-frame TGA stop codon in the progenitor prfB gene of cyanobacteria. The expression pattern and functions of atprfB could reflect evolutionary driving forces toward the conservation of TGA stop codons exclusively in plastid genomes of land plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Base Sequence
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Chromosome Mapping
- Codon, Terminator/genetics
- Codon, Terminator/metabolism
- Cyanobacteria/genetics
- Cyanobacteria/metabolism
- Frameshift Mutation
- Gene Expression Regulation, Plant/radiation effects
- Light
- Molecular Sequence Data
- Mutation
- Peptide Chain Termination, Translational/genetics
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Jörg Meurer
- Ludwig-Maximilians-Universität München, Department I, Botanik, Menzingerstrasse 67, 80638 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lancaster L, Kiel MC, Kaji A, Noller HF. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 2002; 111:129-40. [PMID: 12372306 DOI: 10.1016/s0092-8674(02)00938-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.
Collapse
Affiliation(s)
- Laura Lancaster
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
31
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
32
|
Ossenbühl F, Hartmann K, Nickelsen J. A chloroplast RNA binding protein from stromal thylakoid membranes specifically binds to the 5' untranslated region of the psbA mRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3912-9. [PMID: 12180968 DOI: 10.1046/j.1432-1033.2002.03057.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intrachloroplastic localization of post-transcriptional gene expression steps represents one key determinant for the regulation of chloroplast development. We have characterized an RNA binding protein of 63 kDa (RBP63) from Chlamydomonas reinhardtii chloroplasts, which cofractionates with stromal thylakoid membranes. Solubility properties suggest that RBP63 is a peripheral membrane protein. Among RNA probes from different 5' untranslated regions of chloroplast transcripts, RBP63 preferentially binds to the psbA leader. This binding is dependent on a region comprising seven consecutive A residues, which is required for D1 protein synthesis. A possible role for this newly discovered RNA binding protein in membrane targeting of psbA gene expression is discussed.
Collapse
Affiliation(s)
- Friedrich Ossenbühl
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
33
|
Karlin S, Mrázek J, Campbell A, Kaiser D. Characterizations of highly expressed genes of four fast-growing bacteria. J Bacteriol 2001; 183:5025-40. [PMID: 11489855 PMCID: PMC95378 DOI: 10.1128/jb.183.17.5025-5040.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Predicted highly expressed (PHX) genes are characterized for the completely sequenced genomes of the four fast-growing bacteria Escherichia coli, Haemophilus influenzae, Vibrio cholerae, and Bacillus subtilis. Our approach to ascertaining gene expression levels relates to codon usage differences among certain gene classes: the collection of all genes (average gene), the ensemble of ribosomal protein genes, major translation/transcription processing factors, and genes for polypeptides of chaperone/degradation complexes. A gene is predicted highly expressed (PHX) if its codon frequencies are close to those of the ribosomal proteins, major translation/transcription processing factor, and chaperone/degradation standards but strongly deviant from the average gene codon frequencies. PHX genes identified by their codon usage frequencies among prokaryotic genomes commonly include those for ribosomal proteins, major transcription/translation processing factors (several occurring in multiple copies), and major chaperone/degradation proteins. Also PHX genes generally include those encoding enzymes of essential energy metabolism pathways of glycolysis, pyruvate oxidation, and respiration (aerobic and anaerobic), genes of fatty acid biosynthesis, and the principal genes of amino acid and nucleotide biosyntheses. Gene classes generally not PHX include most repair protein genes, virtually all vitamin biosynthesis genes, genes of two-component sensor systems, most regulatory genes, and most genes expressed in stationary phase or during starvation. Members of the set of PHX aminoacyl-tRNA synthetase genes contrast sharply between genomes. There are also subtle differences among the PHX energy metabolism genes between E. coli and B. subtilis, particularly with respect to genes of the tricarboxylic acid cycle. The good agreement of PHX genes of E. coli and B. subtilis with high protein abundances, as assessed by two-dimensional gel determination, is verified. Relationships of PHX genes with stoichiometry, multifunctionality, and operon structures are also examined. The spatial distribution of PHX genes within each genome reveals clusters and significantly long regions without PHX genes.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, Stanford, California 94305-2125, USA.
| | | | | | | |
Collapse
|
34
|
Bertram G, Innes S, Minella O, Richardson JP, Stansfield I. Endless possibilities: translation termination and stop codon recognition. MICROBIOLOGY (READING, ENGLAND) 2001; 147:255-269. [PMID: 11158343 DOI: 10.1099/00221287-147-2-255] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gwyneth Bertram
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Shona Innes
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Odile Minella
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Jonathan P Richardson
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| | - Ian Stansfield
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK1
| |
Collapse
|
35
|
Atarashi K, Kaji A. Inhibitory effect of heterologous ribosome recycling factor on growth of Escherichia coli. J Bacteriol 2000; 182:6154-60. [PMID: 11029437 PMCID: PMC94751 DOI: 10.1128/jb.182.21.6154-6160.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome recycling factor (RRF) of Thermotoga maritima was expressed in Escherichia coli from the cloned T. maritima RRF gene and purified. Expression of T. maritima RRF inhibited growth of the E. coli host in a dose-dependent manner, an effect counteracted by the overexpression of E. coli RRF. T. maritima RRF also inhibited the E. coli RRF reaction in vitro. Genes encoding RRFs from Streptococcus pneumoniae and Helicobacter pylori have been cloned, and they also impair growth of E. coli, although the inhibitory effect of these RRFs was less pronounced than that of T. maritima RRF. The amino acid sequence at positions 57 to 62, 74 to 78, 118 to 122, 154 to 160, and 172 to 176 in T. maritima RRF differed totally from that of E. coli RRF. This suggests that these regions are important for the inhibitory effect of heterologous RRF. We further suggest that bending and stretching of the RRF molecule at the hinge between two domains may be critical for RRF activity and therefore responsible for T. maritima RRF inhibition of the E. coli RRF reaction.
Collapse
Affiliation(s)
- K Atarashi
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
36
|
Abstract
Translational termination has been a largely ignored aspect of protein synthesis for many years. However, the recent identification of new release-factor genes, the mapping of release-factor functional sites and in vitro reconstitution experiments have provided a deeper understanding of the termination mechanism. In addition, protein-protein interactions among release factors and with other proteins have been revealed. The three-dimensional structures of a prokaryotic ribosome recycling factor and eukaryotic release factor 1 (eRF1) mimic the shape of transfer RNA, indicating that they bind to the same ribosomal site. Post-termination events in bacteria have been clarified, linking termination, ribosomal recycling and translation initiation.
Collapse
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, 117984, Moscow, Russia.
| | | |
Collapse
|
37
|
Toyoda T, Tin OF, Ito K, Fujiwara T, Kumasaka T, Yamamoto M, Garber MB, Nakamura Y. Crystal structure combined with genetic analysis of the Thermus thermophilus ribosome recycling factor shows that a flexible hinge may act as a functional switch. RNA (NEW YORK, N.Y.) 2000; 6:1432-1444. [PMID: 11073219 PMCID: PMC1370014 DOI: 10.1017/s1355838200001060] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ribosome recycling factor (RRF), in concert with elongation factor EF-G, is required for disassembly of the posttermination complex of the ribosome after release of polypeptides. The crystal structure of Thermus thermophilus RRF was determined at 2.6 A resolution. It is a tRNA-like L-shaped molecule consisting of two domains: a long three-helix bundle (domain 1) and a three-layer beta/alpha/beta sandwich (domain 2). Although the individual domain structures are similar to those of Thermotoga maritima RRF (Selmer et al., Science, 1999, 286:2349-2352), the interdomain angle differs by 33 degrees in two molecules, suggesting that the hinge between two domains is potentially flexible and responsive to different conditions of crystal packing. The hinge connects hydrophobic junctions of domains 1 and 2. The structure-based genetic analysis revealed the strong correlation between the hinge flexibility and the in vivo function of RRF. First, altering the hinge flexibility by making alanine or serine substitutions for large-size residues conserved at the hinge loop and nearby in domain 1 frequently gave rise to gain of function except a Pro residue conserved at the hinge loop. Second, the hinge defect resulting from a too relaxed hinge structure can be compensated for by secondary alterations in domain 1 that seem to increase the hydrophobic contact between domain 1 and the hinge loop. These results show that the hinge flexibility is vital for the function of RRF and that the steric interaction between the hinge loop and domains 1 and 2 restricts the interdomain angle and/or the hinge flexibility. These results indicate that RRF possesses an architectural difference from tRNA regardless of a resemblance to tRNA shape: RRF has a "gooseneck" elbow, whereas the tRNA elbow is rigid, and the direction of flex of RRF and tRNA is at a nearly right angle to each other. Moreover, surface electrostatic potentials of the two RRF proteins are dissimilar and do not mimic the surface potential of tRNA or EF-G. These properties will add a new insight into RRF, suggesting that RRF is more than a simple tRNA mimic.
Collapse
Affiliation(s)
- T Toyoda
- Department of Tumor Biology, The Institute of Medical Science, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Yamaguchi K, Subramanian AR. The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J Biol Chem 2000; 275:28466-82. [PMID: 10874046 DOI: 10.1074/jbc.m005012200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have completed identification of all the ribosomal proteins (RPs) in spinach plastid (chloroplast) ribosomal 50 S subunit via a proteomic approach using two-dimensional electrophoresis, electroblotting/protein sequencing, high performance liquid chromatography purification, polymerase chain reaction-based screening of cDNA library/nucleotide sequencing, and mass spectrometry (reversed-phase HPLC coupled to electrospray ionization mass spectrometry and electrospray ionization mass spectrometry). Spinach plastid 50 S subunit comprises 33 proteins, of which 31 are orthologues of Escherichia coli RPs and two are plastid-specific RPs (PSRP-5 and PSRP-6) having no homologues in other types of ribosomes. Orthologues of E. coli L25 and L30 are absent in spinach plastid ribosome. 25 of the plastid 50 S RPs are encoded in the nuclear genome and synthesized on cytosolic ribosomes, whereas eight of the plastid RPs are encoded in the plastid organelle genome and synthesized on plastid ribosomes. Sites for transit peptide cleavages in the cytosolic RP precursors and formyl Met processing in the plastid-synthesized RPs were established. Post-translational modifications were observed in several mature plastid RPs, including multiple forms of L10, L18, L31, and PSRP-5 and N-terminal/internal modifications in L2, L11 and L16. Comparison of the RPs in gradient-purified 70 S ribosome with those in the 30 and 50 S subunits revealed an additional protein, in approximately stoichiometric amount, specific to the 70 S ribosome. It was identified to be plastid ribosome recycling factor. Combining with our recent study of the proteins in plastid 30 S subunit (Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465), we show that spinach plastid ribosome comprises 59 proteins (33 in 50 S subunit and 25 in 30 S subunit and ribosome recycling factor in 70 S), of which 53 are E. coli orthologues and 6 are plastid-specific proteins (PSRP-1 to PSRP-6). We propose the hypothesis that PSRPs were evolved to perform functions unique to plastid translation and its regulation, including protein targeting/translocation to thylakoid membrane via plastid 50 S subunit.
Collapse
Affiliation(s)
- K Yamaguchi
- Department of Biochemistry, The University of Arizona, Tucson, Arizona 85712, USA
| | | |
Collapse
|
39
|
Inokuchi Y, Hirashima A, Sekine Y, Janosi L, Kaji A. Role of ribosome recycling factor (RRF) in translational coupling. EMBO J 2000; 19:3788-98. [PMID: 10899132 PMCID: PMC313962 DOI: 10.1093/emboj/19.14.3788] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteriophages/genetics
- Bacteriophages/metabolism
- Base Sequence
- Capsid/biosynthesis
- Capsid/genetics
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/virology
- Gene Expression Regulation, Viral
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteins/genetics
- Proteins/metabolism
- RNA Viruses/genetics
- RNA Viruses/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Ribosomal Proteins
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Analysis, Protein
- Sequence Deletion
- Substrate Specificity
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Y Inokuchi
- Department of Bioscience, Teikyo University, Utsunomiya 320-8551, Yakult Pharmaceutical Inc. Co. Tokyo, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
The discovery that chloroplasts have semi-autonomous genetic systems has led to many insights into the biogenesis of these organelles and their evolution from free-living photosynthetic bacteria. Recent developments of our understanding of the molecular mechanisms of translation in chloroplasts suggest selective pressures that have maintained the 100-200 genes of the ancestral endosymbiont in chloroplast genomes. The ability to introduce modified genes into chloroplast genomes by homologous recombination and the recent development of an in vitro chloroplast translation system have been exploited for analyses of the cis-acting requirements for chloroplast translation. Trans-acting translational factors have been identified by genetic and biochemical approaches. Several studies have suggested that chloroplast mRNAs are translated in association with membranes.
Collapse
Affiliation(s)
- W Zerges
- Concordia University, 1455 de Maisonneuve W., H3G 1M8, Quebec, Montreal, Canada.
| |
Collapse
|
41
|
Kim KK, Min K, Suh SW. Crystal structure of the ribosome recycling factor from Escherichia coli. EMBO J 2000; 19:2362-70. [PMID: 10811627 PMCID: PMC384359 DOI: 10.1093/emboj/19.10.2362] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/1999] [Revised: 03/20/2000] [Accepted: 03/20/2000] [Indexed: 11/12/2022] Open
Abstract
We have determined the crystal structure of the Escherichia coli ribosome recycling factor (RRF), which catalyzes the disassembly of the termination complex in protein synthesis. The L-shaped molecule consists of two domains: a triple-stranded antiparallel coiled-coil and an alpha/beta domain. The coil domain has a cylindrical shape and negatively charged surface, which are reminiscent of the anticodon arm of tRNA and domain IV of elongation factor EF-G. We suggest that RRF binds to the ribosomal A-site through its coil domain, which is a tRNA mimic. The relative position of the two domains is changed about an axis along the hydrophobic cleft in the hinge where the alkyl chain of a detergent molecule is bound. The tRNA mimicry and the domain movement observed in RRF provide a structural basis for understanding the role of RRF in protein synthesis.
Collapse
Affiliation(s)
- K K Kim
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea.
| | | | | |
Collapse
|
42
|
Janosi L, Mori H, Sekine Y, Abragan J, Janosi R, Hirokawa G, Kaji A. Mutations influencing the frr gene coding for ribosome recycling factor (RRF). J Mol Biol 2000; 295:815-29. [PMID: 10656793 DOI: 10.1006/jmbi.1999.3401] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 52 null, six reversion, and five silent mutations of frr (the gene encoding for ribosome recycling factor (RRF)) of Escherichia coli are discussed along with 12 temperature-sensitive (ts) mutations and 14 intergenic suppressor strains of ts RRF. The null mutations were classified into six different categories. A computer-based secondary structure analysis showed three domains; domain A which has the N-terminal helix, domain B which contains coil, alpha-helix and beta-strand structure, and domain C which is a C-terminal helix. The ts mutations fell into domains A and C but not in domain B. More than a half of the null mutations fell into domain B while the silent mutations fell outside domain B. Substitution of Arg132 in domain C by other amino acids was observed among five independently isolated null mutants. It is suggested that domain B is important for maintaining the RRF structure, while the region including Arg132 is one of the active sites. A total of 14 intergenic suppressor strains of ts RRF were grouped into four categories, depending on which temperature-sensitive alleles were suppressed.
Collapse
Affiliation(s)
- L Janosi
- Department of Microbiology School of Medicine, University of Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Selmer M, Al-Karadaghi S, Hirokawa G, Kaji A, Liljas A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science 1999; 286:2349-52. [PMID: 10600747 DOI: 10.1126/science.286.5448.2349] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosome recycling factor (RRF), together with elongation factor G (EF-G), catalyzes recycling of ribosomes after one round of protein synthesis. The crystal structure of RRF was determined at 2.55 angstrom resolution. The protein has an unusual fold where domain I is a long three-helix bundle and domain II is a three-layer beta/alpha/beta sandwich. The molecule superimposes almost perfectly with a transfer RNA (tRNA) except that the amino acid-binding 3' end is missing. The mimicry suggests that RRF interacts with the posttermination ribosomal complex in a similar manner to a tRNA, leading to disassembly of the complex. The structural arrangement of this mimicry is entirely different from that of other cases of less pronounced mimicry of tRNA so far described.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Molecular Mimicry
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Elongation Factor G/chemistry
- Protein Biosynthesis
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomal Proteins
- Ribosomes/metabolism
- Sequence Alignment
- Thermotoga maritima/chemistry
- Thermotoga maritima/metabolism
Collapse
Affiliation(s)
- M Selmer
- Molecular Biophysics, Center for Chemistry and Chemical Engineering, Lund University, Post Office Box 124, SE-22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
44
|
Kashimori H, Yoshida T, Kijima H, Shimahara H, Uchiyama S, Ishino T, Shuda M, Nakano H, Shibata Y, Saihara Y, Ohkubo T, Yoshida T, Kaji A, Kobayashi Y. Backbone NMR assignment and secondary structure of ribosome recycling factor (RRF) from Pseudomonas aeruginosa. JOURNAL OF BIOMOLECULAR NMR 1999; 15:341-342. [PMID: 10685343 DOI: 10.1023/a:1008351810648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
45
|
Sato N, Rolland N, Block MA, Joyard J. Do plastid envelope membranes play a role in the expression of the plastid genome? Biochimie 1999; 81:619-29. [PMID: 10433116 DOI: 10.1016/s0300-9084(99)80119-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique biochemical machinery is present within the two envelope membranes surrounding plastids (Joyard et al., Plant Physiol. 118 (1998) 715-723) that reflects the stage of development of the plastid and the specific metabolic requirements of the various tissues. Envelope membranes are the site for the synthesis and metabolism of specific lipids. They are also the site of transport of metabolites, proteins and information between plastids and surrounding cellular compartments. For instance, a complex machinery for the import of nuclear-encoded plastid proteins is rapidly being elucidated. The functional studies of plastid envelope membranes result in the characterization of an increasing number of envelope proteins with unexpected functions. For instance, recent experiments have demonstrated that envelope membranes bind specifically to plastid genetic systems, the nucleoids surrounded by plastid ribosomes. At early stages of plastid differentiation, the inner envelope membrane contains a unique protein (named PEND protein) that binds specifically to plastid DNA. This tight connection suggests that the PEND protein is at least involved in partitioning the plastid DNA to daughter plastids during division. The PEND protein can also provide a physical support for replication and transcription. In addition, factors involved in the control of plastid protein synthesis can become associated to envelope membranes. This was shown for a protein homologous to the E. coli ribosome recycling factor and for the stabilizing factors of some specific chloroplast mRNAs encoding thylakoid membrane proteins. In fact, the envelope membranes together with the plastid DNA are the two essential constituents of plastids that confer identity to plastids and their interactions are becoming uncovered through molecular as well as cytological studies. In this review, we will focus on these recent observations (which are consistent with the endosymbiotic origin of plastids) and we discuss possible roles for the plastid envelope in the expression of plastid genome.
Collapse
Affiliation(s)
- N Sato
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Urawa, Japan
| | | | | | | |
Collapse
|