1
|
Harter C, Melin F, Hoeser F, Hellwig P, Wohlwend D, Friedrich T. Quinone chemistry in respiratory complex I involves protonation of a conserved aspartic acid residue. FEBS Lett 2024. [PMID: 39262040 DOI: 10.1002/1873-3468.15013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Respiratory complex I is a central metabolic enzyme coupling NADH oxidation and quinone reduction with proton translocation. Despite the knowledge of the structure of the complex, the coupling of both processes is not entirely understood. Here, we use a combination of site-directed mutagenesis, biochemical assays, and redox-induced FTIR spectroscopy to demonstrate that the quinone chemistry includes the protonation and deprotonation of a specific, conserved aspartic acid residue in the quinone binding site (D325 on subunit NuoCD in Escherichia coli). Our experimental data support a proposal derived from theoretical considerations that deprotonation of this residue is involved in triggering proton translocation in respiratory complex I.
Collapse
Affiliation(s)
- Caroline Harter
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
| | - Franziska Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | |
Collapse
|
2
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Schubert L, Chen JL, Fritz T, Marxer F, Langner P, Hoffmann K, Gamiz-Hernandez AP, Kaila VRI, Schlesinger R, Heberle J. Proton Release Reactions in the Inward H + Pump NsXeR. J Phys Chem B 2023; 127:8358-8369. [PMID: 37729557 DOI: 10.1021/acs.jpcb.3c04100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Directional ion transport across biological membranes plays a central role in many cellular processes. Elucidating the molecular determinants for vectorial ion transport is key to understanding the functional mechanism of membrane-bound ion pumps. The extensive investigation of the light-driven proton pump bacteriorhodopsin from Halobacterium salinarum(HsBR) enabled a detailed description of outward proton transport. Although the structure of inward-directed proton pumping rhodopsins is very similar to HsBR, little is known about their protonation pathway, and hence, the molecular reasons for the vectoriality of proton translocation remain unclear. Here, we employ a combined experimental and theoretical approach to tracking protonation steps in the light-driven inward proton pump xenorhodopsin from Nanosalina sp. (NsXeR). Time-resolved infrared spectroscopy reveals the transient deprotonation of D220 concomitantly with deprotonation of the retinal Schiff base. Our molecular dynamics simulations support a proton release pathway from the retinal Schiff base via a hydrogen-bonded water wire leading to D220 that could provide a putative gating point for the proton release and with allosteric interactions to the retinal Schiff base. Our findings support the key role of D220 in mediating proton release to the cytoplasmic side and provide evidence that this residue is not the primary proton acceptor of the proton transiently released by the retinal Schiff base.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Jheng-Liang Chen
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Tobias Fritz
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Florina Marxer
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Kirsten Hoffmann
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| |
Collapse
|
4
|
Petrovskaya LE, Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Kirpichnikov MP. Features of the Mechanism of Proton Transport in ESR, Retinal Protein from Exiguobacterium sibiricum. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1544-1554. [PMID: 38105023 DOI: 10.1134/s0006297923100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Eugene P Lukashev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Dmitry A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
5
|
Wei W, Hogues H, Sulea T. Comparative Performance of High-Throughput Methods for Protein p Ka Predictions. J Chem Inf Model 2023; 63:5169-5181. [PMID: 37549424 PMCID: PMC10466379 DOI: 10.1021/acs.jcim.3c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/09/2023]
Abstract
The medically relevant field of protein-based therapeutics has triggered a demand for protein engineering in different pH environments of biological relevance. In silico engineering workflows typically employ high-throughput screening campaigns that require evaluating large sets of protein residues and point mutations by fast yet accurate computational algorithms. While several high-throughput pKa prediction methods exist, their accuracies are unclear due to the lack of a current comprehensive benchmarking. Here, seven fast, efficient, and accessible approaches including PROPKA3, DeepKa, PKAI, PKAI+, DelPhiPKa, MCCE2, and H++ were systematically tested on a nonredundant subset of 408 measured protein residue pKa shifts from the pKa database (PKAD). While no method outperformed the null hypotheses with confidence, as illustrated by statistical bootstrapping, DeepKa, PKAI+, PROPKA3, and H++ had utility. More specifically, DeepKa consistently performed well in tests across multiple and individual amino acid residue types, as reflected by lower errors, higher correlations, and improved classifications. Arithmetic averaging of the best empirical predictors into simple consensuses improved overall transferability and accuracy up to a root-mean-square error of 0.76 pKa units and a correlation coefficient (R2) of 0.45 to experimental pKa shifts. This analysis should provide a basis for further methodological developments and guide future applications, which require embedding of computationally inexpensive pKa prediction methods, such as the optimization of antibodies for pH-dependent antigen binding.
Collapse
Affiliation(s)
- Wanlei Wei
- Human Health Therapeutics
Research Centre, National Research Council
Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Hervé Hogues
- Human Health Therapeutics
Research Centre, National Research Council
Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Traian Sulea
- Human Health Therapeutics
Research Centre, National Research Council
Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
6
|
Kuroi K, Tsukamoto T, Honda N, Sudo Y, Furutani Y. Concerted primary proton transfer reactions in a thermophilic rhodopsin studied by time-resolved infrared spectroscopy at high temperature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148980. [PMID: 37080329 DOI: 10.1016/j.bbabio.2023.148980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
The primary proton transfer reactions of thermophilic rhodopsin, which was first discovered in an extreme thermophile, Thermus thermophilus JL-18, were investigated using time-resolved Fourier transform infrared spectroscopy at various temperatures ranging from 298 to 343 K (25 to 70 °C) and proton transport activity analysis. The analyses were performed using counterion (D95E, D95N, D229E, and D229N) and proton donor mutants (E106D and E106Q) as well. First, the initial proton transfer from the protonated retinal Schiff base (PRSB) to D95 was identified. The temperature dependency showed that the proton transfer reaction in the intermediate states dramatically changed above 318 K (45 °C). In addition, the proton transfer reaction correlated well with the structural change from turn to β-strand in the protein moiety, suggesting that this step may be regulated by the rigidity of the loop region. We also elucidated that the proton transfer reaction from proton donor E106 to the retinal Schiff base occurred synchronously with the primary proton transfer from the PRSB to D95. Surprisingly, we discovered that the direction of proton transfer was regulated by the secondary counterion, D229. Comparative analysis of Gloeobacter rhodopsin from the mesophile, Gloeobacter violaceus, highlighted that the primary proton transfer reactions in thermophilic rhodopsin were optimized at high temperatures partly due to the specific turn to β-strand structural change. This was not observed in Gloeobacter rhodopsin and other related proteins such as bacteriorhodopsin.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan; Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Naoya Honda
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan; Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
7
|
Noji T, Ishikita H. Mechanism of Absorption Wavelength Shift of Bacteriorhodopsin During Photocycle. J Phys Chem B 2022; 126:9945-9955. [PMID: 36413506 DOI: 10.1021/acs.jpcb.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump, alters the absorption wavelengths in the range of 410-617 nm during the photocycle. Here, we report the absorption wavelengths, calculated using 12 bacteriorhodopsin crystal structures (including the BR, BR13-cis, J, K0, KE, KL, L, M, N, and O state structures) and a combined quantum mechanical/molecular mechanical/polarizable continuum model (QM/MM/PCM) approach. The QM/MM/PCM calculations reproduced the experimentally measured absorption wavelengths with a standard deviation of 4 nm. The shifts in the absorption wavelengths can be explained mainly by the following four factors: (i) retinal Schiff base deformation/twist induced by the protein environment, leading to a decrease in the electrostatic interaction between the protein environment and the retinal Schiff base; (ii) changes in the protonation state of the protein environment, directly altering the electrostatic interaction between the protein environment and the retinal Schiff base; (iii) changes in the protonation state; or (iv) isomerization of the retinal Schiff base, where the absorption wavelengths of the isomers originally differ.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| |
Collapse
|
8
|
Kouyama T, Ihara K. Existence of two substates in the O intermediate of the bacteriorhodopsin photocycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183998. [PMID: 35753392 DOI: 10.1016/j.bbamem.2022.183998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The proton pumping cycle of bacteriorhodopsin (bR) is initiated when the retinal chromophore with the 13-trans configuration is photo-isomerized into the 13-cis configuration. To understand the recovery processes of the initial retinal configuration that occur in the late stage of the photocycle, we have performed a comprehensive analysis of absorption kinetics data collected at various pH levels and at different salt concentrations. The result of analysis revealed the following features of the late stages of the trans photocycle. i) Two substates occur in the O intermediate. ii) The visible absorption band of the first substate (O1) appears at a much shorter wavelength than that of the late substate (O2). iii) O1 is in rapid equilibrium with the preceding state (N), but O1 becomes less stable than N when an ionizable residue (X1) with a pKa value of 6.5 (in 2 M KCl) is deprotonated. iv) At a low pH and at a low salt concentration, the decay time constant of O2 is longer than those of the preceding states, but the relationship between these time constants is altered when the medium pH or the salt concentration is increased. On the basis of the present observations and previous studies on the structure of the chromophore in O, we suspect that the retinal chromophore in O1 takes on a distorted 13-cis configuration and the O1-to-O2 transition is accompanied by cis-to-trans isomerization about C13C14 bond.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
10
|
Petrovskaya LE, Lukashev EP, Siletsky SA, Imasheva ES, Wang JM, Mamedov MD, Kryukova EA, Dolgikh DA, Rubin AB, Kirpichnikov MP, Balashov SP, Lanyi JK. Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112529. [PMID: 35878544 DOI: 10.1016/j.jphotobiol.2022.112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | - Evgeniy P Lukashev
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| | - Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jennifer M Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Andrei B Rubin
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | - Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Kouyama T, Ihara K. Two substates in the O intermediate of the light-driven proton pump archaerhodopsin-2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183919. [PMID: 35304864 DOI: 10.1016/j.bbamem.2022.183919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The proton pumping cycle of archaerhodopsin-2 (aR2) was investigated over a wide pH range and at different salt concentrations. We have found that two substates, which are spectroscopically and kinetically distinguishable, occur in the O intermediate. The first O-intermediate (O1) absorbs maximumly at ~580 nm, whereas the late O-intermediate (O2) absorbs maximumly at 605 nm. At neutral pH, O1 is in rapid equilibrium with the N intermediate. When the medium pH is increased, O1 becomes less stable than N and, in proportion to the amount of O1 in the dynamic equilibrium between N and O1, the formation rate of O2 decreases. By contrast, the decay rate of O2 increases ~100 folds when the pH of a low-salt membrane suspension is increased from 5.5 to 7.5 or when the salt concentration is increased to 2 M KCl. Together with our recent study on two substates in the O intermediate of bacteriorhodopsin (bR), the present study suggests that the thermally activated re-isomerization of the retinylidene chromophore into the initial all-trans configuration takes place in the O1-to-O2 transition; that is, O1 contains a distorted 13-cis chromophore. It is also found that the pKa value of the key ionizable residue (Asp101aR2, Asp96bR) in the proton uptake channel is elevated in the O1 state of aR2 as compared to the O1 state of bR. This implies that the structural property of O1 in the aR2 photocycle can be investigated over a wide pH range.
Collapse
Affiliation(s)
- Tsutomu Kouyama
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
12
|
Schubert L, Langner P, Ehrenberg D, Lorenz-Fonfria VA, Heberle J. Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy. J Chem Phys 2022; 156:204201. [PMID: 35649857 DOI: 10.1063/5.0088526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mid-IR spectroscopy is a powerful and label-free technique to investigate protein reactions. In this study, we use quantum-cascade-laser-based dual-comb spectroscopy to probe protein conformational changes and protonation events by a single-shot experiment. By using a well-characterized membrane protein, bacteriorhodopsin, we provide a comparison between dual-comb spectroscopy and our homebuilt tunable quantum cascade laser (QCL)-based scanning spectrometer as tools to monitor irreversible reactions with high time resolution. In conclusion, QCL-based infrared spectroscopy is demonstrated to be feasible for tracing functionally relevant protein structural changes and proton translocations by single-shot experiments. Thus, we envisage a bright future for applications of this technology for monitoring the kinetics of irreversible reactions as in (bio-)chemical transformations.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Institute of Molecular Science, Universitat de Valencia, Catedrático José Beltrán Martínez, No. 2, 46980 Paterna, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
13
|
True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nat Struct Mol Biol 2022; 29:440-450. [PMID: 35484235 DOI: 10.1038/s41594-022-00762-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
Hydrogen bonds are fundamental to the structure and function of biological macromolecules and have been explored in detail. The chains of hydrogen bonds (CHBs) and low-barrier hydrogen bonds (LBHBs) were proposed to play essential roles in enzyme catalysis and proton transport. However, high-resolution structural data from CHBs and LBHBs is limited. The challenge is that their 'visualization' requires ultrahigh-resolution structures of the ground and functionally important intermediate states to identify proton translocation events and perform their structural assignment. Our true-atomic-resolution structures of the light-driven proton pump bacteriorhodopsin, a model in studies of proton transport, show that CHBs and LBHBs not only serve as proton pathways, but also are indispensable for long-range communications, signaling and proton storage in proteins. The complete picture of CHBs and LBHBs discloses their multifunctional roles in providing protein functions and presents a consistent picture of proton transport and storage resolving long-standing debates and controversies.
Collapse
|
14
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|
15
|
Abstract
Bacteriorhodopsin is a seven-helix light-driven proton-pump that was structurally and functionally extensively studied. Despite a wealth of data, the single molecule kinetics of the reaction cycle remain unknown. Here, we use high-speed atomic force microscopy methods to characterize the single molecule kinetics of wild-type bR exposed to continuous light and short pulses. Monitoring bR conformational changes with millisecond temporal resolution, we determine that the cytoplasmic gate opens 2.9 ms after photon absorption, and stays open for proton capture for 13.2 ms. Surprisingly, a previously active protomer cannot be reactivated for another 37.6 ms, even under excess continuous light, giving a single molecule reaction cycle of ~20 s−1. The reaction cycle slows at low light where the closed state is prolonged, and at basic or acidic pH where the open state is extended. Here, the authors use high-speed atomic force microscopy (HS-AFM) methods to characterize the single molecule kinetics of wild-type bacteriorhodopsin (bR) with millisecond temporal resolution, providing new insights into the bR conformational cycle.
Collapse
|
16
|
Mizutani Y. Concerted Motions and Molecular Function: What Physical Chemistry We Can Learn from Light-Driven Ion-Pumping Rhodopsins. J Phys Chem B 2021; 125:11812-11819. [PMID: 34672596 DOI: 10.1021/acs.jpcb.1c06698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane ion gradients are generated and maintained by ion-pumping proteins in cells. Light-driven ion-pumping rhodopsins are retinal-containing proteins found in archaea, bacteria, and eukarya. Photoisomerization of the retinal chromophore induces structural changes in the protein, allowing the transport of ions in a particular direction. Understanding unidirectional ion transport by ion-pumping rhodopsins is an exciting challenge for biophysical chemistry. Concerted changes in ion-binding affinities of the ion-binding sites in proteins are key to unidirectional ion transport, as is the coupling between the chromophore and the protein moiety to drive the concerted motions regulating ion-binding affinities. The commonality of ion-pumping rhodopsin protein structures and the diversity of their ion-pumping functions suggest universal principles governing ion transport, which would be widely applicable to molecular systems. In this Perspective, I review the insights obtained from previous studies on rhodopsins and discuss future perspectives.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
17
|
Sasaki S, Tamogami J, Nishiya K, Demura M, Kikukawa T. Replaceability of Schiff base proton donors in light-driven proton pump rhodopsins. J Biol Chem 2021; 297:101013. [PMID: 34329681 PMCID: PMC8387761 DOI: 10.1016/j.jbc.2021.101013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Many H+-pump rhodopsins conserve “H+ donor” residues in cytoplasmic (CP) half channels to quickly transport H+ from the CP medium to Schiff bases at the center of these proteins. For conventional H+ pumps, the donors are conserved as Asp or Glu but are replaced by Lys in the minority, such as Exiguobacterium sibiricum rhodopsin (ESR). In dark states, carboxyl donors are protonated, whereas the Lys donor is deprotonated. As a result, carboxyl donors first donate H+ to the Schiff bases and then capture the other H+ from the medium, whereas the Lys donor first captures H+ from the medium and then donates it to the Schiff base. Thus, carboxyl and Lys-type H+ pumps seem to have different mechanisms, which are probably optimized for their respective H+-transfer reactions. Here, we examined these differences via replacement of donor residues. For Asp-type deltarhodopsin (DR), the embedded Lys residue distorted the protein conformation and did not act as the H+ donor. In contrast, for Glu-type proteorhodopsin (PR) and ESR, the embedded residues functioned well as H+ donors. These differences were further examined by focusing on the activation volumes during the H+-transfer reactions. The results revealed essential differences between archaeal H+ pump (DR) and eubacterial H+ pumps PR and ESR. Archaeal DR requires significant hydration of the CP channel for the H+-transfer reactions; however, eubacterial PR and ESR require the swing-like motion of the donor residue rather than hydration. Given this common mechanism, donor residues might be replaceable between eubacterial PR and ESR.
Collapse
Affiliation(s)
- Syogo Sasaki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan.
| | - Koki Nishiya
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Watson RA, Offenbacher AR, Barry BA. Detection of Catalytically Linked Conformational Changes in Wild-Type Class Ia Ribonucleotide Reductase Using Reaction-Induced FTIR Spectroscopy. J Phys Chem B 2021; 125:8362-8372. [PMID: 34289692 DOI: 10.1021/acs.jpcb.1c03038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme, ribonucleotide reductase (RNR), is essential for DNA synthesis in all cells. The class Ia Escherichia coli RNR consists of two dimeric subunits, α2 and β2, which form an active but unstable heterodimer of dimers, α2β2. The structure of the wild-type form of the enzyme has been challenging to study due to the instability of the catalytic complex. A long-range proton-coupled electron-transfer (PCET) pathway facilitates radical migration from the Y122 radical-diiron cofactor in the β subunit to an active site cysteine, C439, in the α subunit to initiate the RNR chemistry. The PCET reactions and active site chemistry are spectroscopically masked by a rate-limiting, conformational gate. Here, we present a reaction-induced Fourier transform infrared (RIFTIR) spectroscopic method to monitor the mechanism of the active, wild-type RNR α2β2 complex. This method is employed to obtain new information about conformational changes accompanying RNR catalysis, including the role of carboxylate interactions, deprotonation, and oxidation of active site cysteines, and a detailed description of reversible secondary structural changes. Labeling of tyrosine revealed a conformationally active tyrosine in the β subunit, assigned to Y356β, which is part of the intersubunit PCET pathway. New insights into the roles of the inhibitors, azidoUDP and dATP, and the sensitivity of RIFTIR spectroscopy to detect subtle conformational motions arising from protein allostery are also presented.
Collapse
Affiliation(s)
- Ryan Atlee Watson
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Adam R Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States.,Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Bridgette A Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
19
|
Baserga F, Dragelj J, Kozuch J, Mohrmann H, Knapp EW, Stripp ST, Heberle J. Quantification of Local Electric Field Changes at the Active Site of Cytochrome c Oxidase by Fourier Transform Infrared Spectroelectrochemical Titrations. Front Chem 2021; 9:669452. [PMID: 33987170 PMCID: PMC8111224 DOI: 10.3389/fchem.2021.669452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Cytochrome c oxidase (CcO) is a transmembrane protein complex that reduces molecular oxygen to water while translocating protons across the mitochondrial membrane. Changes in the redox states of its cofactors trigger both O2 reduction and vectorial proton transfer, which includes a proton-loading site, yet unidentified. In this work, we exploited carbon monoxide (CO) as a vibrational Stark effect (VSE) probe at the binuclear center of CcO from Rhodobacter sphaeroides. The CO stretching frequency was monitored as a function of the electrical potential, using Fourier transform infrared (FTIR) absorption spectroelectrochemistry. We observed three different redox states (R4CO, R2CO, and O), determined their midpoint potential, and compared the resulting electric field to electrostatic calculations. A change in the local electric field strength of +2.9 MV/cm was derived, which was induced by the redox transition from R4CO to R2CO. We performed potential jump experiments to accumulate the R2CO and R4CO species and studied the FTIR difference spectra in the protein fingerprint region. The comparison of the experimental and computational results reveals that the key glutamic acid residue E286 is protonated in the observed states, and that its hydrogen-bonding environment is disturbed upon the redox transition of heme a3. Our experiments also suggest propionate A of heme a3 changing its protonation state in concert with the redox state of a second cofactor, heme a. This supports the role of propionic acid side chains as part of the proton-loading site.
Collapse
Affiliation(s)
- Federico Baserga
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jovan Dragelj
- Macromolecular Modelling Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Modeling of Biomolecular Systems, Technische Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Mohrmann
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ernst-Walter Knapp
- Macromolecular Modelling Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:641-651. [PMID: 33558954 PMCID: PMC8189991 DOI: 10.1007/s00249-021-01507-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
Prediction of protein secondary structure from FTIR spectra usually relies on the absorbance in the amide I–amide II region of the spectrum. It assumes that the absorbance in this spectral region, i.e., roughly 1700–1500 cm−1 is solely arising from amide contributions. Yet, it is accepted that, on the average, about 20% of the absorbance is due to amino acid side chains. The present paper evaluates the contribution of amino acid side chains in this spectral region and the potential to improve secondary structure prediction after correcting for their contribution. We show that the β-sheet content prediction is improved upon subtraction of amino acid side chain contributions in the amide I–amide II spectral range. Improvement is relatively important, for instance, the error of prediction of β-sheet content decreases from 5.42 to 4.97% when evaluated by ascending stepwise regression. Other methods tested such as partial least square regression and support vector machine have also improved accuracy for β-sheet content evaluation. The other structures such as α-helix do not significantly benefit from side chain contribution subtraction, in some cases prediction is even degraded. We show that co-linearity between secondary structure content and amino acid composition is not a main limitation for improving secondary structure prediction. We also show that, even though based on different criteria, secondary structures defined by DSSP and XTLSSTR both arrive at the same conclusion: only the β-sheet structure clearly benefits from side chain subtraction. It must be concluded that side chain contribution subtraction benefit for the evaluation of other secondary structure contents is limited by the very rough description of side chain absorbance which does not take into account the variations related to their environment. The study was performed on a large protein set. To deal with the large number of proteins present, we worked on protein microarrays deposited on BaF2 slides and FTIR spectra were acquired with an imaging system.
Collapse
|
21
|
His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148328. [PMID: 33075275 DOI: 10.1016/j.bbabio.2020.148328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
ESR, a light-driven proton pump from Exiguobacterium sibiricum, contains a lysine residue (Lys96) in the proton donor site. Substitution of Lys96 with a nonionizable residue greatly slows reprotonation of the retinal Schiff base. The recent study of electrogenicity of the K96A mutant revealed that overall efficiency of proton transport is decreased in the mutant due to back reactions (Siletsky et al., BBA, 2019). Similar to members of the proteorhodopsin and xanthorhodopsin families, in ESR the primary proton acceptor from the Schiff base, Asp85, closely interacts with His57. To examine the role of His57 in the efficiency of proton translocation by ESR, we studied the effects of H57N and H57N/K96A mutations on the pH dependence of light-induced pH changes in suspensions of Escherichia coli cells, kinetics of absorption changes and electrogenic proton transfer reactions during the photocycle. We found that at low pH (<5) the proton pumping efficiency of the H57N mutant in E. coli cells and its electrogenic efficiency in proteoliposomes is substantially higher than in the WT, suggesting that interaction of His57 with Asp85 sets the low pH limit for H+ pumping in ESR. The electrogenic components that correspond to proton uptake were strongly accelerated at low pH in the mutant indicating that Lys96 functions as a very efficient proton donor at low pH. In the H57N/K96A mutant, a higher H+ pumping efficiency compared with K96A was observed especially at high pH, apparently from eliminating back reactions between Asp85 and the Schiff base by the H57N mutation.
Collapse
|
22
|
Oligomerization analysis as a tool to elucidate the mechanism of EBV latent membrane protein 1 inhibition by pentamidine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183380. [DOI: 10.1016/j.bbamem.2020.183380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023]
|
23
|
Seica AFS, Iancu CV, Pfeilschifter B, Madej MG, Choe JY, Hellwig P. Asp 22 drives the protonation state of the Staphylococcus epidermidis glucose/H + symporter. J Biol Chem 2020; 295:15253-15261. [PMID: 32859752 DOI: 10.1074/jbc.ra120.014069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
The Staphylococcus epidermidis glucose/H+ symporter (GlcPSe) is a membrane transporter highly specific for glucose and a homolog of the human glucose transporters (GLUT, SLC2 family). Most GLUTs and their bacterial counterparts differ in the transport mechanism, adopting uniport and sugar/H+ symport, respectively. Unlike other bacterial GLUT homologs (for example, XylE), GlcPSe has a loose H+/sugar coupling. Asp22 is part of the proton-binding site of GlcPSe and crucial for the glucose/H+ co-transport mechanism. To determine how pH variations affect the proton site and the transporter, we performed surface-enhanced IR absorption spectroscopy on the immobilized GlcPSe We found that Asp22 has a pKa of 8.5 ± 0.1, a value consistent with that determined previously for glucose transport, confirming the central role of this residue for the transport mechanism of GlcPSe A neutral replacement of the negatively charged Asp22 led to positive charge displacements over the entire pH range, suggesting that the polarity change of the WT reflects the protonation state of Asp22 We expected that the substitution of the residue Ile105 for a serine, located within hydrogen-bonding distance to Asp22, would change the microenvironment, but the pKa of Asp22 corresponded to that of the WT. A167E mutation, selected in analogy to the XylE, introduced an additional protonatable site and perturbed the protonation state of Asp22, with the latter now exhibiting a pKa of 6.4. These studies confirm that Asp22 is the proton-binding residue in GlcPSe and show that charged residues in its vicinity affect the pKa of glucose/H+ symport.
Collapse
Affiliation(s)
- Ana Filipa Santos Seica
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
| | - Cristina V Iancu
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Benedikt Pfeilschifter
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Regensburg, Germany
| | - M Gregor Madej
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Regensburg, Germany
| | - Jun-Yong Choe
- Department of Chemistry, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Department of Biochemistry and Molecular Biology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA.
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CMC, Université de Strasbourg CNRS, Strasbourg, France
| |
Collapse
|
24
|
Stauffer M, Hirschi S, Ucurum Z, Harder D, Schlesinger R, Fotiadis D. Engineering and Production of the Light-Driven Proton Pump Bacteriorhodopsin in 2D Crystals for Basic Research and Applied Technologies. Methods Protoc 2020; 3:mps3030051. [PMID: 32707904 PMCID: PMC7563565 DOI: 10.3390/mps3030051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
The light-driven proton pump bacteriorhodopsin (BR) from the extreme halophilic archaeon Halobacterium salinarum is a retinal-binding protein, which forms highly ordered and thermally stable 2D crystals in native membranes (termed purple membranes). BR and purple membranes (PMs) have been and are still being intensively studied by numerous researchers from different scientific disciplines. Furthermore, PMs are being successfully used in new, emerging technologies such as bioelectronics and bionanotechnology. Most published studies used the wild-type form of BR, because of the intrinsic difficulty to produce genetically modified versions in purple membranes homologously. However, modification and engineering is crucial for studies in basic research and, in particular, to tailor BR for specific applications in applied sciences. We present an extensive and detailed protocol ranging from the genetic modification and cultivation of H. salinarum to the isolation, and biochemical, biophysical and functional characterization of BR and purple membranes. Pitfalls and problems of the homologous expression of BR versions in H. salinarum are discussed and possible solutions presented. The protocol is intended to facilitate the access to genetically modified BR versions for researchers of different scientific disciplines, thus increasing the application of this versatile biomaterial.
Collapse
Affiliation(s)
- Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
- Correspondence: (R.S.); (D.F.)
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, 3012 Bern, Switzerland; (M.S.); (S.H.); (Z.U.); (D.H.)
- Correspondence: (R.S.); (D.F.)
| |
Collapse
|
25
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
26
|
Ekimova M, Hoffmann F, Bekçioğlu-Neff G, Rafferty A, Kornilov O, Nibbering ETJ, Sebastiani D. Ultrafast Proton Transport between a Hydroxy Acid and a Nitrogen Base along Solvent Bridges Governed by the Hydroxide/Methoxide Transfer Mechanism. J Am Chem Soc 2019; 141:14581-14592. [PMID: 31446754 PMCID: PMC8168916 DOI: 10.1021/jacs.9b03471] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Aqueous
proton transport plays a key role in acid–base neutralization
and energy transport through biological membranes and hydrogen fuel
cells. Extensive experimental and theoretical studies have resulted
in a highly detailed elucidation of one of the underlying microscopic
mechanisms for aqueous excess proton transport, known as the von Grotthuss
mechanism, involving different hydrated proton configurations with
associated high fluxional structural dynamics. Hydroxide transport,
with approximately 2-fold-lower bulk diffusion rates compared to those
of excess protons, has received much less attention. We present femtosecond
UV/IR pump–probe experiments and ab initio molecular dynamics
simulations of different proton transport pathways of bifunctional
photoacid 7-hydroxyquinoline (7HQ) in water/methanol mixtures. For
7HQ solvent-dependent photoacidity, free-energy–reactivity
correlation behavior and quantum mechanics/molecular mechanics (QM/MM)
trajectories point to a dominant OH–/CH3O– transport pathway for all water/methanol mixing
ratios investigated. Our joint ultrafast infrared spectroscopic and
ab initio molecular dynamics study provides conclusive evidence for
the hydrolysis/methanolysis acid–base neutralization pathway,
as formulated by Manfred Eigen half a century ago. Our findings on
the distinctly different acid–base reactivities for aromatic
hydroxyl and aromatic nitrogen functionalities suggest the usefulness
of further exploration of these free-energy–reactivity correlations
as a function of solvent polarity. Ultimately the determination of
solvent-dependent acidities will contribute to a better understanding
of proton-transport mechanisms at weakly polar surfaces and near polar
or ionic regions in transmembrane proton pump proteins or hydrogen
fuel cell materials.
Collapse
Affiliation(s)
- Maria Ekimova
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max Born Str. 2A , 12489 Berlin , Germany
| | - Felix Hoffmann
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle , Saale , Germany
| | - Gül Bekçioğlu-Neff
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle , Saale , Germany
| | - Aidan Rafferty
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max Born Str. 2A , 12489 Berlin , Germany
| | - Oleg Kornilov
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max Born Str. 2A , 12489 Berlin , Germany
| | - Erik T J Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie , Max Born Str. 2A , 12489 Berlin , Germany
| | - Daniel Sebastiani
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle , Saale , Germany
| |
Collapse
|
27
|
Zhong F, Pletneva EV. Mechanistic Studies of Proton-Coupled Electron Transfer in a Calorimetry Cell. J Am Chem Soc 2019; 141:9773-9777. [PMID: 31177776 DOI: 10.1021/jacs.9b03512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanistic studies of proton-coupled electron-transfer (PCET) reactions in proteins are complicated by the challenge of following proton transfer (PT) in these large molecules. Herein we describe the use of isothermal titration calorimetry (ITC) to establish proton involvement in protein redox reactions and the identity of PT sites. We validate this approach with three variants of a heme protein cytochrome c (cyt c) and show that the method yields a wealth of thermodynamic information that is important for characterizing PCET reactions, including reduction potentials, redox-dependent p Ka values, and reaction enthalpies for both electron-transfer (ET) and PT steps. We anticipate that this facile and label-free ITC approach will find widespread applications in studies of other redox proteins and enhance our knowledge of PCET reaction mechanisms.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Ekaterina V Pletneva
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
28
|
Abstract
Lactose permease is a paradigm for the major facilitator superfamily, the largest family of ion-coupled membrane transport proteins known at present. LacY carries out the coupled stoichiometric symport of a galactoside with an H+, using the free energy released from downhill translocation of H+ to drive accumulation of galactosides against a concentration gradient. In neutrophilic Escherichia coli, internal pH is kept at ∼7.6 over the physiological range, but the apparent pK (pKapp) for galactoside binding is 10.5. Surface-enhanced infrared absorption spectroscopy (SEIRAS) demonstrates that the high pKa is due to Glu325 (helix X), which must be protonated for LacY to bind galactoside effectively. Deprotonation is also obligatory for turnover, however. Here, we utilize SEIRAS to study the effect of mutating residues in the immediate vicinity of Glu325 on its pKa The results are consistent with the idea that Arg302 (helix IX) is important for deprotonation of Glu325.
Collapse
|
29
|
pKa Determination of a Histidine Residue in a Short Peptide Using Raman Spectroscopy. Molecules 2019; 24:molecules24030405. [PMID: 30678032 PMCID: PMC6385126 DOI: 10.3390/molecules24030405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Determining the pKa of key functional groups is critical to understanding the pH-dependent behavior of biological proteins and peptide-based biomaterials. Traditionally, 1H NMR spectroscopy has been used to determine the pKa of amino acids; however, for larger molecules and aggregating systems, this method can be practically impossible. Previous studies concluded that the C-D stretches in Raman are a useful alternative for determining the pKa of histidine residues. In this study, we report on the Raman application of the C2-D probe on histidine’s imidazole side chain to determining the pKa of histidine in a short peptide sequence. The pKa of the tripeptide was found via difference Raman spectroscopy to be 6.82, and this value was independently confirmed via 1H NMR spectroscopy on the same peptide. The C2-D probe was also compared to other Raman reporters of the protonation state of histidine and was determined to be more sensitive and reliable than other protonation-dependent signals. The C2-D Raman probe expands the tool box available to chemists interested in directly interrogating the pKa’s of histidine-containing peptide and protein systems.
Collapse
|
30
|
Faramarzi S, Feng J, Mertz B. Allosteric Effects of the Proton Donor on the Microbial Proton Pump Proteorhodopsin. Biophys J 2018; 115:1240-1250. [PMID: 30219284 DOI: 10.1016/j.bpj.2018.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Proteorhodopsin (PR) is a microbial proton pump that is ubiquitous in marine environments and may play an important role in the oceanic carbon cycle. Photoisomerization of the retinal chromophore in PR leads to a series of proton transfers between specific acidic amino acid residues and the Schiff base of retinal, culminating in a proton motive force to facilitate ATP synthesis. The proton donor in a similar retinal protein, bacteriorhodopsin, acts as a latch to allow the influx of bulk water. However, it is unclear if the proton donor in PR, E108, utilizes the same latch mechanism to become internally hydrated. Here, we used molecular dynamics simulations to model the changes in internal hydration of the blue variant of PR during photoactivation with the proton donor in protonated and deprotonated states. We find that there is a stark contrast in the levels of internal hydration of the cytoplasmic half of PR based on the protonation state of E108. Instead of a latch mechanism, deprotonation of E108 acts as a gate, taking advantage of a nearby polar residue (S61) to promote the formation of a stable water wire from bulk cytoplasm to the retinal-binding pocket over hundreds of nanoseconds. No large-scale conformational changes occur in PR over the microsecond timescale. This subtle yet clear difference in the effect of deprotonation of the proton donor in PR may help explain why the photointermediates that involve the proton donor (i.e., M and N states) have timescales that are orders of magnitude different from the archaeal proton pump, bacteriorhodopsin. In general, our study highlights the importance of understanding how structural fluctuations lead to differences in the way that retinal proteins accomplish the same task.
Collapse
Affiliation(s)
- Sadegh Faramarzi
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Jun Feng
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Blake Mertz
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
31
|
Tamogami J, Kikukawa T, Ohkawa K, Ohsawa N, Nara T, Demura M, Miyauchi S, Kimura-Someya T, Shirouzu M, Yokoyama S, Shimono K, Kamo N. Interhelical interactions between D92 and C218 in the cytoplasmic domain regulate proton uptake upon N-decay in the proton transport of Acetabularia rhodopsin II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:35-45. [PMID: 29684719 DOI: 10.1016/j.jphotobiol.2018.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/07/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
Abstract
Acetabularia rhodopsin II (ARII or Ace2), an outward light-driven algal proton pump found in the giant unicellular marine alga Acetabularia acetabulum, has a unique property in the cytoplasmic (CP) side of its channel. The X-ray crystal structure of ARII in a dark state suggested the formation of an interhelical hydrogen bond between C218ARII and D92ARII, an internal proton donor to the Schiff base (Wada et al., 2011). In this report, we investigated the photocycles of two mutants at position C218ARII: C218AARII which disrupts the interaction with D92ARII, and C218SARII which potentially forms a stronger hydrogen bond. Both mutants exhibited slower photocycles compared to the wild-type pump. Together with several kinetic changes of the photoproducts in the first half of the photocycle, these replacements led to specific retardation of the N-to-O transition in the second half of the photocycle. In addition, measurements of the flash-induced proton uptake and release using a pH-sensitive indium-tin oxide electrode revealed a concomitant delay in the proton uptake. These observations strongly suggest the importance of a native weak hydrogen bond between C218ARII and D92ARII for proper proton translocation in the CP channel during N-decay. A putative role for the D92ARII-C218ARII interhelical hydrogen bond in the function of ARII is discussed.
Collapse
Affiliation(s)
- Jun Tamogami
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Keisuke Ohkawa
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Toshifumi Nara
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Seiji Miyauchi
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan; RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Kazumi Shimono
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Graduate School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
32
|
Schultz BJ, Mohrmann H, Lorenz-Fonfria VA, Heberle J. Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:666-674. [PMID: 28110813 DOI: 10.1016/j.saa.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
We have developed a spectrometer based on tunable quantum cascade lasers (QCLs) for recording time-resolved absorption spectra of proteins in the mid-infrared range. We illustrate its performance by recording time-resolved difference spectra of bacteriorhodopsin in the carboxylic range (1800-1700cm-1) and on the CO rebinding reaction of myoglobin (1960-1840cm-1), at a spectral resolution of 1cm-1. The spectrometric setup covers the time range from 4ns to nearly a second with a response time of 10-15ns. Absorption changes as low as 1×10-4 are detected in single-shot experiments at t>1μs, and of 5×10-6 in kinetics obtained after averaging 100 shots. While previous time-resolved IR experiments have mostly been conducted on hydrated films of proteins, we demonstrate here that the brilliance of tunable quantum cascade lasers is superior to perform ns time-resolved experiments even in aqueous solution (H2O).
Collapse
Affiliation(s)
- Bernd-Joachim Schultz
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Hendrik Mohrmann
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany; Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
33
|
pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin. Proc Natl Acad Sci U S A 2017; 114:E10909-E10918. [PMID: 29203649 DOI: 10.1073/pnas.1707993114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well below 1,700 cm-1 The first contribution corresponds to deprotonation of the proton release complex (PRC), a complex in the extracellular domain of bacteriorhodopsin where an excess proton is shared by a cluster of internal water molecules and/or ionic E194/E204 carboxylic groups. We assign the second component of the continuum band to the proton uptake complex, a cluster with an excess proton reminiscent to the PRC but located in the cytoplasmic domain and possibly stabilized by D38. Our findings refine the current interpretation of the continuum band and call for a reevaluation of the last proton transfer steps in bacteriorhodopsin.
Collapse
|
34
|
Mezzetti A, Leibl W. Time-resolved infrared spectroscopy in the study of photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2017; 131:121-144. [PMID: 27678250 DOI: 10.1007/s11120-016-0305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surfaces, 4 Pl. Jussieu, 75005, Paris, France.
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Winfried Leibl
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
35
|
Abstract
Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and a H+ across the cytoplasmic membrane of Escherichia coli (galactoside/H+ symport). One of the most important aspects of the mechanism is the relationship between protonation and binding of the cargo galactopyranoside. In this regard, it has been shown that protonation is required for binding. Furthermore when galactoside affinity is measured as a function of pH, an apparent pK (pKapp) of ∼10.5 is obtained. Strikingly, when Glu325, a residue long known to be involved in coupling between H+ and sugar translocation, is replaced with a neutral side chain, the pH effect is abolished, and high-affinity binding is observed until LacY is destabilized at alkaline pH. In this paper, infrared spectroscopy is used to identify Glu325 in situ. Moreover, it is demonstrated that this residue exhibits a pKa of 10.5 ± 0.1 that is insensitive to the presence of galactopyranoside. Thus, it is apparent that protonation of Glu325 specifically is required for effective sugar binding to LacY.
Collapse
|
36
|
Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1741-1750. [DOI: 10.1016/j.bbabio.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/06/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023]
|
37
|
Süss B, Ringleb F, Heberle J. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:063113. [PMID: 27370432 DOI: 10.1063/1.4953658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy.
Collapse
Affiliation(s)
- B Süss
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - F Ringleb
- Institute for Crystal Growth, Max-Born Straße 2, 12489 Berlin, Germany
| | - J Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
38
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
39
|
Resler T, Schultz BJ, Lórenz-Fonfría VA, Schlesinger R, Heberle J. Kinetic and vibrational isotope effects of proton transfer reactions in channelrhodopsin-2. Biophys J 2015; 109:287-97. [PMID: 26200864 PMCID: PMC4621815 DOI: 10.1016/j.bpj.2015.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/12/2015] [Accepted: 06/10/2015] [Indexed: 12/25/2022] Open
Abstract
Channelrhodopsins (ChRs) are light-gated cation channels. After blue-light excitation, the protein undergoes a photocycle with different intermediates. Here, we have recorded transient absorbance changes of ChR2 from Chlamydomonas reinhardtii in the visible and infrared regions with nanosecond time resolution, the latter being accomplished using tunable quantum cascade lasers. Because proton transfer reactions play a key role in channel gating, we determined vibrational as well as kinetic isotope effects (VIEs and KIEs) of carboxylic groups of various key aspartic and glutamic acid residues by monitoring their C=O stretching vibrations in H2O and in D2O. D156 exhibits a substantial KIE (>2) in its deprotonation and reprotonation, which substantiates its role as the internal proton donor to the retinal Schiff base. The unusual VIE of D156, upshifted from 1736 cm(-1) to 1738 cm(-1) in D2O, was scrutinized by studying the D156E variant. The C=O stretch of E156 shifted down by 8 cm(-1) in D2O, providing evidence for the accessibility of the carboxylic group. The C=O stretching band of E90 exhibits a VIE of 9 cm(-1) and a KIE of ∼2 for the de- and the reprotonation reactions during the lifetime of the late desensitized state. The KIE of 1 determined in the time range from 20 ns to 5 ms is incompatible with early deprotonation of E90.
Collapse
Affiliation(s)
- Tom Resler
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | | | | | - Ramona Schlesinger
- Genetic Biophysics at Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Meyer T, Knapp EW. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories. J Chem Theory Comput 2015; 11:2827-40. [PMID: 26575575 DOI: 10.1021/acs.jctc.5b00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a benchmark set of 194 measured pKa values in 13 proteins, electrostatic energy computations are performed in which pKa values are computed by solving the Poisson-Boltzmann equation. In contrast to the previous approach of Karlsberg(+) (KB(+)) that essentially used protein crystal structures with variations in their side chain conformations, the present approach (KB2(+)MD) uses protein conformations from four molecular dynamics (MD) simulations of 10 ns each. These MD simulations are performed with different specific but fixed protonation patterns, selected to sample the conformational space for the different protonation patterns faithfully. The root-mean-square deviation between computed and measured pKa values (pKa RMSD) is shown to be reduced from 1.17 pH units using KB(+) to 0.96 pH units using KB2(+)MD. The pKa RMSD can be further reduced to 0.79 pH units, if each conformation is energy-minimized with a dielectric constant of εmin = 4 prior to calculating the electrostatic energy. The electrostatic energy expressions upon which the computations are based have been reformulated such that they do not involve terms that mix protein and solvent environment contributions and no thermodynamic cycle is needed. As a consequence, conformations of the titratable residues can be treated independently in the protein and solvent environments. In addition, the energy terms used here avoid the so-called intrinsic pKa and can therefore be interpreted without reference to arbitrary protonation states and conformations.
Collapse
Affiliation(s)
- Tim Meyer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Fabeckstrasse 36A, 14195 Berlin, Germany
| | - Ernst-Walter Knapp
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Fabeckstrasse 36A, 14195 Berlin, Germany
| |
Collapse
|
41
|
Ball J, Bui QV, Gannavaram S, Gadda G. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by d-arginine dehydrogenase. Arch Biochem Biophys 2015; 568:56-63. [DOI: 10.1016/j.abb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|
42
|
Towards label-free and site-specific probing of the local pH in proteins: pH-dependent deep UV Raman spectra of histidine and tyrosine. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Wang T, Oppawsky C, Duan Y, Tittor J, Oesterhelt D, Facciotti MT. Stable closure of the cytoplasmic half-channel is required for efficient proton transport at physiological membrane potentials in the bacteriorhodopsin catalytic cycle. Biochemistry 2014; 53:2380-90. [PMID: 24660845 PMCID: PMC4004217 DOI: 10.1021/bi4013808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The bacteriorhodopsin (BR) Asp96Gly/Phe171Cys/Phe219Leu
triple
mutant has been shown to translocate protons 66% as efficiently as
the wild-type protein. Light-dependent ATP synthesis in haloarchaeal
cells expressing the triple mutant is 85% that of the wild-type BR
expressing cells. Therefore, the functional activity of BR seems to
be largely preserved in the triple mutant despite the observations
that its ground-state structure resembles that of the wild-type M
state (i.e., the so-called cytoplasmically open state) and that the
mutant shows no significant structural changes during its photocycle,
in sharp contrast to what occurs in the wild-type protein in which
a large structural opening and closing occurs on the cytoplasmic side.
To resolve the contradiction between the apparent functional robustness
of the triple mutant and the presumed importance of the opening and
closing that occurs in the wild-type protein, we conducted additional
experiments to compare the behavior of wild-type and mutant proteins
under different operational loads. Specifically, we characterized
the ability of the two proteins to generate light-driven proton currents
against a range of membrane potentials. The wild-type protein showed
maximal conductance between −150 and −50 mV, whereas
the mutant showed maximal conductance at membrane potentials >+50
mV. Molecular dynamics (MD) simulations of the triple mutant were
also conducted to characterize structural changes in the protein and
in solvent accessibility that might help to functionally contextualize
the current–voltage data. These simulations revealed that the
cytoplasmic half-channel of the triple mutant is constitutively open
and dynamically exchanges water with the bulk. Collectively, the data
and simulations help to explain why this mutant BR does not mediate
photosynthetic growth of haloarchaeal cells, and they suggest that
the structural closing observed in the wild-type protein likely plays
a key role in minimizing substrate back flow in the face of electrochemical
driving forces present at physiological membrane potentials.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biomedical Engineering and Genome Center, 451 East Health Science Drive, University of California , Davis, California 95616-8816, United States
| | | | | | | | | | | |
Collapse
|
44
|
Salgado LEV, Vargas-Hernández C. Spectrophotometric Determination of the pKa, Isosbestic Point and Equation of Absorbance vs. pH for a Universal pH Indicator. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajac.2014.517135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Schwans JP, Sunden F, Gonzalez A, Tsai Y, Herschlag D. Uncovering the determinants of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase. Biochemistry 2013; 52:7840-55. [PMID: 24151972 PMCID: PMC3890242 DOI: 10.1021/bi401083b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the idiosyncratic enzyme active-site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near charged groups or within hydrophobic pockets, Tyr57 of a Pseudomonas putida ketosteroid isomerase (KSI) mutant, suggested to have a pKa perturbed by nearly 4 units to 6.3, is situated within a solvent-exposed active site devoid of cationic side chains, metal ions, or cofactors. Extensive comparisons among 45 variants with mutations in and around the KSI active site, along with protein semisynthesis, (13)C NMR spectroscopy, absorbance spectroscopy, and X-ray crystallography, was used to unravel the basis for this perturbed Tyr pKa. The results suggest that the origin of large energetic perturbations are more complex than suggested by visual inspection. For example, the introduction of positively charged residues near Tyr57 raises its pKa rather than lowers it; this effect, and part of the increase in the Tyr pKa from the introduction of nearby anionic groups, arises from accompanying active-site structural rearrangements. Other mutations with large effects also cause structural perturbations or appear to displace a structured water molecule that is part of a stabilizing hydrogen-bond network. Our results lead to a model in which three hydrogen bonds are donated to the stabilized ionized Tyr, with these hydrogen-bond donors, two Tyr side chains, and a water molecule positioned by other side chains and by a water-mediated hydrogen-bond network. These results support the notion that large energetic effects are often the consequence of multiple stabilizing interactions rather than a single dominant interaction. Most generally, this work provides a case study for how extensive and comprehensive comparisons via site-directed mutagenesis in a tight feedback loop with structural analysis can greatly facilitate our understanding of enzyme active-site energetics. The extensive data set provided may also be a valuable resource for those wishing to extensively test computational approaches for determining enzymatic pKa values and energetic effects.
Collapse
Affiliation(s)
- Jason P. Schwans
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Ana Gonzalez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Yingssu Tsai
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
46
|
Rich PR, Maréchal A. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. J R Soc Interface 2013; 10:20130183. [PMID: 23864498 PMCID: PMC3730678 DOI: 10.1098/rsif.2013.0183] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/03/2013] [Indexed: 01/31/2023] Open
Abstract
The structures and functions of hydrophilic channels in electron-transferring membrane proteins are discussed. A distinction is made between proton channels that can conduct protons and dielectric channels that are non-conducting but can dielectrically polarize in response to the introduction of charge changes in buried functional centres. Functions of the K, D and H channels found in A1-type cytochrome c oxidases are reviewed in relation to these ideas. Possible control of function by dielectric channels and their evolutionary relation to proton channels is explored.
Collapse
Affiliation(s)
- Peter R Rich
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
47
|
Wang T, Sessions AO, Lunde CS, Rouhani S, Glaeser RM, Duan Y, Facciotti MT. Deprotonation of D96 in bacteriorhodopsin opens the proton uptake pathway. Structure 2013; 21:290-7. [PMID: 23394942 DOI: 10.1016/j.str.2012.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/08/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Despite extensive investigation, the precise mechanism controlling the opening of the cytoplasmic proton uptake pathway in bacteriorhodopsin (bR) has remained a mystery. From an analysis of the X-ray structure of the D96G/F171C/F219L triple mutant of bR and 60 independent molecular dynamics simulations of bR photointermediates, we report that the deprotonation of D96, a key residue in proton transfer reactions, serves two roles that occur sequentially. First, D96 donates a proton to the Schiff base. Subsequently, the deprotonation of D96 serves to "unlatch" the cytoplasmic side. The latching function of D96 appears to be remarkably robust, functioning to open hydration channels in all photointermediate structures. These results suggest that the protonation state of D96 may be the critical biophysical cue controlling the opening and closing of the cytoplasmic half-channel in bR. We suspect that this protonation-switch mechanism could also be utilized in other proton pumps to minimize backflow and reinforce directionality.
Collapse
Affiliation(s)
- Ting Wang
- Genome Center and Department of Biomedical Engineering, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Dioumaev AK, Petrovskaya LE, Wang JM, Balashov SP, Dolgikh DA, Kirpichnikov MP, Lanyi JK. Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible. J Phys Chem B 2013; 117:7235-53. [PMID: 23718558 DOI: 10.1021/jp402430w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photocycle of the retinal protein from Exiguobacterium sibiricum, which differs from bacteriorhodopsin in both its primary donor and acceptor, is characterized by visible and infrared spectroscopy. At pH above pKa ~6.5, we find a bacteriorhodopsin-like photocycle, which originates from excitation of the all-trans retinal chromophore with K-, L-, M-, and N-like intermediates. At pH below pKa ~6.5, the M state, which reflects Schiff base deprotonation during proton pumping, is not accumulated. However, using the infrared band at ~1760 cm(-1) as a marker for transient protonation of the primary acceptor, we find that Schiff base deprotonation must have occurred at pH not only above but also below the pKa ~6.5. Thus, the M state is formed but not accumulated for kinetic reasons. Further, chromophore reisomerization from the 13-cis to the all-trans conformation occurs very late in the photocycle. The strongly red-shifted states that dominate the second half of the cycle are produced before the reisomerization step, and by this criterion, they are not O-like but rather N-like states. The assignment of photocycle intermediates enables reevaluation of the photocycle; its specific features are discussed in relation to the general mechanism of proton transport in retinal proteins.
Collapse
Affiliation(s)
- Andrei K Dioumaev
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Balashov SP, Petrovskaya LE, Imasheva ES, Lukashev EP, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK. Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum. J Biol Chem 2013; 288:21254-21265. [PMID: 23696649 DOI: 10.1074/jbc.m113.465138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A lysine instead of the usual carboxyl group is in place of the internal proton donor to the retinal Schiff base in the light-driven proton pump of Exiguobacterium sibiricum (ESR). The involvement of this lysine in proton transfer is indicated by the finding that its substitution with alanine or other residues slows reprotonation of the Schiff base (decay of the M intermediate) by more than 2 orders of magnitude. In these mutants, the rate constant of the M decay linearly decreases with a decrease in proton concentration, as expected if reprotonation is limited by the uptake of a proton from the bulk. In wild type ESR, M decay is biphasic, and the rate constants are nearly pH-independent between pH 6 and 9. Proton uptake occurs after M formation but before M decay, which is especially evident in D2O and at high pH. Proton uptake is biphasic; the amplitude of the fast phase decreases with a pKa of 8.5 ± 0.3, which reflects the pKa of the donor during proton uptake. Similarly, the fraction of the faster component of M decay decreases and the slower one increases, with a pKa of 8.1 ± 0.2. The data therefore suggest that the reprotonation of the Schiff base in ESR is preceded by transient protonation of an initially unprotonated donor, which is probably the ε-amino group of Lys-96 or a water molecule in its vicinity, and it facilitates proton delivery from the bulk to the reaction center of the protein.
Collapse
Affiliation(s)
- Sergei P Balashov
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| | - Lada E Petrovskaya
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and.
| | - Eleonora S Imasheva
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Evgeniy P Lukashev
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei K Dioumaev
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Jennifer M Wang
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Sergey V Sychev
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and
| | - Dmitriy A Dolgikh
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrei B Rubin
- the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail P Kirpichnikov
- the Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia, and; the Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Janos K Lanyi
- From the Department of Physiology and Biophysics, University of California, Irvine, California 92697,.
| |
Collapse
|
50
|
Guo Z, Woodbury NW, Pan J, Lin S. Protein dielectric environment modulates the electron-transfer pathway in photosynthetic reaction centers. Biophys J 2013. [PMID: 23199926 DOI: 10.1016/j.bpj.2012.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replacement of tyrosine by aspartic acid at position M210 in the photosynthetic reaction center of Rhodobacter sphaeroides results in the generation of a fast charge recombination pathway that is not observed in the wild-type. Apparently, the initially formed charge-separated state (cation of the special pair, P, and anion of the A-side bacteriopheophytin, H(A)) can decay rapidly via recombination through the neighboring bacteriochlorophyll (B(A)) soon after formation. The charge-separated state then relaxes over tens of picoseconds and recombination slows to the hundreds-of-picoseconds or nanosecond timescale. This dielectric relaxation results in a time-dependent blue shift of B(A)(-) absorption, which can be monitored using transient absorbance measurements. Protein dynamics also appear to modulate the electron transfer between H(A) and the next electron carrier, Q(A) (a ubiquinone). The kinetics of this reaction are complex in the mutant, requiring two kinetic terms, and the spectra associated with the two terms are distinct; a red shift of the H(A) ground-state bleaching is observed between the shorter and longer H(A)-to-Q(A) electron-transfer phases. The kinetics appears to be pH-independent, suggesting a negligible contribution of static heterogeneity originating from protonation/deprotonation in the ground state. A dynamic model based on the energy levels of the two early charge-separated states, P(+)B(A)(-) and P(+)H(A)(-), has been developed in which the energetics of these states is modulated by fast protein dielectric relaxations and this in turn alters both the kinetic complexity of the reaction and the reaction pathway.
Collapse
Affiliation(s)
- Zhi Guo
- The Biodesign Institute at Arizona State University, Tempe, Arizona, USA
| | | | | | | |
Collapse
|