1
|
Successful allogeneic bone marrow transplantation in a case of variant acute promyelocytic leukemia with ZBTB16-RARA. Ann Hematol 2022; 101:1129-1132. [DOI: 10.1007/s00277-022-04825-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
|
2
|
A novel fusion protein TBLR1-RARα acts as an oncogene to induce murine promyelocytic leukemia: identification and treatment strategies. Cell Death Dis 2021; 12:607. [PMID: 34117212 PMCID: PMC8196070 DOI: 10.1038/s41419-021-03889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/04/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a specific chromosome translocation involving RARα and its fusion partners. For decades, the advent of all-trans retinoic acid (ATRA) synergized with arsenic trioxide (As2O3) has turned most APL from highly fatal to highly curable. TBLR1-RARα (TR) is the tenth fusion gene of APL identified in our previous study, with its oncogenic role in the pathogenesis of APL not wholly unraveled. In this study, we found the expression of TR in mouse hematopoietic progenitors induces blockade of differentiation with enhanced proliferative capacity in vitro. A novel murine transplantable leukemia model was then established by expressing TR fusion gene in lineage-negative bone marrow mononuclear cells. Characteristics of primary TR mice revealed a rapid onset of aggressive leukemia with bleeding diathesis, which recapitulates human APL more accurately than other models. Despite the in vitro sensitivity to ATRA-induced cell differentiation, neither ATRA monotherapy nor combination with As2O3 confers survival benefit to TR mice, consistent with poor clinical outcome of APL patients with TR fusion gene. Based on histone deacetylation phenotypes implied by bioinformatic analysis, HDAC inhibitors demonstrated significant survival superiority in the survival of TR mice, yielding insights into clinical efficacy against rare types of APL.
Collapse
|
3
|
Zhang X, Sun J, Yu W, Jin J. Current views on the genetic landscape and management of variant acute promyelocytic leukemia. Biomark Res 2021; 9:33. [PMID: 33957999 PMCID: PMC8101136 DOI: 10.1186/s40364-021-00284-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the accumulation of promyelocytes in bone marrow. More than 95% of patients with this disease belong to typical APL, which express PML-RARA and are sensitive to differentiation induction therapy containing all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), and they exhibit an excellent clinical outcome. Compared to typical APL, variant APL showed quite different aspects, and how to recognize, diagnose, and treat variant APL remained still challenged at present. Herein, we drew the genetic landscape of variant APL according to recent progresses, then discussed how they contributed to generate APL, and further shared our clinical experiences about variant APL treatment. In practice, when APL phenotype was exhibited but PML-RARA and t(15;17) were negative, variant APL needed to be considered, and fusion gene screen as well as RNA-sequencing should be displayed for making the diagnosis as soon as possible. Strikingly, we found that besides of RARA rearrangements, RARB or RARG rearrangements also generated the phenotype of APL. In addition, some MLL rearrangements, NPM1 rearrangements or others could also drove variant APL in absence of RARA/RARB/RARG rearrangements. These results indicated that one great heterogeneity existed in the genetics of variant APL. Among them, only NPM1-RARA, NUMA-RARA, FIP1L1-RARA, IRF2BP2-RARA, and TFG-RARA have been demonstrated to be sensitive to ATRA, so combined chemotherapy rather than differentiation induction therapy was the standard care for variant APL and these patients would benefit from the quick switch between them. If ATRA-sensitive RARA rearrangement was identified, ATRA could be added back for re-induction of differentiation. Through this review, we hoped to provide one integrated view on the genetic landscape of variant APL and helped to remove the barriers for managing this type of disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| | - Jiewen Sun
- Center Laboratory, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| |
Collapse
|
4
|
Li Y, Ma X, Chen Z, Wu H, Wang P, Wu W, Cheng N, Zeng L, Zhang H, Cai X, Chen SJ, Chen Z, Meng G. B1 oligomerization regulates PML nuclear body biogenesis and leukemogenesis. Nat Commun 2019; 10:3789. [PMID: 31439836 PMCID: PMC6706441 DOI: 10.1038/s41467-019-11746-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
ProMyelocyticLeukemia (PML) protein can polymerize into a mega-Dalton nuclear assembly of 0.1-2 μm in diameter. The mechanism of PML nuclear body biogenesis remains elusive. Here, PMLRBCC is successfully purified. The gel filtration and ultracentrifugation analysis suggest a previously unrecognized sequential oligomerization mechanism via PML monomer, dimer, tetramer and N-mer. Consistently, PML B1-box structure (2.0 Å) and SAXS characterization reveal an unexpected networking by W157-, F158- and SD1-interfaces. Structure-based perturbations in these B1 interfaces not only impair oligomerization in vitro but also abolish PML sumoylation and nuclear body biogenesis in HeLaPml-/- cell. More importantly, as demonstrated by in vivo study using transgenic mice, PML-RARα (PR) F158E precludes leukemogenesis. In addition, single cell RNA sequencing analysis shows that B1 oligomerization is an important regulator in PML-RARα-driven transactivation. Altogether, these results not only define a previously unrecognized B1-box oligomerization in PML, but also highlight oligomerization as an important factor in carcinogenesis.
Collapse
MESH Headings
- Animals
- Carcinogenesis
- Gene Knockout Techniques
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/ultrastructure
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Promyelocytic Leukemia Protein/ultrastructure
- Protein Domains/genetics
- Protein Multimerization
- Retinoic Acid Receptor alpha/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/ultrastructure
- Scattering, Small Angle
- Sequence Analysis, RNA
- Single-Cell Analysis
- Sumoylation
- X-Ray Diffraction
Collapse
Grants
- Shanghai Municipal Education Commission
- National Natural Science Foundation of China (National Science Foundation of China)
- This work was supported by research grants 81770142, 81370620, 81570120, 31070645, 81800144, 31800642 from National Natural Science Foundation of China, a research grant 20152504 from “Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support”, “The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institute of Higher Learning”, a research grant 11JC1407200 from SMSTC, a research grant 12ZZ109 from SME, “Program for New Century Excellent Talents in University (NCET-10-9571).
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhiming Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Haiyan Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Nuo Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hao Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xun Cai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
6
|
Mi JQ, Chen SJ, Zhou GB, Yan XJ, Chen Z. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer. J Intern Med 2015; 278:627-42. [PMID: 26058416 DOI: 10.1111/joim.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. It has been found that all-trans-retinoic acid (ATRA) or arsenic trioxide (ATO) alone exerts therapeutic effect on APL patients with the PML-RARα fusion gene, and the combination of both drugs can act synergistically to further enhance the cure rate of the patients. Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.
Collapse
Affiliation(s)
- J-Q Mi
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S-J Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G-B Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - X-J Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang, China
| | - Z Chen
- State Key Laboratory for Medical Genomics and Department of Hematology, Shanghai Institute of Hematology, Collaborative Innovation Center of Systems Biomedicine, Pôle Sino-Français des Sciences du Vivant et Genomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
|
8
|
Kikuma T, Nakamachi Y, Noguchi Y, Okazaki Y, Shimomura D, Yakushijin K, Yamamoto K, Matsuoka H, Minami H, Itoh T, Kawano S. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene. Int J Hematol 2015; 102:713-8. [PMID: 26342691 DOI: 10.1007/s12185-015-1857-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
We report here the first case of NPM1/RARA-positive acute promyelocytic leukemia (APL) preceded by myeloid sarcoma (MS) in the vertebra. A 52-year-old man was diagnosed with MS, as the tumor cells were positive for myeloperoxidase and CD68 but negative for CD163. After treatment with steroids and radiation, the size of the tumor was markedly reduced and peripheral blood count was normal. Bone marrow examination showed 89.2% consisted of unclassified promyelocytes characterized by round nuclei and abundant small azurophilic granules but no Auer rods. The results of chromosome analysis showed 46,XY,t(5;17)(q35;q12). Reverse-transcription polymerase chain reaction amplified the NPM1/RARA fusion transcripts derived from a combination of NPM1 exon 4 and RARA exon 5, or of NPM1 exon 1 and RARA exon 5; the latter of these has not been reported previously. Electron microscopic examination of the promyelocyte nuclei showed they were oval with mild nuclear chromatin condensation and small- to medium-sized nucleoli. Hematological and molecular complete remission was attained after induction therapy including all-trans retinoic acid. As MS was also diagnosed in two of the seven other reported cases of APL with NPM1/RARA, MS may occur more frequently in APL with NPM1/RARA than APL with PML/RARA.
Collapse
Affiliation(s)
- Tomoe Kikuma
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuji Nakamachi
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Yoriko Noguchi
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoko Okazaki
- Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Daisuke Shimomura
- Department of Clinical Pathology, Tenri Hospital, Tenri, Nara, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Katsuya Yamamoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Seiji Kawano
- Division of Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Pollock SL, Rush EA, Redner RL. NPM–RAR, not the RAR–NPM reciprocal t(5;17)(q35;q21) acute promyelocytic leukemia fusion protein, inhibits myeloid differentiation. Leuk Lymphoma 2013; 55:1383-7. [DOI: 10.3109/10428194.2013.830303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Abstract
In acute promyelocytic leukemia, granulocytic differentiation is arrested at the promyelocyte stage. The variant t(11;17) translocation produces two fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) and RARα-PLZF, both of which participate in leukemia development. Here we provide evidence that the activity of CCAAT/enhancer binding protein α (C/EBPα), a master regulator of granulocytic differentiation, is severely impaired in leukemic promyelocytes with the t(11;17) translocation compared with those associated with the t(15;17) translocation. We show that RARα-PLZF inhibits myeloid cell differentiation through interactions with C/EBPα tethered to DNA, using ChIP and DNA capture assays. Furthermore, RARα-PLZF recruits HDAC1 and causes histone H3 deacetylation at C/EBPα target loci, thereby decreasing the expression of C/EBPα target genes. In line with these results, HDAC inhibitors restore in part C/EBPα target gene expression. These findings provide molecular evidence for a mechanism through which RARα-PLZF acts as a modifier oncogene that subverts differentiation in the granulocytic lineage by associating with C/EBPα and inhibiting its activity.
Collapse
|
11
|
8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARα degradation. Proc Natl Acad Sci U S A 2013; 110:3495-500. [PMID: 23382200 DOI: 10.1073/pnas.1222863110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3', 5'-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients.
Collapse
|
12
|
Jang SH, Chung HY. MYC and PIM2 co-expression in mouse bone marrow cells readily establishes permanent myeloid cell lines that can induce lethal myeloid sarcoma in vivo. Mol Cells 2012; 34:201-8. [PMID: 22843119 PMCID: PMC3887814 DOI: 10.1007/s10059-012-0142-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/30/2023] Open
Abstract
The hematopoietic cell malignancy is one of the most prevalent type of cancer and the disease has multiple pathologic molecular signatures. Research on the origin of hematopoietic cancer stem cells and the mode of subsequent maintenance and differentiation needs robust animal models that can reproduce the transformation and differentiation event in vivo. Here, we show that co-transduction of MYC and PIM2 proto-oncogenes into mouse bone marrow cells readily establishes permanent cell lines that can induce lethal myeloid sarcoma in vivo. Unlike the previous doubly transgenic mouse model in which coexpression of MYC and PIM2 transgenes exclusively induced B cell lymphoma, we were able to show that the same combination of genes can also transform primary bone marrow myeloid cells in vitro resulting in permanent cell lines which induce myeloid sarcoma upon in vivo transplantation. By inducing cancerous transformation of fresh bone marrow cells in a controlled environment, the model we established will be useful for detailed study of the molecular events involved in initial transformation process of primary myeloid bone marrow cells and provides a model that can give insight to the molecular pathologic characteristics of human myeloid sarcoma, a rare presentation of solid tumors of undifferentiated myeloid blast cells associated with various types of myeloid leukemia.
Collapse
Affiliation(s)
- Su Hwa Jang
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Hee Yong Chung
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791,
Korea
| |
Collapse
|
13
|
Pathogenesis and treatment of thrombohemorrhagic diathesis in acute promyelocytic leukemia. Mediterr J Hematol Infect Dis 2011; 3:e2011068. [PMID: 22220265 PMCID: PMC3248345 DOI: 10.4084/mjhid.2011.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/10/2011] [Indexed: 12/21/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of myeloid leukemia characterized by t(15;17) chromosomal translocation, which involves the retinoic acid receptor-alpha (RAR-alpha). APL typically presents with a life-threatening hemorrhagic diathesis. Before the introduction of all-trans retinoic acid (ATRA) for the cure of APL, fatal hemorrhages due, at least in part, to the APL-associated coagulopathy, were a major cause of induction remission failure. The laboratory abnormalities of blood coagulation found in these patients indicate the occurrence of a hypercoagulable state. Major determinants of the coagulopathy of APL are endogenous factors expressed by the leukemic cells, including procoagulant factors, fibrinolytic proteins, and non-specific proteolytic enzymes. In addition, these cells have an increased capacity to adhere to the vascular endothelium, and to secrete inflammatory cytokines [i.e. interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha)], which in turn stimulate the expression of prothrombotic activities by endothelial cells and leukocytes. ATRA can interfere with each of the principal hemostatic properties of the leukemic cell, thus reducing the APL cell procoagulant potential, in parallel to the induction of cellular differentiation. This effect occurs in vivo, in the bone marrow of APL patients receiving ATRA, and is associated with the improvement of the bleeding symptoms. Therapy with arsenic trioxide (ATO) also beneficially affects coagulation in APL. However, early deaths from bleeding still remain a major problem in APL and further research is required in this field. In this review, we will summarize our current knowledge of the pathogenesis of the APL-associated coagulopathy and will overview the therapeutic approaches for the management of this complication.
Collapse
|
14
|
Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, Goult BT, Greenwood JA, Gooch JT, Kallenberger BC, Nagy L, Neuhaus D, Schwabe JW. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 2011; 18:177-84. [PMID: 21240272 PMCID: PMC3232451 DOI: 10.1038/nsmb.1983] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
Eukaryotic transcriptional repressors function by recruiting large coregulatory complexes that target histone deacetylase enzymes to gene promoters and enhancers. Transcriptional repression complexes, assembled by the corepressor NCoR and its homolog SMRT, are crucial in many processes, including development and metabolic physiology. The core repression complex involves the recruitment of three proteins, HDAC3, GPS2 and TBL1, to a highly conserved repression domain within SMRT and NCoR. We have used structural and functional approaches to gain insight into the architecture and biological role of this complex. We report the crystal structure of the tetrameric oligomerization domain of TBL1, which interacts with both SMRT and GPS2, and the NMR structure of the interface complex between GPS2 and SMRT. These structures, together with computational docking, mutagenesis and functional assays, reveal the assembly mechanism and stoichiometry of the corepressor complex.
Collapse
Affiliation(s)
- Jasmeen Oberoi
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Ji-Chun Yang
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - Zsolt Czimmerer
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - Thorsten Kampmann
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Benjamin T. Goult
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - Jacquie A. Greenwood
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| | - John T. Gooch
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | | | - Laszlo Nagy
- Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, Department of Biochemistry and Molecular Biology, Life Sciences Building, Medical and Health Science Center, University of Debrecen, Debrecen, Egyetem ter 1. H-4032 Hungary
| | - David Neuhaus
- MRC-Laboratory of Molecular Biology, Hills Road, Cambridge. CB2 0QH
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Lancaster Road, Leicester. LE1 9HN
| |
Collapse
|
15
|
Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev Anticancer Ther 2009; 9:1283-94. [PMID: 19761432 DOI: 10.1586/era.09.84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein implicated in the regulation of multiple cellular functions, which possesses both oncogenic and tumor-suppressor properties. Mutations of the NPM1 gene leading to the expression of a cytoplasmic mutant protein, NPMc+, are the most frequent genetic abnormalities found in acute myeloid leukemias. Acute myeloid leukemias with mutated NPM1 have distinct characteristics, including a significant association with a normal karyotype, involvement of different hematopoietic lineages, a specific gene-expression profile and clinically, a better response to induction therapy and a favorable prognosis. NPMc+ maintains the capacity of wild-type NPM to interact with a variety of cellular proteins, and impairs their activity by delocalizing them to the cytoplasm. In this review we summarize recent discoveries concerning NPM function, and discuss their possible impact on the pathogenesis of acute myeloid leukemias with mutated NPM1.
Collapse
Affiliation(s)
- Natalia Meani
- Istituto Europeo di Oncologia, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
16
|
Abstract
Retinoids function as activating ligands for a class of nuclear receptors that control gene expression programs for a wide range of tissues and organs during embryogenesis and throughout life. Over the years, three sets of observations have spurred interest in the function of retinoids with respect to development and disease of hematopoietic cells. Since the 1920s, epidemiological studies indicated altered hematopoiesis in vitamin A-deficient (VAD) human populations. More recently, the ability of retinoids to affect various aspects of hematopoietic development has been demonstrated in vitro. Finally, it was discovered that the gene encoding a retinoid receptor is a key target for chromosomal translocations that cause acute promyelocytic leukemia (APL). More recent investigations using targeted gene disruptions, VAD animal models, and mouse models of leukemia have continued to shed light on the function of the retinoid pathway in blood cells. It is now clear that retinoids are required for normal hematopoiesis during both yolk sac and fetal liver stages of hematopoiesis, while the pathway has at least modulatory functions for bone marrow derived progenitors. Studies of normal development and APL have provided complementary insight into the molecular control of blood cell differentiation. Here we review the evidence for retinoid requirements in hematopoiesis and also summarize current ideas regarding how this pathway is subverted in leukemia.
Collapse
Affiliation(s)
- Tal Oren
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 501, Bronx, NY 10461, USA
| | | | | |
Collapse
|
17
|
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. Morphologically, it is identified as the M3 subtype of acute myeloid leukemia by the French-American-British classification and cytogenetically is characterized by a balanced reciprocal translocation between chromosomes 15 and 17, which results in the fusion between promyelocytic leukemia (PML) gene and retinoic acid receptor alpha (RARalpha). It seems that the disease is the most malignant form of acute leukemia with a severe bleeding tendency and a fatal course of only weeks. Chemotherapy (CT; daunorubicin, idarubicin and cytosine arabinoside) was the front-line treatment of APL with a complete remission (CR) rate of 75% to 80% in newly diagnosed patients. Despite all these progresses, the median duration of remission ranged from 11 to 25 months and only 35% to 45% of the patients could be cured by CT. Since the introduction of all-trans retinoic acid (ATRA) in the treatment and optimization of the ATRA-based regimens, the CR rate was raised up to 90% to 95% and 5-year disease free survival (DFS) to 74%. The use of arsenic trioxide (ATO) since early 1990s further improved the clinical outcome of refractory or relapsed as well as newly diagnosed APL. In this article, we review the history of introduction of ATRA and ATO into clinical use and the mechanistic studies in understanding this model of cancer targeted therapy.
Collapse
|
18
|
McCormack E, Bruserud O, Gjertsen BT. Review: genetic models of acute myeloid leukaemia. Oncogene 2008; 27:3765-79. [PMID: 18264136 DOI: 10.1038/onc.2008.16] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of genetically engineered mice (GEM) have been critical in understanding disease states such as cancer, and none more so than acute myelogenous leukaemia (AML), a disease characterized by over 100 distinct chromosomal translocations. A substantial proportion of cases exhibiting recurrent reciprocal translocations at diagnosis, such as t(8;21) or t(15;17) have been exhaustively studied and are currently employed in clinical diagnosis. However, a definitive conclusion regarding the leukaemogenic potential of defined transgenes for this disease remains elusive. While it is increasingly apparent that a number of cooperating mutations are necessary to develop a leukaemic phenotype, the number of models reflecting these synergisms remains few. Furthermore, little emphasis has been paid to the effect of chromosomal translocations other than recurrent genetic abnormalities, with no models reflecting the multiple abnormalities observed in high-risk cases of AML accounting for 8-10% of adult AML. Here we review the differing technologies employed in generation of GEM of AML. We discuss the relevance of GEM AML from embryonic stem cell-mediated (for example retinoic acid receptor-alpha fusions and AML1/ETO) models; through to the valuable retroviral-mediated gene transfer models. The latter have been used to great effect in defining the transforming properties of chromosomal translocation products such as MLL (found in 5-6% of all AML cases) and NUP98 (denoting poor prognosis in therapy-related disease) and particularly when co-transduced with bad prognostic factors such as Flt3 mutations. Finally, we comment on the emergence of newer transduction technologies, which can regulate the level of expression to defined cell lineages in both primary murine and human xenografts, and discuss how combining multiple genetic modalities, more relevant models of this complex disease are being generated.
Collapse
Affiliation(s)
- E McCormack
- Institute of Medicine, Haematology Section, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
19
|
Zhou GB, Li G, Chen SJ, Chen Z. From dissection of disease pathogenesis to elucidation of mechanisms of targeted therapies: leukemia research in the genomic era. Acta Pharmacol Sin 2007; 28:1434-49. [PMID: 17723177 DOI: 10.1111/j.1745-7254.2007.00684.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leukemia is a group of heterozygous diseases of hematopoietic stem/progenitor cells that involves dynamic change in the genome. Dissection of genetic abnormalities critical to leukemia initiation provides insights into the elusive leukemogenesis, identifies distinct subsets of leukemia and predicts prognosis individually, and can also provide rational therapeutic targets for curative approaches. The past three decades have seen tremendous advances in the analysis of genotype-phenotype connection of leukemia, and in the identification of molecular biomarkers for leukemia subtypes. Intriguingly, differentiation therapy, targeted therapy and chemotherapy have turned several subtypes of leukemia from highly fatal to highly curable. The use of all-trans retinoic acid and arsenic trioxide, which trigger degradation of PML-RARalpha, the causative fusion protein generated by t (15;17) translocation in acute promyelocytic leukemia (APL), has led to a dramatic improvement of APL clinical outcome. Imatinib mesylate/ Gleevec/STI571, which inhibits the tyrosine kinase activity of BCR-ABL oncoprotein, has now become the new gold standard for the treatment of chronic myeloid leukemia. Optimal use of chemotherapeutic agents together with a stringent application of prognostic factors for risk-directed therapy in clinical trials has resulted in a steady improvement in the treatment outcome of acute lymphoblastic leukemia. Hence, the pace of progress extrapolates to a prediction of leukemia control in the twenty-first century.
Collapse
Affiliation(s)
- Guang-biao Zhou
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | |
Collapse
|
20
|
Chen GQ, Wang LS, Wu YL, Yu Y. Leukemia, an effective model for chemical biology and target therapy. Acta Pharmacol Sin 2007; 28:1316-24. [PMID: 17723165 DOI: 10.1111/j.1745-7254.2007.00680.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The rapid rise of chemical biology aimed at studying signaling networks for basic cellular activities using specific, active small molecules as probes has greatly accelerated research on pathological mechanisms and target therapy of diseases. This research is especially important for malignant tumors such as leukemia, a heterogeneous group of hematopoietic malignancies that occurs worldwide. With the use of a chemical approach combined with genetic manipulation, great progress has been achieved over the past few decades on the biological, molecular and cytogenetic aspects of leukemia, and in its diagnosis and therapy. In particular, discoveries of the clinical effectiveness of all-trans retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia and the kinase inhibitors Imatinib and Dasatinib in the treatment of chronic myelogenous leukemia not only make target therapy of leukemia a reality, but also push mechanisms of leukemogenesis and leukemic cell activities forward. This review will outline advances in chemical biology that help our understanding of the molecular mechanisms of cell differentiation and apoptosis induction and target therapy of leukemia.
Collapse
Affiliation(s)
- Guo-qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (formerly Shanghai Second Medical University), Shanghai, China.
| | | | | | | |
Collapse
|
21
|
McLornan DP, McMullin MF, Johnston P, Longley DB. Molecular mechanisms of drug resistance in acute myeloid leukaemia. Expert Opin Drug Metab Toxicol 2007; 3:363-77. [PMID: 17539744 DOI: 10.1517/17425255.3.3.363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Resistance to chemotherapy in acute myeloid leukaemia is a major obstacle to a successful outcome for many patients. Often, there is resistance against a broad range of drugs due to multiple, simultaneously active processes. These mechanisms include effects on drug influx and efflux, drug activation/inactivation, DNA repair mechanisms, altered response of end targets, an altered haematopoietic microenvironment and dysfunctional apoptotic pathways. This article reviews the factors that determine leukaemic cell chemosensitivity and discusses the potential for rationally guided therapy.
Collapse
Affiliation(s)
- Donal P McLornan
- Medical Research Council Clinical Research Fellow, Queen's University Belfast, Centre for Cancer Research and Cell Biology, BT7 1NN, Northern Ireland, UK
| | | | | | | |
Collapse
|
22
|
Abstract
Mouse models of acute promyelocytic leukemia have been generated through transgenic, knock-in, retroviral, and xenograft strategies. These models have been used to elucidate mechanisms underlying leukemogenesis. Among the areas investigated are the role of reciprocal fusions; effects of target cells, expression levels, and mouse strains; cooperating events; and restrictive and permissive factors. These models have also been used to gain insight into the effects of the immune system on leukemic cells and the mechanism of response to retinoic acid. Furthermore, preclinical studies utilizing these mice have advanced therapy for myeloid leukemia.
Collapse
Affiliation(s)
- S C Kogan
- Department of Laboratory Medicine and Comprehensive Cancer Center, University of California, San Francisco, Room S-864, 513 Parnassus Avenue, San Francisco, CA 94143-0100, USA.
| |
Collapse
|
23
|
Naoe T, Suzuki T, Kiyoi H, Urano T. Nucleophosmin: a versatile molecule associated with hematological malignancies. Cancer Sci 2006; 97:963-9. [PMID: 16984370 PMCID: PMC11159987 DOI: 10.1111/j.1349-7006.2006.00270.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein that plays multiple roles in ribosome assembly and transport, cytoplasmic-nuclear trafficking, centrosome duplication and regulation of p53. In hematological malignancies, the NPM1 gene is frequently involved in chromosomal translocation, mutation and deletion. The NPM1 gene on 5q35 is translocated with the anaplastic lymphoma kinase (ALK) gene in anaplastic large cell lymphoma with t(2;5). The MLF1 and RARA genes are fused with NPM1 in myelodysplastic syndrome and acute myeloid leukemia (AML) with t(3;5) and acute promyelocytic leukemia with t(5;17), respectively. In each fused protein, the N-terminal NPM portion is associated with oligomerization of a partner protein leading to altered signal transduction or transcription. Recently, mutations of exon 12 have been found in a significant proportion of de novo AML, especially in those with a normal karyotype. Mutant NPM is localized aberrantly in the cytoplasm, but the molecular mechanisms for leukemia remain to be studied. Studies of knock-out mice have revealed new aspects regarding NPM1 as a tumor-suppressor gene. This review focuses on the clinical significance of the NPM1 gene in hematological malignancies and newly discovered roles of NPM associated with oncogenesis.
Collapse
Affiliation(s)
- Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | |
Collapse
|
24
|
Abstract
Through scientific and technological advancements, our ability to manipulate the mouse genome has allowed us to evaluate the effect of specific genetic alterations on in vivo tumorigenesis. This has allowed and will allow us to define molecular pathways describing the processes of tumor initiation, invasion, and progression to metastatic disease. Additionally, these models may serve as an excellent platform for the identification of novel molecular targets for therapy as well as to evaluate the efficacy of targeted therapies. Ultimately this will translate from preclinical mouse model trials to the development of clinical trials and protocols for cancer patients. Here we review the usefulness of mouse modeling in oncologic translational research.
Collapse
Affiliation(s)
- Brett S Carver
- Cancer Biology and Genetics Program and Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
25
|
Rego EM, Ruggero D, Tribioli C, Cattoretti G, Kogan S, Redner RL, Pandolfi PP. Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha, PLZF/RAR alpha or NPM/RAR alpha. Oncogene 2006; 25:1974-9. [PMID: 16331271 DOI: 10.1038/sj.onc.1209216] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recurrent chromosomal translocations involving the RAR alpha locus on chromosome 17 are the hallmark of acute promyelocytic leukemia (APL). The RAR alpha gene fuses to variable partners (PML, PLZF, NPM, NuMA and STAT5B: X genes) leading to the expression of APL-specific fusion proteins with identical RAR alpha moieties. To analyse whether the variable X moiety could affect the activity of the fusion protein in vivo, we generated and characterized, on a comparative basis, NPM/RAR alpha transgenic mice (TM) in which the fusion gene is expressed under the control of a human Cathepsin G (hCG) minigene. We compared the features of the leukemia observed in these TM with those in hCG-PML/RAR alpha and hCG-PLZF/RAR alpha TM. In all three transgenic models, leukemia developed after a variably long latency, with variable penetrance. However, the three leukemias displayed distinct cytomorphological features. hCG-NPM/RAR alpha leukemic cells resembled monoblasts. This phenotype contrasts with what was observed in the hCG-PML/RAR alpha TM model in which the leukemic phase was characterized by the proliferation of promyelocytic blasts. Similarly, hCG-PLZF/RAR alpha TM displayed a different phenotype where terminally differentiated myeloid cells predominated. Importantly, the NPM/RAR alpha oncoprotein was found to localize in the nucleolus, unlike PML/RAR alpha and PLZF/RAR alpha, thus possibly interfering with the normal function of NPM. Similarly to what was observed in human APL patients, we found that NPM/RAR alpha and PML/RAR alpha, but not PLZF/RAR alpha leukemia, was responsive to all-trans retinoic acid (ATRA) or As2O3 treatments. Taken together, our results underscore the critical relevance of the X moiety in dictating the biology of the disease and the activity of the APL fusion oncoprotein.
Collapse
Affiliation(s)
- E M Rego
- Cancer Biology and Genetics Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan Kettering Institute, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Matsushita H, Scaglioni PP, Bhaumik M, Rego EM, Cai LF, Majid SM, Miyachi H, Kakizuka A, Miller WH, Pandolfi PP. In vivo analysis of the role of aberrant histone deacetylase recruitment and RAR alpha blockade in the pathogenesis of acute promyelocytic leukemia. ACTA ACUST UNITED AC 2006; 203:821-8. [PMID: 16549595 PMCID: PMC2118271 DOI: 10.1084/jem.20050616] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The promyelocytic leukemia–retinoic acid receptor α (PML-RARα) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARα to inhibit RARα function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1–RARα fusion proteins and tested their activity and oncogenicity in vitro and in vivo in transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of dominant negative (DN) and truncated RARα mutants, as well as that of PML-RARα mutants that are insensitive to retinoic acid. Surprisingly, although HDAC1-RARα did act as a bona fide DN RARα mutant in cellular in vitro and in cell culture, this fusion protein, as well as other DN RARα mutants, did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic. Comparative analysis of these TM and of TM/PML−/− and p53−/− compound mutants lends support to a model by which the RARα and PML blockade is necessary, but not sufficient, for leukemogenesis and the PML domain of the fusion protein provides unique functions that are required for leukemia initiation.
Collapse
MESH Headings
- Animals
- Cell Line
- Histone Deacetylases/metabolism
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Nude
- Mice, Transgenic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Retinoic Acid Receptor alpha
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/physiology
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Hiromichi Matsushita
- Cancer Biology and Genetics Program, Department of Pathology, Weill Graduate School of Medical Sciences, Cornell University, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, Galimi F, Le Beau MM, Evans RM, Kogan SC. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006; 9:81-94. [PMID: 16473276 DOI: 10.1016/j.ccr.2005.12.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 10/12/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
RARA becomes an acute promyelocytic leukemia (APL) oncogene by fusion with any of five translocation partners. Unlike RARalpha, the fusion proteins homodimerize, which may be central to oncogenic activation. This model was tested by replacing PML with dimerization domains from p50NFkappaB (p50-RARalpha) or the rapamycin-sensitive dimerizing peptide of FKBP12 (F3-RARalpha). The X-RARalpha fusions recapitulated in vitro activities of PML-RARalpha. For F3-RARalpha, these properties were rapamycin sensitive. Although in vivo the artificial fusions alone are poor initiators of leukemia, p50-RARalpha readily cooperates with an activated mutant CDw131 to induce APL-like disease. These results demonstrate that the dimerization interface of RARalpha fusion partners is a critical element in APL pathogenesis while pointing to other features of PML for enhancing penetrance and progression.
Collapse
MESH Headings
- Animals
- Bone Marrow/pathology
- Carcinogens/metabolism
- Cell Line
- DNA/metabolism
- DNA-Binding Proteins/metabolism
- Dimerization
- Down-Regulation/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Protein Binding
- Protein Structure, Quaternary
- Receptors, Cytokine/metabolism
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoic Acid Receptor alpha
- Retinoid X Receptors/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Thomas Sternsdorf
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang YA, Shen K, Ishida Y, Wang Y, Kakizuka A, Brooks SC. Induction of murine leukemia and lymphoma by dominant negative retinoic acid receptor alpha. Mol Carcinog 2006; 44:252-61. [PMID: 16273555 DOI: 10.1002/mc.20144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is invariably associated with chromosomal translocation to retinoic acid receptor alpha (RARalpha) locus. In a vast majority of cases, RARalpha translocates to and fuses with the promyelocytic leukemia (PML) gene. It was thought that the fusion protein PML-RARalpha acts as a double dominant negative mutant to inhibit the PML and RARalpha signaling. In an attempt to study the physiological role of retinoic acid in mammary gland development, we created a transgenic model system expressing a dominant negative RARalpha under the regulation of murine mammary tumor viral promoter. We found that the transgene was also targeted to the lymphoid system in addition to mammary gland. Here we showed that dominant negative RARalpha induced acute lymphoblastic leukemia and lymphoma development in the transgenic mice. Retinoic acid blocked tumor development ex vivo through induction of apoptosis. Thus, our results suggested that disruption of RARalpha signaling was the first essential step in the development of APL in vivo.
Collapse
Affiliation(s)
- Y Alan Wang
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
29
|
Lallemand-Breitenbach V, Zhu J, Kogan S, Chen Z, de Thé H. Opinion: how patients have benefited from mouse models of acute promyelocytic leukaemia. Nat Rev Cancer 2005; 5:821-7. [PMID: 16175176 DOI: 10.1038/nrc1719] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the challenges of studying anticancer therapies is that effects observed in cell lines or mouse models are not always good indicators of clinical trial results. The mouse model of acute promyelocytic leukaemia has bucked this trend, as targeted therapies such as retinoic acid and arsenic induce differentiation and clearance of leukaemia cells in both mice and humans. This mouse model has also provided important mechanistic insights into the combinatorial effects of these agents and has promoted combined therapies that have shown recent success in the clinic.
Collapse
Affiliation(s)
- Valérie Lallemand-Breitenbach
- Université de Paris, CNRS UMR 7151, Université de Paris VII, Equipe Labellisée de la Ligue contre le Cancer, Hôpital St. Louis, 1 Avenue C. Vellefaux, 75475 Paris CEDEX 10, France
| | | | | | | | | |
Collapse
|
30
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
31
|
Rosmarin AG, Yang Z, Resendes KK. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 2005; 33:131-43. [PMID: 15676205 DOI: 10.1016/j.exphem.2004.08.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 12/24/2022]
Abstract
Myeloid cells (granulocytes and monocytes) are derived from multipotent hematopoietic stem cells. Gene transcription plays a critical role in hematopoietic differentiation. However, there is no single transcription factor that is expressed exclusively by myeloid cells and that, alone, acts as a "master" regulator of myeloid fate choice. Rather, myeloid gene expression is controlled by the combinatorial effects of several key transcription factors. Hematopoiesis has traditionally been viewed as linear and hierarchical, but there is increasing evidence of plasticity during blood cell development. Transcription factors strongly influence cellular lineage during hematopoiesis and expression of some transcription factors can alter the fate of developing hematopoietic progenitor cells. PU.1 and CCAAT/enhancer-binding protein alpha (C/EBPalpha) regulate expression of numerous myeloid genes, and gene disruption studies have shown that they play essential, nonredundant roles in myeloid cell development. They function in cooperation with other transcription factors, co-activators, and co-repressors to regulate genes in the context of chromatin. Because of their essential roles in regulating myeloid genes and in myeloid cell development, it has been hypothesized that abnormal expression of PU.1 and C/EBPalpha would contribute to aberrant myeloid differentiation, i.e. acute leukemia. Such a direct link has been elusive until recently. However, there is now persuasive evidence that mutations in both PU.1 and C/EBPalpha contribute directly to development of acute myelogenous leukemia. Thus, normal myeloid development and acute leukemia are now understood to represent opposite sides of the same hematopoietic coin.
Collapse
Affiliation(s)
- Alan G Rosmarin
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | | | |
Collapse
|
32
|
Zhu J, Zhou J, Peres L, Riaucoux F, Honoré N, Kogan S, de Thé H. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 2005; 7:143-53. [PMID: 15710327 DOI: 10.1016/j.ccr.2005.01.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 06/18/2004] [Accepted: 01/12/2005] [Indexed: 11/15/2022]
Abstract
Pathogenesis of acute promyelocytic leukemia (APL) has been proposed to involve transcriptional repression through enhanced corepressors binding onto RARA moieties of PML/RARA homodimers. Unexpectedly, we show that the K160 sumoylation site in the PML moiety of PML/RARA is required for efficient immortalization/differentiation arrest ex vivo, implying that RARA homodimerization is insufficient to fully immortalize primary hematopoietic progenitor cells. Similarly, PML/RARAK160R transgenic mice develop myeloproliferative syndromes, but never APL. The Daxx repressor no longer binds PML/RARAK160R, but fusion of these two proteins restores the differentiation block ex vivo. Thus, transcriptional repression dependent on a specific sumoylation site in PML is critical for the APL phenotype, while forced RARA dimerization could control expansion of the myeloid compartment.
Collapse
Affiliation(s)
- Jun Zhu
- CNRS UPR 9051, laboratoire associé N11 du comité de Paris de la Ligue contre le Cancer, affilié à l'Université de Paris VII, Hôpital St. Louis, 1 avenue Claude Vellefaux, 75475 Paris, Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Lane AA, Ley TJ. Neutrophil elastase is important for PML-retinoic acid receptor alpha activities in early myeloid cells. Mol Cell Biol 2005; 25:23-33. [PMID: 15601827 PMCID: PMC538790 DOI: 10.1128/mcb.25.1.23-33.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the PML-retinoic acid receptor alpha (PML-RARalpha) fusion protein is the initiating genetic event for acute promyelocytic leukemia (APL), but the molecular mechanisms responsible for disease initiation are not yet clear. Several observations have suggested that early myeloid cells are uniquely susceptible to transformation by PML-RARalpha. Recently, we have shown that the early myeloid-specific protease neutrophil elastase is important for APL development in the mouse. To better understand the role of neutrophil elastase for the pathogenesis of APL, we examined the consequences of PML-RARalpha expression in early myeloid cells with or without neutrophil elastase. We found that high-level PML-RARalpha expression was associated with cellular toxicity that was dependent on the expression of neutrophil elastase; a mutant form of PML-RARalpha that resisted neutrophil elastase cleavage was not toxic. When PML-RARalpha was expressed at very low levels in the early myeloid cells of mice, it induced myeloid expansion and delayed myeloid maturation; neutrophil elastase was also required for these activities. The activities of PML-RARalpha in early myeloid cells are therefore strongly influenced by the presence of neutrophil elastase. To assure physiologic relevance, PML-RARalpha functions should be evaluated in neutrophil elastase-expressing early myeloid cells.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Differentiation
- Cell Line, Tumor
- Cell Proliferation
- Female
- Green Fluorescent Proteins/metabolism
- HL-60 Cells
- Humans
- In Situ Nick-End Labeling
- K562 Cells
- Leukemia, Promyelocytic, Acute/metabolism
- Leukocyte Elastase/metabolism
- Leukocyte Elastase/physiology
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Models, Biological
- Mutation
- Neoplasm Proteins/biosynthesis
- Oncogene Proteins, Fusion/biosynthesis
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- U937 Cells
Collapse
Affiliation(s)
- Andrew A Lane
- Departments of Medicine and Genetics, Division of Oncology, Siteman Cancer Center, Washington University, 660 S. Euclid Ave., Campus Box 8007, St. Louis, MO 63110-1093, USA.
| | | |
Collapse
|
34
|
Arlt A, Minkenberg J, Kocs B, Grossmann M, Kruse ML, Fölsch UR, Schäfer H. The expression of immediate early gene X-1 (IEX-1) is differentially induced by retinoic acids in NB4 and KG1 cells: possible implication in the distinct phenotype of retinoic acid-responsive and -resistant leukemic cells. Leukemia 2004; 18:1646-55. [PMID: 15306824 DOI: 10.1038/sj.leu.2403481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a cell-type- and stimulus-dependent fashion, the early response gene immediate early gene X-1 (IEX-1) is involved in growth control and modulation of apoptosis. The present study demonstrates that, in the two acute promyelocytic leukemia (APL) cell lines NB4 and KG1, exhibiting distinct responsiveness to retinoic acids (RAs), IEX-1 expression is rapidly (30-60 min) induced by all-trans- or cis-RA and independently of other signal transduction mediators, such as TNFalpha, NF-kappaB or MAP kinases. In NB4 cells (expressing PML-RARalpha), this increase is transient and completely reversible, along with a cell cycle arrest, ongoing differentiation and lower sensitivity to anti-cancer-drug-induced apoptosis. In contrast, the RA-induced IEX-1 expression in KG1 cells (expressing PLZF-RARalpha) persists over days, along with continued cell cycle progression and increased apoptotic sensitivity. Furthermore, two functional RA-response elements in the IEX-1 promoter were identified by gel shift and luciferase reporter gene assays. IEX-1 might be a rather unique transcriptional target of the two X-RARalpha fusion receptors exhibiting distinct responsiveness to RAs. Following a different time course of direct transcriptional induction by PML-RARalpha and PLZF-RARalpha in NB4 and KG1 cells, respectively, IEX-1 expression may be involved in the modified actions of these receptors and the distinct phenotypes of APL cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Drug Resistance, Neoplasm
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Luciferases/metabolism
- Membrane Proteins
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Promoter Regions, Genetic
- Transcription, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Arlt
- Division of Molecular Gastroenterology & Hepatology, 1st Department of Medicine, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Tallman MS, Lefèbvre P, Baine RM, Shoji M, Cohen I, Green D, Kwaan HC, Paietta E, Rickles FR. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost 2004; 2:1341-50. [PMID: 15304040 DOI: 10.1111/j.1538-7836.2004.00787.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the pathogenesis of the bleeding disorder in acute promyelocytic leukemia by measuring procoagulant, profibrinolytic, and proinflammatory mediators in peripheral blood and bone marrow cells from 25 previously untreated patients. Patients were induced with either all-trans retinoic acid (ATRA) or chemotherapy. Plasma levels of fibrinopeptide A (FPA), fibrin d-dimer, thrombin antithrombin (TAT) complex, prothrombin fragment 1.2 (F1.2), urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (t-PA) and plasminogen activator-inhibitor 1 (PAI-1) were measured before and after therapy, as was the cellular expression of the genes for tissue factor (TF) and interleukin-1 beta (IL-1 beta). The mean plasma levels of fibrin d-dimer, F1.2, TAT and FPA were markedly elevated prior to therapy and declined during the first 30 days of treatment with either ATRA or chemotherapy, but more rapidly and to a greater extent in patients treated with ATRA. ATRA treatment was associated with a significant decrease in TF gene expression in bone marrow cells during the first 30 days of treatment, whereas IL-1 beta gene expression, which decreased in the cells of six patients treated with either chemotherapy or ATRA, actually increased in the remaining six patients treated with either chemotherapy or ATRA. In patients with APL, treatment with either chemotherapy or ATRA rapidly ameliorates the coagulopathy, as indicated by an abrupt decline in markers of clotting activation. An increase in cytokine gene expression (e.g. IL-1 beta) may provide an explanation for the persistent hypercoagulability observed in some patients with APL, regardless of therapeutic approach. Our data confirms and extends earlier observations by others that ATRA is more effective than chemotherapy alone in rapidly reducing the procoagulant burden of APL tumor cells. However, our data also suggests that cytokine expression in some patients may be accelerated by either chemotherapy or ATRA. The implications of this observation for understanding the retinoic acid syndrome will require further studies.
Collapse
Affiliation(s)
- M S Tallman
- Department of Medicine, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsuzuki S, Kitajima K, Nakano T, Glasow A, Zelent A, Enver T. Cross talk between retinoic acid signaling and transcription factor GATA-2. Mol Cell Biol 2004; 24:6824-36. [PMID: 15254248 PMCID: PMC444844 DOI: 10.1128/mcb.24.15.6824-6836.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/12/2004] [Accepted: 04/19/2004] [Indexed: 11/20/2022] Open
Abstract
All-trans-retinoic acid (RA) stimulates differentiation of normal hematopoietic progenitors and acute myeloid leukemia cells. GATA-2 is a transcription factor expressed in early progenitor cells and implicated in the control of the fate of hematopoietic stem cells and progenitor cells. We have investigated the possibility that the GATA and nuclear hormone receptor pathways are functionally linked through direct protein-protein interaction. Here we demonstrate that in human myeloid KG1 cells, RA receptor alpha (RARalpha), the major RAR expressed in hematopoietic cells, associates with GATA-2. This association is mediated by the zinc fingers of GATA-2 and the DNA-binding domain of RARalpha. As a consequence of this interaction, RARalpha is tethered to the DNA sites that are recognized and bound by GATA-2, and the transcriptional activity of GATA-2 becomes RA responsive. The RA responsiveness of GATA-dependent transcription is eliminated by expression of either a dominant negative form of RARalpha or a GATA-2 mutant that fails to interact with RARalpha. Overexpression of RXRalpha inhibits RARalpha binding to the GATA-2-DNA complex, thus resulting in attenuation of the effects of RARalpha on GATA-2 activity. In addition, inhibition by RA of GATA-2-dependent hematopoietic colony formation in an embryonic stem cell model of hematopoietic differentiation provided biological evidence for functional cross talk between RA and GATA-2-dependent pathways.
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Section of Gene Function and Regulation, Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
37
|
Dong S, Stenoien DL, Qiu J, Mancini MA, Tweardy DJ. Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 2004; 24:4465-75. [PMID: 15121864 PMCID: PMC400470 DOI: 10.1128/mcb.24.10.4465-4475.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) cells contain one of five chimeric retinoic acid alpha-receptor (RAR alpha) genes (X-RAR alpha) created by chromosomal translocations or deletion; each generates a fusion protein thought to transcriptionally repress RAR alpha target genes and block myeloid differentiation by an incompletely understood mechanism. To gain spatiotemporal insight into these oncogenic processes, we employed fluorescence microscopy and fluorescence recovery after photobleaching (FRAP). Fluorescence microscopy demonstrated that the intracellular localization of each of the X-RAR alpha proteins was distinct from that of RAR alpha and established which portion(s) of each X-RAR alpha protein-X, RAR, or both-contributed to its altered localization. Using FRAP, we demonstrated that the intranuclear mobility of each X-RAR alpha was reduced compared to that of RAR alpha. In addition, the mobility of each X-RAR alpha was reduced further by ligand addition, in contrast to RAR alpha, which showed no change in mobility when ligand was added. Both the reduced baseline mobility of X-RAR alpha and the ligand-induced slowing of X-RAR alpha could be attributed to the protein interaction domain contained within X. RXR alpha aberrantly colocalized within each X-RAR alpha; colocalization of RXR alpha with promyelocytic leukemia (PML)-RAR alpha resulted in reduced mobility of RXR alpha. Thus, X-RAR alpha may interfere with RAR alpha through its aberrant nuclear dynamics, resulting in spatial and temporal sequestration of RXR alpha and perhaps other nuclear receptor coregulators critical for myeloid differentiation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- COS Cells
- Fluorescence Recovery After Photobleaching
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Ligands
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Shuo Dong
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Forced dimerization or oligomerization has emerged as a powerful mechanism for unleashing the oncogenic properties of chimeric transcription factors in acute leukemias. Fusion of transcriptional regulators with a variety of heterologous partner proteins as a consequence of chromosomal rearrangements induces inappropriate self-association, leading to aberrant transcriptional properties and leukemogenesis. Forced dimerization/oligomerization may alter the association of a DNA-binding protein for its transcriptional cofactors, or the dimerization motifs themselves may constitutively recruit transcriptional effector molecules. Oligomerized chimeras may also sequester essential partners or cofactors to exert dominant-negative effects on target gene expression. A key mechanistic feature, and one with major clinical implications, is the nature of the transcriptional cofactors that are recruited by the dimerized oncoprotein. Chimeric RARalpha and acute myeloid leukemia 1 (AML1) proteins induce constitutive repression after the recruitment of corepressors, whereas inappropriate maintenance of target gene expression by mixed-lineage leukemia (MLL) chimeras may result from the recruitment of coactivators or the basal transcriptional machinery. Molecular therapies directed at enzymatic activities of the aberrantly recruited cofactors, or antagonism of dimerization itself, represent promising avenues of current and future investigation.
Collapse
Affiliation(s)
- Chi Wai So
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA.
| | | |
Collapse
|
39
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
40
|
Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM, Shi JY, Zheng PZ, Yan H, Liu YF, Chen Y, Shen Y, Wu W, Tang W, Waxman S, De Thé H, Wang ZY, Chen SJ, Chen Z. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A 2004; 101:5328-35. [PMID: 15044693 PMCID: PMC397380 DOI: 10.1073/pnas.0400053101] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Both all-trans retinoic acid (ATRA) and arsenic trioxide (As(2)O(3)) have proven to be very effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but they had not been used jointly in an integrated treatment protocol for remission induction or maintenance among newly diagnosed APL patients. In this study, 61 newly diagnosed APL subjects were randomized into three treatment groups, namely by ATRA, As(2)O(3), and the combination of the two drugs. CR was determined by hematological analysis, tumor burden was examined with real-time quantitative RT-PCR of the PML-RAR alpha (promyelocytic leukemia-retinoic acid receptor alpha) fusion transcripts, and side effects were evaluated by means of clinical examinations. Mechanisms possibly involved were also investigated with cellular and molecular biology methods. Although CR rates in three groups were all high (> or =90%), the time to achieve CR differed significantly, with that of the combination group being the shortest one. Earlier recovery of platelet count was also found in this group. The disease burden as reflected by fold change of PML-RAR alpha transcripts at CR decreased more significantly in combined therapy as compared with ATRA or As(2)O(3) mono-therapy (P < 0.01). This difference persisted after consolidation (P < 0.05). Importantly, all 20 cases in the combination group remained in CR whereas 7 of 37 cases treated with mono-therapy relapsed (P < 0.05) after a follow-up of 8-30 months (median: 18 months). Synergism of ATRA and As(2)O(3) on apoptosis and degradation of PML-RAR alpha oncoprotein might provide a plausible explanation for superior efficacy of combination therapy in clinic. In conclusion, the ATRA/As(2)O(3) combination for remission/maintenance therapy of APL brings much better results than either of the two drugs used alone in terms of the quality of CR and the status of the disease-free survival.
Collapse
Affiliation(s)
- Zhi-Xiang Shen
- Shanghai Institute of Hematology, State Key Lab of Medical Genomics, Rui Jin Hospital, Shanghai Second Medical University, 197 Rui Jin Road II, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Significant progress in human genome research has been made in China since 1994. This review aims to give a brief and incomplete introduction to the major research institutions and their achievements in human genome sequencing and functional genomics in medicine, with emphasis on the "1% Sequencing Project", the generation of single nucleotide polymorphism and haplotype maps of the human genome, disease gene identification, and the molecular characterization of leukemia and other diseases. Chinese efforts towards the sequencing of pathogenic microbial genomes and of the rice (Oryza sativa ssp. Indica) genome are also described.
Collapse
Affiliation(s)
- Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
42
|
Abstract
A fundamental issue in cancer biology is the identification of the target cell in which the causative molecular lesion arises. Acute myeloid leukemia (AML) is thought to reflect the transformation of a primitive stem cell compartment. The resultant 'cancer stem cells' comprise only a minor portion of the leukemic clone but give rise through differentiation to more committed progenitors as well as differentiated blasts that constitute the bulk of the tumor. The maintenance of the leukemic clone is dependent on the self-renewal capacity of the cancer stem cell compartment, which is revealed by its ability to re-initiate leukemia in a transplant setting. The cellular basis of acute promyelocytic leukemia (APL) is however less clear. APL has traditionally been considered to be the most differentiated form of AML and to arise from a committed myeloid progenitor. Here we review apparently conflicting evidence pertaining to the cellular origins of APL and propose that this leukemia may originate in more than one cellular compartment. This view could account for many apparent inconsistencies in the literature to date. An understanding of the nature of the target cell involved in transformation of APL has important implications for biological mechanism and for clinical treatment.
Collapse
Affiliation(s)
- D Grimwade
- Department of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine, London, UK.
| | | |
Collapse
|
43
|
Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dubé K, Rego EM, Bhaumik M, Bailey DJ, Wells RA, Kamel-Reid S, Pandolfi PP. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene 2004; 23:665-78. [PMID: 14737102 DOI: 10.1038/sj.onc.1207073] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the accumulation of abnormal promyelocytes in the bone marrow (BM), and by the presence of a reciprocal chromosomal translocation involving retinoic acid receptor alpha (RARalpha). To date, five RARalpha partner genes have been identified in APL. NuMA-RARalpha was identified in a pediatric case of APL carrying a translocation t(11;17)(q13;q21). Using a construct containing the NuMA-RARalpha fusion gene driven by the human cathepsin G promoter (hCG-NuMA-RARalpha), two transgenic mouse lines were generated. Transgenic mice were observed to have a genetic myeloproliferation (increased granulopoiesis in BM) at an early age, and rapidly developed a myeloproliferative disease-like myeloid leukemia. This leukemia was morphologically and immunophenotypically indistinguishable from human APL, with a penetrance of 100%. The phenotype of transgenic mice was consistent with a blockade of neutrophil differentiation. NuMA-RARalpha is therefore sufficient for disease development in this APL model.
Collapse
Affiliation(s)
- Mahadeo A Sukhai
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Falanga A, Rickles FR. Pathogenesis and management of the bleeding diathesis in acute promyelocytic leukaemia. Best Pract Res Clin Haematol 2003; 16:463-82. [PMID: 12935963 DOI: 10.1016/s1521-6926(03)00059-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Life-threatening bleeding, which remains a challenging complication of acute leukaemia, is particularly characteristic of the subtype, acute promyelocytic leukaemia (APL). The clinical picture and laboratory abnormalities are most compatible with the diagnosis of disseminated intravascular coagulation (DIC). Evidence for diffuse activation of the coagulation system, hyperfibrinolysis and systemic elaboration of non-specific protease activity can usually be demonstrated and occurs most commonly during induction chemotherapy. While both host- and tumour-associated mechanisms can be implicated in the pathogenesis of the coagulopathy, leukaemic cell properties appear to be the proximate cause of activation of the haemostatic mechanisms. In this chapter we summarize the current state of knowledge of the pathogenesis of the coagulopathy of APL and the therapeutic approaches that have proved most useful for the management of this complication. Special attention is devoted to the use of all-trans-retinoic acid (ATRA), which has revolutionized the treatment of APL and markedly ameliorated the APL-related coagulopathy.
Collapse
Affiliation(s)
- Anna Falanga
- Hematology-Oncology Department, Ospedali Riuniti di Bergamo, Largo Barozzi 1, 24128, Bergamo, Italy.
| | | |
Collapse
|
45
|
Sirulnik A, Melnick A, Zelent A, Licht JD. Molecular pathogenesis of acute promyelocytic leukaemia and APL variants. Best Pract Res Clin Haematol 2003; 16:387-408. [PMID: 12935958 DOI: 10.1016/s1521-6926(03)00062-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been 12 years since the simultaneous discovery of the unique sensitivity of acute promyelocytic leukaemia (APL) to differentiation therapy with all-trans retinoic acid (ATRA) and the discovery that the retinoic acid receptor alpha (RARalpha) gene was rearranged in APL. Nearly 98% of cases of APL are associated with t(15;17) chromosomal translocation and fusion of the PML gene to that encoding RARalpha to yield an abnormal receptor with the capability of de-regulating gene expression in the haematopoietic cell, causing differentiation block and eventually the development of leukaemia. Since this original discovery, four other translocations were described in APL. In each of these the RARalpha gene is fused to different partner genes, all yielding aberrant nuclear receptors. These fusion proteins share in common the ability to repress rather than activate retinoic acid targets, one so strongly that the result is an ATRA-resistant form of the disease. In addition each of the partner proteins is important for normal cell growth and development. In this chapter we explore the biology of the RARalpha, the fusion proteins created in APL and the normal forms of the partner proteins. Through continued study of this disease it is hoped that novel treatments, potentially more applicable to other forms of leukaemia, may arise.
Collapse
Affiliation(s)
- Andres Sirulnik
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
46
|
Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB, Popescu NC, DiPersio JF, Ley TJ. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003; 102:1857-65. [PMID: 12750176 DOI: 10.1182/blood-2002-12-3779] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transgenic mice expressing PML-RARalpha in early myeloid cells under control of human cathepsin G regulatory sequences all develop a myeloproliferative syndrome, but only 15% to 20% develop acute promyelocytic leukemia (APL) after a latent period of 6 to 14 months. However, this transgene is expressed at very low levels in the bone marrow cells of transgenic mice. Because the transgene includes only 6 kb of regulatory sequences from the human cathepsin G locus, we hypothesized that sequences required for high-level expression of the transgene might be located elsewhere in the cathepsin G locus and that a knock-in model might yield much higher expression levels and higher penetrance of disease. We, therefore, targeted a human PML-RARalpha cDNA to the 5' untranslated region of the murine cathepsin G gene, using homologous recombination in embryonic stem cells. This model produced a high-penetrance APL phenotype, with more than 90% of knock-in mice developing APL between 6 and 16 months of age. The latent period and phenotype of APL (including a low frequency of an interstitial deletion of chromosome 2) was similar to that of the previous transgenic model. Remarkably, however, the expression level of PML-RARalpha in bone marrow cells or APL cells was less than 3% of that measured in the low-penetrance transgenic model. Although the explanation for this result is not yet clear, one hypothesis suggests that very low levels of PML-RARalpha expression in early myeloid cells may be optimal for the development of APL in mice.
Collapse
MESH Headings
- Animals
- Antigens, CD34/genetics
- Antineoplastic Agents/pharmacology
- Biomarkers
- Cathepsin G
- Cathepsins/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Chromosomes, Mammalian
- Disease Models, Animal
- Female
- Gene Deletion
- Gene Dosage
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Penetrance
- RNA, Messenger/analysis
- Recombination, Genetic
- Serine Endopeptidases
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Peter Westervelt
- Washington University, Division of Oncology, 660 S Euclid Ave, Campus Box 8007, St Louis, MO 63110-1093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pitha-Rowe I, Petty WJ, Kitareewan S, Dmitrovsky E. Retinoid target genes in acute promyelocytic leukemia. Leukemia 2003; 17:1723-30. [PMID: 12970771 DOI: 10.1038/sj.leu.2403065] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All-trans-retinoic acid (RA)-based differentiation therapy induces clinical remissions in acute promyelocytic leukemia (APL). This has propelled interest in elucidating the molecular mechanisms responsible for these remissions. The t(15;17) rearrangement results in the expression of the PML/RARalpha fusion transcript that is paradoxically linked to the etiology and clinical retinoid response in APL. PML/RARalpha expression blocks terminal myeloid differentiation in APL. Treatment with pharmacological RA dosages overcomes the dominant-negative effects of PML/RARalpha to activate transcription of retinoid target genes. This regulation is linked directly to RA effects in APL, including PML/RARalpha degradation and induction of differentiation. Identifying retinoid target genes is an important step in developing a mechanistic understanding of RA effects in APL. RA target genes have been uncovered through the use of molecular genetic approaches as well as unique cellular and transgenic APL models. Recent developments in the proteomic and functional genomic fields are providing useful tools for elucidating mechanisms of RA response or resistance in APL. These target genes represent potential therapeutic targets in APL and other retinoid-responsive diseases. Previous spotlights in Leukemia have highlighted the importance of cytokine effects and signal transduction crosstalk in retinoid response in APL and in normal hematopoiesis. This review builds on prior work by addressing the role of retinoid target genes in mediating retinoid response or resistance in APL.
Collapse
Affiliation(s)
- I Pitha-Rowe
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
48
|
Ferbeyre G. PML a target of translocations in APL is a regulator of cellular senescence. Leukemia 2002; 16:1918-26. [PMID: 12357343 DOI: 10.1038/sj.leu.2402722] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Accepted: 06/07/2002] [Indexed: 02/07/2023]
Abstract
PML is the most frequent fusion partner of the RARalpha in the specific translocations associated with acute promyelocytic leukemia (APL). Models to explain the origin of this leukemia propose a block in cell differentiation due to aberrant repression of retinoic acid responsive genes and/or disruption of the function of the PML-containing nuclear bodies. Recently, PML has been identified as a regulator of replicative senescence and the premature senescence that occurs in response to oncogenic ras. This review discusses the idea that senescence is a general tumor suppressor mechanism related to terminal differentiation and disrupted during the establishment of APL and other cancers. According to this idea the PML-RARalpha fusion protein promotes leukemogenesis not only through repression of retinoic acid responsive genes, but also by way of interfering with several tumor suppressor proteins that cooperate to establish senescence. Retinoids and other drugs effective against APL do so by re-establishment of the senescence program, which also includes features of cell differentiation.
Collapse
Affiliation(s)
- G Ferbeyre
- Université de Montréal, Département de Biochimie, Canada
| |
Collapse
|
49
|
So CW, Cleary ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002; 22:6542-52. [PMID: 12192052 PMCID: PMC135648 DOI: 10.1128/mcb.22.18.6542-6552.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Revised: 02/12/2002] [Accepted: 06/06/2002] [Indexed: 11/20/2022] Open
Abstract
MLL-AFX is a fusion gene created by t(X;11) chromosomal translocations in a subset of acute leukemias of either myeloid or lymphoid derivation. It codes for a chimeric protein consisting of MLL fused to AFX, a forkhead transcription factor that normally regulates genes involved in apoptosis and cell cycle progression. We demonstrate here that forced expression of MLL-AFX enhances the self-renewal of hematopoietic progenitors in vitro and induces acute myeloid leukemias after long latencies in syngeneic recipient mice. MLL-AFX interacts with the transcriptional coactivator CBP, which is also a fusion partner for MLL in human leukemias. A potent minimal transactivation domain (CR3) at the C terminus of AFX mediates interactions with the KIX domain of CBP and is necessary for transformation of myeloid progenitors by MLL-AFX. However, CR3 alone is not sufficient, suggesting that simple acquisition of a transactivation domain per se does not activate the oncogenic potential of MLL. Rather, two conserved transcriptional effector domains (CR2 and CR3) of AFX are required for full oncogenicity of MLL-AFX and also endow it with the potential to competitively interfere with transcription and apoptosis mediated by wild-type forkhead proteins. Furthermore, a dominant-negative mutant of AFX containing CR2 and CR3 enhances the growth of myeloid progenitors in vitro, although considerably less effectively than does MLL-AFX. Taken together, these data suggest that recruitment of transcriptional cofactors utilized by forkhead proteins is a critical requirement for oncogenic action of MLL-AFX, which may impact both MLL- and forkhead-dependent transcriptional pathways.
Collapse
Affiliation(s)
- Chi Wai So
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
50
|
Bernardi R, Grisendi S, Pandolfi PP. Modelling haematopoietic malignancies in the mouse and therapeutical implications. Oncogene 2002; 21:3445-58. [PMID: 12032781 DOI: 10.1038/sj.onc.1205313] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modelling human disease in the mouse has become an essential activity in biomedical research in order to unravel molecular mechanisms underlying pathological conditions as well as to determine in vivo the consequences of aberrant gene function. The mouse is by far the most accessible mammalian system physiologically similar to humans. Furthermore, the development of novel techniques for manipulating the murine genome, which allow the in vivo modification of virtually any genomic region in a time and/or tissue specific manner, renders the mouse an ideal model system to study human pathological conditions. Modelling human diseases in mice has reached an even greater relevance in the field of haematological malignancies, due to the already advanced characterization of the molecular basis of many haematological disorders. In this review, we describe the most important technological developments that made it possible to reproduce in the mouse the genetic lesions that characterize human haematological malignancies, thus often generating faithful mouse models of the human condition. We provide specific examples of the advantages and limitations of the various genetic approaches utilized to model leukaemia and lymphoma in the mouse. Finally, we discuss the power of mouse modelling in developing and testing novel therapeutic modalities in pre-clinical studies.
Collapse
Affiliation(s)
- Rosa Bernardi
- Molecular Biology Program and Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|