1
|
Heerdegen M, Zwar M, Franz D, Hörnschemeyer MF, Neubert V, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Paap M, Perl S, Lüttig A, Richter A, Köhling R. Mechanisms of pallidal deep brain stimulation: Alteration of cortico-striatal synaptic communication in a dystonia animal model. Neurobiol Dis 2021; 154:105341. [PMID: 33753292 DOI: 10.1016/j.nbd.2021.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.
Collapse
Affiliation(s)
- Marco Heerdegen
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Monique Zwar
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | | | - Valentin Neubert
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christian Bahls
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany
| | - Maria Paap
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany; Department of Ageing of Individuals and Society, University of Rostock, Germany.
| |
Collapse
|
2
|
Methods of measuring presynaptic function with fluorescence probes. Appl Microsc 2021; 51:2. [PMID: 33730244 PMCID: PMC7969681 DOI: 10.1186/s42649-021-00051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.
Collapse
|
3
|
Brockhaus J, Brüggen B, Missler M. Imaging and Analysis of Presynaptic Calcium Influx in Cultured Neurons Using synGCaMP6f. Front Synaptic Neurosci 2019; 11:12. [PMID: 31057389 PMCID: PMC6477507 DOI: 10.3389/fnsyn.2019.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated calcium channels (VGCCs) is a key step in synaptic transmission that links action potential (AP)-derived depolarization to vesicle release. However, investigation of presynaptic Ca2+ influx by patch clamp recordings is difficult due to the small size of the majority of synaptic boutons along thin axons that hamper clamp control. Genetically encoded calcium indicators (GECIs) in combination with live cell imaging provide an alternative method to study Ca2+ transients in individual presynaptic terminals. The indicator GCaMP6f was developed for fast speed and high sensitivity in detecting Ca2+ transients even in subcellular compartments. We fused GCaMP6f to synaptophysin (synGCaMP6f) to enrich the calcium indicator in presynaptic boutons of transfected primary hippocampal neurons to study presynaptic Ca2+ changes in response to individual APs or short bursts. Changes in fluorescence intensity were evaluated by normalization to control level or, alternatively, by normalization to maximal fluorescence using the calcium ionophore ionomycin. Measurements revealed robust Ca2+ transients with amplitudes that depend on parameters like the number of APs, stimulation frequency or external calcium concentration. Our findings indicate an appropriate sensitivity of synGCaMP6f for studying total presynaptic Ca2+ transients induced by single APs or short bursts that showed little rundown of the response after repeated bursts. Moreover, these recordings are fast enough to even study short-term plasticity like paired pulse facilitation (PPF) and frequency dependence of Ca2+ transients. In addition, synGCaMP6f could be used to dissect the contribution of different subtypes of VGCCs to presynaptic Ca2+ influx. Our results demonstrate that synGCaMP6f allows the reliable analysis of changes in presynaptic calcium concentration at many individual synaptic boutons in parallel and provides the possibility to study the regulation of this important step in synaptic transmission.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Bianca Brüggen
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
4
|
Single Synapse Indicators of Impaired Glutamate Clearance Derived from Fast iGlu u Imaging of Cortical Afferents in the Striatum of Normal and Huntington (Q175) Mice. J Neurosci 2019; 39:3970-3982. [PMID: 30819797 DOI: 10.1523/jneurosci.2865-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 01/23/2023] Open
Abstract
Changes in the balance between glutamate (Glu) release and uptake may stimulate synaptic reorganization and even synapse loss. In the case of neurodegeneration, a mismatch between astroglial Glu uptake and presynaptic Glu release could be detected if both parameters were assessed independently and at a single-synapse level. This has now become possible due to a new imaging assay with the genetically encoded ultrafast Glu sensor iGlu u We report findings from individual corticostriatal synapses in acute slices prepared from mice of either sex that were >1 year of age. Contrasting patterns of short-term plasticity and a size criterion identified two classes of terminals, presumably corresponding to the previously defined IT (intratelencephalic) and PT (pyramidal tract) synapses. The latter exhibited a higher degree of frequency potentiation/residual Glu accumulation and were selected for our first iGlu u single-synapse study in Q175 mice, a model of Huntington's disease (HD). In HD mice, the decay time constant of the perisynaptic Glu concentration (TauD), as an indicator of uptake, and the peak iGlu u amplitude, as an indicator of release, were prolonged and reduced, respectively. Treatment of WT preparations with the astrocytic Glu uptake blocker TFB-TBOA (100 nm) mimicked the TauD changes in homozygotes. Considering the largest TauD values encountered in WT, ∼40% of PT synapses tested in Q175 heterozygotes can be classified as dysfunctional. Moreover, HD but not WT synapses exhibited a positive correlation between TauD and the peak amplitude of iGlu u Finally, EAAT2 (excitatory amino acid transport protein 2) immunoreactivity was reduced next to corticostriatal terminals. Thus, astrocytic Glu transport remains a promising target for therapeutic intervention.SIGNIFICANCE STATEMENT Alterations in astrocytic Glu uptake can play a role in synaptic plasticity and neurodegeneration. Until now, the sensitivity of synaptic responses to pharmacological transport block and the resulting activation of NMDA receptors were regarded as reliable evidence for a mismatch between synaptic uptake and release. But the latter parameters are interdependent. Using a new genetically encoded sensor to monitor extracellular glutamate concentration ([Glu]) at individual corticostriatal synapses, we can now quantify the time constant of perisynaptic [Glu] decay (as an indicator of uptake) and the maximal [Glu] elevation next to the active zone (as an indicator of Glu release). The results provide a positive answer to the hitherto unresolved question of whether neurodegeneration (e.g., Huntington's disease) associates with a glutamate uptake deficit at tripartite excitatory synapses.
Collapse
|
5
|
Salter EW, Sunstrum JK, Matovic S, Inoue W. Chronic stress dampens excitatory synaptic gain in the paraventricular nucleus of the hypothalamus. J Physiol 2018; 596:4157-4172. [PMID: 29901836 DOI: 10.1113/jp275669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Glutamatergic synaptic inputs to corticotrophin-releasing hormone (CRH) secreting neurons in the paraventricular nucleus of the hypothalamus (PVN) are required for stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis. These synapses also undergo stress-induced plasticity, thereby influencing HPA axis stress adaptation. By using patch clamp electrophysiology, we show that, in adult non-stressed mice, action potentials at these glutamatergic afferents elicit multiquantal transmission to the postsynaptic PVN-CRH neurons (i.e. synaptic multiplicity). Mechanistically, synaptic multiplicity results from multivesicular release at common synaptic sites, which is facilitated upon elevation of release probability, effectively increasing the upper limit of the dynamic range of synaptic transmission. Following chronic variable stress, functional PVN glutamate synapse number increases, although its synaptic multiplicity paradoxically decreases. These two contrasting synaptic changes can, respectively, increase the baseline excitatory drive while also limiting the capacity for potentiation, and may preferentially increase the baseline excitatory drive onto PVN-CRH neurons. ABSTRACT The activation of the hypothalamic-pituitary-adrenal (HPA) axis relies on excitation of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVN) that secrete corticotrophin-releasing hormone (CRH). Afferent glutamate synapses onto these PVN-CRH neurons convey critical excitatory inputs during stress, and also undergo stress-induced plasticity, highlighting their roles in both stress activation and adaptation of the HPA axis. In the present study, using whole-cell patch clamp recordings from PVN-CRH neurons in brain slices from adult mice, we found that the amplitude of action potential-dependent spontaneous EPSCs (sEPSCs) was larger than that of action potential independent miniature EPSCs (mEPSCs), suggesting that action potentials at individual axons recruited multiquantal transmission onto the same postsynaptic neurons (i.e. synaptic multiplicity). The large, putative multiquantal sEPSCs had fast rise times similar to mEPSCs, and were abolished by replacing extracellular Ca2+ with Sr2+ , indicating Ca2+ -dependent synchronous release of multiple vesicles. Application of a low affinity, fast dissociating competitive AMPA receptor antagonist γ-d-glutamylglycine revealed that synaptic multiplicity resulted from multivesicular release targeting a common population of postsynaptic receptors. High-frequency afferent stimulation facilitated synaptic multiplicity, effectively increasing the upper limit of the dynamic range of synaptic transmission. Finally, we found that chronic variable stress (CVS), a stress model known to cause basal HPA axis hyperactivity, increased sEPSCs frequency but paradoxically decreased synaptic multiplicity. These results suggest that the CVS-induced synaptic changes may elevate the baseline excitatory drive at the same time as limiting the capacity for potentiation, and may contribute to the basal HPA axis hyperactivity.
Collapse
Affiliation(s)
- Eric W Salter
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Julia K Sunstrum
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Sara Matovic
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Neuroscience Program, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Dittrich M, Homan AE, Meriney SD. Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction. CURRENT OPINION IN PHYSIOLOGY 2018; 4:15-24. [PMID: 30272045 DOI: 10.1016/j.cophys.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calcium-triggered neurotransmission underlies most communication in the nervous system. Yet, despite the conserved and essential nature of this process, the molecular underpinnings of calcium-triggered neurotransmission have been difficult to study directly and our understanding to this date remains incomplete. Here we frame more recent efforts to understand this process with a historical perspective of the study of neurotransmitter release at the neuromuscular junction. We focus on the role of calcium channel distribution and organization relative to synaptic vesicles, as well as the nature of the calcium sensors that trigger release. Importantly, we provide a framework for understanding how the function of neurotransmitter release sites, or active zones, contributes to the function of the synapse as a whole.
Collapse
Affiliation(s)
| | - Anne E Homan
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260
| | - Stephen D Meriney
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
7
|
Lalo U, Pankratov Y. Exploring the Ca 2+-dependent synaptic dynamics in vibro-dissociated cells. Cell Calcium 2017; 64:91-101. [PMID: 28143648 DOI: 10.1016/j.ceca.2017.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022]
Abstract
Dynamic alteration of the synaptic strength is one of the most important processes occurring in the nervous system. Combination of electrophysiology, confocal imaging and molecular biology led to significant advances in this research field. Yet, a progress in this area, in particular in studies of changes in the quantal behavior of central synapses and impact of glial cells on individual synapses, is hampered by technical difficulties of resolving small quantal synaptic currents. In this paper we will show how the technique of non-enzymatic vibro-dissociation, which enables to isolate living neurons avoiding artifacts of cell culture and preserving functional synapse, can be used to obtain a valuable information on fine details and mechanisms of synaptic plasticity. In particular, we will describe our recent results on Ca2+-dependent modulation of the postsynaptic AMPA and NMDA receptors in the individual synaptic boutons.
Collapse
Affiliation(s)
- Ulyana Lalo
- The University of Warwick, School of Life Sciences, Coventry, UK
| | - Yuriy Pankratov
- The University of Warwick, School of Life Sciences, Coventry, UK; School of Life Sciences, Immanuel Kant Baltic Federal University, 2 Universitetskaya str., Kaliningrad, Russia.
| |
Collapse
|
8
|
Storozhuk M, Kondratskaya E, Nikolaenko L, Krishtal O. A modulatory role of ASICs on GABAergic synapses in rat hippocampal cell cultures. Mol Brain 2016; 9:90. [PMID: 27760555 PMCID: PMC5070181 DOI: 10.1186/s13041-016-0269-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/05/2016] [Indexed: 12/27/2022] Open
Abstract
Rapid acidification occurring during synaptic vesicle release can activate acid-sensing ion channels (ASICs) both on pre- and postsynaptic neurons. In the latter case, a fraction of postsynaptic current would be mediated by cation-selective acid-sensing ion channels. Additionally, in both cases, activation of acid-sensing ion channels could modulate synaptic strength by affecting transmitter release and/or sensitivity of postsynaptic receptors. To address potential involvement of acid-sensing ion channels in mediation/modulation of synaptic transmission at hippocampal GABAergic synapses, we studied effects of three structurally different blockers of acid-sensing ion channels on evoked postsynaptic currents using the patch-clamp technique. We found that GABAergic postsynaptic currents, recorded below their reversal potential as inward currents, are suppressed by all the employed blockers of acid-sensing ion channels. These currents were suppressed by ~ 20 % in the presence of a novel blocker 5b (1 μM) and by ~30 % in the presence of either amiloride (25 μM) or diminazene (20 μM). In the same cells the suppression of postsynaptic currents, recorded above their reversal potential as outward currents was statistically insignificant. These results imply that the effects of blockers in our experiments are at least partially postsynaptic. On the other hand, in the case of mediation of a fraction of postsynaptic current by acid-sensing ion channels, an increase of outward currents would be expected under our experimental conditions. Our analysis of a bicuculline-resistant fraction of postsynaptic currents also suggests that effects of the blockers are predominantly modulatory. In this work we present evidence for the first time that acid-sensing ion channels play a functional role at hippocampal GABAergic synapses. The suppressing effect of the blockers of acid-sensing ion channels on GABAergic transmission is due, at least partially, to a postsynaptic but (predominantly) modulatory mechanism. We hypothesize that the modulatory effect is due to functional crosstalk between ASICs and GABAA-receptors recently reported in isolated neurons, however, verification of this hypothesis is necessary.
Collapse
Affiliation(s)
- Maksim Storozhuk
- Bogomoletz Institute of Physiology, Bogomoletz st. 4, Kiev, Ukraine. .,State Key Laboratory of Molecular and Cellular Biology, Bogomoletz st. 4, Kiev, Ukraine.
| | - Elena Kondratskaya
- Bogomoletz Institute of Physiology, Bogomoletz st. 4, Kiev, Ukraine.,State Key Laboratory of Molecular and Cellular Biology, Bogomoletz st. 4, Kiev, Ukraine
| | | | - Oleg Krishtal
- Bogomoletz Institute of Physiology, Bogomoletz st. 4, Kiev, Ukraine.,State Key Laboratory of Molecular and Cellular Biology, Bogomoletz st. 4, Kiev, Ukraine
| |
Collapse
|
9
|
ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 2016; 6:33609. [PMID: 27640997 PMCID: PMC5027525 DOI: 10.1038/srep33609] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies highlighted the importance of astrocyte-secreted molecules, such as ATP, for the slow modulation of synaptic transmission in central neurones. Biophysical mechanisms underlying the impact of gliotransmitters on the strength of individual synapse remain, however, unclear. Here we show that purinergic P2X receptors can bring significant contribution to the signalling in the individual synaptic boutons. ATP released from astrocytes facilitates a recruitment of P2X receptors into excitatory synapses by Ca2+-dependent mechanism. P2X receptors, co-localized with NMDA receptors in the excitatory synapses, can be activated by ATP co-released with glutamate from pre-synaptic terminals and by glia-derived ATP. An activation of P2X receptors in turn leads to down-regulation of postsynaptic NMDA receptors via Ca2+-dependent de-phosphorylation and interaction with PSD-95 multi-protein complex. Genetic deletion of the PSD-95 or P2X4 receptors obliterated ATP-mediated down-regulation of NMDA receptors. Impairment of purinergic modulation of NMDA receptors in the PSD-95 mutants dramatically decreased the threshold of LTP induction and increased the net magnitude of LTP. Our findings show that synergistic action of glia- and neurone-derived ATP can pre-modulate efficacy of excitatory synapses and thereby can have an important role in the glia-neuron communications and brain meta-plasticity.
Collapse
|
10
|
Tang M, Song Q, Li N, Jiang Z, Huang R, Cheng G. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 2013; 34:6402-11. [DOI: 10.1016/j.biomaterials.2013.05.024] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
11
|
Mehta B, Snellman J, Chen S, Li W, Zenisek D. Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents. Neuron 2013; 77:516-27. [PMID: 23395377 DOI: 10.1016/j.neuron.2012.11.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 12/27/2022]
Abstract
Nonspiking cells of several sensory systems respond to stimuli with graded changes in neurotransmitter release and possess specialized synaptic ribbons. Here, we show that manipulations to synaptic ribbons caused dramatic effects on mEPSC-like (mlEPSC) amplitude and frequency. Damage to rod-bipolar cell ribbons using fluorophore-assisted light inactivation resulted in the immediate reduction of mlEPSC amplitude and frequency, whereas the first evoked response after damage remained largely intact. The reduction in amplitude could not be recovered by increasing release frequency after ribbon damage. In parallel experiments, we looked at mlEPSCs from cones of hibernating ground squirrels, which exhibit dramatically smaller ribbons than awake animals. Fewer and smaller mlEPSCs were observed postsynaptic to cones from hibernating animals, although depolarized cones were able to generate larger mlEPSCs. Our results indicate that ribbon size may influence mlEPSC frequency and support a role for ribbons in coordinating multivesicular release.
Collapse
Affiliation(s)
- Bhupesh Mehta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, Sterling Hall of Medicine, Room B147, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
12
|
Stepanyuk AR, Borisyuk AL, Belan PV. Efficient maximum likelihood estimation of kinetic rate constants from macroscopic currents. PLoS One 2012; 6:e29731. [PMID: 22242142 PMCID: PMC3248447 DOI: 10.1371/journal.pone.0029731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/03/2011] [Indexed: 01/24/2023] Open
Abstract
A new method is described that accurately estimates kinetic constants, conductance and number of ion channels from macroscopic currents. The method uses both the time course and the strength of correlations between different time points of macroscopic currents and utilizes the property of semiseparability of covariance matrix for computationally efficient estimation of current likelihood and its gradient. The number of calculation steps scales linearly with the number of channel states as opposed to the cubic dependence in a previously described method. Together with the likelihood gradient evaluation, which is almost independent of the number of model parameters, the new approach allows evaluation of kinetic models with very complex topologies. We demonstrate applicability of the method to analysis of synaptic currents by estimating accurately rate constants of a 7-state model used to simulate GABAergic macroscopic currents.
Collapse
Affiliation(s)
- Andrey R. Stepanyuk
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| | - Anya L. Borisyuk
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| | - Pavel V. Belan
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
- * E-mail:
| |
Collapse
|
13
|
Grantyn R, Henneberger C, Jüttner R, Meier JC, Kirischuk S. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins. Front Cell Neurosci 2011; 5:13. [PMID: 21772813 PMCID: PMC3131524 DOI: 10.3389/fncel.2011.00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/17/2011] [Indexed: 12/03/2022] Open
Abstract
Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: (1) synaptic transmission starts with GABA, (2) nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release), (3) immature synaptic terminals release vesicles with higher probability than mature synapses, (4) immature GABAergic synapses are prone to paired pulse and tetanic depression, (5) synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, (6) in immature neurons GABA acts as a depolarizing transmitter, (7) synapse maturation implies inhibitory postsynaptic current shortening due to an increase in alpha1 subunit expression, (8) extrasynaptic (tonic) conductances can inhibit the development of synaptic (phasic) GABA actions.
Collapse
Affiliation(s)
- Rosemarie Grantyn
- Institute of Neurophysiology, University Medicine Charité Berlin, Germany
| | | | | | | | | |
Collapse
|
14
|
Miyawaki H, Hirano T. Different correlations among physiological and morphological properties at single glutamatergic synapses in the rat hippocampus and the cerebellum. Synapse 2010; 65:412-23. [PMID: 20812293 DOI: 10.1002/syn.20860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/15/2010] [Indexed: 11/10/2022]
Abstract
Synapses in the mammalian central nervous system show substantial diversity in their physiological and morphological properties. However, the correlations among them have remained elusive. Here, we tried to clarify the correlations by establishing a method to record excitatory postsynaptic currents (EPSCs) at individual synapses and also to observe the morphology at the same time. A pair of pre- and postsynaptic neurons were labeled with different fluorescent dyes, and a presynaptic varicosity was selectively stimulated with a θ-tube glass electrode under conditions in which action potential generation was suppressed. Two representative types of excitatory glutamatergic synapses, one on hippocampal pyramidal neurons and the other on cerebellar Purkinje neurons, were studied. The correlations between the properties of quantal EPSCs (qEPSCs) and those of synaptic morphology were analyzed in rat primary culture preparations. The amplitude and the decay time of qEPSC were correlated with the size of the postsynaptic spine only at hippocampal synapses. In contrast, the size of the presynaptic varicosity was correlated with the size of the postsynaptic spine and the quantal content of evoked EPSCs only at granule neuron-Purkinje neuron synapses in the cerebellum. These results suggest that the interaction between pre- and postsynaptic structures and the coupling of postsynaptic responsiveness and the spine morphology differ between cerebellar and hippocampal glutamatergic synapses.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-Ku, Kyoto, Japan
| | | |
Collapse
|
15
|
Nauen DW. Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 2010; 194:195-205. [PMID: 20888362 DOI: 10.1016/j.jneumeth.2010.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Neurons in the brain are often linked by single synaptic contacts (Gulyás et al., 1993) and the probabilistic character of synaptic activity makes it desirable to increase the resolution of physiological experiments by observing the function of the smallest possible number of synaptic terminals, ideally, one. Because they are critically important and technically difficult to resolve, several of the core questions investigated in singe-site experiments have been under study for decades (Auger and Marty, 2000). Many approaches have been taken toward the goal of measuring activity at few synapses, and consideration of the capabilities and limitations of each of these methods permits a review of the contributions each has made possible to present understanding of synaptic function. A number of methodological advances in recent years have increased resolving power. New techniques often build on previous developments and many effective approaches combine components of existing specialized methods with new technology. One theme that emerges is that synaptic properties vary among regions, reducing the utility of general questions such as whether synaptic glutamate saturates receptors or how rapidly synaptic vesicle pools are depleted. For several core questions, multiple studies using different methods have reached similar conclusions, suggesting that consensus may be emerging for some anatomic synapses.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1401 BST, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
16
|
Functional tetrodotoxin-resistant Na(+) channels are expressed presynaptically in rat dorsal root ganglia neurons. Neuroscience 2008; 159:559-69. [PMID: 19162133 DOI: 10.1016/j.neuroscience.2008.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/21/2008] [Accepted: 12/16/2008] [Indexed: 11/20/2022]
Abstract
The tetrodotoxin-resistant (TTX-R) voltage-gated Na(+) channels Na(v)1.8 and Na(v)1.9 are expressed by a subset of primary sensory neurons and have been implicated in various pain states. Although recent studies suggest involvement of TTX-R Na(+) channels in sensory synaptic transmission and spinal pain processing, it remains unknown whether TTX-R Na(+) channels are expressed and function presynaptically. We examined expression of TTX-R channels at sensory synapses formed between rat dorsal root ganglion (DRG) and spinal cord (SC) neurons in a DRG/SC co-culture system. Immunostaining showed extensive labeling of presynaptic axonal boutons with Na(v)1.8- and Na(v)1.9-specific antibodies. Measurements using the fluorescent Na(+) indicator SBFI demonstrated action potential-induced presynaptic Na(+) entry that was resistant to tetrodotoxin (TTX) but was blocked by lidocaine. Furthermore, presynaptic [Ca(2+)](i) elevation in response to a single action potential was not affected by TTX in TTX-resistant DRG neurons. Finally, glutamatergic synaptic transmission was not inhibited by TTX in more than 50% of synaptic pairs examined; subsequent treatment with lidocaine completely blocked these TTX-resistant excitatory postsynaptic currents. Taken together, these results provide evidence for presynaptic expression of functional TTX-R Na(+) channels that may be important for shaping presynaptic action potentials and regulating transmitter release at the first sensory synapse.
Collapse
|
17
|
Sakaba T. Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 2008; 57:406-19. [PMID: 18255033 DOI: 10.1016/j.neuron.2007.11.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 09/23/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Cerebellar basket cells inhibit postsynaptic Purkinje cells in a rapid and precise manner. To investigate the mechanisms of transmitter release underlying this rapid inhibition, Ca(2+) uncaging was employed to measure the intracellular Ca(2+) dependence of transmitter release and the kinetics of synaptic vesicle pool transitions in immature basket cell synapses at room temperature. Vesicle release properties distinct from those previously observed at excitatory synapses were seen, including a relatively high intracellular Ca(2+) sensitivity of vesicle fusion, rapid vesicle pool mobilization with few reluctant vesicles, and vesicle replenishment driven by unusually high Ca(2+) levels from both local and residual Ca(2+) sources during action potential trains. These results suggest that inhibitory basket cell synapses are optimized for rapid and precise temporal and spatial Ca(2+) coordination of synaptic vesicle fusion and replenishment, which may contribute to the unique physiology of inhibitory synaptic transmission, including phasic release during action potential trains and tonic release by residual intracellular Ca(2+).
Collapse
Affiliation(s)
- Takeshi Sakaba
- Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
18
|
Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci 2007; 27:13520-31. [PMID: 18057210 DOI: 10.1523/jneurosci.3151-07.2007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapsins (Syns) are synaptic vesicle (SV) phosphoproteins that play a role in neurotransmitter release and synaptic plasticity by acting at multiple steps of exocytosis. Mutation of SYN genes results in an epileptic phenotype in mouse and man suggesting a role of Syns in the control of network excitability. We have studied the effects of the genetic ablation of the SYN1 gene on inhibitory synaptic transmission in primary hippocampal neurons. Inhibitory neurons lacking SynI showed reduced amplitude of IPSCs evoked by isolated action potentials. The impairment in inhibitory transmission was caused by a decrease in the size of the SV readily releasable pool, rather than by changes in release probability or quantal size. The reduction of the readily releasable pool was caused by a decrease in the number of SVs released by single synaptic boutons in response to the action potential, in the absence of variations in the number of synaptic contacts between couples of monosynaptically connected neurons. The deletion of SYN1 did not affect paired-pulse depression or post-tetanic potentiation, but was associated with a moderate increase of synaptic depression evoked by trains of action potentials, which became apparent at high stimulation frequencies and was accompanied by a slow down of recovery from depression. The decreased size of the SV readily releasable pool, coupled with a decreased SV recycling rate and refilling by the SV reserve pool, may contribute to the epileptic phenotype of SynI knock-out mice.
Collapse
|
19
|
Foster KA, Crowley JJ, Regehr WG. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J Neurosci 2006; 25:11655-65. [PMID: 16354924 PMCID: PMC6726039 DOI: 10.1523/jneurosci.4029-05.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of a synapse are crucially dependent on whether an action potential can trigger the release of multiple vesicles at an individual release site [multivesicular release (MVR)] and whether fusion of a single vesicle leads to receptor saturation. MVR and receptor saturation both occur at some high p synapses, but it is not known whether they also occur at low p synapses. Here we examine this issue at the low p synapse between parallel fibers and Purkinje cells using the low-affinity antagonist DGG (gamma-D-glutamylglycine) to relieve AMPA receptor saturation. We find that the presence of MVR and receptor saturation at this synapse alters the calcium dependence of synaptic transmission and reduces the extent of facilitation. These findings establish that MVR and postsynaptic receptor saturation can influence transmission even at synapses with a low initial probability of release and suggest that these properties may be common at synapses in the mammalian brain.
Collapse
Affiliation(s)
- Kelly A Foster
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
20
|
Ricci-Tersenghi F, Minneci F, Sola E, Cherubini E, Maggi L. Multivesicular release at developing Schaffer collateral-CA1 synapses: an analytic approach to describe experimental data. J Neurophysiol 2006; 96:15-26. [PMID: 16598063 DOI: 10.1152/jn.01202.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed and analytically solved a simple and general stochastic model to distinguish the univesicular from the multivesicular mode of glutamate release. The model solution gives analytical mathematical expressions for average values of quantities that can be measured experimentally. Comparison of these quantities with the experimental measures allows one to discriminate the release mode and to determine the most probable values of model parameters. The model has been validated at glutamatergic CA3-CA1 synapses in the hippocampus from newborn (P1-P5 old) rats. Our results strongly support a multivesicular type of release process requiring a variable pool of immediately releasable vesicles. Moreover, computing quantities that are functions of the model parameters, the mean amplitude of the synaptic response to the release of a single vesicle (q) was estimated to be 5-10 pA, in very good agreement with experimental findings. In addition a multivesicular type of release was supported by the following experimental evidences: 1) a high variability of the amplitude of successes, with a coefficient of variation ranging from 0.12 to 0.73; 2) an average potency ratio a2/a1 between the second and first response to a pair of stimuli >1; and 3) changes in the potency of the synaptic response to the first stimulus when the release probability was modified by increasing or decreasing the extracellular calcium concentration. Our results indicate that at Schaffer collateral-CA1 synapses of the neonatal rat hippocampus a single action potential may induce the release of more than one vesicle from the same release site.
Collapse
Affiliation(s)
- F Ricci-Tersenghi
- Dipartimento di Fisica Umana e Farmacologia, University La Sapienza, Piazzale A Rome, Italy
| | | | | | | | | |
Collapse
|
21
|
Saitow F, Suzuki H, Konishi S. beta-Adrenoceptor-mediated long-term up-regulation of the release machinery at rat cerebellar GABAergic synapses. J Physiol 2005; 565:487-502. [PMID: 15790662 PMCID: PMC1464518 DOI: 10.1113/jphysiol.2005.084384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Properly regulated interactions among excitatory and inhibitory synapses are critical for brain function. Compared to excitatory synapses, much less is known about the gain control mechanisms at inhibitory synapses. Herein we report a mechanism of noradrenergic long-term potentiation (LTP) at inhibitory synapses following presynaptic beta-adrenoceptor activation. Stimulation of beta-adrenoceptors elicited LTP of GABA release from terminals of cerebellar interneurones. This action was dependent on the cAMP/protein kinase A signalling cascade and independent of the beta-adrenoceptor-mediated acceleration of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel. Furthermore, the beta-adrenoceptor- and protein kinase A-mediated LTP was triggered by enhancement of the Ca2+ sensitivity of the release machinery and increase in the readily releasable pool. beta-Adrenoceptor activation also accelerated the recruitment of GABA into the releasable pool and enhanced synchronous and asynchronous release of GABA from the presynaptic terminal. Thus, the up-regulation of GABA release machinery mediated by noradrenaline and beta-adrenoceptor activation provides a likely mechanism of feedforward inhibition of the cerebellar output neurone Purkinje cell, leading to a profound effect on motor control and learning associated with the cerebellum.
Collapse
Affiliation(s)
- Fumihito Saitow
- Waseda-Olympus Bioscience Research Institute, Helios, no. 05-01/02, 11 Biopolis Way, Singapore 138667
| | | | | |
Collapse
|
22
|
Storozhuk MV, Ivanova SY, Balaban PM, Kostyuk PG. Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures. Synapse 2005; 58:45-52. [PMID: 16037952 DOI: 10.1002/syn.20186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been previously demonstrated that mitochondria are of crucial importance for posttetanic potentiation (PTP) at neuromuscular junction. The aim of our study was to examine whether this may also be the case at a central synapse. To address this question, we studied possible mitochondrial involvement in PTP of GABAergic synaptic transmission in rat neocortical cultures, a preparation in which PTP has not been previously documented. Synaptic responses were evoked by local extracellular stimulation. Whole-cell patch-clamp technique was employed to record inhibitory postsynaptic currents (IPSCs) from postsynaptic neurons. Tetanic stimulation (30 Hz, 4 s) of the presynaptic neuron evoked an increase of IPSC amplitude, lasting for about 1 min. PTP was accompanied by a decrease of coefficient of variation of the IPSC and a decrease of paired-pulse (IPSC(2)/IPSC(1)) ratio, indicating involvement of presynaptic mechanism(s) in PTP. Possible role of mitochondria in PTP was addressed using drugs affecting Ca(2+) uptake and subsequent Ca(2+) efflux: carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and tetraphenylphosphonium ions (TPP(+)). It was found that both CCCP (1-2 microM) and TPP(+) (10 microM) either substantially decreased or eliminated PTP. These results further confirm presynaptic origin of PTP in neocortical neurons and suggest an important role of mitochondrial Ca(2+) turnover in this form of synaptic plasticity at the central synapse.
Collapse
|
23
|
Barberis A, Petrini EM, Cherubini E. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Eur J Neurosci 2004; 20:1803-10. [PMID: 15380001 DOI: 10.1111/j.1460-9568.2004.03624.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The variability of quantal size depends on both presynaptic (profile of the neurotransmitter concentration in the cleft) and postsynaptic (number and gating properties of postsynaptic receptors) factors. Here we have examined the possibility that at nonsaturated synapses in cultured hippocampal neurons, changes in both the transmitter concentration peak and its clearance from the synaptic cleft may influence the variability of spontaneous miniature synaptic GABAergic currents (mIPSCs). We found that, in contrast to the slow-off GABAA receptor antagonist bicuculline, fast-off competitive antagonists such as SR-95103 and TPMPA differentially blocked small and large mIPSCs. In the presence of flurazepam, a drug believed to increase the affinity of GABA for GABAAR, small mIPSCs were enhanced more efficiently than large events. Moreover, the addition of dextran, which increases the viscosity of the extracellular fluid, preferentially increased small mIPSCs with respect to large ones. These observations suggest that changes in the concentration peak and the speed of GABA clearance in the cleft may be an important source of synaptic variability. The study of the correlation between peak amplitude and kinetics of mIPSCs allowed determination of the relative contribution of transmitter peak concentration vs. time of GABA clearance. Small synaptic responses were associated with fast onset and decay kinetics while large amplitude currents were associated with slow kinetics, indicating a crucial role for GABA synaptic clearance in variability of mIPSCs. By using model simulations we were able to estimate the range of variability of both the concentration and the speed of clearance of the GABA transient in the synaptic cleft.
Collapse
Affiliation(s)
- Andrea Barberis
- Neuroscience Program, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | |
Collapse
|
24
|
Homeostatic plasticity of GABA-ergic synaptic transmission in rat hippocampal cell cultures. NEUROPHYSIOLOGY+ 2004. [DOI: 10.1007/s11062-005-0032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Wachman ES, Poage RE, Stiles JR, Farkas DL, Meriney SD. Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone. J Neurosci 2004; 24:2877-85. [PMID: 15044526 PMCID: PMC6729837 DOI: 10.1523/jneurosci.1660-03.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nature of presynaptic calcium (Ca(2+)) signals that initiate neurotransmitter release makes these signals difficult to study, in part because of the small size of specialized active zones within most nerve terminals. Using the frog motor nerve terminal, which contains especially large active zones, we show that increases in intracellular Ca(2+) concentration within 1 msec of action potential invasion are attributable to Ca(2+) entry through N-type Ca(2+) channels and are not uniformly distributed throughout active zone regions. Furthermore, changes in the location and magnitude of Ca(2+) signals recorded before and after experimental manipulations (omega-conotoxin GVIA, diaminopyridine, and lowered extracellular Ca(2+)) support the hypothesis that there is a remarkably low probability of a single Ca(2+) channel opening within an active zone after an action potential. The trial-to-trial variability observed in the spatial distribution of presynaptic Ca(2+) entry also supports this conclusion, which differs from the conclusions of previous work in other synapses.
Collapse
Affiliation(s)
- Elliot S Wachman
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
26
|
Clements JD. Variance-mean analysis: a simple and reliable approach for investigating synaptic transmission and modulation. J Neurosci Methods 2004; 130:115-25. [PMID: 14667541 DOI: 10.1016/j.jneumeth.2003.09.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms underlying synaptic plasticity can be investigated by analyzing synaptic amplitude fluctuations before and after a synaptic modulation. However, many older fluctuation analysis techniques rely on models of synaptic transmission that incorporate unrealistic simplifying assumptions or have too many free parameters. As a result, these techniques have sometimes produced counterintuitive or contradictory results. In contrast, the variance-mean (V-M) technique requires fewer assumptions and is more robust than previous approaches. It achieves these improvements by focusing on two key parameters of synaptic transmission, the average probability that a vesicle is released from a synaptic terminal following a presynaptic stimulus (Pav), and the average amplitude of the postsynaptic response to a vesicle of transmitter (Qav). To apply V-M analysis, a fluctuating postsynaptic current (PSC) is recorded at several different extracellular Ca2+ or Cd2+ concentrations. The variance of the PSC amplitude is plotted against the mean amplitude at each concentration, forming a parabola. The degree of parabolic curvature estimates Pav, and the limiting slope under low release conditions estimates Qav. The shape of the V-M parabola changes in characteristic ways following each of the three standard forms of synaptic modulation: a change in Qav (postsynaptic), a change in Pav (presynaptic), or a change in the number of terminals (N). The approach does not require specialized software, and can even be implemented as a purely graphical technique. V-M analysis has been used to investigate the site of expression of long-term potentiation and the mechanisms underlying paired-pulse depression. This report presents a detailed mathematical development of the technique, and explores the limiting conditions under which it can confidently be applied. V-M analysis requires fewer than 100 PSC amplitude measurements to accurately estimate Pav and Qav, and it can reliably identify whether a synaptic modulation occurs at a pre- or postsynaptic site. In contrast to other techniques, V-M analysis is largely insensitive to recording noise, nonuniform modulation and intrinsic variability of the unitary synaptic amplitude.
Collapse
Affiliation(s)
- John D Clements
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
27
|
Lévi S, Logan SM, Tovar KR, Craig AM. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci 2004; 24:207-17. [PMID: 14715953 PMCID: PMC6729579 DOI: 10.1523/jneurosci.1661-03.2004] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of the scaffolding protein gephyrin at hippocampal inhibitory synapses is not well understood. A previous study (Kneussel et al., 1999) reported a complete loss of synaptic clusters of the major GABA(A)R subunits alpha2 and gamma2 in hippocampal neurons lacking gephyrin. In contrast, we show here that GABA(A)R alpha2 and gamma2 subunits do cluster at pyramidal synapses in hippocampal cultures from gephyrin-/- mice, albeit at reduced levels compared with control neurons. Synaptic aggregation of GABA(A)R alpha1 on interneurons was identical between the culture types. Furthermore, we recorded miniature IPSCs (mIPSCs) from gephyrin-/- neurons. Although the mean mIPSC amplitude was reduced (by 23%) compared with control, the frequency of these events was unchanged. Cell surface labeling experiments indicated that gephyrin contributes, in part, to aggregation but not to insertion or stabilization of GABA(A)R alpha2 and gamma2 in the plasma membrane. Thus, a major gephyrin-independent component of hippocampal inhibitory synapse development must exist. We also report that glycine receptors cluster at GABAergic synapses in a subset of hippocampal interneurons and pyramidal neurons. Unlike GABA(A)Rs, synaptic clustering of glycine receptors was completely abolished in gephyrin-/- neurons. Finally, artificial extrasynaptic aggregation of GABA(A)R was able to redistribute and cocluster gephyrin by a mechanism requiring a neuron-specific modification or intermediary protein. We propose a model of hippocampal inhibitory synapse development in which some GABA(A)Rs cluster at synapses by a gephyrin-independent mechanism and recruit gephyrin. This clustered gephyrin may then recruit glycine receptors, additional GABA(A)Rs, and other signal-transducing components.
Collapse
Affiliation(s)
- Sabine Lévi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
28
|
Chen G, Harata NC, Tsien RW. Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proc Natl Acad Sci U S A 2004; 101:1063-8. [PMID: 14722357 PMCID: PMC327151 DOI: 10.1073/pnas.0307149101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At central synapses, quantal size is generally regarded as fluctuating around a fixed mean with little change during short-term synaptic plasticity. We evoked quantal release by brief electric stimulation at single synapses visualized with FM 1-43 dye in hippocampal cultures. The majority of quantal events evoked at single synapses were monovesicular, based on examination of amplitude distribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-mediated responses. Consistent with previous findings, the quantal size did not change during paired-pulse facilitation (PPF), supporting the notion that the evoked events were monoquantal. However, during paired-pulse depression (PPD), there was a significant decrease in unitary quantal size, which was not due to postsynaptic receptor desensitization. This asymmetry of quantal modulation during PPF and PPD was demonstrated at the same single synapse at different extracellular calcium concentrations. Our results indicate that PPF can be fully accounted for by an increase of release probability, whereas PPD may be caused by decreases in both release probability and quantal size. One possible explanation is that the release of a quantum of neurotransmitter from synaptic vesicles is not invariant but subject to rapid calcium-dependent modulation during short-term synaptic plasticity.
Collapse
Affiliation(s)
- Gong Chen
- Department of Molecular and Cellular Physiology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
29
|
Ivanova SY, Lushnikova IV, Pivneva TA, Belan PV, Storozhuk MV, Kostyuk PG. Differential properties of GABAergic synaptic connections in rat hippocampal cell cultures. Synapse 2004; 53:122-30. [PMID: 15170824 DOI: 10.1002/syn.20040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Based on the effect of prolonged tetanic stimulation (30 Hz, 4 sec), we divided GABAergic synaptic connections in hippocampal cell cultures into two groups: connections facilitated ( approximately 45%) and connections depressed ( approximately 55%) by the tetanic stimulation. In order to reveal possible reasons for the differential effect of the tetanization, we compared several properties of the connections belonging to both groups. We found that, on average, evoked IPSCs in the connections facilitated by the tetanization have a smaller amplitude and larger coefficient of variation (CV) of IPSC amplitude compared to connections depressed by the tetanization. We also estimated quantal parameters for both groups of connections assuming that transmitter release is reasonably described by a binomial distribution. We found that a background release probability (P) is substantially lower in the connections facilitated by the tetanization (P approximately 0.5) than in the connections depressed by the tetanization (P approximately 0.9) and suggest that this difference may underlie the differential effect of the tetanization. We also found that the tetanization induces the opposite effect on connections made by distinct presynaptic neurons with the same postsynaptic cell (convergent connections) in a fraction of postsynaptic neurons studied (3 out of 9). These results support the idea that properties of the presynaptic neuron are of primary importance for the observed differential effect of the tetanization, but they do not exclude a role of the postsynaptic neuron in this effect.
Collapse
Affiliation(s)
- Svetlana Y Ivanova
- AA Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine Kiev
| | | | | | | | | | | |
Collapse
|
30
|
Liu G. Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr Opin Neurobiol 2003; 13:324-31. [PMID: 12850217 DOI: 10.1016/s0959-4388(03)00078-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although the strength of quantal synaptic transmission is jointly controlled by pre- and post-synaptic mechanisms, the presynaptic mechanisms remain substantially less well characterized. Recent studies reveal that a single package of neurotransmitter is generally insufficient to activate all available postsynaptic receptors, whereas the sum of transmitter from multiple vesicles can result in receptor saturation. Thus, depending upon the number of vesicles released, a given synaptic pathway might be either 'reliable' or 'unreliable'. A lack of receptor saturation in turn makes it possible to modify quantal size by altering the flux of transmitter through the synaptic cleft. Studies are now illuminating several new mechanisms behind the regulation of this transmitter flux--characteristics that control how transmitter is loaded into vesicles, how it is released and the manner by which it interacts with postsynaptic receptors.
Collapse
Affiliation(s)
- Guosong Liu
- Picower Center for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
| |
Collapse
|
31
|
Kirischuk S, Grantyn R. Intraterminal Ca2+ concentration and asynchronous transmitter release at single GABAergic boutons in rat collicular cultures. J Physiol 2003; 548:753-64. [PMID: 12640015 PMCID: PMC2342888 DOI: 10.1113/jphysiol.2002.037036] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2002] [Accepted: 02/18/2003] [Indexed: 11/08/2022] Open
Abstract
Neurotransmitter release in response to a single action potential has a precise time course. A significant fraction of the releasable vesicles is exocytosed synchronously, within a few milliseconds after the arrival of an action potential. If repeatedly activated, stimulus-locked phasic synchronous release declines, but synaptic transmission can be maintained through tonic asynchronous transmitter release. The desynchronisation of release during repetitive activation is generally attributed to a build-up of intraterminal Ca2+ concentration. However, the precise relationship between presynaptic Ca2+ level and asynchronous release rate at small central synapses has remained unclear. Here we characterise this relationship for single GABAergic terminals in rat collicular cultures. In the presence of tetrodotoxin, inhibitory postsynaptic currents (IPSCs) and presynaptic Ca2+ transients were recorded in response to direct presynaptic depolarisation of individual boutons. Repetitive stimulation indeed resulted in a shift from phasic to asynchronous neurotransmitter release. A clear dominance of the asynchronous release mode was observed after 10 pulses. The steady-state asynchronous release rate showed a third-power dependency on the presynaptic Ca2+ concentration, which is similar to that of evoked release. The Ca2+ sensor for asynchronous release exhibited a high affinity for Ca2+ and was far from saturation. These properties of the Ca2+ sensor should make the asynchronous release very sensitive to any modification of presynaptic Ca2+ concentration, including those resulting from changes in presynaptic activity patterns. Thus, asynchronous release represents a powerful but delicately regulated mechanism that ensures the maintenance of appropriate inhibition when the readily releasable pool of vesicles is depleted.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), 10117 Berlin, Germany.
| | | |
Collapse
|
32
|
Ivanova SY, Storozhuk MV, Melnick IV, Kostyuk PG. Chronic treatment with ionotropic glutamate receptor antagonist kynurenate affects GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 2003; 341:61-4. [PMID: 12676344 DOI: 10.1016/s0304-3940(03)00154-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well documented that prolonged treatment with antagonists of ionotropic glutamate receptors activates a number of homeostatic mechanisms including alteration of glutamatergic transmission. We studied whether this treatment can also affect GABAergic transmission. Using whole-cell voltage clamp recording and local extracellular stimulation we investigated evoked inhibitory postsynaptic currents (IPSCs) in cultured rat hippocampal neurons grown in the presence of ionotropic glutamate receptor antagonist kynurenate (1 mM) and in control conditions. Chronic kynurenate treatment did not significantly affect the amplitude of evoked IPSCs and IPSC reversal potentials. In contrast we found that the paired-pulse depression was increased by 67% in cultures treated with kynurenic acid. We conclude that additional mechanism(s), alteration of GABAergic synaptic transmission, may contribute to homeostatic plasticity induced by chronic block of ionotropic glutamate receptors.
Collapse
Affiliation(s)
- Svetlana Y Ivanova
- Department of General Physiology of the Nervous System, Bogomoletz Institute of Physiology, National Academy of Sciences, Bogomoletz str 4, 252024 Kiev 24, Ukraine
| | | | | | | |
Collapse
|
33
|
Abstract
Changes in the amplitudes of signals conveyed at synaptic contacts between neurons underlie many brain functions and pathologies. Here we review the possible determinants of the amplitude and plasticity of the elementary postsynaptic signal, the miniature. In the absence of a definite understanding of the molecular mechanism releasing transmitters, we investigated a possible alternative interpretation. Classically, both the quantal theory and the vesicle theory predict that the amount of transmitter producing a miniature is determined presynaptically prior to release and that rapid changes in miniature amplitude reflect essentially postsynaptic alterations. However, recent data indicates that short-term and long-lasting changes in miniature amplitude are in large part due to changes in the amount of transmitter in individual released packets that show no evidence of preformation. Current representations of transmitter release derive from basic properties of neuromuscular transmission and endocrine secretion. Reexamination of overlooked properties of these two systems indicate that the amplitude of miniatures may depend as much, if not more, on the Ca(2+) signals in the presynaptic terminal than on the number of postsynaptic receptors available or on vesicle's contents. Rapid recycling of transmitter and its possible adsorption at plasma and vesicle lumenal membrane surfaces suggest that exocytosis may reflect membrane traffic rather than actual transmitter release. This led us to reconsider the disregarded hypothesis introduced by Fatt and Katz (1952; J Physiol 117:109-128) that the excitability of the release site may account for the "quantal effect" in fast synaptic transmission. In this case, changes in excitability of release sites would contribute to the presynaptic quantal plasticity that is often recorded.
Collapse
Affiliation(s)
- Jean Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
34
|
Akaike N, Moorhouse AJ. Techniques: applications of the nerve-bouton preparation in neuropharmacology. Trends Pharmacol Sci 2003; 24:44-7. [PMID: 12498731 DOI: 10.1016/s0165-6147(02)00010-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single mammalian neurons can be isolated with adherent functional synaptic terminals using an enzyme-free, mechanical dissociation procedure. This allows investigations of the effects of presynaptic modulators of synaptic transmission with unprecedented ease and accuracy. Furthermore, single presynaptic terminals and boutons can be visualized using fluorescent markers and can also be focally stimulated with electrical pulses. In this article, the isolated-nerve-adherent-synaptic-bouton preparation and some examples of its general properties and uses are discussed.
Collapse
Affiliation(s)
- Norio Akaike
- Cellular and Systems Physiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, 812-8582, Fukuoka, Japan.
| | | |
Collapse
|
35
|
Kirischuk S, Grantyn R. Inter-bouton variability of synaptic strength correlates with heterogeneity of presynaptic Ca(2+) signals. J Neurophysiol 2002; 88:2172-6. [PMID: 12364541 DOI: 10.1152/jn.2002.88.4.2172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The elevation of presynaptic calcium concentration is a crucial step in excitation-secretion coupling. However, the amplitudes of action-potential-induced presynaptic calcium transients can display high variability among different terminals. The aim of this study was to clarify whether, at individual boutons, synaptic strength correlates with the average amplitude of presynaptic calcium transients. Low-density collicular cultures were loaded with the calcium indicator Oregon Green bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) 1. Action potentials were blocked with tetrodotoxin. Presynaptic terminals were identified with FM4-64, a use-dependent vesicle marker. Presynaptic calcium influx was elicited by a focal electrical stimulation of single boutons. Whole cell patch-clamp and calcium imaging techniques were used to record GABAergic evoked inhibitory postsynaptic currents (eIPSCs) and presynaptic fluorescence changes in the stimulated terminal. To make the eIPSCs from different boutons comparable, they were normalized to the mean value of miniature IPSCs (mIPSCs) of the postsynaptic cell. Records from 47 boutons showed that eIPSCs varied between 0.5 and 3.0 and presynaptic calcium transients varied between 0.1 and 1.3. However, there was a strong correlation between the mean amplitudes of eIPSCs and presynaptic calcium responses. The eIPSC-[Ca(2+)](pre) relationship allows to use the amplitudes of presynaptic calcium transients as an indicator of release efficacy and, in a set of contacts made by one axon, to predict the relative impact of individual terminals.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), 10117 Berlin, Germany.
| | | |
Collapse
|
36
|
Kirischuk S, Clements JD, Grantyn R. Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. J Physiol 2002; 543:99-116. [PMID: 12181284 PMCID: PMC2290498 DOI: 10.1113/jphysiol.2002.021576] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Paired pulse depression (PPD) is a common form of short-term synaptic plasticity. The aim of this study was to characterise PPD at the level of a single inhibitory bouton. Low-density collicular cultures were loaded with the Ca2+ indicator Oregon Green-1, active boutons were stained with RH414, and action potentials were blocked with TTX. Evoked IPSCs (eIPSCs) and presynaptic Ca2+ transients were recorded in response to direct presynaptic depolarisation of an individual bouton. The single bouton eIPSCs had a low failure rate (< 0.1), large average quantal content (3-6) and slow decay (tau(1) = 15 ms, tau(2) = 81 ms). The PPD of eIPSCs had two distinct components: PPD(fast) and PPD(slow) (tau = 86 ms and 2 s). PPD(slow) showed no dependence on extracellular Ca2+ concentration, or on the first eIPSC's failure rate or amplitude. Most probably, it reflects a release-independent inhibition of exocytosis. PPD(fast) was only observed in normal or elevated Ca2+. It decreased with the failure rate and increased with the amplitude of the first eIPSC. It coincided with paired pulse depression of the presynaptic Ca2+ transients (tau = 120 ms). The decay of the latter was accelerated by EGTA, which also reduced PPD(fast). Therefore, a suppressive effect of residual presynaptic Ca2+ on subsequent Ca2+ influx is considered the most likely cause of PPD(fast). PPD(fast) may also have a postsynaptic component, because exposure to a low-affinity GABA(A) receptor antagonist (TPMPA; 300 microM) counteracted PPD(fast), and asynchronous IPSC amplitudes were depressed for a short interval following an eIPSC. Thus, at these synapses, PPD is produced by at least two release-independent presynaptic mechanisms and one release-dependent postsynaptic mechanism.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), 10117 Berlin, Germany
| | | | | |
Collapse
|
37
|
Henneberger C, Jüttner R, Rothe T, Grantyn R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol 2002; 88:595-603. [PMID: 12163512 DOI: 10.1152/jn.2002.88.2.595] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is involved in numerous aspects of synapse development and plasticity. The present study was aimed at clarifying the significance of endogenous BDNF for the synaptically driven spontaneous network activity and GABAergic inhibition in the superficial layers of the mouse superior colliculus. In this structure neuron survival is unaffected by the absence of BDNF. Two experimental approaches were used: comparison of BDNF-deficient (-/-) and wild-type (+/+) mice and blockade of BDNF receptor signaling by the tyrosine kinase inhibitor K-252a. Patch-clamp recordings were performed on horizontal slices during postnatal days 15 and 16. The lack of BDNF in -/- mice caused a significant reduction of the spontaneous action potential frequency and an increase in the pharmacologically induced disinhibition of spike discharge. This change was accompanied by an increase in the amplitudes of GABAergic evoked, spontaneous, and miniature inhibitory postsynaptic currents (IPSCs). BDNF gene inactivation had no effect on the degree of paired-pulse facilitation or the frequency of miniature IPSCs. The increase of IPSC amplitudes by chronic BDNF deprivation was completely mimicked by acute exposure to K-252a in +/+ animals. The enhancement of GABAergic IPSCs in -/- animals was reversed by acute application of 100 ng/ml BDNF, but this rescue was completely prevented by blocking postsynaptic protein kinase C (PKC) activation with the PKC inhibitor peptide 19-31. From these results we conclude that BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABA(A) receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.
Collapse
Affiliation(s)
- Christian Henneberger
- Developmental Physiology, Johannes Müller Institute of Physiology, Charité, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Fedulova SA, Veselovsky NS. Quantal GABA release in hippocampal synapses: role of local Ca2+ dynamics within the single terminals. Eur J Pharmacol 2002; 447:163-71. [PMID: 12151008 DOI: 10.1016/s0014-2999(02)01840-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Results of recent studies dedicated to the mechanisms of neurotransmission at a single inhibitory synaptic terminal in cultured neurones support the hypothesis that multiple quanta of neurotransmitter are released during excitation of inhibitory and excitatory central synapses. This is an important consideration as previous less direct measurements have suggested that a synapse can release no more than one quantum. Neurotransmitter release during long stimuli may occur at certain times with maximal probability, keeping the mean inter-release interval constant. This interval is not determined directly by vesicle depletion and moreover, each release event is independent of previous ones. The recent data also suggest that constant Ca(2+) influx is an important determinant of neurotransmitter release. It is speculated that the neurotransmitter release is regulated by a superposition of two processes: a continuous homogeneous process, (i.e. background Ca(2+) influx), and a periodic process that acts as a synchronizing factor of the release at definite moments.
Collapse
Affiliation(s)
- S A Fedulova
- Bogmoletz Institute of Physiology, Bogomoletz Street 4, Kiev-24, GSP 252601, Ukraine.
| | | |
Collapse
|
39
|
Storozhuk MV, Ivanova SY, Pivneva TA, Melnick IV, Skibo GG, Belan PV, Kostyuk PG. Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 2002; 323:5-8. [PMID: 11911977 DOI: 10.1016/s0304-3940(01)02541-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of tetanic stimulation (30 Hz, 4 s) on evoked GABAergic inhibitory postsynaptic currents (IPSCs) was studied in cell cultures of dissociated hippocampal neurons with established synaptic connections. It was found that tetanic stimulation elicited post-tetanic depression (PTD) of the evoked IPSCs with a duration of more than 50 s in about 60% of the connections tested; post-tetanic potentiation was induced in 25% of the connections. We propose that the opposite effects of tetanization on IPSC amplitude are due to differences in the type of the interneuron that was tetanized. Since PTD in our experiments was usually accompanied by changes in the IPSC coefficient of variation and changes of a paired pulse depression, which are thought to reflect presynaptic mechanisms of modulation, we suggest that part of the PTD is due to a presynaptic mechanism(s).
Collapse
|
40
|
Akaike N, Murakami N, Katsurabayashi S, Jin YH, Imazawa T. Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron. Neurosci Res 2002; 42:187-95. [PMID: 11900828 DOI: 10.1016/s0168-0102(01)00320-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Evoked inhibitory postsynaptic currents (eIPSCs) generated from a single GABAergic bouton were recorded and the functional properties were investigated. Native single boutons attached to mechanically dissociated rat hippocampal CA1 neurons, namely "synaptic bouton" preparation, were visualized with FM 1-43 dye and selectively stimulated by a glass pipette directed to a single bouton by focal stimulation. The GABAergic eIPSCs were elicited in like all-or-none fashion regarding both stimulus strength and pipette location, thus indicating that the eIPSCs result from the activation of a single bouton. The GABA release from the boutons was action potential dependent since eIPSCs were blocked in the presence of either voltage-dependent Na(+) or Ca(2+)channel blocker. Even in the presence of tetrodotoxin (TTX), eIPSCs could be elicited by additional application of a voltage-dependent K(+) channel blocker, 4-AP. The GABA release depended on external Ca(2+) concentration. Amplitude histogram of eIPSCs did not follow Poisson distribution or show discrete peaks. As a result, this new experimental approach using both focal stimulation and a synaptic bouton preparation allows for a detailed study of the native synaptic machinery in nerve terminals measuring smaller than 1 microm in size in the CNS.
Collapse
Affiliation(s)
- Norio Akaike
- Cellular and System Physiology, Department of Phychosomatic Medicine, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
41
|
Jüttner R, Meier J, Grantyn R. Slow IPSC kinetics, low levels of alpha1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Eur J Neurosci 2001; 13:2088-98. [PMID: 11422449 DOI: 10.1046/j.0953-816x.2001.01587.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Remodelling of visual maps in the superior colliculus (SC) depends on neuronal activity. Synaptic inhibition could contribute to this process because spontaneous spike discharge in the SC was modulated by GABA(A) receptor activation at postnatal days (P) 1-3. To investigate the functional capacity of GABAergic synaptic transmission at this early stage of development, whole-cell patch-clamp recordings were made from wide field neurons (WFNs) in horizontal slices comprising the superficial grey layer of the SC. Focal stimulation in the vicinity of WFNs evoked tetrodotoxin-sensitive stimulus-locked inhibitory postsynaptic currents (eIPSCs). The failure rate of eIPSCs was low ( approximately 0.2), and the maximal amplitude of evoked unitary eIPSCs exceeded the amplitude of average miniature IPSCs (mIPSCs) by a factor of 4-5, suggesting that action potential-mediated GABA release was more effective than spontaneous release. Some of the properties of GABAergic synaptic transmission in the neonatal SC were age-specific. In contrast with eIPSCs in the more mature SC at P20-22, neonatal eIPSCs decayed more slowly, preferentially fluctuated in duration, not amplitude, and mostly lacked temporal summation, due to depression at shorter intervals. The paired-pulse ratio (eIPSC2 : eIPSC1) was inversely related to the duration of eIPSCs. PCR analysis showed, in addition, that the ratio of alpha1 : alpha3 subunit expression was lower in the neonatal SC. Together, these results suggest that, at a young age, efficacy of GABAergic synaptic transmission is primarily constrained by the slow kinetics and the saturation of postsynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- R Jüttner
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), Tucholskystrasse 2, D-10117 Berlin, Germany
| | | | | |
Collapse
|
42
|
Fedulova SA, Vasilyev DV, Veselovsky NS. Temporal regularity of neurotransmitter release at single terminal in cultured hippocampal neurons. Neuroscience 2001; 100:229-39. [PMID: 11008163 DOI: 10.1016/s0306-4522(00)00268-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The whole-cell GABA-mediated inhibitory postsynaptic currents were studied using the patch-clamp technique on synaptically connected cultured hippocampal neurons. The stimulus-evoked inhibitory postsynaptic currents were recorded in the tetrodotoxin-containing solution in response to the low-amplitude long (10-20ms) extracellular depolarization of a single presynaptic terminal. During each depolarization the postsynaptic response in a form of several superimposed independent events was recorded. The amplitudes of these responses fluctuated randomly, irrespective of the number of the event. In all the investigated neurons the distributions of delays revealed regularly spaced multiple peaks. The number of peaks increased with the duration of stimulus. The distance between the peaks was on average 2.97+/-0.86ms (n=58). The mean intervals between successive releases were distributed exponentially indicating the independence of the release sites. Thus neurotransmitter release might occur with maximal probability at the most probable times irrespective of the presence or failure of the previous event. The increase in stimulating pulse amplitude led to a decrease in the number of clearly detectable peaks in distributions. The decrease in the number of peaks in the distribution of delays was not accompanied with a decrease in the distance between peaks within the range of reliable resolution of the peaks. The amplitude distribution also revealed regularly spaced multiple peaks. The absence of significant correlation between the amplitude of the first and the second event demonstrated the independence of the succeeding release on the preceding release during long stimulation. Results of statistical analysis of our experimental data supports the hypothesis of multiquantal neurotransmitter release in a single inhibitory hippocampal synapse. Neurotransmitter release during long stimulation may occur at certain times with maximal probability, keeping the mean inter-release interval constant. Thus the interval is not determined directly by the depletion of vesicles and the number of vesicles which may be released at the most probable time is random.
Collapse
Affiliation(s)
- S A Fedulova
- International Center of Molecular Physiology, National Academy of Sciences, Bogomoletz St., 4, 01024, Kiev, Ukraine.
| | | | | |
Collapse
|
43
|
Renger JJ, Egles C, Liu G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron 2001; 29:469-84. [PMID: 11239436 DOI: 10.1016/s0896-6273(01)00219-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formation of glutamatergic synapses entails development of "silent" immature contacts into mature functional synapses. To determine how this transformation occurs, we investigated the development of neurotransmission at single synapses in vitro. Maturation of presynaptic function, assayed with endocytotic markers, followed accumulation of synapsin I. During this period, synaptic transmission was primarily mediated by activation of NMDA receptors, suggesting that most synapses were functionally silent. However, local glutamate application to silent synapses indicated that these synapses contained functional AMPA receptors, suggesting a possible presynaptic locus for silent transmission. Interference with presynaptic vesicle fusion by exposure to tetanus toxin reverted functional to silent transmission, implicating SNARE-mediated fusion as a determinant of the ratio of NMDA:AMPA receptor activation. This work reveals that functional maturation of synaptic transmission involves transformation of presynaptic silent secretion into mature synaptic transmitter release.
Collapse
Affiliation(s)
- J J Renger
- RIKEN-MIT Neuroscience Research Center, Center for Learning and Memory, Department of Brain and Cognitive Sciences and, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
44
|
Storozhuk MV, Melnick IV, Kostyuk PG, Belan PV. Postsynaptic mechanism may contribute to inhibitory acetylcholine effect on GABAergic synaptic transmission in hippocampal cell cultures. Synapse 2001; 41:65-70. [PMID: 11354015 DOI: 10.1002/syn.1061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of acetylcholine (ACh) on evoked GABAergic inhibitory postsynaptic currents (IPSCs) was studied in cell cultures of dissociated hippocampal neurons with established synaptic connections. Spontaneous IPSCs and IPSCs evoked by extracellular stimulation of a single presynaptic neuron were recorded. ACh inhibited the evoked IPSCs in most of the connections, although facilitation was also observed. Regardless of inhibitory or facilitatory effects on the evoked IPSCs, an enhanced spontaneous synaptic input to the postsynaptic neurons was usually observed. ACh-induced changes in the evoked IPSCs were usually accompanied by changes in paired pulse depression (PPD), which are thought to reflect presynaptic mechanisms of modulation. However, the time course of PPD changes did not always match that of the IPSC changes, suggesting a contribution of other, possibly postsynaptic, mechanism(s). To analyze this possibility, effects of ACh on responses to direct application of exogenous GABA were studied. In a proportion of the neurons (40%) ACh reversibly decreased GABA responses, indicating that postsynaptic mechanisms may also contribute to the inhibitory ACh effect on GABAergic transmission. We conclude that several different modulatory mechanisms of ACh action participate in the regulation of GABAergic transmission at the level of synaptic connection of a single GABAergic neuron.
Collapse
Affiliation(s)
- M V Storozhuk
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | | | | | | |
Collapse
|
45
|
Rumpel E, Behrends JC. Postsynaptic receptor occupancy during evoked transmission at striatal GABAergic synapses in vitro. J Neurophysiol 2000; 84:771-9. [PMID: 10938304 DOI: 10.1152/jn.2000.84.2.771] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of benzodiazepines (BZs) on GABA(A)-ergic synaptic responses depends on the control receptor occupancy: the BZ-induced enhancement of receptor affinity can lead to greater peak amplitudes of quantal responses only when, under normal conditions, receptors are not fully saturated at peak. Based on this fact, receptor occupancy at the peak of spontaneous miniature inhibitory postsynaptic currents (mIPSCs) has been assessed in various mammalian neuronal preparations. To use the same principle with compound (or multiquantal), action potential-evoked IPSCs, complications introduced by quantal asynchrony in conjunction with the BZ-induced increase in the decay time of the quantal responses have to be overcome. We used a simple analytic convolution model to calculate expected changes in the rise time and amplitude of postsynaptic currents when the decay time constant, but not the peak amplitude, of the underlying quantal responses is increased, this being the expected BZ effect at saturated synapses. Predictions obtained were compared with the effect of the BZ flunitrazepam on IPSCs recorded in paired pre- and postsynaptic whole cell voltage-clamp experiments on striatal neurons in cell culture. In 22 pairs, flunitrazepam (500 nM) reliably prolonged the decay of IPSCs (49 +/- 19%, mean +/- SE) and in 18 of 22 cases produced an enhancement in their peak amplitude that varied markedly between 3 and 77% of control (26.0 +/- 5.3%). The corresponding change in rise time, however (+0.38 +/- 0.11 ms, range -0.8 to +1.3 ms) was far smaller than calculated for the observed changes in peak amplitude assuming fixed quantal size. Because therefore an increase in quantal size is required to explain our findings, postsynaptic GABA(A) receptors were most likely not saturated during impulse-evoked transmission at these unitary connections. The peak amplitudes of miniature IPSCs in these neurons were also increased by flunitrazepam (500 nM, +26.8 +/- 6.6%), and their decay time constant was increased by 26.3 +/- 7.3%. Using these values in our model led to a slight overestimate of the change in compound IPSC amplitude (+28 to +30%).
Collapse
Affiliation(s)
- E Rumpel
- Department of Physiology, University of Munich, 80336 Munich, Germany
| | | |
Collapse
|
46
|
Abstract
Exocytosis is commonly viewed as the only secretory process able to account for quantal forms of fast synaptic transmission. However, the demonstrated variability and composite properties of miniature postsynaptic signals are not easily explained by all-or-none exocytotic discharge of transmitter in solution from inside vesicles. Recent studies of endocrine secretion have shown that hormone release does not coincide with exocytosis due to its trapping in the core matrix of the granule. Thus, we tested whether the synaptic transmitter GABA could also be held in a matrix before being released. Using confocal microscopy and flow cytometry of embryonic rat hippocampal neurons, we found a GABA immunoreaction at the surface of live cell bodies and growth cones that coincided spatially and quantitatively with the binding of tetanus toxin fragment C (TTFC). TTFC binds predominantly at membrane sites containing the trisialoglycosphingolipid GT1b. Using flow cytometry, GT1b-containing liposomes preincubated in 100 nM GABA exhibited the same relationship between GABA and TTFC surface binding as found on neurons and growth cones. Embryonic neurons differentiated in culture expressed initially a tonic, and after 3-5 days, transient, postsynaptic signals mediated by GABA acting at GABA(A) receptor/Cl(-) channels. A stream of saline applied to the neuronal surface rapidly and reversibly suppressed both tonic and transient signals. A brief application of the GABAmimetic isoguvacine immediately transformed both tonic and transient GABAergic signals into tonic and transient isoguvacinergic signals. These results and those in the literature are consistent with an immediately releasable compartment of transmitter accessible from the presynaptic surface.
Collapse
Affiliation(s)
- J Vautrin
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|