1
|
Akutsu H. Strategies for elucidation of the structure and function of the large membrane protein complex, F oF 1-ATP synthase, by nuclear magnetic resonance. Biophys Chem 2023; 296:106988. [PMID: 36898347 DOI: 10.1016/j.bpc.2023.106988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Nuclear magnetic resonance (NMR) investigation of large membrane proteins requires well-focused questions and critical techniques. Here, research strategies for FoF1-ATP synthase, a membrane-embedded molecular motor, are reviewed, focusing on the β-subunit of F1-ATPase and c-subunit ring of the enzyme. Segmental isotope-labeling provided 89% assignment of the main chain NMR signals of thermophilic Bacillus (T)F1β-monomer. Upon nucleotide binding to Lys164, Asp252 was shown to switch its hydrogen-bonding partner from Lys164 to Thr165, inducing an open-to-closed bend motion of TF1β-subunit. This drives the rotational catalysis. The c-ring structure determined by solid-state NMR showed that cGlu56 and cAsn23 of the active site took a hydrogen-bonded closed conformation in membranes. In 505 kDa TFoF1, the specifically isotope-labeled cGlu56 and cAsn23 provided well-resolved NMR signals, which revealed that 87% of the residue pairs took a deprotonated open conformation at the Foa-c subunit interface, whereas they were in the closed conformation in the lipid-enclosed region.
Collapse
Affiliation(s)
- Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
2
|
Nath S. Consolidation of Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling in oxidative phosphorylation and photophosphorylation. Biophys Chem 2019; 257:106279. [PMID: 31757522 DOI: 10.1016/j.bpc.2019.106279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
In a recent publication, Manoj raises criticisms against consensus views on the ATP synthase. The radical statements and assertions are shown to contradict a vast body of available knowledge that includes i) pioneering single-molecule biochemical and biophysical studies from the respected experimental groups of Kinosita, Yoshida, Noji, Börsch, Dunn, Gräber, Frasch, and Dimroth etc., ii) state-of-the-art X-ray and EM/cryo-EM structural information garnered over the decades by the expert groups of Leslie-Walker, Kühlbrandt, Mueller, Meier, Rubinstein, Sazanov, Duncan, and Pedersen on ATP synthase, iii) the pioneering energy-based computer simulations of Warshel, and iv) the novel theoretical and experimental works of Nath. Valid objections against Mitchell's chemiosmotic theory and Boyer's binding change mechanism put forth by Manoj have been addressed satisfactorily by Nath's torsional mechanism of ATP synthesis and two-ion theory of energy coupling and published 10 to 20 years ago, but these papers are not cited by him. This communication shows conclusively and in great detail that none of his objections apply to Nath's mechanism/theory. Nath's theory is further consolidated based on its previous predictive record, its consistency with biochemical evidence, its unified nature, its application to other related energy transductions and to disease, and finally its ability to guide the design of new experiments. Some constructive suggestions for high-resolution structural experiments that have the power to delve into the heart of the matter and throw unprecedented light on the nature of coupled ion translocation in the membrane-bound FO portion of F1FO-ATP synthase are made.
Collapse
Affiliation(s)
- Sunil Nath
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
3
|
Zheng H, Zhao Y, Song MX, Wang J, Chen LQ, Sun L, Bai FQ. Influences of donor/acceptor ratio on the optical and electrical properties of the D/A alternating model oligomers: A density functional theory study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:260-270. [PMID: 29626817 DOI: 10.1016/j.saa.2018.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
We adopted an ingenious method that cut out the DA alternating oligomers from the corresponding DA alternating copolymers. From analyzing the orbital compositions of the HOMOs and LUMOs as well as the reorganization energies, we found the level of charge transfer is increased with the increasing of D/A ratio, but ionization potentials and electron affinities show a contrary trend. Moreover, with the greater ratio, the trend in the nearness of two transitions results in broadening the absorption band in the visible range. That is why experimentally improving the ratio is beneficial for the copolymers used as the p-type materials in the BHJ solar cells. This method is impossible to take the real copolymer system, however, it could provide a strategy to avoid the limitation of the theory level and perform reliable result to study the intrinsic properties of DA alternating copolymers, which can provide a guidance to experimental works.
Collapse
Affiliation(s)
- Hao Zheng
- Network and Information Center, Jilin Normal University, Siping 136000, China
| | - Yang Zhao
- Network and Information Center, Jilin Normal University, Siping 136000, China
| | - Ming-Xing Song
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China
| | - Jin Wang
- College of Information Technology, Jilin Normal University, Siping 136000, People's Republic of China.
| | - Li-Qiao Chen
- Innovation & Application Institute, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Lei Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
4
|
PClass: Protein Quaternary Structure Classification by Using Bootstrapping Strategy as Model Selection. Genes (Basel) 2018; 9:genes9020091. [PMID: 29443925 PMCID: PMC5852587 DOI: 10.3390/genes9020091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Protein quaternary structure complex is also known as a multimer, which plays an important role in a cell. The dimer structure of transcription factors is involved in gene regulation, but the trimer structure of virus-infection-associated glycoproteins is related to the human immunodeficiency virus. The classification of the protein quaternary structure complex for the post-genome era of proteomics research will be of great help. Classification systems among protein quaternary structures have not been widely developed. Therefore, we designed the architecture of a two-layer machine learning technique in this study, and developed the classification system PClass. The protein quaternary structure of the complex is divided into five categories, namely, monomer, dimer, trimer, tetramer, and other subunit classes. In the framework of the bootstrap method with a support vector machine, we propose a new model selection method. Each type of complex is classified based on sequences, entropy, and accessible surface area, thereby generating a plurality of feature modules. Subsequently, the optimal model of effectiveness is selected as each kind of complex feature module. In this stage, the optimal performance can reach as high as 70% of Matthews correlation coefficient (MCC). The second layer of construction combines the first-layer module to integrate mechanisms and the use of six machine learning methods to improve the prediction performance. This system can be improved over 10% in MCC. Finally, we analyzed the performance of our classification system using transcription factors in dimer structure and virus-infection-associated glycoprotein in trimer structure. PClass is available via a web interface at http://predictor.nchu.edu.tw/PClass/.
Collapse
|
5
|
Inorganic polyphosphate (polyP) as an activator and structural component of the mitochondrial permeability transition pore. Biochem Soc Trans 2016; 44:7-12. [PMID: 26862181 DOI: 10.1042/bst20150206] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial permeability transition pore (mPTP) is a large channel located in the mitochondrial inner membrane. The opening of mPTP during pathological calcium overload leads to the membrane depolarization and disruption of ATP production. mPTP activation has been implicated as a central event during the process of stress-induced cell death. mPTP is a supramolecular complex composed of many proteins. Recent studies suggest that mitochondrial ATPase plays the central role in the formation of mPTP. However, the structure of the central conducting pore part of mPTP (mPTPore) remains elusive. Here we review current models proposed for the mPTPore and involvement of polyP in its formation and regulation. We discuss the underestimated role of polyP as an effector and a putative structural component of the mPTPore. We propose the hypothesis that inclusion of polyP can explain such properties of mPTP activity as calcium activation, selectivity and voltage-dependence.
Collapse
|
6
|
Elustondo PA, Nichols M, Robertson GS, Pavlov EV. Mitochondrial Ca2+ uptake pathways. J Bioenerg Biomembr 2016; 49:113-119. [DOI: 10.1007/s10863-016-9676-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
|
7
|
Pandini A, Kleinjung J, Taylor WR, Junge W, Khan S. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance. Biophys J 2016; 109:975-87. [PMID: 26331255 PMCID: PMC4564677 DOI: 10.1016/j.bpj.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/20/2015] [Accepted: 07/09/2015] [Indexed: 12/28/2022] Open
Abstract
The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may link proton transfer to ring compliance.
Collapse
Affiliation(s)
- Alessandro Pandini
- Department of Computer Science and Synthetic Biology Theme, Brunel University London, Uxbridge, United Kingdom
| | - Jens Kleinjung
- Mathematical Biology, The Francis Crick Institute (formerly the National Institute for Medical Research), London, United Kingdom
| | - Willie R Taylor
- Mathematical Biology, The Francis Crick Institute (formerly the National Institute for Medical Research), London, United Kingdom
| | - Wolfgang Junge
- Department of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
8
|
Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun 2016; 7:11483. [PMID: 27151236 PMCID: PMC5494197 DOI: 10.1038/ncomms11483] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/31/2016] [Indexed: 01/10/2023] Open
Abstract
F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer’s disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective loss of the oligomycin sensitivity conferring protein (OSCP) subunit of the F1FO-ATP synthase and the physical interaction of OSCP with amyloid beta (Aβ) in the brains of AD individuals and in an AD mouse model. Changes in OSCP levels are more pronounced in neuronal mitochondria. OSCP loss and its interplay with Aβ disrupt F1FO-ATP synthase, leading to reduced ATP production, elevated oxidative stress and activated mPT. The restoration of OSCP ameliorates Aβ-mediated mouse and human neuronal mitochondrial impairments and the resultant synaptic injury. Therefore, mitochondrial F1FO-ATP synthase dysfunction associated with AD progression could potentially be prevented by OSCP stabilization. F1FO ATP synthase is a critical enzyme for the maintenance of mitochondrial function. Here the authors demonstrate that loss of the F1FO-ATP synthase subunit OSCP and the interaction of OSCP with Aβ peptide in Alzheimer’s disease patients and mouse models lead to F1FO-ATP synthase deregulation and disruption of synaptic mitochondrial function.
Collapse
|
9
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
10
|
Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, Sander C, Bonvin AMJJ, Marks DS. Sequence co-evolution gives 3D contacts and structures of protein complexes. eLife 2014; 3. [PMID: 25255213 PMCID: PMC4360534 DOI: 10.7554/elife.03430] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
Protein-protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein-protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein-protein interaction networks and used for interaction predictions at residue resolution.
Collapse
Affiliation(s)
- Thomas A Hopf
- Department of Systems Biology, Harvard University, Boston, United States
| | | | - João P G L M Rodrigues
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Anna G Green
- Department of Systems Biology, Harvard University, Boston, United States
| | - Oliver Kohlbacher
- Applied Bioinformatics, Quantitative Biology Center, University of Tübingen, Tübingen, Germany
| | - Chris Sander
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Debora S Marks
- Department of Systems Biology, Harvard University, Boston, United States
| |
Collapse
|
11
|
Abstract
Subunit rotation is the mechanochemical intermediate for the catalytic activity of the membrane enzyme FoF1-ATP synthase. smFRET (single-molecule FRET) studies have provided insights into the step sizes of the F1 and Fo motors, internal transient elastic energy storage and controls of the motors. To develop and interpret smFRET experiments, atomic structural information is required. The recent F1 structure of the Escherichia coli enzyme with the ϵ-subunit in an inhibitory conformation initiated a study for real-time monitoring of the conformational changes of ϵ. The present mini-review summarizes smFRET rotation experiments and previews new smFRET data on the conformational changes of the CTD (C-terminal domain) of ϵ in the E. coli enzyme.
Collapse
|
12
|
Steed PR, Fillingame RH. Residues in the polar loop of subunit c in Escherichia coli ATP synthase function in gating proton transport to the cytoplasm. J Biol Chem 2013; 289:2127-38. [PMID: 24297166 DOI: 10.1074/jbc.m113.527879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotary catalysis in F1F0 ATP synthase is powered by proton translocation through the membrane-embedded F0 sector. Proton binding and release occur in the middle of the membrane at Asp-61 on the second transmembrane helix (TMH) of subunit c, which folds in a hairpin-like structure with two TMHs. Previously, the aqueous accessibility of Cys substitutions in the transmembrane regions of subunit c was probed by testing the inhibitory effects of Ag(+) or Cd(2+) on function, which revealed extensive aqueous access in the region around Asp-61 and on the half of TMH2 extending to the cytoplasm. In the current study, we surveyed the Ag(+) and Cd(2+) sensitivity of Cys substitutions in the loop of the helical hairpin and used a variety of assays to categorize the mechanisms by which Ag(+) or Cd(2+) chelation with the Cys thiolates caused inhibition. We identified two distinct metal-sensitive regions in the cytoplasmic loop where function was inhibited by different mechanisms. Metal binding to Cys substitutions in the N-terminal half of the loop resulted in an uncoupling of F1 from F0 with release of F1 from the membrane. In contrast, substitutions in the C-terminal half of the loop retained membrane-bound F1 after metal treatment. In several of these cases, inhibition was shown to be due to blockage of passive H(+) translocation through F0 as assayed with F0 reconstituted into liposomes. The results suggest that the C-terminal domain of the cytoplasmic loop may function in gating H(+) translocation to the cytoplasm.
Collapse
Affiliation(s)
- P Ryan Steed
- From the Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | | |
Collapse
|
13
|
Moore KJ, Fillingame RH. Obstruction of transmembrane helical movements in subunit a blocks proton pumping by F1Fo ATP synthase. J Biol Chem 2013; 288:25535-25541. [PMID: 23864659 DOI: 10.1074/jbc.m113.496794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport-coupled rotary motion of the subunit c ring in F1Fo ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of Fo subunit c. H(+) are thought to reach cAsp61 via aqueous half-channels formed by TMHs 2-5 of subunit a. Movements of TMH4 and TMH5 have been proposed to facilitate protonation of cAsp61 from a half channel centered in a four helix bundle at the periplasmic side of subunit a. The possible necessity of these proposed TMH movements was investigated by assaying ATP driven H(+) pumping function before and after cross-linking paired Cys substitutions at the center of TMHs within subunit a. The cross-linking of the Cys pairs aG218C/I248C in TMH4 and TMH5, and aL120C/H245C in TMH2 and TMH5, inhibited H(+) pumping by 85-90%. H(+) pumping function was largely unaffected by modification of the same Cys residues in the absence of cross-link formation. The inhibition is consistent with the proposed requirement for TMH movements during the gating of periplasmic H(+) access to cAsp61. The cytoplasmic loops of subunit a have been implicated in gating H(+) release to the cytoplasm, and previous cross-linking experiments suggest that the chemically reactive regions of the loops may pack as a single domain. Here we show that Cys substitutions in these domains can be cross-linked with retention of function and conclude that these domains need not undergo large conformational changes during enzyme function.
Collapse
Affiliation(s)
- Kyle J Moore
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert H Fillingame
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
14
|
Ferencz C, Petrovszki P, Kóta Z, Fodor-Ayaydin E, Haracska L, Bóta A, Varga Z, Dér A, Marsh D, Páli T. Estimating the rotation rate in the vacuolar proton-ATPase in native yeast vacuolar membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:147-58. [PMID: 23160754 DOI: 10.1007/s00249-012-0871-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022]
Abstract
The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6-32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8-48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.
Collapse
Affiliation(s)
- Csilla Ferencz
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Uhlemann EME, Pierson HE, Fillingame RH, Dmitriev OY. Cell-free synthesis of membrane subunits of ATP synthase in phospholipid bicelles: NMR shows subunit a fold similar to the protein in the cell membrane. Protein Sci 2012; 21:279-88. [PMID: 22162071 DOI: 10.1002/pro.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/20/2011] [Accepted: 11/27/2011] [Indexed: 11/09/2022]
Abstract
NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
16
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
McMillan DGG, Ferguson SA, Dey D, Schröder K, Aung HL, Carbone V, Attwood GT, Ronimus RS, Meier T, Janssen PH, Cook GM. A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions. J Biol Chem 2011; 286:39882-92. [PMID: 21953465 DOI: 10.1074/jbc.m111.281675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An unresolved question in the bioenergetics of methanogenic archaea is how the generation of proton-motive and sodium-motive forces during methane production is used to synthesize ATP by the membrane-bound A(1)A(o)-ATP synthase, with both proton- and sodium-coupled enzymes being reported in methanogens. To address this question, we investigated the biochemical characteristics of the A(1)A(o)-ATP synthase (MbbrA(1)A(o)) of Methanobrevibacter ruminantium M1, a predominant methanogen in the rumen. Growth of M. ruminantium M1 was inhibited by protonophores and sodium ionophores, demonstrating that both ion gradients were essential for growth. To study the role of these ions in ATP synthesis, the ahaHIKECFABD operon encoding the MbbrA(1)A(o) was expressed in Escherichia coli strain DK8 (Δatp) and purified yielding a 9-subunit protein with an SDS-stable c oligomer. Analysis of the c subunit amino acid sequence revealed that it consisted of four transmembrane helices, and each hairpin displayed a complete Na(+)-binding signature made up of identical amino acid residues. The purified MbbrA(1)A(o) was stimulated by sodium ions, and Na(+) provided pH-dependent protection against inhibition by dicyclohexylcarbodiimide but not tributyltin chloride. ATP synthesis in inverted membrane vesicles lacking sodium ions was driven by a membrane potential that was sensitive to cyanide m-chlorophenylhydrazone but not to monensin. ATP synthesis could not be driven by a chemical gradient of sodium ions unless a membrane potential was imposed. ATP synthesis under these conditions was sensitive to monensin but not cyanide m-chlorophenylhydrazone. These data suggest that the M. ruminantium M1 A(1)A(o)-ATP synthase exhibits all the properties of a sodium-coupled enzyme, but it is also able to use protons to drive ATP synthesis under conditions that favor proton coupling, such as low pH and low levels of sodium ions.
Collapse
Affiliation(s)
- Duncan G G McMillan
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pierson HE, Uhlemann EME, Dmitriev OY. Interaction with monomeric subunit c drives insertion of ATP synthase subunit a into the membrane and primes a-c complex formation. J Biol Chem 2011; 286:38583-38591. [PMID: 21900248 DOI: 10.1074/jbc.m111.294868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a is the main part of the membrane stator of the ATP synthase molecular turbine. Subunit c is the building block of the membrane rotor. We have generated two molecular fusions of a and c subunits with different orientations of the helical hairpin of subunit c. The a/c fusion protein with correct orientation of transmembrane helices was inserted into the membrane, and co-incorporated into the F(0) complex of ATP synthase with wild type subunit c. The fused c subunit was incorporated into the c-ring tethering the ATP synthase rotor to the stator. The a/c fusion with incorrect orientation of the c-helices required wild type subunit c for insertion into the membrane. In this case, the fused c subunit remained on the periphery of the c-ring and did not interfere with rotor movement. Wild type subunit a inserted into the membrane equally well with wild type subunit c and c-ring assembly mutants that remained monomeric in the membrane. These results show that interaction with monomeric subunit c triggers insertion of subunit a into the membrane, and initiates formation of the a-c complex, the ion-translocating module of the ATP synthase. Correct assembly of the ATP synthase incorporating topologically correct fusion of subunits a and c validates using this model protein for high resolution structural studies of the ATP synthase proton channel.
Collapse
Affiliation(s)
- Hannah E Pierson
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Eva-Maria E Uhlemann
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Oleg Y Dmitriev
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
19
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
20
|
Mesbah NM, Wiegel J. The Na(+)-translocating F₁F₀-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1133-42. [PMID: 21600188 DOI: 10.1016/j.bbabio.2011.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
Abstract
Natranaerobius thermophilus is an unusual anaerobic extremophile, it is halophilic and alkalithermophilic; growing optimally at 3.3-3.9M Na(+), pH(50°C) 9.5 and 53°C. The ATPase of N. thermophilus was characterized at the biochemical level to ascertain its role in life under hypersaline, alkaline, thermal conditions. The partially purified enzyme (10-fold purification) displayed the typical subunit pattern for F-type ATPases, with a 5-subunit F(1) portion and 3-subunit-F(O) portion. ATP hydrolysis by the purified ATPase was stimulated almost 4-fold by low concentrations of Na(+) (5mM); hydrolysis activity was inhibited by higher Na(+) concentrations. Partially purified ATPase was alkaliphilic and thermophilic, showing maximal hydrolysis at 47°C and the alkaline pH(50°C) of 9.3. ATP hydrolysis was sensitive to the F-type ATPase inhibitor N,N'-dicylohexylcarbodiimide and exhibited inhibition by both free Mg(2+) and free ATP. ATP synthesis by inverted membrane vesicles proceeded slowly and was driven by a Na(+)-ion gradient that was sensitive to the Na(+)-ionophore monensin. Analysis of the atp operon showed the presence of the Na(+)-binding motif in the c subunit (Q(33), E(66), T(67), T(68), Y(71)), and a complete, untruncated ε subunit; suggesting that ATP hydrolysis by the enzyme is regulated. Based on these properties, the F(1)F(O)-ATPase of N. thermophilus is a Na(+)-translocating ATPase used primarily for expelling cytoplasmic Na(+) that accumulates inside cells of N. thermophilus during alkaline stress. In support of this theory are the presence of the c subunit Na(+)-binding motif and the low rates of ATP synthesis observed. The complete ε subunit is hypothesized to control excessive ATP hydrolysis and preserve intracellular Na(+) needed by electrogenic cation/proton antiporters crucial for cytoplasmic acidification in the obligately alkaliphilic N. thermophilus.
Collapse
Affiliation(s)
- Noha M Mesbah
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
21
|
Todokoro Y, Kobayashi M, Sato T, Kawakami T, Yumen I, Aimoto S, Fujiwara T, Akutsu H. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2010; 48:1-11. [PMID: 20596883 DOI: 10.1007/s10858-010-9432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/15/2010] [Indexed: 05/29/2023]
Abstract
The subunit c-ring of H(+)-ATP synthase (F(o) c-ring) plays an essential role in the proton translocation across a membrane driven by the electrochemical potential. To understand its structure and function, we have carried out solid-state NMR analysis under magic-angle sample spinning. The uniformly [(13)C, (15)N]-labeled F(o) c from E. coli (EF(o) c) was reconstituted into lipid membranes as oligomers. Its high resolution two- and three-dimensional spectra were obtained, and the (13)C and (15)N signals were assigned. The obtained chemical shifts suggested that EF(o) c takes on a hairpin-type helix-loop-helix structure in membranes as in an organic solution. The results on the magnetization transfer between the EF(o) c and deuterated lipids indicated that Ile55, Ala62, Gly69 and F76 were lined up on the outer surface of the oligomer. This is in good agreement with the cross-linking results previously reported by Fillingame and his colleagues. This agreement reveals that the reconstituted EF(o) c oligomer takes on a ring structure similar to the intact one in vivo. On the other hand, analysis of the (13)C nuclei distance of [3-(13)C]Ala24 and [4-(13)C]Asp61 in the F(o) c-ring did not agree with the model structures proposed for the EF(o) c-decamer and dodecamer. Interestingly, the carboxyl group of the essential Asp61 in the membrane-embedded EF(o) c-ring turned out to be protonated as COOH even at neutral pH. The hydrophobic surface of the EF(o) c-ring carries relatively short side chains in its central region, which may allow soft and smooth interactions with the hydrocarbon chains of lipids in the liquid-crystalline state.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sengupta D, Rampioni A, Marrink SJ. Simulations of thec-subunit of ATP-synthase reveal helix rearrangements. Mol Membr Biol 2009; 26:422-34. [DOI: 10.3109/09687680903321073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Vollmar M, Schlieper D, Winn M, Büchner C, Groth G. Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J Biol Chem 2009; 284:18228-35. [PMID: 19423706 PMCID: PMC2709358 DOI: 10.1074/jbc.m109.006916] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/10/2009] [Indexed: 11/06/2022] Open
Abstract
The structure of the membrane integral rotor ring of the proton translocating F(1)F(0) ATP synthase from spinach chloroplasts was determined to 3.8 A resolution by x-ray crystallography. The rotor ring consists of 14 identical protomers that are symmetrically arranged around a central pore. Comparisons with the c(11) rotor ring of the sodium translocating ATPase from Ilyobacter tartaricus show that the conserved carboxylates involved in proton or sodium transport, respectively, are 10.6-10.8 A apart in both c ring rotors. This finding suggests that both ATPases have the same gear distance despite their different stoichiometries. The putative proton-binding site at the conserved carboxylate Glu(61) in the chloroplast ATP synthase differs from the sodium-binding site in Ilyobacter. Residues adjacent to the conserved carboxylate show increased hydrophobicity and reduced hydrogen bonding. The crystal structure reflects the protonated form of the chloroplast c ring rotor. We propose that upon deprotonation, the conformation of Glu(61) is changed to another rotamer and becomes fully exposed to the periphery of the ring. Reprotonation of Glu(61) by a conserved arginine in the adjacent a subunit returns the carboxylate to its initial conformation.
Collapse
Affiliation(s)
- Melanie Vollmar
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Daniel Schlieper
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Martyn Winn
- the Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
| | - Claudia Büchner
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Georg Groth
- From the Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| |
Collapse
|
24
|
Abstract
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F(1), a water-soluble catalytic sector, and F(o), a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that epsilon is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of epsilon is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of epsilon in the ATP synthase from E. coli is discussed.
Collapse
Affiliation(s)
- S B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA.
| |
Collapse
|
25
|
Sambongi Y, Ueda I, Wada Y, Futai M. A biological molecular motor, proton-translocating ATP synthase: multidisciplinary approach for a unique membrane enzyme. J Bioenerg Biomembr 2009; 32:441-8. [PMID: 15254379 DOI: 10.1023/a:1005656706248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Proton-translocating ATP synthase (F(o)F(1)) synthesizes ATP from ADP and phosphate, coupled with an electrochemical proton gradient across the biological membrane. It has been established that the rotation of a subunit assembly is an essential feature of the enzyme mechanism and that F(o)F(1) can be regarded as a molecular motor. Thus, experimentally, in the reverse direction (ATP hydrolysis), the chemical reaction drives the rotation of a gammaepsilonc(10-14) subunit assembly followed by proton translocation. We discuss our very recent results regarding subunit rotation in Escherichia coli F(o)F(1) with a combined biophysical and mutational approach.
Collapse
Affiliation(s)
- Y Sambongi
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Ibaraki, Osaka 567-0047, Japan
| | | | | | | |
Collapse
|
26
|
Abstract
In Propionigenium modestum, ATP is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of Na+ ions. The P. modestum ATP synthase is a clear member of the family of F-type ATP synthases and the only major distinction is an extension of the coupling ion specificity to H+, Li+, or Na+, depending on the conditions. The use of Na+ as a coupling ion offers unique experimental options to decipher the ion-translocation mechanism and the osmotic and mechanical behavior of the enzyme. The single a subunit and the oligomer of c subunits are part of the stator and rotor, respectively, and operate together in the ion-translocation mechanism. During ATP synthesis, Na+ diffuses from the periplasm through the a subunit channel onto the Na+ binding site on a c subunit. From there it dissociates into the cytoplasm after the site has rotated out of the interface with subunit a. In the absence of a membrane potential, the rotor performs Brownian motions into either direction and Na+ ions are exchanged between the two compartments separated by the membrane. Upon applying voltage, however, the direction of Na+ flux and of rotation is biased by the potential. The motor generates torque to drive the rotation of the gamma subunit, thereby releasing tightly bound ATP from catalytic sites in F(1). Hence, the membrane potential plays a pivotal role in the torque-generating mechanism. This is corroborated by the fact that for ATP synthesis, at physiological rates, the membrane potential is indispensable. We propose a catalytic mechanism for torque generation by the F(o) motor that is in accord with all experimental data and is in quantitative agreement with the requirement for ATP synthesis.
Collapse
Affiliation(s)
- P Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092 Zürich, Switzerland. micro.biol.ethz.ch
| | | | | |
Collapse
|
27
|
Fillingame RH, Jiang W, Dmitriev OY. The oligomeric subunit C rotor in the fo sector of ATP synthase: unresolved questions in our understanding of function. J Bioenerg Biomembr 2009; 32:433-9. [PMID: 15254378 DOI: 10.1023/a:1005604722178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have proposed a model for the oligomeric c-rotor of the F(o) sector of ATP synthase and its interaction with subunit a during H+-transport driven rotation. The model is based upon the solution structure of monomeric subunit c, determined by NMR, and an extensive series of cross-linking distance constraints between c subunits and between subunits c and a. To explain the complete set of cross-linking data, we have suggested that the second transmembrane helix rotates during its interaction with subunit a in the course of the H+-translocation cycle. The H+-transport coupled rotation of this helix is proposed to drive the stepwise movement of the c-oligomeric rotor. The model is testable and provides a useful framework for addressing questions raised by other experiments.
Collapse
Affiliation(s)
- R H Fillingame
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
28
|
Pedersen PL, Ko YH, Hong S. ATP synthases in the year 2000: defining the different levels of mechanism and getting a grip on each. J Bioenerg Biomembr 2009; 32:423-32. [PMID: 15254377 DOI: 10.1023/a:1005652605340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ATP synthases are unusually complex molecules, which fractionate most readily into two major units, one a water soluble unit called F(1) and the other a detergent soluble unit called F(0). In almost all known species the F(1) unit consists of 5 subunit types in the stoichiometric ratio alpha(3)beta(3)gammadeltaepsilon while the F(0) unit contains 3 subunit types (a, b, and c) in E. coli, and at least 10 subunit types (a, b, c, and others) in higher animals. It is now believed by many investigators that during the synthesis of ATP, protons derived from an electrochemical gradient generated by an electron transport chain are directed through the F(0) unit in such a way as to drive the rotation of the single gamma subunit, which extends from an oligomeric ring of at least 10 c subunits in F(0) through the center of F(1). It is further believed by many that the rotating gamma subunit, by interacting sequentially with the 3 alphabeta pairs of F(1) (360 degrees cycle) in the presence of ADP, P(i), and Mg++, brings about via "power strokes" conformational/binding changes in these subunits that promote the synthesis of ATP and its release on each alphabeta pair. In support of these views, studies in several laboratories either suggest or demonstrate that F(0) consists in part of a proton gradient driven motor while F(1) consists of an ATP hydrolysis driven motor, and that the gamma subunit does rotate during F(1) function. Therefore, current implications are that during ATP synthesis the former motor drives the latter in reverse via the gamma subunit. This would suggest that the process of understanding the mechanism of ATP synthases can be subdivided into three major levels, which include elucidating those chemical and/or biophysical events involved in (1) inducing rotation of the gamma subunit, (2) coupling rotation of this subunit to conformational/binding changes in each of the 3 alphabeta pairs, and (3) forming ATP and water (from ADP, P(i), and Mg(++)) and then releasing these products from each of the 3 catalytic sites. Significantly, it is at the final level of mechanism where the bond breaking/making events of ATP synthesis occur in the transition state, with the former two levels of mechanism setting the stage for this critical payoff event. Nevertheless, in order to get a better grip in this new century on how ATP synthases make ATP and then release it, we must take on the difficult challenge of elucidating each of the three levels of mechanism.
Collapse
Affiliation(s)
- P L Pedersen
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | | | |
Collapse
|
29
|
Constant c10 ring stoichiometry in the Escherichia coli ATP synthase analyzed by cross-linking. J Bacteriol 2009; 191:2400-4. [PMID: 19181809 DOI: 10.1128/jb.01390-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subunit c stoichiometry of Escherichia coli ATP synthase was studied by intermolecular cross-linking via oxidation of bi-cysteine-substituted subunit c (cA21C/cM65C). Independent of the carbon source used for growth and independent of the presence of other FoF1 subunits, an equal pattern of cross-link formation stopping at the formation of decamers was obtained.
Collapse
|
30
|
Moore KJ, Fillingame RH. Structural interactions between transmembrane helices 4 and 5 of subunit a and the subunit c ring of Escherichia coli ATP synthase. J Biol Chem 2008; 283:31726-35. [PMID: 18786930 DOI: 10.1074/jbc.m803848200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H+ transport and the coupled rotary motion of the subunit c ring in F1F0-ATP synthase. H+ binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F0 subunit c. H+ are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a. TMH4 of subunit a is thought to pack close to TMH2 of subunit c based upon disulfide cross-link formation between Cys substitutions in both TMHs. Here we substituted Cys into the fifth TMH of subunit a and the second TMH of subunit c and tested for cross-linking using bis-methanethiosulfonate (bis-MTS) reagents. A total of 62 Cys pairs were tested and 12 positive cross-links were identified with variable alkyl length linkers. Cross-linking was achieved near the middle of the bilayer for the Cys pairs a248C/c62C, a248C/ c63C, a248C/c65C, a251C/c57C, a251C/c59C, a251C/c62C, a252C/c62C, and a252C/c65C. Cross-linking was achieved near the cytoplasmic side of the bilayer for Cys pairs a262C/c53C, a262C/c54C, a262C/c55C, and a263C/c54C. We conclude that both aTMH4 and aTMH5 pack proximately to cTMH2 of the c-ring. In other experiments we demonstrate that aTMH4 and aTMH5 can be simultaneously cross-linked to different subunit c monomers in the c-ring. Five mutants showed pH-dependent cross-linking consistent with aTMH5 changing conformation at lower pH values to facilitate cross-linking. We suggest that the pH-dependent conformational change may be related to the proposed role of aTMH5 in gating H+ access from the periplasm to the cAsp-61 residue in cTMH2.
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
31
|
Smirnov AY, Savel'ev S, Mourokh LG, Nori F. Proton transport and torque generation in rotary biomotors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:031921. [PMID: 18851079 DOI: 10.1103/physreve.78.031921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
We analyze the dynamics of rotary biomotors within a simple nanoelectromechanical model, consisting of a stator part and a ring-shaped rotor having 12 proton-binding sites. This model is closely related to the membrane-embedded F0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0 motor, even though our analysis is applicable to the bacterial flagellar motor.
Collapse
Affiliation(s)
- A Yu Smirnov
- Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
32
|
Rak M, Zeng X, Brière JJ, Tzagoloff A. Assembly of F0 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:108-16. [PMID: 18672007 DOI: 10.1016/j.bbamcr.2008.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022]
Abstract
Respiratory deficient mutants of Saccharomyces cerevisiae have been instrumental in identifying an increasing number of nuclear gene products that promote pre- and post-translational steps of the pathway responsible for biogenesis of the mitochondrial ATP synthase. In this article we have attempted to marshal current information about the functions of such accessory factors and the roles they play in expression and assembly of the mitochondrially encoded subunits of the ATP synthase. We also discuss evidence that the ATP synthase may be built up from three separate modules corresponding to the F1 ATPase, the stator and F0.
Collapse
Affiliation(s)
- Malgorzata Rak
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | | | | | | |
Collapse
|
33
|
Moore KJ, Angevine CM, Vincent OD, Schwem BE, Fillingame RH. The cytoplasmic loops of subunit a of Escherichia coli ATP synthase may participate in the proton translocating mechanism. J Biol Chem 2008; 283:13044-52. [PMID: 18337242 DOI: 10.1074/jbc.m800900200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport and the coupled rotary motion of the subunit c ring in F(1)F(0)-ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of F(0) subunit c. H(+) are thought to reach Asp-61 via aqueous pathways mapping to the surfaces of TMHs 2-5 of subunit a based upon the chemical reactivity of Cys substituted into these helices. Here we substituted Cys into loops connecting TMHs 1 and 2 (loop 1-2) and TMHs 3 and 4 (loop 3-4). A large segment of loop 3-4 extending from loop residue 192 loop to residue 203 in TMH4 at the lipid bilayer surface proved to be very sensitive to inhibition by Ag(+). Cys-161 and -165 at the other end of the loop bordering TMH3 were also sensitive to inhibition by Ag(+). Further Cys substitutions in residues 86 and 93 in the middle of the 1-2 loop proved to be Ag(+)-sensitive. We next asked whether the regions of Ag(+)-sensitive residues clustered together near the surface of the membrane by combining Cys substitutions from two domains and testing for cross-linking. Cys-161 and -165 in loop 3-4 were found to cross-link with Cys-202, -203, or -205, which extend into TMH4 from the cytoplasm. Further Cys at residues 86 and 93 in loop 1-2 were found to cross-link with Cys-195 in loop 3-4. We conclude that the Ag(+)-sensitive regions of loops 1-2 and 3-4 may pack in a single domain that packs at the ends of TMHs 3 and 4. We suggest that the Ag(+)-sensitive domain may be involved in gating H(+) release at the cytoplasmic side of the aqueous access channel extending through F(0).
Collapse
Affiliation(s)
- Kyle J Moore
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Interaction of transmembrane helices in ATP synthase subunit a in solution as revealed by spin label difference NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:227-37. [PMID: 18178144 DOI: 10.1016/j.bbabio.2007.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/30/2022]
Abstract
Subunit a in the membrane traversing F0 sector of Escherichia coli ATP synthase is known to fold with five transmembrane helices (TMHs) with residue 218 in TMH IV packing close to residue 248 in TMH V. In this study, we have introduced a spin label probe at Cys residues substituted at positions 222 or 223 and measured the effects on the Trp epsilon NH indole NMR signals of the seven Trp residues in the protein. The protein was purified and NMR experiments were carried out in a chloroform-methanol-H2O (4:4:1) solvent mixture. The spin label at positions 222 or 223 proved to broaden the signals of W231, W232, W235 and W241 located at the periplasmic ends of TMH IV and TMH V and the connecting loop between these helices. The broadening of W241 would require that the loop residues fold back on themselves in a hairpin-like structure much like it is predicted to fold in the native membrane. Placement of the spin label probe at several other positions also proved to have broadening effects on some of these Trp residues and provided additional constraints on folding of TMH IV and TMH V. The effects of the 223 probes on backbone amide resonances of subunit a were also measured by an HNCO experiment and the results are consistent with the two helices folding back on themselves in this solvent mixture. When Cys and Trp were substituted at residues 206 and 254 at the cytoplasmic ends of TMHs IV and V respectively, the W254 resonance was not broadened by the spin label at position 206. We conclude that the helices fold back on themselves in this solvent system and then pack at an angle such that the cytoplasmic ends of the polypeptide backbone are significantly displaced from each other.
Collapse
|
35
|
Wang Y, Cipriano DJ, Forgac M. Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 2007; 282:34058-65. [PMID: 17897940 PMCID: PMC2394185 DOI: 10.1074/jbc.m704331200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c'', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c'' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c'' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c'' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c'', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c''(DeltaTM1), c''(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c''(DeltaTM1), nor the c''(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- ¶ To whom correspondence should be addressed: Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111. Tel: 617-636-6939; Fax: 617-636-0445; E-mail:
| |
Collapse
|
36
|
Vincent OD, Schwem BE, Steed PR, Jiang W, Fillingame RH. Fluidity of structure and swiveling of helices in the subunit c ring of Escherichia coli ATP synthase as revealed by cysteine-cysteine cross-linking. J Biol Chem 2007; 282:33788-33794. [PMID: 17893141 DOI: 10.1074/jbc.m706904200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit c in the membrane-traversing F(0) sector of Escherichia coli ATP synthase is known to fold with two transmembrane helices and form an oligomeric ring of 10 or more subunits in the membrane. Models for the E. coli ring structure have been proposed based upon NMR solution structures and intersubunit cross-linking of Cys residues in the membrane. The E. coli models differ from the recent x-ray diffraction structure of the isolated Ilyobacter tartaricus c-ring. Furthermore, key cross-linking results supporting the E. coli model prove to be incompatible with the I. tartaricus structure. To test the applicability of the I. tartaricus model to the E. coli c-ring, we compared the cross-linking of a pair of doubly Cys substituted c-subunits, each of which was compatible with one model but not the other. The key finding of this study is that both A21C/M65C and A21C/I66C doubly substituted c-subunits form high yield oligomeric structures, c(2), c(3)... c(10), via intersubunit disulfide bond formation. The results indicate that helical swiveling, with resultant interconversion of the two conformers predicted by the E. coli and I. tartaricus models, must be occurring over the time course of the cross-linking experiment. In the additional experiments reported here, we tried to ascertain the preferred conformation in the membrane to help define the most likely structural model. We conclude that both structures must be able to form in the membrane, but that the helical swiveling that promotes their interconversion may not be necessary during rotary function.
Collapse
Affiliation(s)
- Owen D Vincent
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Brian E Schwem
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - P Ryan Steed
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Warren Jiang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert H Fillingame
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
37
|
Dmitriev OY, Fillingame RH. The rigid connecting loop stabilizes hairpin folding of the two helices of the ATP synthase subunit c. Protein Sci 2007; 16:2118-22. [PMID: 17766379 PMCID: PMC2204134 DOI: 10.1110/ps.072776307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have tested the role of the polar loop of subunit c of the Escherichia coli ATP synthase in stabilizing the hairpin structure of this protein. The structure of the c(32-52) peptide corresponding to the cytoplasmic region of subunit c bound to the dodecylphosphocholine micelles was solved by high-resolution NMR. The region comprising residues 41-47 forms a well-ordered structure rather similar to the conformation of the polar loop region in the solution structure of the full-length subunit c and is flanked by short alpha-helical segments. This result suggests that the rigidity of the polar loop significantly contributes to the stability of the hairpin formed by the two helices of subunit c. This experimental system may be useful for NMR studies of interactions between subunit c and subunits gamma and epsilon, which together form the rotor of the ATP synthase.
Collapse
Affiliation(s)
- Oleg Y Dmitriev
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | |
Collapse
|
38
|
de Jonge MR, Koymans LHM, Guillemont JEG, Koul A, Andries K. A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins 2007; 67:971-80. [PMID: 17387738 DOI: 10.1002/prot.21376] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Diarylquinolines (DARQs) are a new class of potent inhibitors of the ATPase of Mycobacterium tuberculosis. We have created a homology model of a binding site for this class of compounds located on the contact area of the a-subunit (gene atpB) and c-subunits (gene atpE) of Mycobacterium tuberculosis ATPase. The binding pocket that was identified from the analysis of the homology model is formed by 4 helices of three c-subunits and 2 helices of the a-subunit. The lead compound of the DARQ series, R207910, was docked into the pocket using a simulated annealing, multiple conformer, docking algorithm. Different stereoisomers were treated separately. The best docking pose for each stereoisomer was optimized by molecular dynamics simulation on the 5300 atoms of the binding region and ligand. The interaction energies in the computed complexes enable us to rank the different stereoisomers in order of interaction strength with the ATPase binding pockets. We propose that the activity of R207910 against Mycobacterium tuberculosis is based on interference of the compound with the escapement geometry of the proton transfer chain. Upon binding the compound mimics the conserved Arg-186 residue of the a-subunit and interacts in its place with the conserved acidic residue Glu-61 of the c-subunit. This mode of action is corroborated by the good agreement between the computed interaction energies and the observed pattern of stereo-specificity in the model of the binding region.
Collapse
Affiliation(s)
- Marc R de Jonge
- MolMo Services BVBA, Campus Blairon 424, B2300 Turnhout, Belgium.
| | | | | | | | | |
Collapse
|
39
|
Rainey JK, Fliegel L, Sykes BD. Strategies for dealing with conformational sampling in structural calculations of flexible or kinked transmembrane peptides. Biochem Cell Biol 2007; 84:918-29. [PMID: 17215879 DOI: 10.1139/o06-178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptides corresponding to transmembrane (TM) segments from membrane proteins provide a potential route for the determination of membrane protein structure. We have determined that 2 functionally critical TM segments from the mammalian Na+/H+ exchanger display well converged structure in regions separated by break points. The flexibility of these break points results in conformational sampling in solution. A brief review of available NMR structures of helical membrane proteins demonstrates that there are a number of published structures showing similar properties. Such flexibility is likely indicative of kinks in the full-length protein. This minireview focuses on methods and protocols for NMR structure calculation and analysis of peptide structures under conditions of conformational sampling. The methods outlined allow the identification and analysis of structured peptides containing break points owing to conformational sampling and the differentiation between oligomerization and ensemble-averaged observation of multiple peptide conformations.
Collapse
Affiliation(s)
- Jan K Rainey
- Protein Engineering Network of Centres of Excellence and Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | | |
Collapse
|
40
|
Angevine CM, Herold KAG, Vincent OD, Fillingame RH. Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5. J Biol Chem 2007; 282:9001-7. [PMID: 17234633 DOI: 10.1074/jbc.m610848200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a is thought to play a key role in H+ transport-driven rotation of the subunit c ring in Escherichia coli F1F0 ATP synthase. In the membrane-traversing F0 sector of the enzyme, H+ binding and release occurs at Asp-61 in the middle of the second transmembrane helix (TMH) of subunit c. Protons are thought to reach Asp-61 via aqueous channels formed at least in part by one or more of the five TMHs of subunit a. Aqueous access to surfaces of TMHs 2, 4, and 5 was previously suggested based upon the chemical reactivity of cysteine residues substituted into these helices. Here we have substituted Cys into TMH1 and TMH3 and extended the substitutions in TMH5 to the cytoplasmic surface. One region of TMH3 proved to be moderately Ag+-sensitive and may connect with the Ag+-sensitive region found previously on the periplasmic side of TMH2. A single Cys substitution in TMH1 proved to be both N-ethylmaleimide (NEM)-sensitive and Ag+-sensitive and suggests a possible packing interaction of TMH1 with TMH2 and TMH3. New Ag+- and NEM-sensitive residues were found at the cytoplasmic end of TMH5 and suggest a possible connection of this region to the NEM- and Ag+-sensitive region of TMH4 described previously. From the now complete pattern of TMH residue reactivity, we conclude that aqueous access from the periplasmic side of F0 to cAsp-61 at the center of the membrane is likely to be mediated by residues of TMHs 2, 3, 4, and 5 at the center of a four-helix bundle. Further, aqueous access between cAsp-61 and the cytoplasmic surface is likely to be mediated by residues in TMH4 and TMH5 at the exterior of the four-helix bundle that are in contact with the c-ring.
Collapse
Affiliation(s)
- Christine M Angevine
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
41
|
Schwem BE, Fillingame RH. Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle. J Biol Chem 2006; 281:37861-7. [PMID: 17035244 DOI: 10.1074/jbc.m607453200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a of F(1)F(0) ATP synthase is required in the H(+) transport driven rotation of the c-ring of F(0), the rotation of which is coupled to ATP synthesis in F(1). The three-dimensional structure of subunit a is unknown. In this study, Cys substitutions were introduced into two different transmembrane helices (TMHs) of subunit a, and the proximity of the thiol side chains was tested via attempted oxidative cross-linking to form the disulfide bond. Pairs of Cys substitutions were made in TMHs 2/3, 2/4, 2/5, 3/4, 3/5, and 4/5. Cu(+2)-catalyzed oxidation led to cross-link formation between Cys pairs L120C(TMH2) and S144C(TMH3), L120C(TMH2) and G218C(TMH4), L120C(TMH2) and H245C(TMH5), L120C(TMH2) and I246C(TMH5), N148C(TMH3) and E219C(TMH4), N148C(TMH3) and H245C(TMH5), and G218C(TMH4) and I248C(TMH5). Iodine, but not Cu(+2), was found to catalyze cross-link formation between D119C(TMH2) and G218C(TMH4). The results suggest that TMHs 2, 3, 4, and 5 form a four-helix bundle with one set of key functional residues in TMH4 (Ser-206, Arg-210, and Asn-214) located at the periphery facing subunit c. Other key residues in TMHs 2, 4, and 5, which were concluded previously to compose a possible aqueous access pathway from the periplasm, were found to locate to the inside of the four-helix bundle.
Collapse
Affiliation(s)
- Brian E Schwem
- Department of Biomolecular Chemistry, School of Medicine and Public Health University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
42
|
Ferguson SA, Keis S, Cook GM. Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacterium Clostridium paradoxum. J Bacteriol 2006; 188:5045-54. [PMID: 16816177 PMCID: PMC1539966 DOI: 10.1128/jb.00128-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium paradoxum is an anaerobic thermoalkaliphilic bacterium that grows rapidly at pH 9.8 and 56 degrees C. Under these conditions, growth is sensitive to the F-type ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD), suggesting an important role for this enzyme in the physiology of C. paradoxum. The ATP synthase was characterized at the biochemical and molecular levels. The purified enzyme (30-fold purification) displayed the typical subunit pattern for an F1Fo-ATP synthase but also included the presence of a stable oligomeric c-ring that could be dissociated by trichloroacetic acid treatment into its monomeric c subunits. The purified ATPase was stimulated by sodium ions, and sodium provided protection against inhibition by DCCD that was pH dependent. ATP synthesis in inverted membrane vesicles was driven by an artificially imposed chemical gradient of sodium ions in the presence of a transmembrane electrical potential that was sensitive to monensin. Cloning and sequencing of the atp operon revealed the presence of a sodium-binding motif in the membrane-bound c subunit (viz., Q28, E61, and S62). On the basis of these properties, the F1Fo-ATP synthase of C. paradoxum is a sodium-translocating ATPase that is used to generate an electrochemical gradient of + that could be used to drive other membrane-bound bioenergetic processes (e.g., solute transport or flagellar rotation). In support of this proposal are the low rates of ATP synthesis catalyzed by the enzyme and the lack of the C-terminal region of the epsilon subunit that has been shown to be essential for coupled ATP synthesis.
Collapse
Affiliation(s)
- Scott A Ferguson
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
43
|
Dickson VK, Silvester JA, Fearnley IM, Leslie AGW, Walker JE. On the structure of the stator of the mitochondrial ATP synthase. EMBO J 2006; 25:2911-8. [PMID: 16791136 PMCID: PMC1500866 DOI: 10.1038/sj.emboj.7601177] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 11/08/2022] Open
Abstract
The structure of most of the peripheral stalk, or stator, of the F-ATPase from bovine mitochondria, determined at 2.8 A resolution, contains residues 79-183, 3-123 and 5-70 of subunits b, d and F6, respectively. It consists of a continuous curved alpha-helix about 160 A long in the single b-subunit, augmented by the predominantly alpha-helical d- and F6-subunits. The structure occupies most of the peripheral stalk in a low-resolution structure of the F-ATPase. The long helix in subunit b extends from near to the top of the F1 domain to the surface of the membrane domain, and it probably continues unbroken across the membrane. Its uppermost region interacts with the oligomycin sensitivity conferral protein, bound to the N-terminal region of one alpha-subunit in the F1 domain. Various features suggest that the peripheral stalk is probably rigid rather than resembling a flexible rope. It remains unclear whether the transient storage of energy required by the rotary mechanism takes place in the central stalk or in the peripheral stalk or in both domains.
Collapse
Affiliation(s)
| | | | - Ian M Fearnley
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 248011; Fax: +44 1223 213556; E-mail:
| | - John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
- Dunn Human Nutrition Unit, Medical Research Council, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK. Tel.: +44 1223 252701; Fax: +44 1223 252705; E-mail:
| |
Collapse
|
44
|
Powers N, Jensen JH. Chemically accurate protein structures: validation of protein NMR structures by comparison of measured and predicted pKa values. JOURNAL OF BIOMOLECULAR NMR 2006; 35:39-51. [PMID: 16791739 DOI: 10.1007/s10858-006-9003-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 03/08/2006] [Indexed: 05/10/2023]
Abstract
A new method is presented for evaluating the quality of protein structures obtained by NMR. This method exploits the dependence between measurable chemical properties of a protein, namely pKa values of acidic residues, and protein structure. The accurate and fast empirical computational method employed by the PROPKA program ( http://www.propka.chem.uiowa.edu) allows the user to test the ability of a given structure to reproduce known pKa values, which in turn can be used as a criterion for the selection of more accurate structures. We demonstrate the feasibility of this novel idea for a series of proteins for which both NMR and X-ray structures, as well as pKa values of all ionizable residues, have been determined. For the 17 NMR ensembles used in this study, this criterion is shown effective in the elimination of a large number of NMR structure ensemble members.
Collapse
Affiliation(s)
- N Powers
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA
| | | |
Collapse
|
45
|
Application of rigid body mechanics to theoretical description of rotation within F0F1-ATP synthase. J Theor Biol 2006; 242:300-8. [PMID: 16603197 DOI: 10.1016/j.jtbi.2006.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
ATP synthase catalyses the formation of ATP from ADP and P(i) and is powered by the diffusion of protons throughout membranes down the proton electrochemical gradient. The protein consists of a water-soluble F(1) and a transmembrane F(0) proton transporter part. It was previously shown that the ring of membrane subunits rotates past a fixed subunit during catalytic cycle of the enzyme. However, many parameters of this movement are still unknown. In the present study the mutual protein movement in the membrane part of F(0)F(1)-ATP syntase has been analysed within the framework of rigid body mechanics. On the base of available experimental data it was shown that electrostatic interaction of two charged amino acids residues is able to supply quite enough energy for the rotation. The initial torque, which caused the rotation, was estimated as 3.7 pN nm and for this pattern the angular movement of c subunits complex could not physically have a period less than 10(-9)s. If membrane viscosity and elastic resistance were taken into account then the time of a whole turnover could rise up to 6.3 x 10(-3)s. It is remarkable that rotation will take place only under condition when the elasticity (Young's) module of the central stalk (gamma subunit and other minor subunits) is less than 5.0 x 10(7)N/m(2). Thus, for generally accepted structural parameters of ATP synthase, two-charge electrostatic interaction model does not permit rotation of the rotor if elastic properties of the central stalk are tougher than mentioned above. In order to explain the rotation under that condition one should either suppose a shorter distance between subunit a and c subunits complex or assume interaction of more than two charged amino acids residues.
Collapse
|
46
|
Nakano T, Ikegami T, Suzuki T, Yoshida M, Akutsu H. A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. J Mol Biol 2006; 358:132-44. [PMID: 16497328 DOI: 10.1016/j.jmb.2006.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 12/24/2005] [Accepted: 01/03/2006] [Indexed: 11/22/2022]
Abstract
In F(o)F(1)-ATP synthase, an oligomer ring of F(o)c subunits acts as a rotary proton channel of the F(o)-proton motor. On the basis of the solution structure of the Escherichia coli F(o)c (EF(o)c) monomer, the rotation of the C-terminal helix coupled with the reorientation of the essential Asp61 side-chain on deprotonation was proposed to drive rotation of the whole c-ring. We have determined the NMR structure of F(o)c from thermophilic Bacillus PS3, TF(o)c, in an organic solvent mixture (chloroform/methanol (3:1, v/v)). Our results showed that, independent of pH, the carboxyl group of the essential Glu56 of TF(o)c protrudes toward the outside of the hairpin, a third orientation that differs from either of the two orientations in EF(o)c. Therefore, it would be inappropriate to draw conclusions about the mechanism of c-ring rotation on the basis of the conformations observed only for EF(o)c. The appearance of different hairpin structures shows that there are multiple energy minima for the hairpin structure in terms of helix rotation and axial displacement. The multiple energy minima may also provide a base for the different oligomeric states in the c-ring structure. A rotation mechanism of the F(o) motor coupled with H(+)-translocation is discussed on the basis of these results and the recently reported crystal structure of the c-ring from Ilyobacter tartaricus Na(+)-ATPase.
Collapse
Affiliation(s)
- Takayuki Nakano
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
47
|
Silverstein T. The mitochondrial phosphate-to-oxygen ratio is not an integer. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:416-417. [PMID: 21638612 DOI: 10.1002/bmb.2005.49403306416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
For many years, mitochondrial phosphate-to-oxygen ratios were believed to be integral values: 3 for ATP/NADH and 2 for ATP/FADH(2) . The chemiosmotic theory has demonstrated that this need not be the case because coupling sites do not directly synthesize ATP. Coupling between coupling site redox reactions and ATP synthesis occurs via proton pumping and proton flow, respectively. Most recent measurements support phosphate-to-oxygen ratios of ∼2.5 ATP/NADH and 1.5 ATP/FADH(2) ; these values match those expected from chemiosmotic calculations. Faculty members who teach metabolism are encouraged to reflect these developments in their lecture notes.
Collapse
|
48
|
Abstract
With the amount of genetic information available, a lot of attention has focused on systems biology, in particular biomolecular interactions. Considering the huge number of such interactions, and their often weak and transient nature, conventional experimental methods such as X-ray crystallography and NMR spectroscopy are not sufficient to gain structural insight into these. A wealth of biochemical and/or biophysical data can, however, readily be obtained for biomolecular complexes. Combining these data with docking (the process of modeling the 3D structure of a complex from its known constituents) should provide valuable structural information and complement the classical structural methods. In this review we discuss and illustrate the various sources of data that can be used to map interactions and their combination with docking methods to generate structural models of the complexes. Finally a perspective on the future of this kind of approach is given.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH, Utrecht, the Netherlands
| | | | | |
Collapse
|
49
|
Aksimentiev A, Balabin IA, Fillingame RH, Schulten K. Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophys J 2004; 86:1332-44. [PMID: 14990464 PMCID: PMC1303972 DOI: 10.1016/s0006-3495(04)74205-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
F(1)F(o)-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, F(o) and F(1), which are coupled by a central stalk. The membrane unit, F(o), converts the transmembrane electrochemical potential into mechanical rotation of a rotor in F(o) and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of F(o) and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in F(o). The mechanism that emerged generates the torque at the interface of the a- and c-subunits of F(o) through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations.
Collapse
Affiliation(s)
- Aleksij Aksimentiev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
50
|
Xing J, Wang H, von Ballmoos C, Dimroth P, Oster G. Torque generation by the Fo motor of the sodium ATPase. Biophys J 2004; 87:2148-63. [PMID: 15454418 PMCID: PMC1304641 DOI: 10.1529/biophysj.104.042093] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 06/25/2004] [Indexed: 11/18/2022] Open
Abstract
Based on recent structural and functional findings, we have constructed a mathematical model for the sodium-driven Fo motor of the F1Fo-ATPase from the anaerobic bacterium Propionigenium modestum. The model reveals the mechanochemical principles underlying the Fo motor's operation, and explains all of the existing experimental data on wild-type and mutant Fo motors. In particular, the model predicts a nonmonotonic dependence of the ATP hydrolysis activity on the sodium concentration, a prediction confirmed by new experiments. To explain experimental observations, the positively charged stator residue (R227) must assume different positions in the ATP synthesis and hydrolysis directions. This work also illustrates how to extract a motor mechanism from dynamical experimental observations in the absence of complete structural information.
Collapse
Affiliation(s)
- Jianhua Xing
- Department of Molecular Biology, Policy and Management, University of California, Berkeley, California 94720-3112, USA
| | | | | | | | | |
Collapse
|