1
|
Izzo F, Myers RM, Ganesan S, Mekerishvili L, Kottapalli S, Prieto T, Eton EO, Botella T, Dunbar AJ, Bowman RL, Sotelo J, Potenski C, Mimitou EP, Stahl M, El Ghaity-Beckley S, Arandela J, Raviram R, Choi DC, Hoffman R, Chaligné R, Abdel-Wahab O, Smibert P, Ghobrial IM, Scandura JM, Marcellino B, Levine RL, Landau DA. Mapping genotypes to chromatin accessibility profiles in single cells. Nature 2024; 629:1149-1157. [PMID: 38720070 PMCID: PMC11139586 DOI: 10.1038/s41586-024-07388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.
Collapse
Affiliation(s)
- Franco Izzo
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saravanan Ganesan
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Levan Mekerishvili
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Sanjay Kottapalli
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tamara Prieto
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Elliot O Eton
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theo Botella
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew J Dunbar
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eleni P Mimitou
- New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Maximilian Stahl
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sebastian El Ghaity-Beckley
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - JoAnn Arandela
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Raviram
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel C Choi
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligné
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- SAIL: Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Smibert
- New York Genome Center, New York, NY, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph M Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bridget Marcellino
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ross L Levine
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Xu H, Tan S, Zhao Y, Zhang L, Cao W, Li X, Tian J, Wang X, Li X, Wang F, Cao J, Zhao T. Lin - PU.1 dim GATA-1 - defines haematopoietic stem cells with long-term multilineage reconstitution activity. Cell Prolif 2023; 56:e13490. [PMID: 37147872 PMCID: PMC10623959 DOI: 10.1111/cpr.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Despite extensive characterization of the state and function of haematopoietic stem cells (HSCs), the use of transcription factors to define the HSC population is still limited. We show here that the HSC population in mouse bone marrow can be defined by the distinct expression levels of Spi1 and Gata1. By using a double fluorescence knock-in mouse model, PGdKI, in which the expression levels of PU.1 and GATA-1 are indicated by the expression of GFP and mCherry, respectively, we uncover that the HSCs with lymphoid and myeloid repopulating activity are specifically enriched in a Lin- PU.1dim GATA-1- (LPG) cell subset. In vivo competitive repopulation assays demonstrate that bone marrow cells gated by LPG exhibit haematopoietic reconstitution activity which is comparable to that of classical Lin- Sca1+ c-kit+ (LSK). The integrated analysis of single-cell RNA sequence data from LPG and LSK-gated cells reveals that a transcriptional network governed by core TFs contributes to regulation of HSC multipotency. These discoveries provide new clues for HSC characterization and functional study.
Collapse
Affiliation(s)
- Haoyu Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiyun Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS)BeijingChina
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
4
|
Thompson B, Lu S, Revilla J, Uddin MJ, Oakland DN, Brovero S, Keles S, Bresnick EH, Petri WA, Burgess SL. Secondary bile acids function through the vitamin D receptor in myeloid progenitors to promote myelopoiesis. Blood Adv 2023; 7:4970-4982. [PMID: 37276450 PMCID: PMC10463201 DOI: 10.1182/bloodadvances.2022009618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Metabolic products of the microbiota can alter hematopoiesis. However, the contribution and site of action of bile acids is poorly understood. Here, we demonstrate that the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), increase bone marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially expanded immunophenotypic and functional colony-forming unit-granulocyte and macrophage (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted hematopoietic stem and progenitor cells (HSPCs) increased CFU-GMs, indicating that direct exposure of HSPCs to DCA sufficed to increase GMPs. The vitamin D receptor (VDR) was required for the DCA-induced increase in CFU-GMs and GMPs. Single-cell RNA sequencing revealed that DCA significantly upregulated genes associated with myeloid differentiation and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent manner suggests microbiome-host interactions could directly affect bone marrow hematopoiesis and potentially the severity of infectious and inflammatory disease.
Collapse
Affiliation(s)
- Brandon Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Shan Lu
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Julio Revilla
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - David N. Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Savannah Brovero
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Sunduz Keles
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
5
|
Johnson KD, Jung MM, Tran VL, Bresnick EH. Interferon regulatory factor-8-dependent innate immune alarm senses GATA2 deficiency to alter hematopoietic differentiation and function. Curr Opin Hematol 2023; 30:117-123. [PMID: 37254854 PMCID: PMC10236032 DOI: 10.1097/moh.0000000000000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.
Collapse
Affiliation(s)
- Kirby D Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
6
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
7
|
Kamimoto K, Stringa B, Hoffmann CM, Jindal K, Solnica-Krezel L, Morris SA. Dissecting cell identity via network inference and in silico gene perturbation. Nature 2023; 614:742-751. [PMID: 36755098 PMCID: PMC9946838 DOI: 10.1038/s41586-022-05688-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023]
Abstract
Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks1. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms-mouse and human haematopoiesis, and zebrafish embryogenesis-and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of noto, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.
Collapse
Affiliation(s)
- Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Blerta Stringa
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Christy M Hoffmann
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Kunal Jindal
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine in St Louis, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine in St Louis, St Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA.
| |
Collapse
|
8
|
Ishihara N, Nakamura Y, Yakabe K, Komiyama S, Fujimura Y, Kaisho T, Kimura S, Hase K. Spi-B alleviates food allergy by securing mucosal barrier and immune tolerance in the intestine. FRONTIERS IN ALLERGY 2022; 3:996657. [PMID: 36277615 PMCID: PMC9584830 DOI: 10.3389/falgy.2022.996657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
Food allergy is a type I allergic reaction induced by mast cells and is mainly activated by allergen-specific immunoglobulin (Ig)E. Spi-B is an E26-transformation-specific (Ets) family transcription factor essential for the differentiation and functional maturation of several immune cell subsets, including mast cells. However, the possible involvement of Spi-B in food allergy remains unclear. In this study, we found that Spi-B-deficient mice were highly susceptible to food allergy to ovalbumin (OVA), as indicated by the exacerbation of diarrhea and elevation of serum IgE levels. These pathological changes were associated with enhanced mast cell infiltration into the intestinal lamina propria. Activation of mast cells in the intestinal mucosa was observed in Spib -/- mice, even under physiological conditions. Accordingly, Spi-B deficiency increased the translocation of fluorescently labeled dextran from the lumen to the serum, suggesting increased intestinal permeability in Spib -/- mice. Moreover, Spib -/- mice showed defects in oral tolerance induction to OVA. These data illustrate that Spi-B suppresses the development of food allergies by controlling the activation of intestinal mast cells and by inducing immune tolerance to food allergens.
Collapse
Affiliation(s)
- Narumi Ishihara
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan,Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Kyosuke Yakabe
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Seiga Komiyama
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan,Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan,Correspondence: Shunsuke Kimura Koji Hase
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, School of Pharmaceutical Sciences, Keio University, Tokyo, Japan,Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan,Correspondence: Shunsuke Kimura Koji Hase
| |
Collapse
|
9
|
Zhao X, Bartholdy B, Yamamoto Y, Evans EK, Alberich-Jordà M, Staber PB, Benoukraf T, Zhang P, Zhang J, Trinh BQ, Crispino JD, Hoang T, Bassal MA, Tenen DG. PU.1-c-Jun interaction is crucial for PU.1 function in myeloid development. Commun Biol 2022; 5:961. [PMID: 36104445 PMCID: PMC9474506 DOI: 10.1038/s42003-022-03888-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.
Collapse
Affiliation(s)
- Xinhui Zhao
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Boris Bartholdy
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Yukiya Yamamoto
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Erica K Evans
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- MOMA Therapeutics, Cambridge, MA, USA
| | - Meritxell Alberich-Jordà
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Hematology-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Videnska, Czech Republic
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, Singapore, Singapore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Pu Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Junyan Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bon Q Trinh
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Trang Hoang
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Ohmori S, Takai J, Uemura S, Otsuki A, Mori T, Ohneda K, Moriguchi T. The Il6 -39 kb enhancer containing clustered GATA2- and PU.1-binding sites is essential for Il6 expression in murine mast cells. iScience 2022; 25:104942. [PMID: 36072552 PMCID: PMC9442365 DOI: 10.1016/j.isci.2022.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions. GATA2- and PU.1-binding peaks are closely located in distal enhancers of cytokine genes GATA2 and PU.1 play crucial roles in promoting LPS-mediated cytokine induction The Il6 -39 kb enhancer containing GATA2 and PU.1 motifs are crucial for Il6 induction GATA2 inhibitor exerts anti-inflammatory effects via reducing cytokine induction
Collapse
|
11
|
Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestré L, Evanno E, Diop M, Gallais I, Aleth H, Poplineau M, Zwart W, Rosenbauer F, Rodrigues-Lima F, Duprez E, Boeva V, Guillouf C. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res 2022; 50:7938-7958. [PMID: 35871293 PMCID: PMC9371914 DOI: 10.1093/nar/gkac613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Lélia Polit
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
| | - Michela Esposito
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Laure Delestré
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Emilie Evanno
- Curie Institute , Inserm U830, F- 75005 Paris, France
| | - M’Boyba Diop
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Hanna Aleth
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | - Mathilde Poplineau
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | | | - Estelle Duprez
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Valentina Boeva
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
- Department of Computer Science and Department of Biology , ETH Zurich, 8092 Zurich , Switzerland
| | - Christel Guillouf
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| |
Collapse
|
12
|
McLemore AF, Hou HA, Meyer BS, Lam NB, Ward GA, Aldrich AL, Rodrigues MA, Vedder A, Zhang L, Padron E, Vincelette ND, Sallman DA, Abdel-Wahab O, List AF, McGraw KL. Somatic gene mutations expose cytoplasmic DNA to co-opt the cGAS-STING-NLRP3 axis in Myelodysplastic syndromes. JCI Insight 2022; 7:159430. [PMID: 35788117 PMCID: PMC9462508 DOI: 10.1172/jci.insight.159430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
NLRP3 inflammasome and IFN-stimulated gene (ISG) induction are key biological drivers of ineffective hematopoiesis and inflammation in myelodysplastic syndromes (MDSs). Gene mutations involving mRNA splicing and epigenetic regulatory pathways induce inflammasome activation and myeloid lineage skewing in MDSs through undefined mechanisms. Using immortalized murine hematopoietic stem and progenitor cells harboring these somatic gene mutations and primary MDS BM specimens, we showed accumulation of unresolved R-loops and micronuclei with concurrent activation of the cytosolic sensor cyclic GMP-AMP synthase. Cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling caused ISG induction, NLRP3 inflammasome activation, and maturation of the effector protease caspase-1. Deregulation of RNA polymerase III drove cytosolic R-loop generation, which upon inhibition, extinguished ISG and inflammasome response. Mechanistically, caspase-1 degraded the master erythroid transcription factor, GATA binding protein 1, provoking anemia and myeloid lineage bias that was reversed by cGAS inhibition in vitro and in Tet2–/– hematopoietic stem and progenitor cell–transplanted mice. Together, these data identified a mechanism by which functionally distinct mutations converged upon the cGAS/STING/NLRP3 axis in MDS, directing ISG induction, pyroptosis, and myeloid lineage skewing.
Collapse
Affiliation(s)
- Amy F McLemore
- Department of Malignant Hematology, Moffitt Cancer Center & Research institute, Tampa, United States of America
| | - Hsin-An Hou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Benjamin S Meyer
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Nghi B Lam
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Grace A Ward
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Amy L Aldrich
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | | | - Alexis Vedder
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Ling Zhang
- Department of Hemapathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - Nicole D Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, United States of America
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, United States of America
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States of America
| | - Alan F List
- Precision Biosciences, Precision Biosciences, Durham, United States of America
| | - Kathy L McGraw
- Center for Cancer Research, National Cancer Institute, Bethesda, United States of America
| |
Collapse
|
13
|
Jones R, Hill M, Taylor P. Spi1 -14 Kb upstream regulatory element (URE) is not required for maintenance of PU.1 expression in macrophages. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17705.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Previous work suggested an upstream regulatory element (URE) of Spi1 was required to maintain constant expression of the PU.1 transcription factor in bone marrow and foetal liver cells. PU.1, encoded by Spi1, is essential for development and maintenance of myeloid and B-lymphocyte populations in mice. Deletion of this (-14 Kb) URE potentially reduces expression of PU.1 and therefore provides a way to investigate its role in myeloid populations in development and disease. This study aimed to examine the impact of removal of the -14 Kb Spi1 URE in Cx3cr1+ cells on the myeloid lineage formation and maintenance. Methods: B6;129-Spi1tm1.2Dgt/J mice, whose -14 Kb Spi1 URE mice is flanked by LoxP sites (‘floxed’), were bred to a strain with constitutively active Cre expressed under the Cx3cr1 promoter (B6J.B6N(Cg)-Cx3cr1tm1.1(cre)Jung/J) to delete the Spi1 URE in myeloid cells. The floxed mice were also bred to mice with a tamoxifen-inducible Cre expressed under the Cx3cr1 promoter (B6.129P2(C)-Cx3cr1tm2.1(cre/ERT2)Jung/J) to be used as URE intact controls and to permit temporally-controlled deletion of the URE if required. PU.1 protein expression was measured in the peritoneal macrophages and microglia by flow cytometry. Additionally, a Cre-encoding lentiviral vector was used to assess the impact on PU.1 expression in bone-marrow derived macrophages from these mice in vitro. Results: Expression of the PU.1 transcription factor was not significantly altered in the peritoneal macrophages or microglia in mice lacking the -14 Kb Spi1 URE. Moreover, initial experiments utilising Cre encoding lentivirus did not reduce PU.1 protein in bone-marrow derived macrophages differentiated from the -14 Kb Spi1 URE floxed mice. Conclusions: These observations suggest that the -14 Kb URE does not play a major role in PU.1 protein expression in either mature peritoneal macrophages or microglia.
Collapse
|
14
|
Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang D, Pogson AN, Hein MY, Hoi Joseph Min K, Wang L, Grody EI, Shurtleff MJ, Yuan R, Xu S, Ma Y, Replogle JM, Lander ES, Darmanis S, Bahar I, Sankaran VG, Xing J, Weissman JS. Mapping transcriptomic vector fields of single cells. Cell 2022; 185:690-711.e45. [PMID: 35108499 PMCID: PMC9332140 DOI: 10.1016/j.cell.2021.12.045] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 10/08/2021] [Accepted: 12/28/2021] [Indexed: 01/03/2023]
Abstract
Single-cell (sc)-RNA-seq, together with RNA-velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo, that infers absolute RNA velocity, reconstructs continuous vector-field functions that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo’s power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically-labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1–GATA1 circuit. Leveraging the Least-Action-Path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo thus represents an important step in advancing quantitative and predictive theories of cell-state transitions.
Collapse
Affiliation(s)
- Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yan Zhang
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge D Martin-Rufino
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chen Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shayan Hosseinzadeh
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dian Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela N Pogson
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Y Hein
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| | - Kyung Hoi Joseph Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li Wang
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Ruoshi Yuan
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | | | - Yian Ma
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Systems Biology Harvard Medical School, Boston, MA 02125, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
| |
Collapse
|
15
|
Ali M, Ribeiro MM, Del Sol A. Computational Methods to Identify Cell-Fate Determinants, Identity Transcription Factors, and Niche-Induced Signaling Pathways for Stem Cell Research. Methods Mol Biol 2022; 2471:83-109. [PMID: 35175592 DOI: 10.1007/978-1-0716-2193-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The large-scale development of high-throughput sequencing technologies has not only allowed the generation of reliable omics data related to various regulatory layers but also the development of novel computational models in the field of stem cell research. These computational approaches have enabled the disentangling of a complex interplay between these interrelated layers of regulation by interpreting large quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of complex gene-gene interactions has been successfully used for understanding the mechanisms underlying stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate determinants and signaling molecules controlling such processes. This chapter will provide an overview of various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-fate decisions. Furthermore, we discuss how these computational methods provide the right framework for computational modeling of biological systems in order to address long-standing challenges in the stem cell field by guiding experimental efforts in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
16
|
Hayakawa A, Sano R, Takahashi Y, Okawa T, Kubo R, Harada M, Fukuda H, Yokohama A, Handa H, Kawabata-Iwakawa R, Tsuneyama H, Tsukada J, Kominato Y. Reduction of blood group A antigen on erythrocytes in a patient with myelodysplastic syndrome harboring somatic mutations in RUNX1 and GATA2. Transfusion 2021; 62:469-480. [PMID: 34918362 DOI: 10.1111/trf.16766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reduction of blood group ABO antigens on red blood cells (RBCs) is well known in patients with leukemias, and this reduction of ABO expression is strongly associated with DNA methylation of the ABO promoter. Previously, we reported a two-nucleotide deletion in RUNX1 encoding an abnormally elongated protein lacking the trans-activation domain in a patient with myelodysplastic syndrome (MDS) showing A-antigen loss on RBCs. This prompted us to investigate the underlying mechanism responsible for A-antigen reduction on RBCs in another patient with MDS. STUDY DESIGN AND METHODS Screening of somatic mutations was carried out using a targeted sequencing panel with genomic DNA from peripheral blood mononuclear cells from the patient and eleven MDS controls without A- or B-antigen loss. DNA methylation of the ABO promoter was examined by bisulfite genomic sequencing. Transient transfection assays were performed for functional evaluation of mutations. RESULTS Screening of somatic mutations showed missense mutations in RUNX1 and GATA2 in the patient, while no mutation was found in exons of those genes in the controls. There was no significant difference in ABO promoter methylation between the patient and the controls. Transient transfection experiments into COS-7 and K562 cells suggested that the amino acid substitutions encoded by those mutations reduced or lost the trans-activation potential of the ABO expression. CONCLUSION Considering the discrepancy between the variant frequencies of these mutations and the ratios of the RBCs with A-antigens loss, the antigen reduction might be associated with these somatic mutations and hypermethylation of the ABO promoter.
Collapse
Affiliation(s)
- Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takafumi Okawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Megumi Harada
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruki Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Hatsue Tsuneyama
- Kanto-Koshinetsu Block Blood Center, Japanese Red Cross Society, Tokyo, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
17
|
Wang M, Wang J, Zhang X, Yuan R. The complex landscape of haematopoietic lineage commitments is encoded in the coarse-grained endogenous network. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211289. [PMID: 34737882 PMCID: PMC8564612 DOI: 10.1098/rsos.211289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
Haematopoietic lineage commitments are presented by a canonical roadmap in which haematopoietic stem cells or multipotent progenitors (MPPs) bifurcate into progenitors of more restricted lineages and ultimately mature to terminally differentiated cells. Although transcription factors playing significant roles in cell-fate commitments have been extensively studied, integrating such knowledge into the dynamic models to understand the underlying biological mechanism remains challenging. The hypothesis and modelling approach of the endogenous network has been developed previously and tested in various biological processes and is used in the present study of haematopoietic lineage commitments. The endogenous network is constructed based on the key transcription factors and their interactions that determine haematopoietic cell-fate decisions at each lineage branchpoint. We demonstrate that the process of haematopoietic lineage commitments can be reproduced from the landscape which orchestrates robust states of network dynamics and their transitions. Furthermore, some non-trivial characteristics are unveiled in the dynamical model. Our model also predicted previously under-represented regulatory interactions and heterogeneous MPP states by which distinct differentiation routes are intermediated. Moreover, network perturbations resulting in state transitions indicate the effects of ectopic gene expression on cellular reprogrammes. This study provides a predictive model to integrate experimental data and uncover the possible regulatory mechanism of haematopoietic lineage commitments.
Collapse
Affiliation(s)
- Mengyao Wang
- School of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Junqiang Wang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xingxing Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ruoshi Yuan
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94706, USA
| |
Collapse
|
18
|
Marciano BE, Olivier KN, Folio LR, Zerbe CS, Hsu AP, Freeman AF, Filie AC, Spinner MA, Sanchez LA, Lovell JP, Parta M, Cuellar-Rodriguez JM, Hickstein DD, Holland SM. Pulmonary Manifestations of GATA2 Deficiency. Chest 2021; 160:1350-1359. [PMID: 34089740 PMCID: PMC8546236 DOI: 10.1016/j.chest.2021.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND GATA2 deficiency is a genetic disorder of hematopoiesis, lymphatics, and immunity caused by autosomal dominant or sporadic mutations in GATA2. The disease has a broad phenotype encompassing immunodeficiency, myelodysplasia, leukemia, and vascular or lymphatic dysfunction as well as prominent pulmonary manifestations. RESEARCH QUESTION What are the pulmonary manifestations of GATA2 deficiency? STUDY DESIGN AND METHODS A retrospective review was conducted of clinical medical records, diagnostic imaging, pulmonary pathologic specimens, and tests of pulmonary function. RESULTS Of 124 patients (95 probands and 29 ascertained), the lung was affected in 56%. In addition to chronic infections, pulmonary alveolar proteinosis (11 probands) and pulmonary arterial hypertension (nine probands) were present. Thoracic CT imaging found small nodules in 54% (54 probands and 12 relatives), reticular infiltrates in 40% (45 probands and four relatives), paraseptal emphysema in 25% (30 probands and one relative), ground-glass opacities in 35% (41 probands and two relatives), consolidation in 21% (23 probands and two relatives), and a typical crazy-paving pattern in 7% (eight probands and no relatives). Nontuberculous mycobacteria were the most frequent organisms associated with chronic infection. Allogeneic hematopoietic stem cell transplantation successfully reversed myelodysplasia and immune deficiency and also improved pulmonary hypertension and pulmonary alveolar proteinosis in most patients. INTERPRETATION GATA2 deficiency has prominent pulmonary manifestations. These clinical observations confirm the essential role of hematopoietic cells in many aspects of pulmonary function, including infections, alveolar proteinosis, and pulmonary hypertension, many of which precede the formal diagnosis, and many of which respond to stem cell transplantation.
Collapse
Affiliation(s)
- Beatriz E Marciano
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung and Blood Institute, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Les R Folio
- Department of Radiology and Imaging Sciences, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Armando C Filie
- Cytology Services Laboratory Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A Spinner
- Division of Oncology, Department of Medicine, Stanford University, Stanford
| | - Lauren A Sanchez
- Division of Allergy, Immunology, and Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, CA
| | - Jana P Lovell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer M Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Shoger KE, Cheemalavagu N, Cao YM, Michalides BA, Chaudhri VK, Cohen JA, Singh H, Gottschalk RA. CISH attenuates homeostatic cytokine signaling to promote lung-specific macrophage programming and function. Sci Signal 2021; 14:eabe5137. [PMID: 34516753 DOI: 10.1126/scisignal.abe5137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Karsen E Shoger
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Neha Cheemalavagu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuqi M Cao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brandon A Michalides
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Virendra K Chaudhri
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonathan A Cohen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Harinder Singh
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rachel A Gottschalk
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
20
|
Barile M, Imaz-Rosshandler I, Inzani I, Ghazanfar S, Nichols J, Marioni JC, Guibentif C, Göttgens B. Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation. Genome Biol 2021; 22:197. [PMID: 34225769 PMCID: PMC8258993 DOI: 10.1186/s13059-021-02414-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.
Collapse
Affiliation(s)
- Melania Barile
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Isabella Inzani
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Cambridge, CB2 0QQ UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD UK
| | - Carolina Guibentif
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| |
Collapse
|
21
|
Raghav PK, Gangenahalli G. PU.1 Mimic Synthetic Peptides Selectively Bind with GATA-1 and Allow c-Jun PU.1 Binding to Enhance Myelopoiesis. Int J Nanomedicine 2021; 16:3833-3859. [PMID: 34113102 PMCID: PMC8187006 DOI: 10.2147/ijn.s303235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hematopoietic stem cells' commitment to myelopoiesis builds immunity to prevent infection. This process is controlled through transcription factor, especially Purine rich box 1 (PU.1) protein, which plays a central role in regulating myelopoiesis. The β3/β4 region of PU.1 accommodates a coactivator transcription factor, c-Jun, to activate myelopoiesis. However, an erythroid transcription factor, GATA-1, competes with c-Jun for the β3/β4 region, abolishing myelopoiesis and promoting erythropoiesis. This competitive regulation decides the hematopoietic stem cells' commitment towards either erythroid or myeloid lineage. METHODS Therefore, this study investigated the in vitro and in vivo effect of novel synthetic PU.1 β3/β4 mimic peptide analogs and peptide-loaded hydrophilic poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles. RESULTS The designed peptides significantly increase the expression of corresponding myeloid markers, specifically CD33 in vitro. However, the in vivo delivery of peptide-loaded PLGA nanoparticles, which have sustained release effect of peptides, increases 10.8% of granulocytes as compared to control. CONCLUSION The observations showed that the fabricated nanoparticles protected the loaded peptides from the harsh intracellular environment for a longer duration without causing any toxicity. These findings highlight the possibility to use these peptides and peptide-loaded nanoparticles to increase hematopoietic stem cell commitment to myeloid cells in case of opportunistic infection.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, 110054, India
| |
Collapse
|
22
|
An automated framework for efficiently designing deep convolutional neural networks in genomics. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00316-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Wang D, Uyemura B, Hashemi E, Bjorgaard S, Riese M, Verbsky J, Thakar MS, Malarkannan S. Role of GATA2 in Human NK Cell Development. Crit Rev Immunol 2021; 41:21-33. [PMID: 34348000 PMCID: PMC11536496 DOI: 10.1615/critrevimmunol.2021037643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural killer (NK) cells are major innate lymphocytes. NK cells do not require prior antigen exposure to mediate antitumor cytotoxicity or proinflammatory cytokine production. Since they use only nonclonotypic receptors, they possess high clinical value in treatment against a broad spectrum of malignancies. Irrespective of this potential, however, the transcriptional regulation that governs human NK cell development remains far from fully defined. Various environmental cues initiate a complex network of transcription factors (TFs) during their early development, one of which is GATA2, a master regulator that drives the commitment of common lymphoid progenitors (CLPs) into immature NK progenitors (NKPs). GATA2 forms a core heptad complex with six other TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to mediate its transcriptional regulation in various cell types. Patients with GATA2 haploinsufficiency specifically lose CD56bright NK cells, with or without a reduced number of CD56dlm NK cells. Here, we review the recent progress in understanding GATA2 and its role in human NK cell development and functions.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
| | - Bradley Uyemura
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
| | - Stacey Bjorgaard
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
| | - Matthew Riese
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| | - Monica S. Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
24
|
Scheenstra MR, Martínez-Botía P, Acebes-Huerta A, Brouwer RWW, Caballero-Sánchez N, Gillemans N, De Bleser P, Nota B, De Cuyper IM, Salunkhe V, Woltman AM, van de Laar L, Rijkers E, Demmers JAA, van IJcken WFJ, Philipsen S, van den Berg TK, Kuijpers TW, Gutiérrez L. Comparison of the PU.1 transcriptional regulome and interactome in human and mouse inflammatory dendritic cells. J Leukoc Biol 2020; 110:735-751. [PMID: 33289106 DOI: 10.1002/jlb.6a1219-711rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are key immune modulators and are able to mount immune responses or tolerance. DC differentiation and activation imply a plethora of molecular and cellular responses, including transcriptional changes. PU.1 is a highly expressed transcription factor in DCs and coordinates relevant aspects of DC biology. Due to their role as immune regulators, DCs pose as a promising immunotherapy tool. However, some of their functional features, such as survival, activation, or migration, are compromised due to the limitations to simulate in vitro the physiologic DC differentiation process. A better knowledge of transcriptional programs would allow the identification of potential targets for manipulation with the aim of obtaining "qualified" DCs for immunotherapy purposes. Most of the current knowledge regarding DC biology derives from studies using mouse models, which not always find a parallel in human. In the present study, we dissect the PU.1 transcriptional regulome and interactome in mouse and human DCs, in the steady state or LPS activated. The PU.1 transcriptional regulome was identified by performing PU.1 chromatin immunoprecipitation followed by high-throughput sequencing and pairing these data with RNAsequencing data. The PU.1 interactome was identified by performing PU.1 immunoprecipitation followed by mass spectrometry analysis. Our results portray PU.1 as a pivotal factor that plays an important role in the regulation of genes required for proper DC activation and function, and assures the repression of nonlineage genes. The interspecies differences between human and mouse DCs are surprisingly substantial, highlighting the need to study the biology of human DCs.
Collapse
Affiliation(s)
- Maaike R Scheenstra
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Andrea Acebes-Huerta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Data Mining and Modeling for Biomedicine, Ghent, Belgium
| | - Benjamin Nota
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Vishal Salunkhe
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
- Current Address: Institute of Medical Education Research Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne van de Laar
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Immunotherapy, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije University, Amsterdam, The Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- University of Oviedo, Oviedo, Spain
| |
Collapse
|
25
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
26
|
Yin C, Vrieze AM, Rosoga M, Akingbasote J, Pawlak EN, Jacob RA, Hu J, Sharma N, Dikeakos JD, Barra L, Nagpal AD, Heit B. Efferocytic Defects in Early Atherosclerosis Are Driven by GATA2 Overexpression in Macrophages. Front Immunol 2020; 11:594136. [PMID: 33193444 PMCID: PMC7644460 DOI: 10.3389/fimmu.2020.594136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023] Open
Abstract
The loss of efferocytosis-the phagocytic clearance of apoptotic cells-is an initiating event in atherosclerotic plaque formation. While the loss of macrophage efferocytosis is a prerequisite for advanced plaque formation, the transcriptional and cellular events in the pre-lesion site that drive these defects are poorly defined. Transcriptomic analysis of macrophages recovered from early-stage human atherosclerotic lesions identified a 50-fold increase in the expression of GATA2, a transcription factor whose expression is normally restricted to the hematopoietic compartment. GATA2 overexpression in vitro recapitulated many of the functional defects reported in patient macrophages, including deficits at multiple stages in the efferocytic process. These findings included defects in the uptake of apoptotic cells, efferosome maturation, and in phagolysosome function. These efferocytic defects were a product of GATA2-driven alterations in the expression of key regulatory proteins, including Src-family kinases, Rab7 and components of both the vacuolar ATPase and NADPH oxidase complexes. In summary, these data identify a mechanism by which efferocytic capacity is lost in the early stages of plaque formation, thus setting the stage for the accumulation of uncleared apoptotic cells that comprise the bulk of atherosclerotic plaques.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Angela M Vrieze
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Mara Rosoga
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - James Akingbasote
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Jonathan Hu
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Neha Sharma
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Lillian Barra
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada.,Division of Rheumatology, Department of Medicine, The University of Western Ontario, London, ON, Canada
| | - A Dave Nagpal
- Division of Cardiac Surgery, Department of Surgery, The University of Western Ontario, London, ON, Canada.,Division of Critical Care Medicine, Department of Medicine, The University of Western Ontario, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, and The Center for Human Immunology, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, London, ON, Canada
| |
Collapse
|
27
|
Shah R, Del Vecchio D. Reprogramming multistable monotone systems with application to cell fate control. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2020; 7:2940-2951. [PMID: 33437845 PMCID: PMC7799369 DOI: 10.1109/tnse.2020.3008135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multistability is a key property of dynamical systems modeling cellular regulatory networks implicated in cell fate decisions, where, different stable steady states usually represent distinct cell phenotypes. Monotone network motifs are highly represented in these regulatory networks. In this paper, we leverage the properties of monotone dynamical systems to provide theoretical results that guide the selection of inputs that trigger a transition, i.e., reprogram the network, to a desired stable steady state. We first show that monotone dynamical systems with bounded trajectories admit a minimum and a maximum stable steady state. Then, we provide input choices that are guaranteed to reprogram the system to these extreme steady states. For intermediate states, we provide an input space that is guaranteed to contain an input that reprograms the system to the desired state. We then provide implementation guidelines for finite-time procedures that search this space for such an input, along with rules to prune parts of the space during search. We demonstrate these results on simulations of two recurrent regulatory network motifs: self-activation within mutual antagonism and self-activation within mutual cooperation. Our results depend uniquely on the structure of the network and are independent of specific parameter values.
Collapse
Affiliation(s)
- Rushina Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Wei C, Yu P, Cheng L. Hematopoietic Reprogramming Entangles with Hematopoiesis. Trends Cell Biol 2020; 30:752-763. [PMID: 32861580 DOI: 10.1016/j.tcb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis generally refers to hematopoietic development in fetuses and adults, as well as to hematopoietic stem cell differentiation into progeny lineages. The multiple processes that generate diverse hematopoietic cells have been considered to be unidirectional. However, many reports have recently demonstrated that these processes are not only reversible but also interconvertible via cell reprogramming. The cell reprogramming that occurs in hematopoietic cells is termed hematopoietic reprogramming. We focus on both autogenous and artificial hematopoietic reprogramming under physiological and pathological conditions that is mainly directed by the actions of transcription factors (TFs), chemical compounds, or extracellular cytokines. A comprehensive understanding of hematopoietic reprogramming will help us not only to generate desirable cells for cell therapy but also to further analyze normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Chuijin Wei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pei Yu
- Department of Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
29
|
Bento LC, Bacal NS, Rocha FA, Severino P, Marti LC. Bone Marrow Monocytes and Derived Dendritic Cells from Myelodysplastic Patients Have Functional Abnormalities Associated with Defective Response to Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:2098-2109. [PMID: 32179638 DOI: 10.4049/jimmunol.1900328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 02/06/2020] [Indexed: 01/14/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell diseases characterized by dysplasia of one or more hematologic lineages and a high risk of developing into acute myeloid leukemia. MDS patients have recurrent bacterial infections and abnormal expression of CD56 by monocytes. We investigated MDS patients' bone marrow CD56+/CD56- monocytes and their in vitro-derived dendritic cell populations in comparison with cells obtained from disease-free subjects. We found that monocytes from MDS patients, irrespective of CD56 expression, have reduced phagocytosis activity and low expression of genes involved in triggering immune responses, regulation of immune and inflammatory response signaling pathways, and in the response to LPS. Dendritic cells derived in vitro from MDS monocytes failed to develop dendritic projections and had reduced expression of HLA-DR and CD86, suggesting that Ag processing and T cell activation capabilities are impaired. In conclusion, we identified, in both CD56+ and CD56- monocytes from MDS patients, several abnormalities that may be related to the increased susceptibility to infections observed in these patients.
Collapse
Affiliation(s)
- Laiz C Bento
- Clinical Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil; and
| | - Nydia S Bacal
- Clinical Pathology Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil; and
| | - Fernanda A Rocha
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil
| | - Patricia Severino
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil
| | - Luciana C Marti
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo 05652 000, Brazil
| |
Collapse
|
30
|
Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain Behav Immun Health 2020; 4:100057. [PMID: 34589843 PMCID: PMC8474291 DOI: 10.1016/j.bbih.2020.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 Gy dose. Similarly, in a metastatic tumor model, prior CI (20 Gy) reduced microglial proliferation in response to tumor growth. The effect of irradiation was long-lasting; 20 Gy CI 6 months prior to stab injury significantly impaired microglial proliferation. We also investigated how stab and/or irradiation impacted levels of P2Y12R, CD68, CSF1, IL-34 and CSF1R, factors involved in the brain’s normal response to injury. P2Y12R, CD68, CSF1, and IL-34 expression were altered by stab similarly in irradiated mice and controls; however, CSF1R was differentially affected. qRT-PCR and flow cytometry analyses demonstrated that CI reduced overall Csf1r mRNA levels and microglial specific CSF1R protein expression, respectively. Interestingly, Csf1r mRNA levels increased after injury in unirradiated controls; however, Csf1r levels were persistently decreased in irradiated mice, and did not increase in response to stab. Together, our data demonstrate that CI leads to a significant and lasting impairment of microglial proliferation, possibly through a CSF1R-mediated mechanism. Irradiation leads to a long-term deficit in injury-induced microglial proliferation. Irradiation reduces microglial proliferation associated with tumor growth. Irradiation decreases microglial CSF1R and prevents its upregulation after injury.
Collapse
|
31
|
Xiang G, Keller CA, Heuston E, Giardine BM, An L, Wixom AQ, Miller A, Cockburn A, Sauria MEG, Weaver K, Lichtenberg J, Göttgens B, Li Q, Bodine D, Mahony S, Taylor J, Blobel GA, Weiss MJ, Cheng Y, Yue F, Hughes J, Higgs DR, Zhang Y, Hardison RC. An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis. Genome Res 2020; 30:472-484. [PMID: 32132109 PMCID: PMC7111515 DOI: 10.1101/gr.255760.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/21/2020] [Indexed: 01/29/2023]
Abstract
Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated extensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epigenetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lineages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at cCREs and gene expression produced a versatile resource to improve selection of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in genomics and hematopoiesis.
Collapse
Affiliation(s)
- Guanjue Xiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elisabeth Heuston
- NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lin An
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alexander Q Wixom
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Amber Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - April Cockburn
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael E G Sauria
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, Maryland 20218, USA
| | - Kathryn Weaver
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, Maryland 20218, USA
| | - Jens Lichtenberg
- NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Berthold Göttgens
- Welcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Qunhua Li
- Department of Statistics, Program in Bioinformatics and Genomics, Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David Bodine
- NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - James Taylor
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, Maryland 20218, USA
| | - Gerd A Blobel
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Jim Hughes
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Yu Zhang
- Department of Statistics, Program in Bioinformatics and Genomics, Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
32
|
The Basal Level of Gene Expression Associated with Chromatin Loosening Shapes Waddington Landscapes and Controls Cell Differentiation. J Mol Biol 2020; 432:2253-2270. [PMID: 32105732 DOI: 10.1016/j.jmb.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
The baseline level of transcription, which is variable and difficult to quantify, seriously complicates the normalization of comparative transcriptomic data, but its biological importance remains unappreciated. We show that this currently neglected ingredient is essential for controlling gene network multistability and therefore cellular differentiation. Basal expression is correlated to the degree of chromatin loosening measured by DNA accessibility and systematically leads to cellular dedifferentiation as assessed by transcriptomic signatures, irrespective of the molecular and cellular tools used. Modeling gene network motifs formally involved in developmental bifurcations reveals that the epigenetic landscapes of Waddington are restructured by the level of nonspecific expression, such that the attractors of progenitor and differentiated cells can be mutually exclusive. This mechanism is universal and holds beyond the particular nature of the genes involved, provided the multistable circuits are correctly described with autonomous basal expression. These results explain the relationships long established between gene expression noise, chromatin decondensation and cellular dedifferentiation, and highlight how heterochromatin maintenance is essential for preventing pathological cellular reprogramming, age-related diseases, and cancer.
Collapse
|
33
|
Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat Commun 2020; 11:402. [PMID: 31964861 PMCID: PMC6972792 DOI: 10.1038/s41467-019-13960-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.
Collapse
|
34
|
20(S)-Protopanaxdiol Suppresses the Abnormal Granule-Monocyte Differentiation of Hematopoietic Stem Cells in 4T1 Breast Cancer-Bearing Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8747023. [PMID: 32015754 PMCID: PMC6982358 DOI: 10.1155/2020/8747023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Panax notoginseng (PN) has been used as a qi- and blood-activating (Huoxue) drug for thousands of years in China. It has also been widely used as an anticancer drug at present. As a Huoxue drug, the effect of PN on hematopoietic differentiation in tumor-bearing body has been paid more and more attention. Our research found that panax notoginseng saponins (PNS), especially panaxadiol saponins (PDS) and its aglucon 20(S)-Protopanaxdiol (PPD), could improve the immunosuppressive state by regulating the abnormal hematopoietic differentiation in a tumor-bearing body by multiple ways. An interesting phenomenon is that PDS reduced the neutrophil-lymphocyte ratio (NLR) via its inhibition effect on the granule-monocyte differentiation of spleen cells, which is associated with a decrease in the secretion of tumor MPO, G-CSF, PU.1, and C/EBPα. Otherwise, PDS increased the proportion of both hematopoietic stem cells and erythroid progenitor cells in the bone marrow, but inhibited spleen erythroid differentiation via inhibiting secretion of tumor EPO, GATA-1, and GATA-2. This study suggests that PNS regulated the tumor-induced abnormal granule-monocyte differentiation of hematopoietic stem cells, affecting the distribution and function of haemocytes in tumor-bearing mice.
Collapse
|
35
|
Malik N, Dunn KM, Cassels J, Hay J, Estell C, Sansom OJ, Michie AM. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Sci Rep 2019; 9:16917. [PMID: 31729420 PMCID: PMC6858379 DOI: 10.1038/s41598-019-53141-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates phosphoinositide-3-kinase (PI3K)/AKT signalling. This pathway is involved in a plethora of cellular functions including protein and lipid synthesis, cell migration, cell proliferation and apoptosis. In this study, we proposed to delineate the role of mTORC1 in haemopoietic lineage commitment using knock out (KO) mouse and cell line models. Mx1-cre and Vav-cre expression systems were used to specifically target Raptorfl/fl (mTORC1), either in all tissues upon poly(I:C) inoculation, or specifically in haemopoietic stem cells, respectively. Assessment of the role of mTORC1 during the early stages of development in Vav-cre+Raptorfl/fl mice, revealed that these mice do not survive post birth due to aberrations in erythropoiesis resulting from an arrest in development at the megakaryocyte-erythrocyte progenitor stage. Furthermore, Raptor-deficient mice exhibited a block in B cell lineage commitment. The essential role of Raptor (mTORC1) in erythrocyte and B lineage commitment was confirmed in adult Mx1-cre+Raptorfl/fl mice upon cre-recombinase induction. These studies were supported by results showing that the expression of key lineage commitment regulators, GATA1, GATA2 and PAX5 were dysregulated in the absence of mTORC1-mediated signals. The regulatory role of mTOR during erythropoiesis was confirmed in vitro by demonstrating a reduction of K562 cell differentiation towards RBCs in the presence of established mTOR inhibitors. While mTORC1 plays a fundamental role in promoting RBC development, we showed that mTORC2 has an opposing role, as Rictor-deficient progenitor cells exhibited an elevation in RBC colony formation ex vivo. Collectively, our data demonstrate a critical role played by mTORC1 in regulating the haemopoietic cell lineage commitment.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen M Dunn
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Cassels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher Estell
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
36
|
Shimizu R, Yamamoto M. Quantitative and qualitative impairments in GATA2 and myeloid neoplasms. IUBMB Life 2019; 72:142-150. [PMID: 31675473 DOI: 10.1002/iub.2188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022]
Abstract
GATA2 is a key transcription factor critical for hematopoietic cell development. During the past decade, it became clear that heterozygous germline mutations in the GATA2 gene cause bone marrow failure and primary immunodeficiency syndrome, conditions that lead to a predisposition toward myeloid neoplasms, such as myelodysplastic syndrome, acute myeloid leukemia, and chronic myelomonocytic leukemia. Somatic mutations of the GATA2 gene are also involved in the pathogenesis of myeloid malignancies. Cases with GATA2 gene mutations are divided into two groups, resulting in either a quantitative deficiency or a qualitative defect in the GATA2 protein depending on the mutation position and type. In the former case, GATA2 mRNA expression from the mutant allele is markedly reduced or completely abrogated, and reduced GATA2 protein expression is involved in the pathogenesis. In the latter case, almost equal amounts of structurally abnormal and wildtype GATA2 proteins are predicted to be present and contribute to the pathogenesis. The development of mouse models of these human GATA2-related diseases has been undertaken, which naturally develop myeloid neoplasms.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
GATA2 and PU.1 Collaborate To Activate the Expression of the Mouse Ms4a2 Gene, Encoding FcεRIβ, through Distinct Mechanisms. Mol Cell Biol 2019; 39:MCB.00314-19. [PMID: 31501274 DOI: 10.1128/mcb.00314-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
GATA factors GATA1 and GATA2 and ETS factor PU.1 are known to function antagonistically during hematopoietic development. In mouse mast cells, however, these factors are coexpressed and activate the expression of the Ms4a2 gene encoding the β chain of the high-affinity IgE receptor (FcεRI). The present study showed that these factors cooperatively regulate Ms4a2 gene expression through distinct mechanisms. Although GATA2 and PU.1 contributed almost equally to Ms4a2 gene expression, gene ablation experiments revealed that simultaneous knockdown of both factors showed neither a synergistic nor an additive effect. A chromatin immunoprecipitation analysis showed that they shared DNA binding to the +10.4-kbp region downstream of the Ms4a2 gene with chromatin looping factor LDB1, whereas the proximal -60-bp region was exclusively bound by GATA2 in a mast cell-specific manner. Ablation of PU.1 significantly reduced the level of GATA2 binding to both the +10.4-kbp and -60-bp regions. Surprisingly, the deletion of the +10.4-kbp region by genome editing completely abolished the Ms4a2 gene expression as well as the cell surface expression of FcεRI. These results suggest that PU.1 and LDB1 play central roles in the formation of active chromatin structure whereas GATA2 directly activates the Ms4a2 promoter.
Collapse
|
38
|
Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2019; 72:106-118. [PMID: 31652397 DOI: 10.1002/iub.2177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
GATA1 is an essential regulator of erythroid cell gene expression and maturation. In its absence, erythroid progenitors are arrested in differentiation and undergo apoptosis. Much has been learned about GATA1 function through animal models, which include genetic knockouts as well as ones with decreased levels of expression. However, even greater insights have come from the finding that a number of rare red cell disorders, including Diamond-Blackfan anemia, are associated with GATA1 mutations. These mutations affect the amino-terminal zinc finger (N-ZF) and the amino-terminus of the protein, and in both cases can alter the DNA-binding activity, which is primarily conferred by the third functional domain, the carboxyl-terminal zinc finger (C-ZF). Here we discuss the role of GATA1 in erythropoiesis with an emphasis on the mutations found in human patients with red cell disorders.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
39
|
Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation. Proc Natl Acad Sci U S A 2019; 116:17841-17847. [PMID: 31431533 DOI: 10.1073/pnas.1901122116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.
Collapse
|
40
|
A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun 2019; 10:3660. [PMID: 31413257 PMCID: PMC6694122 DOI: 10.1038/s41467-019-11591-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Virtually all tumors are genetically heterogeneous, containing mutationally-defined subclonal cell populations that often have distinct phenotypes. Single-cell RNA-sequencing has revealed that a variety of tumors are also transcriptionally heterogeneous, but the relationship between expression heterogeneity and subclonal architecture is unclear. Here, we address this question in the context of Acute Myeloid Leukemia (AML) by integrating whole genome sequencing with single-cell RNA-sequencing (using the 10x Genomics Chromium Single Cell 5’ Gene Expression workflow). Applying this approach to five cryopreserved AML samples, we identify hundreds to thousands of cells containing tumor-specific mutations in each case, and use the results to distinguish AML cells (including normal-karyotype AML cells) from normal cells, identify expression signatures associated with subclonal mutations, and find cell surface markers that could be used to purify subclones for further study. This integrative approach for connecting genotype to phenotype is broadly applicable to any sample that is phenotypically and genetically heterogeneous. The advent of single-cell RNA sequencing has revealed significant transcriptional heterogeneity in cancer, but its relationship to genomic heterogeneity remains unclear. Focusing on acute myeloid leukemia samples, the authors describe a general approach for linking mutation-containing cells to their transcriptional phenotypes using single-cell RNA sequencing data.
Collapse
|
41
|
Nair S, Strohecker AM, Persaud AK, Bissa B, Muruganandan S, McElroy C, Pathak R, Williams M, Raj R, Kaddoumi A, Sparreboom A, Beedle AM, Govindarajan R. Adult stem cell deficits drive Slc29a3 disorders in mice. Nat Commun 2019; 10:2943. [PMID: 31270333 PMCID: PMC6610100 DOI: 10.1038/s41467-019-10925-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations exclusively in equilibrative nucleoside transporter 3 (ENT3), the only intracellular nucleoside transporter within the solute carrier 29 (SLC29) gene family, cause an expanding spectrum of human genetic disorders (e.g., H syndrome, PHID syndrome, and SHML/RDD syndrome). Here, we identify adult stem cell deficits that drive ENT3-related abnormalities in mice. ENT3 deficiency alters hematopoietic and mesenchymal stem cell fates; the former leads to stem cell exhaustion, and the latter leads to breaches of mesodermal tissue integrity. The molecular pathogenesis stems from the loss of lysosomal adenosine transport, which impedes autophagy-regulated stem cell differentiation programs via misregulation of the AMPK-mTOR-ULK axis. Furthermore, mass spectrometry-based metabolomics and bioenergetics studies identify defects in fatty acid utilization, and alterations in mitochondrial bioenergetics can additionally propel stem cell deficits. Genetic, pharmacologic and stem cell interventions ameliorate ENT3-disease pathologies and extend the lifespan of ENT3-deficient mice. These findings delineate a primary pathogenic basis for the development of ENT3 spectrum disorders and offer critical mechanistic insights into treating human ENT3-related disorders. Mutations in equilibrative nucleoside transporter 3 (ENT3), encoded by SLC29A3, cause a spectrum of human genetic disorders. Here, the authors show altered haematopoietic stem cell and mesenchymal stem cell fates in ENT3-deficient mice, due to misregulation of the AMPK-mTOR-ULK axis.
Collapse
Affiliation(s)
- Sreenath Nair
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Anne M Strohecker
- Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, OH, 43210, USA.,Molecular Biology and Cancer Genetics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Avinash K Persaud
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Bhawana Bissa
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Shanmugam Muruganandan
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Craig McElroy
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Rakesh Pathak
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Michelle Williams
- Department of Radiology, Ohio State University, Columbus, OH, 43210, USA
| | - Radhika Raj
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, 13902, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Ohio State University, Columbus, OH, 43210, USA. .,Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
42
|
Hernandez JA, Castro VL, Reyes-Nava N, Montes LP, Quintana AM. Mutations in the zebrafish hmgcs1 gene reveal a novel function for isoprenoids during red blood cell development. Blood Adv 2019; 3:1244-1254. [PMID: 30987969 PMCID: PMC6482358 DOI: 10.1182/bloodadvances.2018024539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Nayeli Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Laura P Montes
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
43
|
Bokes P, King JR. Limit-cycle oscillatory coexpression of cross-inhibitory transcription factors: a model mechanism for lineage promiscuity. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2019; 36:113-137. [PMID: 30869799 DOI: 10.1093/imammb/dqy003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Lineage switches are genetic regulatory motifs that govern and maintain the commitment of a developing cell to a particular cell fate. A canonical example of a lineage switch is the pair of transcription factors PU.1 and GATA-1, of which the former is affiliated with the myeloid and the latter with the erythroid lineage within the haematopoietic system. On a molecular level, PU.1 and GATA-1 positively regulate themselves and antagonize each other via direct protein-protein interactions. Here we use mathematical modelling to identify a novel type of dynamic behaviour that can be supported by such a regulatory architecture. Guided by the specifics of the PU.1-GATA-1 interaction, we formulate, using the law of mass action, a system of differential equations for the key molecular concentrations. After a series of systematic approximations, the system is reduced to a simpler one, which is tractable to phase-plane and linearization methods. The reduced system formally resembles, and generalizes, a well-known model for competitive species from mathematical ecology. However, in addition to the qualitative regimes exhibited by a pair of competitive species (exclusivity, bistable exclusivity, stable-node coexpression) it also allows for oscillatory limit-cycle coexpression. A key outcome of the model is that, in the context of cell-fate choice, such oscillations could be harnessed by a differentiating cell to prime alternately for opposite outcomes; a bifurcation-theory approach is adopted to characterize this possibility.
Collapse
Affiliation(s)
- Pavol Bokes
- Department of Applied Mathematics and Statistics, Comenius University, Bratislava, Slovakia
| | - John R King
- School of Mathematical Sciences and SBRC Nottingham, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
44
|
Sadaf S, Singh AK, Awasthi D, Nagarkoti S, Agrahari AK, Srivastava RN, Jagavelu K, Kumar S, Barthwal MK, Dikshit M. Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol 2019; 106:397-412. [DOI: 10.1002/jlb.1a0918-349rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Samreen Sadaf
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | - Deepika Awasthi
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | - Sheela Nagarkoti
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | | | | | - Sachin Kumar
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| | | | - Madhu Dikshit
- Pharmacology DivisionCSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
45
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
46
|
Al-Radhawi MA, Kumar NS, Sontag ED, Del Vecchio D. Stochastic multistationarity in a model of the hematopoietic stem cell differentiation network. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2019; 2018:1886-1892. [PMID: 32153314 DOI: 10.1109/cdc.2018.8619300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A central issue in the analysis of multi-stable systems is that of controlling the relative size of the basins of attraction of alternative states through suitable choices of system parameters. We are interested here mainly in the stochastic version of this problem, that of shaping the stationary probability distribution of a Markov chain so that various alternative modes become more likely than others. Although many of our results are more general, we were motivated by an important biological question, that of cell differentiation. In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining the different cell types. Specifically, we study here the "PU.1/GATA-1 circuit" which is involved in the control of the development of mature blood cells from hematopoietic stem cells (HSCs). All mature, specialized blood cells have been shown to be derived from multipotent HSCs. Our first contribution is to introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge. We then find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others.
Collapse
Affiliation(s)
- M Ali Al-Radhawi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139.,Department of Electrical and Computer Engineering and Department of Bioengineering, Northeastern University, 805 Columbus Ave, Boston, MA 02115, USA
| | - Nithin S Kumar
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Eduardo D Sontag
- Department of Electrical and Computer Engineering and Department of Bioengineering, Northeastern University, 805 Columbus Ave, Boston, MA 02115, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
47
|
EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nat Commun 2018; 9:4239. [PMID: 30315161 PMCID: PMC6185954 DOI: 10.1038/s41467-018-06208-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023] Open
Abstract
Inv(3q26) and t(3:3)(q21;q26) are specific to poor-prognosis myeloid malignancies, and result in marked overexpression of EVI1, a zinc-finger transcription factor and myeloid-specific oncoprotein. Despite extensive study, the mechanism by which EVI1 contributes to myeloid malignancy remains unclear. Here we describe a new mouse model that mimics the transcriptional effects of 3q26 rearrangement. We show that EVI1 overexpression causes global distortion of hematopoiesis, with suppression of erythropoiesis and lymphopoiesis, and marked premalignant expansion of myelopoiesis that eventually results in leukemic transformation. We show that myeloid skewing is dependent on DNA binding by EVI1, which upregulates Spi1, encoding master myeloid regulator PU.1. We show that EVI1 binds to the -14 kb upstream regulatory element (-14kbURE) at Spi1; knockdown of Spi1 dampens the myeloid skewing. Furthermore, deletion of the -14kbURE at Spi1 abrogates the effects of EVI1 on hematopoietic stem cells. These findings support a novel mechanism of leukemogenesis through EVI1 overexpression.
Collapse
|
48
|
Kaity B, Sarkar R, Chakrabarti B, Mitra MK. Reprogramming, oscillations and transdifferentiation in epigenetic landscapes. Sci Rep 2018; 8:7358. [PMID: 29743499 PMCID: PMC5943272 DOI: 10.1038/s41598-018-25556-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022] Open
Abstract
Waddington’s epigenetic landscape provides a phenomenological understanding of the cell differentiation pathways from the pluripotent to mature lineage-committed cell lines. In light of recent successes in the reverse programming process there has been significant interest in quantifying the underlying landscape picture through the mathematics of gene regulatory networks. We investigate the role of time delays arising from multi-step chemical reactions and epigenetic rearrangement on the cell differentiation landscape for a realistic two-gene regulatory network, consisting of self-promoting and mutually inhibiting genes. Our work provides the first theoretical basis of the transdifferentiation process in the presence of delays, where one differentiated cell type can transition to another directly without passing through the undifferentiated state. Additionally, the interplay of time-delayed feedback and a time dependent chemical drive leads to long-lived oscillatory states in appropriate parameter regimes. This work emphasizes the important role played by time-delayed feedback loops in gene regulatory circuits and provides a framework for the characterization of epigenetic landscapes.
Collapse
Affiliation(s)
- Bivash Kaity
- IIT Bombay, Department of Physics, Mumbai, 400076, India
| | - Ratan Sarkar
- Indian Institute of Science, Centre for High Energy Physics, Bangalore, 560012, India
| | | | - Mithun K Mitra
- IIT Bombay, Department of Physics, Mumbai, 400076, India.
| |
Collapse
|
49
|
Megakaryocyte lineage development is controlled by modulation of protein acetylation. PLoS One 2018; 13:e0196400. [PMID: 29698469 PMCID: PMC5919413 DOI: 10.1371/journal.pone.0196400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.
Collapse
|
50
|
Belt H, Koponen JK, Kekarainen T, Puttonen KA, Mäkinen PI, Niskanen H, Oja J, Wirth G, Koistinaho J, Kaikkonen MU, Ylä-Herttuala S. Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules. Front Cardiovasc Med 2018; 5:16. [PMID: 29594149 PMCID: PMC5861200 DOI: 10.3389/fcvm.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Endothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic AMP signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells and, consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy.
Collapse
Affiliation(s)
- Heini Belt
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna K Koponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Katja A Puttonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joni Oja
- FinVector Vision Therapies Oy, Kuopio, Finland
| | - Galina Wirth
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|