1
|
Zhang Y, Xu Z, Sun R, Gao Y, Agida I, Aximujiang K, Yuan L, Ma J. IRF4 contributes to chemoresistance in IGH::BCL2-positive diffuse large B-cell lymphomas by mediating BCL2-induced SOX9 expression. Clin Transl Med 2025; 15:e70336. [PMID: 40356256 PMCID: PMC12069798 DOI: 10.1002/ctm2.70336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL), an aggressive type of non-Hodgkin's lymphoma, has a high relapse/refractory rate. We previously identified sex-determining region Y (SRY)-box transcription factor (SOX9) as a transcription factor that serves as a prognostic biomarker, particularly in BCL2-overexpressing DLBCL, and plays a vital role in lymphomagenesis. However, the molecular mechanisms that modulate the aberrant expression of SOX9 in this DLBCL subset remain unknown. METHODS Cell viability, apoptosis and cell cycle assays were performed to determine whether SOX9 contributes to DLBCL chemoresistance and rescues silencing IRF4-induced phenotypes. Protein‒protein interactions and protein ubiquitination were elucidated using immunoprecipitation, immunohistochemistry, immunofluorescence and immunoblotting. Chromatin immunoprecipitation sequencing (ChIP-seq), ChIP and dual-luciferase reporter assays were used to investigate IRF4 binding to the SOX9 promoter. The therapeutic potential of IRF4 inhibition was evaluated in vitro and in a mouse model of DLBCL xenografts. RESULTS SOX9 enhanced the resistance of the BCL2-overexpressing DLBCL subset to chemotherapy or a BCL2 inhibitor. Moreover, BCL2 inhibition downregulated SOX9 in an immunoglobulin heavy chain/BCL2-positive DLBCL subset. We further identified IRF4 as a key regulator of BCL2-induced SOX9 expression, and ChIP-seq confirmed that IRF4 is a key transcription factor for SOX9 in DLBCL. In addition, BCL2 promotes IRF4 entry into the nucleus by enhancing protein stability and downregulating proteasomal ubiquitination, thereby enforcing SOX9-mediated phenotypes. Finally, in a DLBCL cell line and xenografted mouse model, in vivo inhibition of IRF4 with an hIRF4 antisense oligonucleotide repressed lymphomagenesis and DLBCL chemoresistance. CONCLUSIONS Our data support the conclusion that IRF4 plays an essential role in BCL2-induced upregulation of SOX9 expression, and targeting IRF4 may represent a promising therapeutic strategy to cure relapsed and refractory DLBCL. KEYPOINTS/HIGHLIGHTS BCL2 activated IRF4 by enhancing its nuclear activity to induce sex-determining region Y (SRY)-box 9 protein (SOX9) aberrant expression, which is a critical pathway for drug resistance in BCL2-overexpressing diffuse large B-cell lymphoma (DLBCL). Targeting IRF4 may be worth investigating further regarding its potential to overcome the chemoresistance of BCL2-overexpressing DLBCL to standard therapies.
Collapse
Affiliation(s)
- Yirong Zhang
- Department of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Zizhen Xu
- Department of Laboratory MedicineCollege of Health Science and TechnologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Ruixin Sun
- Department of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiPR China
- Department of Laboratory MedicineCollege of Health Science and TechnologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Yixuan Gao
- Department of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Innocent Agida
- Department of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Kasimujiang Aximujiang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesXinjiang Medical UniversityUrumqiPR China
| | - Lin Yuan
- Department of PathologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiPR China
| | - Jiao Ma
- Department of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiPR China
| |
Collapse
|
2
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Staniek J, Kalina T, Andrieux G, Boerries M, Janowska I, Fuentes M, Díez P, Bakardjieva M, Stancikova J, Raabe J, Neumann J, Schwenk S, Arpesella L, Stuchly J, Benes V, García Valiente R, Fernández García J, Carsetti R, Piano Mortari E, Catala A, de la Calle O, Sogkas G, Neven B, Rieux-Laucat F, Magerus A, Neth O, Olbrich P, Voll RE, Alsina L, Allende LM, Gonzalez-Granado LI, Böhler C, Thiel J, Venhoff N, Lorenzetti R, Warnatz K, Unger S, Seidl M, Mielenz D, Schneider P, Ehl S, Rensing-Ehl A, Smulski CR, Rizzi M. Non-apoptotic FAS signaling controls mTOR activation and extrafollicular maturation in human B cells. Sci Immunol 2024; 9:eadj5948. [PMID: 38215192 DOI: 10.1126/sciimmunol.adj5948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Defective FAS (CD95/Apo-1/TNFRSF6) signaling causes autoimmune lymphoproliferative syndrome (ALPS). Hypergammaglobulinemia is a common feature in ALPS with FAS mutations (ALPS-FAS), but paradoxically, fewer conventional memory cells differentiate from FAS-expressing germinal center (GC) B cells. Resistance to FAS-induced apoptosis does not explain this phenotype. We tested the hypothesis that defective non-apoptotic FAS signaling may contribute to impaired B cell differentiation in ALPS. We analyzed secondary lymphoid organs of patients with ALPS-FAS and found low numbers of memory B cells, fewer GC B cells, and an expanded extrafollicular (EF) B cell response. Enhanced mTOR activity has been shown to favor EF versus GC fate decision, and we found enhanced PI3K/mTOR and BCR signaling in ALPS-FAS splenic B cells. Modeling initial T-dependent B cell activation with CD40L in vitro, we showed that FAS competent cells with transient FAS ligation showed specifically decreased mTOR axis activation without apoptosis. Mechanistically, transient FAS engagement with involvement of caspase-8 induced nuclear exclusion of PTEN, leading to mTOR inhibition. In addition, FASL-dependent PTEN nuclear exclusion and mTOR modulation were defective in patients with ALPS-FAS. In the early phase of activation, FAS stimulation promoted expression of genes related to GC initiation at the expense of processes related to the EF response. Hence, our data suggest that non-apoptotic FAS signaling acts as molecular switch between EF versus GC fate decisions via regulation of the mTOR axis and transcription. The defect of this modulatory circuit may explain the observed hypergammaglobulinemia and low memory B cell numbers in ALPS.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stancikova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Raabe
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julika Neumann
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Schwenk
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leonardo Arpesella
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rodrigo García Valiente
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Jonatan Fernández García
- Department of Medicine and General Cytometry Service-Nucleus, Proteomics Unit, CIBERONC CB16/12/00400, Cancer Research Center (IBMCC/CSIC/USAL/IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Albert Catala
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Oscar de la Calle
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, University Hospital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- Université de Paris, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Peter Olbrich
- Department of Paediatric Infectious Diseases, Rheumatology and Immunology, Hospital Universitario Virgen del Rocio (HUVR), Instituto de Biomedicina de Sevilla (IBIS), Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Sevilla, Spain
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laia Alsina
- Department of Hematology, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Department of Pediatric Allergy and Clinical Immunology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Research Institute Hospital 12 Octubre (i+12), Madrid, Spain
- School of Medicine, Complutense University, Madrid, Spain
| | - Chiara Böhler
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Susanne Unger
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Zentrum, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristian Roberto Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Prucsi Z, Zimny A, Płonczyńska A, Zubrzycka N, Potempa J, Sochalska M. Porphyromonas gingivalis Peptidyl Arginine Deiminase (PPAD) in the Context of the Feed-Forward Loop of Inflammation in Periodontitis. Int J Mol Sci 2023; 24:12922. [PMID: 37629104 PMCID: PMC10454286 DOI: 10.3390/ijms241612922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is a widespread chronic inflammatory disease caused by a changed dysbiotic oral microbiome. Although multiple species and risk factors are associated with periodontitis, Porphyromonas gingivalis has been identified as a keystone pathogen. The immune-modulatory function of P. gingivalis is well characterized, but the mechanism by which this bacterium secretes peptidyl arginine deiminase (PPAD), a protein/peptide citrullinating enzyme, thus contributing to the infinite feed-forward loop of inflammation, is not fully understood. To determine the functional role of citrullination in periodontitis, neutrophils were stimulated by P. gingivalis bearing wild-type PPAD and by a PPAD mutant strain lacking an active enzyme. Flow cytometry showed that PPAD contributed to prolonged neutrophil survival upon bacterial stimulation, accompanied by the secretion of aberrant IL-6 and TNF-α. To further assess the complex mechanism by which citrullination sustains a chronic inflammatory state, the ROS production and phagocytic activity of neutrophils were evaluated. Flow cytometry and colony formation assays showed that PPAD obstructs the resolution of inflammation by promoting neutrophil survival and the release of pro-inflammatory cytokines, while enhancing the resilience of the bacteria to phagocytosis.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Zimny
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Natalia Zubrzycka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Abstract
Herpes simplex virus (HSV)-1 and HSV-2 are ubiquitous human pathogens that infect keratinized epithelial surfaces and establish lifelong latent infection in sensory neurons of the peripheral nervous system. HSV-1 causes oral cold sores, and HSV-2 causes genital lesions characterized by recurrence at the site of the initial infection. In multicellular organisms, cell death plays a pivotal role in host defense by eliminating pathogen-infected cells. Apoptosis and necrosis are readily distinguished types of cell death. Apoptosis, the main form of programmed cell death, depends on the activity of certain caspases, a family of cysteine proteases. Necroptosis, a regulated form of necrosis that is unleashed when caspase activity is compromised, requires the activation of receptor-interacting protein (RIP) kinase 3 (RIPK3) through its interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIPK1. To ensure lifelong infection in the host, HSV carries out sophisticated molecular strategies to evade host cell death responses during viral infection. HSV-1 is a well-characterized pathogen that encodes potent viral inhibitors that modulate both caspase activation in the apoptosis pathway and RIPK3 activation in the necroptosis pathway in a dramatic, species-specific fashion. The viral UL39-encoded viral protein ICP6, the large subunit of the virus-encoded ribonucleotide reductase, functions as a suppressor of both caspase-8 and RHIM-dependent RIPK3 activities in the natural human host. In contrast, ICP6 RHIM-mediated recruitment of RIPK3 in the nonnatural mouse host drives the direct activation of necroptosis. This chapter provides an overview of the current state of the knowledge on molecular interactions between HSV-1 viral proteins and host cell death pathways and highlights how HSV-1 manipulates cell death signals for the benefit of viral propagation.
Collapse
Affiliation(s)
- Sudan He
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China.
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Sullivan GP, Flanagan L, Rodrigues DA, Ní Chonghaile T. The path to venetoclax resistance is paved with mutations, metabolism, and more. Sci Transl Med 2022; 14:eabo6891. [PMID: 36475901 DOI: 10.1126/scitranslmed.abo6891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Venetoclax is a B cell lymphoma 2 (BCL-2)-selective antagonist used to treat chronic lymphocytic leukemia (CLL) and acute myelogenous leukemia (AML). Although this has been a promising therapeutic option for these patients, many of these patients develop resistance and relapsed disease. Here, we summarize the emerging mechanisms of resistance to venetoclax treatment, discuss the promising combination strategies, and highlight the combinations that are currently in clinical trials. Efforts to understand mechanisms of resistance are critical to advance the development of new targeted therapeutic strategies and further our understanding of the biological functions of BCL-2 in tumor cells.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Lyndsey Flanagan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Daniel Alencar Rodrigues
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Tríona Ní Chonghaile
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
9
|
Guevara-Hoyer K, Fuentes-Antrás J, de la Fuente-Muñoz E, Fernández-Arquero M, Solano F, Pérez-Segura P, Neves E, Ocaña A, Pérez de Diego R, Sánchez-Ramón S. Genomic crossroads between non-Hodgkin's lymphoma and common variable immunodeficiency. Front Immunol 2022; 13:937872. [PMID: 35990641 PMCID: PMC9390007 DOI: 10.3389/fimmu.2022.937872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency (CVID) represents the largest group of primary immunodeficiencies that may manifest with infections, inflammation, autoimmunity, and cancer, mainly B-cell non-Hodgkin's lymphoma (NHL). Indeed, NHL may result from chronic or recurrent infections and has, therefore, been recognized as a clinical phenotype of CVID, although rare. The more one delves into the mechanisms involved in CVID and cancer, the stronger the idea that both pathologies can be a reflection of the same primer events observed from different angles. The potential effects of germline variants on specific somatic modifications in malignancies suggest that it might be possible to anticipate critical events during tumor development. In the same way, a somatic alteration in NHL could be conditioning a similar response at the transcriptional level in the shared signaling pathways with genetic germline alterations in CVID. We aimed to explore the genomic substrate shared between these entities to better characterize the CVID phenotype immunodeficiency in NHL. By means of an in-silico approach, we interrogated the large, publicly available datasets contained in cBioPortal for the presence of genes associated with genetic pathogenic variants in a panel of 50 genes recurrently altered in CVID and previously described as causative or disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available for analysis harbored variants of the CVID spectrum, with the most recurrent alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway analysis of common gene alterations showed enrichment in inflammatory, immune surveillance, and defective DNA repair mechanisms similar to those affected in CVID, with PIK3R1 appearing as a central node in the protein interaction network. The co-occurrence of gene alterations was a frequent phenomenon. This study represents an attempt to identify common genomic grounds between CVID and NHL. Further prospective studies are required to better know the role of genetic variants associated with CVID and their reflection on the somatic pathogenic variants responsible for cancer, as well as to characterize the CVID-like phenotype in NHL, with the potential to influence early CVID detection and therapeutic management.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Fernando Solano
- Department of Hematology, General University Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Hospital and University Center of Porto, Porto, Portugal
| | - Alberto Ocaña
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
10
|
Massey AJ. Chk1 inhibitor-induced DNA damage increases BFL1 and decreases BIM but does not protect human cancer cell lines from Chk1 inhibitor-induced apoptosis. Am J Cancer Res 2022; 12:2293-2309. [PMID: 35693081 PMCID: PMC9185625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
V158411 is a potent, selective Chk1 inhibitor currently in pre-clinical development. We utilised RNA-sequencing to evaluate the gene responses to V158411 treatment. BCL2A1 was highly upregulated in U2OS cells in response to V158411 treatment with BCL2A1 mRNA increased > 400-fold in U2OS but not HT29 cells. Inhibitors of Chk1, Wee1 and topoisomerases but not other DNA damaging agents or inhibitors of ATR, ATM or DNA-PKcs increased BFL1 and decreased BIM protein. Increased BFL1 appeared limited to a subset of approximately 35% of U2OS cells. Out of 24 cell lines studied, U2OS cells were unique in being the only cell line with low basal BFL1 levels to be increased in response to DNA damage. Induction of BFL1 in U2OS cells appeared dependent on PI3K/AKT/mTOR/MEK pathway signalling but independent of NF-κB transcription factors. Inhibitors of MEK, mTOR and PI3K effectively blocked the increase in BFL1 following V15841 treatment. Increased BFL1 expression did not block apoptosis in U2OS cells in response to V158411 treatment and cells with high basal expression of BFL1 readily underwent caspase-dependent apoptosis following Chk1 inhibitor therapy. BFL1 induction in response to Chk1 inhibition appeared to be a rare event that was dependent on MEK/PI3K/AKT/mTOR signalling.
Collapse
|
11
|
Neferine increases sensitivities to multiple anticancer drugs via downregulation of Bcl-2 expression in renal cancer cells. Genes Genomics 2022; 44:165-173. [PMID: 35034280 DOI: 10.1007/s13258-021-01201-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Neferine is the major alkaloid extracted from a seed embryo of Nelumbo nucifera and shows cytotoxic effects in various human cancer cells. However, no detailed studies have been reported on its antitumor efficacy of a combinational treatment in human renal cancer cells. OBJECTIVE This study evaluated the antitumor effects of a combination therapy of neferine and various drugs on renal cancer Caki-1 cells. METHODS Flow cytometry analysis was performed to evaluate the cell cycle analysis and apoptosis, respectively. Western blotting and reverse transcription polymerase chain reaction were performed to analyze the effect of neferine on the expression of apoptosis-related genes in Caki-1 cells. In addition, reactive oxygen species (ROS) generation was evaluated using flow cytometry. RESULTS Treatment with neferine dose-dependently induces apoptosis and Bcl-2 downregulation in Caki-1 cells. In addition, neferine triggers cell cycle arrest at the G2/M phase in Caki-1 cells. The neferine-induced apoptosis was mediated by ROS generation, and neferine-facilitated Bcl-2 downregulation was regulated at the transcriptional level through the suppression of p65 expression, resulting in inactivation of the NF-κB pathway in Caki-1 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), intensely reversed the effects of neferine on apoptosis and Bcl-2 downregulation. We determined that neferine markedly potentiates the antitumor effects of multiple anticancer drugs (cisplatin, silybin, and thapsigargin), and those effects can be reversed by Bcl-2 overexpression or NAC pretreatment in Caki-1 cells. CONCLUSION These results suggest that neferine can increase chemosensitivities to anticancer drugs via downregulation of Bcl-2 expression through ROS-dependent suppression of the NF-κB signaling pathway in human renal cancer cells.
Collapse
|
12
|
Gangoda L, Schenk RL, Best SA, Nedeva C, Louis C, D’Silva DB, Fairfax K, Jarnicki AG, Puthalakath H, Sutherland KD, Strasser A, Herold MJ. Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death Differ 2022; 29:96-104. [PMID: 34304242 PMCID: PMC8738744 DOI: 10.1038/s41418-021-00839-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.
Collapse
Affiliation(s)
- Lahiru Gangoda
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Robyn L. Schenk
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah A. Best
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Christina Nedeva
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Cynthia Louis
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Damian B. D’Silva
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Kirsten Fairfax
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Andrew G. Jarnicki
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC Australia
| | - Hamsa Puthalakath
- grid.1018.80000 0001 2342 0938La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | - Kate D. Sutherland
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Andreas Strasser
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.7The Walter and Eliza Hall Institute of Medical Research (WEHI), Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
13
|
Zhu S, Liu J, Kang R, Yang M, Tang D. Targeting NF-κB-dependent alkaliptosis for the treatment of venetoclax-resistant acute myeloid leukemia cells. Biochem Biophys Res Commun 2021; 562:55-61. [PMID: 34034094 DOI: 10.1016/j.bbrc.2021.05.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 01/26/2023]
Abstract
Venetoclax is a highly selective BCL2 inhibitor widely used in the treatment of leukemia, especially chronic lymphocytic leukemia and acute myeloid leukemia (AML). However, long-term use of venetoclax may lead to secondary drug resistance, which constitutes an important obstacle to prolonging the duration of the therapeutic response. Here, we show that the acquired resistance to venetoclax in human AML cell lines depends on NF-κB activation rather than on the upregulation of anti-apoptotic BCL2L1 expression. Moreover, alkaliptosis induced by the small molecular compound JTC801, but not necroptosis and ferroptosis, inhibits the growth of venetoclax-resistant AML cells in vitro and in xenograft mouse models. Mechanistically, NF-κB-mediated CA9 downregulation is required for intracellular pH upregulation, thereby inducing alkaliptosis in venetoclax-resistant cells. These findings provide a new strategy to selectively remove venetoclax-resistant AML cells.
Collapse
Affiliation(s)
- Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jiao Liu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Zhang L, Guo W, Yu J, Li C, Li M, Chai D, Wang W, Deng W. Receptor-interacting protein in malignant digestive neoplasms. J Cancer 2021; 12:4362-4371. [PMID: 34093836 PMCID: PMC8176420 DOI: 10.7150/jca.57076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
A deep and comprehensive understanding of factors that contribute to cancer initiation, progression, and evolution is of essential importance. Among them, the serine/threonine and tyrosine kinase-like kinases, also known as receptor interacting proteins (RIPs) or receptor interacting protein kinases (RIPKs), is emerging as important tumor-related proteins due to its complex regulation of cell survival, apoptosis, and necrosis. In this review, we mainly review the relevance of RIP to various malignant digestive neoplasms, including esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, gallbladder cancer, cholangiocarcinoma, and pancreatic cancer. Consecutive research on RIPs and its relationship with malignant digestive neoplasms is required, as it ultimately conduces to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Man Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, Hubei 430060, China
| |
Collapse
|
15
|
AlQasrawi D, Naser E, Naser SA. Nicotine Increases Macrophage Survival through α7nAChR/NF-κB Pathway in Mycobacterium avium paratuberculosis Infection. Microorganisms 2021; 9:microorganisms9051086. [PMID: 34070119 PMCID: PMC8158352 DOI: 10.3390/microorganisms9051086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022] Open
Abstract
Recently, we reported that nicotine plays a role in the failure of the macrophage in the clearance of Mycobacterium avium subspecies paratuberculosis (MAP) during infection in Crohn’s disease smokers. We also demonstrated that nicotine enhances macrophages cellular survival during MAP infection. Blocking α7 nicotinic acetylcholine receptor (α7nAChR) with the pharmacological antagonist—mecamylamine—subverted the anti-inflammatory effect of nicotine in macrophages. Yet, it is still unknown how α7nAChR is involved in the modulation of the macrophage response during MAP infection. Here, we studied the mechanistic role of nicotine-α7nAChR interaction in modulating NF-ĸB survival pathway, autophagy, and effect on cathelicidin production in MAP-infected macrophages using THP-1 cell lines. Our results showed that nicotine upregulated α7nAChR expression by 5-folds during MAP infection compared to controls. Bcl-2 expression was also significantly increased after nicotine exposure. Moreover, Nicotine inhibited autophagosome formation whereas infection with MAP in absence of nicotine has significantly increased LC-3b in macrophages. Nicotine also further upregulated NF-ĸB subunits expression including Rel-B and p100, and increased nuclear translocation of p52 protein. We also discovered that cathelicidin production was significantly suppressed in MAP-infected macrophages, treatment with nicotine showed no effect. Overall, the study provides new insight toward understanding the cellular role of nicotine through α7nAChR/NF-ĸB p100/p52 signaling pathway in inducing anti-apoptosis and macrophage survival during MAP infection in Crohn’s disease smokers.
Collapse
Affiliation(s)
- Dania AlQasrawi
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Ebraheem Naser
- College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
16
|
Haselager M, Thijssen R, West C, Young L, Van Kampen R, Willmore E, Mackay S, Kater A, Eldering E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ 2021; 28:1658-1668. [PMID: 33495554 PMCID: PMC8167103 DOI: 10.1038/s41418-020-00692-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), the lymph node (LN) microenvironment delivers critical survival signals by inducing the expression of anti-apoptotic Bcl-2 members Bcl-XL, Bfl-1, and Mcl-1, resulting in apoptosis blockade. We determined previously that resistance against various drugs, among which is the clinically applied BH3 mimetic venetoclax, is dominated by upregulation of the anti-apoptotic regulator Bcl-XL. Direct clinical targeting of Bcl-XL by, e.g., Navitoclax is however not desirable due to induction of thrombocytopenia. Since the actual regulation of Bcl-XL in CLL in the context of the LN microenvironment is not well elucidated, we investigated various candidate LN signals to drive Bcl-XL expression. We found a dominance for NF-κB signaling upon CD40 stimulation, which results in activation of both the canonical and non-canonical NF-κB signaling pathways. We demonstrate that expression of Bcl-XL is first induced by the canonical NF-κB pathway, and subsequently boosted and continued via non-canonical NF-κB signaling through stabilization of NIK. NF-κB subunits p65 and p52 can both bind to the Bcl-XL promoter and activate transcription upon CD40 stimulation. Moreover, canonical NF-κB signaling was correlated with Bfl-1 expression, whereas Mcl-1 in contrast, was not transcriptionally regulated by NF-κB. Finally, we applied a novel compound targeting NIK to selectively inhibit the non-canonical NF-κB pathway and showed that venetoclax-resistant CLL cells were sensitized to venetoclax. In conclusion, protective signals from the CLL microenvironment can be tipped towards apoptosis sensitivity by interfering with non-canonical NF-κB signaling.
Collapse
Affiliation(s)
- Marco Haselager
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| | - Rachel Thijssen
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Christopher West
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Louise Young
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Roel Van Kampen
- grid.416905.fZuyderland Medical Center, Sittard, The Netherlands
| | - Elaine Willmore
- grid.1006.70000 0001 0462 7212Drug Discovery Unit, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Mackay
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnon Kater
- grid.7177.60000000084992262Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- grid.7177.60000000084992262Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam institute for Infection & Immunity, Cancer Center Amsterdam, Amsterdam, The Netherlands ,Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Bcl-xL: A Focus on Melanoma Pathobiology. Int J Mol Sci 2021; 22:ijms22052777. [PMID: 33803452 PMCID: PMC7967179 DOI: 10.3390/ijms22052777] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is the main mechanism by which multicellular organisms eliminate damaged or unwanted cells. To regulate this process, a balance between pro-survival and pro-apoptotic proteins is necessary in order to avoid impaired apoptosis, which is the cause of several pathologies, including cancer. Among the anti-apoptotic proteins, Bcl-xL exhibits a high conformational flexibility, whose regulation is strictly controlled by alternative splicing and post-transcriptional regulation mediated by transcription factors or microRNAs. It shows relevant functions in different forms of cancer, including melanoma. In melanoma, Bcl-xL contributes to both canonical roles, such as pro-survival, protection from apoptosis and induction of drug resistance, and non-canonical functions, including promotion of cell migration and invasion, and angiogenesis. Growing evidence indicates that Bcl-xL inhibition can be helpful for cancer patients, but at present, effective and safe therapies targeting Bcl-xL are lacking due to toxicity to platelets. In this review, we summarized findings describing the mechanisms of Bcl-xL regulation, and the role that Bcl-xL plays in melanoma pathobiology and response to therapy. From these findings, it emerged that even if Bcl-xL plays a crucial role in melanoma pathobiology, we need further studies aimed at evaluating the involvement of Bcl-xL and other members of the Bcl-2 family in the progression of melanoma and at identifying new non-toxic Bcl-xL inhibitors.
Collapse
|
18
|
Liu Y, Fu W, Chen W, Lin Y, Zhang J, Song C. Correlation of immune infiltration with clinical outcomes in breast cancer patients: The 25-gene prognostic signatures model. Cancer Med 2021; 10:2112-2124. [PMID: 33626234 PMCID: PMC7957182 DOI: 10.1002/cam4.3678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Breast cancer is the most common cancer in women. The aim of this study was to build a prognostic signatures model based on the immune score of the ESTIMATE algorithm to predict survival of breast cancer patients. METHODS The RNA-seq expression data and clinical characteristics of patients were derived from TCGA and GSE88770 of GEO. The ESTIMATE algorithm was used to calculate the patients' immune scores and to obtain DEGs. The LASSO Cox regression model was applied to select prognostic genes. Survival analysis and the ROC curve were used to evaluate the predictive efficacy of the prognostic signatures model. Independent prognostic factors of breast cancer were assessed using the Cox regression analyses, and a nomogram was constructed to enhance the clinical value. RESULTS Based on the immune score, we found that the high-score group showed better clinical outcomes than the low-score group. Twenty-five (25) genes of 616 DEGs were confirmed as prognostic signatures through the LASSO Cox regression. The risk score for each patient was calculated according to the prognostic signatures. Survival analysis showed that the low-risk group had longer overall survival than the high-risk group. We also found that the risk score was an independent prognostic factor. To improve the clinical application value, a nomogram combing the risk score according to the 25-gene prognostic signatures and several clinicopathological prognostic factors was constructed. CONCLUSIONS This study revealed the significance of immune infiltration and constructed a 25-gene prognostic signatures model, that has a strong prognostic value for patients with breast cancer.
Collapse
Affiliation(s)
- Yushan Liu
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| | - Wenfen Fu
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| | - Wei Chen
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| | - Yuxiang Lin
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| | - Jie Zhang
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| | - Chuangui Song
- Department of Breast SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
- Department of General SurgeryFujian Medical University Union HospitalFuzhouFujian ProvinceChina
| |
Collapse
|
19
|
Sever D, Hershko-Moshe A, Srivastava R, Eldor R, Hibsher D, Keren-Shaul H, Amit I, Bertuzzi F, Krogvold L, Dahl-Jørgensen K, Ben-Dov IZ, Landsman L, Melloul D. NF-κB activity during pancreas development regulates adult β-cell mass by modulating neonatal β-cell proliferation and apoptosis. Cell Death Discov 2021; 7:2. [PMID: 33414444 PMCID: PMC7790827 DOI: 10.1038/s41420-020-00386-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/14/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.
Collapse
Affiliation(s)
- Dror Sever
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.,University of Copenhagen, Novo Nordisk Foundation Center for Stem Cell Biology, DanStem. Faculty for Health and Medical Sciences, Blegdamsvej 3B. DK-2200, Copenhagen, Denmark
| | - Anat Hershko-Moshe
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Rohit Srivastava
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Roy Eldor
- Diabetes Unit, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel Hibsher
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute, Rehovot, 76100, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot, 76100, Israel
| | - Federico Bertuzzi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital HF, P. O. Box, 4950, Nydalen, 0424, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital HF, P. O. Box, 4950, Nydalen, 0424, Oslo, Norway
| | - Iddo Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Limor Landsman
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Melloul
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
20
|
Li DK, Wang W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol Lett 2020; 20:176. [PMID: 32934743 PMCID: PMC7471753 DOI: 10.3892/ol.2020.12037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 40 (CD40) mediates many immune activities. Preclinical studies have shown that activation of CD40 can evoke massive antineoplastic effects in several tumour models in vivo, providing a rationale for using CD40 agonists in cancer immunotherapy. To date, several potential agonistic antibodies that target CD40 have been investigated in clinical trials. Early clinical trials have shown that the adverse events associated with agonists of CD40 thus far have been largely transient and clinically controllable, including storms of cytokine release, hepatotoxicity and thromboembolic events. An antitumour effect of targeting CD40 for monotherapy or combination therapy has been observed in some tumours. However, these antitumour effects have been moderate. The present review aimed to provide updated details of the clinical results of these agonists, and offer information to further investigate the strategies of combining CD40 activation with chemotherapy, radiotherapy, targeted therapy and immunomodulators. Furthermore, biomarkers should be identified for monitoring and predicting responses and informing resistance mechanisms.
Collapse
Affiliation(s)
- Da-Ke Li
- Department of Clinical Science, Shanghai R&D Center, State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd., Shanghai 201318, P.R. China
| | - Wen Wang
- Department of Clinical Science, Shanghai R&D Center, State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd., Shanghai 201318, P.R. China
| |
Collapse
|
21
|
Zhang H, Nakauchi Y, Köhnke T, Stafford M, Bottomly D, Thomas R, Wilmot B, McWeeney SK, Majeti R, Tyner JW. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. NATURE CANCER 2020; 1:826-839. [PMID: 33123685 PMCID: PMC7591155 DOI: 10.1038/s43018-020-0103-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/17/2020] [Indexed: 01/05/2023]
Abstract
Deregulation of the BCL2 gene family plays an important role in the pathogenesis of acute myeloid leukemia (AML). The BCL2 inhibitor, venetoclax, has received FDA approval for the treatment of AML. However, upfront and acquired drug resistance ensues due, in part, to the clinical and genetic heterogeneity of AML, highlighting the importance of identifying biomarkers to stratify patients onto the most effective therapies. By integrating clinical characteristics, exome and RNA sequencing, and inhibitor data from primary AML patient samples, we determined that myelomonocytic leukemia, upregulation of BCL2A1 and CLEC7A, as well as mutations of PTPN11 and KRAS conferred resistance to venetoclax and multiple venetoclax combinations. Venetoclax in combination with an MCL1 inhibitor AZD5991 induced synthetic lethality and circumvented venetoclax resistance.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Rozario Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jeffrey W. Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| |
Collapse
|
22
|
Weber L, Thobe K, Migueles Lozano OA, Wolf J, Leser U. PEDL: extracting protein-protein associations using deep language models and distant supervision. Bioinformatics 2020; 36:i490-i498. [PMID: 32657389 PMCID: PMC7355289 DOI: 10.1093/bioinformatics/btaa430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Motivation A significant portion of molecular biology investigates signalling pathways and thus depends on an up-to-date and complete resource of functional protein–protein associations (PPAs) that constitute such pathways. Despite extensive curation efforts, major pathway databases are still notoriously incomplete. Relation extraction can help to gather such pathway information from biomedical publications. Current methods for extracting PPAs typically rely exclusively on rare manually labelled data which severely limits their performance. Results We propose PPA Extraction with Deep Language (PEDL), a method for predicting PPAs from text that combines deep language models and distant supervision. Due to the reliance on distant supervision, PEDL has access to an order of magnitude more training data than methods solely relying on manually labelled annotations. We introduce three different datasets for PPA prediction and evaluate PEDL for the two subtasks of predicting PPAs between two proteins, as well as identifying the text spans stating the PPA. We compared PEDL with a recently published state-of-the-art model and found that on average PEDL performs better in both tasks on all three datasets. An expert evaluation demonstrates that PEDL can be used to predict PPAs that are missing from major pathway databases and that it correctly identifies the text spans supporting the PPA. Availability and implementation PEDL is freely available at https://github.com/leonweber/pedl. The repository also includes scripts to generate the used datasets and to reproduce the experiments from this article. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leon Weber
- Computer Science Department, Humboldt-Universität zu Berlin, Berlin 10099, Germany.,Group Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Kirsten Thobe
- Group Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Oscar Arturo Migueles Lozano
- Group Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Jana Wolf
- Group Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Ulf Leser
- Computer Science Department, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| |
Collapse
|
23
|
Pawlak A, Henklewska M. The Role of Bcl-xL Protein Research in Veterinary Oncology. Int J Mol Sci 2020; 21:ijms21072511. [PMID: 32260403 PMCID: PMC7177433 DOI: 10.3390/ijms21072511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Due to their significant impact on human and animal health, cancer diseases are an area of considerable concern for both human and veterinary medicine. Research on the cancer pathogenesis in companion animals, such as dogs, allows not only for improving canine cancer treatment, but also for translating the results into human oncology. Disruption of apoptosis in tumor-transformed cells is a well-known mechanism leading to the development of cancer. One of the main factors involved in this process are proteins belonging to the B-cell lymphoma 2 (Bcl-2) family, and the imbalance between pro-apoptotic and anti-apoptotic members of this family contributes to the development of cancer. Studies on the function of these proteins, including B-cell lymphoma-extra large (Bcl-xL), have also been intensively conducted in companion animals. The Bcl-xL gene was sequenced and found to share over 99% homology with the human protein. Research showed that the Bcl-2 family plays the same role in human and canine cells, and data from studies in dogs are fully translatable to other species, including humans. The role of this protein family in cancer development was also confirmed. The article presents the current state of knowledge on the importance of the Bcl-xL protein in veterinary oncology.
Collapse
|
24
|
Choi H, Kim Y, Mirzaaghasi A, Heo J, Kim YN, Shin JH, Kim S, Kim NH, Cho ES, In Yook J, Yoo TH, Song E, Kim P, Shin EC, Chung K, Choi K, Choi C. Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality. SCIENCE ADVANCES 2020; 6:eaaz6980. [PMID: 32285005 PMCID: PMC7141819 DOI: 10.1126/sciadv.aaz6980] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
As extracellular vesicles that play an active role in intercellular communication by transferring cellular materials to recipient cells, exosomes offer great potential as a natural therapeutic drug delivery vehicle. The inflammatory responses in various disease models can be attenuated through introduction of super-repressor IκB (srIκB), which is the dominant active form of IκBα and can inhibit translocation of nuclear factor κB into the nucleus. An optogenetically engineered exosome system (EXPLOR) that we previously developed was implemented for loading a large amount of srIκB into exosomes. We showed that intraperitoneal injection of purified srIκB-loaded exosomes (Exo-srIκBs) attenuates mortality and systemic inflammation in septic mouse models. In a biodistribution study, Exo-srIκBs were observed mainly in the neutrophils, and in monocytes to a lesser extent, in the spleens and livers of mice. Moreover, we found that Exo-srIκB alleviates inflammatory responses in monocytic THP-1 cells and human umbilical vein endothelial cells.
Collapse
Affiliation(s)
- Hojun Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Youngeun Kim
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| | - Amin Mirzaaghasi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jaenyoung Heo
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| | - Yu Na Kim
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| | - Ju Hye Shin
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seonghun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunjoo Song
- IVIM Technology, Daejeon 34051, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- IVIM Technology, Daejeon 34051, Republic of Korea
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- Corresponding author. (K.Cho.); (E.-C.S.); (K.Chu.)
| | - Kyungsoo Chung
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Corresponding author. (K.Cho.); (E.-C.S.); (K.Chu.)
| | - Kyungsun Choi
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
- Corresponding author. (K.Cho.); (E.-C.S.); (K.Chu.)
| | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea
| |
Collapse
|
25
|
The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J Immunother 2019; 41:385-398. [PMID: 30273198 DOI: 10.1097/cji.0000000000000246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD40 ligand (TNFSF5/CD154/CD40L), a member of the tumor necrosis factor (TNF) superfamily is a key regulator of the immune system. The cognate receptor CD40 (TNFRSF5) is expressed broadly on antigen-presenting cells and many tumor types, and has emerged as an attractive target for immunologic cancer treatment. Most of the CD40 targeting drugs in clinical development are antibodies which display some disadvantages: their activity typically depends on Fcγ receptor-mediated crosslinking, and depletion of CD40-expressing immune cells by antibody-dependent cellular cytotoxicity compromises an efficient antitumor response. To overcome the inadequacies of antibodies, we have developed the hexavalent receptor agonist (HERA) Technology. HERA compounds are fusion proteins composed of 3 receptor binding domains in a single chain arrangement, linked to an Fc-silenced human IgG1 thereby generating a hexavalent molecule. HERA-CD40L provides efficient receptor agonism on CD40-expressing cells and, importantly, does not require FcγR-mediated crosslinking. Strong activation of NFκB signaling was observed upon treatment of B cells with HERA-CD40L. Monocyte treatment with HERA-CD40L promoted differentiation towards the M1 spectrum and repolarization of M2 spectrum macrophages towards the M1 spectrum phenotype. Treatment of in vitro co-cultures of T and B cells with HERA-CD40L-triggered robust antitumor activation of T cells, which depended upon direct interaction with B cells. In contrast, bivalent anti-CD40 antibodies and trivalent soluble CD40L displayed weak activity which critically depended on crosslinking. In vivo, a murine surrogate of HERA-CD40L-stimulated clonal expansion of OT-I-specific murine CD8 T cells and showed single agent antitumor activity in the CD40 syngeneic MC38-CEA mouse model of colorectal cancer, suggesting an involvement of the immune system in controlling tumor growth. We conclude that HERA-CD40L is able to establish robust antitumor immune responses both in vitro and in vivo.
Collapse
|
26
|
Chen L, Zhang D, Yu L, Dong H. Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered 2019; 10:121-132. [PMID: 30971184 PMCID: PMC6527071 DOI: 10.1080/21655979.2019.1605812] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study aims to investigate the role of targeting lncRNA myocardial infarction-associated transcript (MIAT) in protection against hypoxia/reoxygenation (H/R) injury in H9c2 cells in vitro and myocardial ischemia/reperfusion (I/R) injury in vivo by regulating expression of NF-kB and p53 upregulated modulator of apoptosis (PUMA). H9C2 cells were infected with lentivirus expressing the short-hairpin RNA direct against human MIAT gene (Lv-MIAT shRNA) or lentivirus expressing scrambled control (Lv-NC shRNA) or PUMA siRNA or p65 siRNA or their control siRNA respectively. Then the H9c2 cells were infected with Lv-shRNA to 2 hours of hypoxia (H) and 24 hour of reoxygenation (R). 100 ul of Lv-MIAT shRNA (1 × 108 PFU) or Lv-NC shRNA was transfected into mouse hearts, then the hearts were subjected to I/R (1h/72 h). We discovered targeting MIAT remarkably enhanced H9c2 cell viability, decreased H/R-induced cell apoptosis and LDH leakage and significantly decreased I/R-induced myocardial infarct size, reduced myocardial apoptosis and enhanced the heart function. Targeting MIAT downregulated p65 nuclear translocation, NF-κB activity and anti-apoptotic protein cleaved-caspase-3, Bax, and upregulated anti-apoptotic protein Bcl-2 induced by H/R or I/R. Our study suggests that targeting MIAT may protect against H9c2 cardiomyoblasts H/R injury or myocardial I/R injury via inhibition of cell apoptosis, mediated by NF-κB and PUMA signal pathway.
Collapse
Affiliation(s)
- Longying Chen
- a Department of Internal medicine intensive care , the central hospital of Linyi , Yishui , Shandong , China
| | - Dianlong Zhang
- a Department of Internal medicine intensive care , the central hospital of Linyi , Yishui , Shandong , China
| | - Li Yu
- a Department of Internal medicine intensive care , the central hospital of Linyi , Yishui , Shandong , China
| | - He Dong
- b Department of Anesthesia , the affiliated hospital of Qingdao University , Qingdao Shandong , China
| |
Collapse
|
27
|
Staniek J, Lorenzetti R, Heller B, Janowska I, Schneider P, Unger S, Warnatz K, Seidl M, Venhoff N, Thiel J, Smulski CR, Rizzi M. TRAIL-R1 and TRAIL-R2 Mediate TRAIL-Dependent Apoptosis in Activated Primary Human B Lymphocytes. Front Immunol 2019; 10:951. [PMID: 31114586 PMCID: PMC6503035 DOI: 10.3389/fimmu.2019.00951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/12/2019] [Indexed: 11/28/2022] Open
Abstract
The maintenance of B cell homeostasis requires a tight control of B cell generation, survival, activation, and maturation. In lymphocytes upon activation, increased sensitivity to apoptotic signals helps controlling differentiation and proliferation. The death receptor Fas is important in this context because genetic Fas mutations in humans lead to an autoimmune lymphoproliferative syndrome that is similar to lymphoproliferation observed in Fas-deficient mice. In contrast, the physiological role of TNF-related apoptosis-inducing ligand receptors (TRAIL-Rs) in humans has been poorly studied so far. Indeed, most studies have focused on tumor cell lines and on mouse models whose results are difficult to transpose to primary human B cells. In the present work, the expression of apoptosis-inducing TRAIL-R1 and TRAIL-R2 and of the decoy receptors TRAIL-R3 and TRAIL-R4 was systematically studied in all developmental stages of peripheral B cells isolated from the blood and secondary lymphoid organs. Expression of TRAIL-Rs is modulated along development, with highest levels observed in germinal center B cells. In addition, T-dependent and T-independent signals elicited induction of TRAIL-Rs with distinct kinetics, which differed among B cell subpopulations: switched memory cells rapidly upregulated TRAIL-R1 and -2 upon activation while naïve B cells only reached similar expression levels at later time points in culture. Increased expression of TRAIL-R1 and -2 coincided with a caspase-3-dependent sensitivity to TRAIL-induced apoptosis in activated B cells but not in freshly isolated resting B cells. Finally, both TRAIL-R1 and TRAIL-R2 could signal actively and both contributed to TRAIL-induced apoptosis. In conclusion, this study provides a systematic analysis of the expression of TRAIL-Rs in human primary B cells and of their capacity to signal and induce apoptosis. This dataset forms a basis to further study and understand the dysregulation of TRAIL-Rs and TRAIL expression observed in autoimmune diseases. Additionally, it will be important to foresee potential bystander immunomodulation when TRAIL-R agonists are used in cancer treatment.
Collapse
Affiliation(s)
- Julian Staniek
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Bianca Heller
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Pascal Schneider
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Susanne Unger
- Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Cristian Roberto Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Marta Rizzi
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
29
|
BIRC3 Expression Predicts CLL Progression and Defines Treatment Sensitivity via Enhanced NF-κB Nuclear Translocation. Clin Cancer Res 2018; 25:1901-1912. [DOI: 10.1158/1078-0432.ccr-18-1548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/24/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
|
30
|
Leverson JD, Cojocari D. Hematologic Tumor Cell Resistance to the BCL-2 Inhibitor Venetoclax: A Product of Its Microenvironment? Front Oncol 2018; 8:458. [PMID: 30406027 PMCID: PMC6204401 DOI: 10.3389/fonc.2018.00458] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
BCL-2 family proteins regulate the intrinsic pathway of programmed cell death (apoptosis) and play a key role in the development and health of multicellular organisms. The dynamics of these proteins' expression and interactions determine the survival of all cells in an organism, whether the healthy cells of a fully competent immune system or the diseased cells of an individual with cancer. Anti-apoptotic proteins like BCL-2, BCL-XL, and MCL-1 are well-known for maintaining tumor cell survival and are therefore attractive drug targets. The BCL-2-selective inhibitor venetoclax has been approved for use in chronic lymphocytic leukemia and is now being studied in a number of other hematologic malignancies. As clinical data mature, hypotheses have begun to emerge regarding potential mechanisms of venetoclax resistance. Here, we review accumulating evidence that lymphoid microenvironments play a key role in determining hematologic tumor cell sensitivity to venetoclax.
Collapse
Affiliation(s)
- Joel D. Leverson
- Oncology Development, AbbVie, Inc., North Chicago, IL, United States
| | - Dan Cojocari
- Oncology Discovery, AbbVie, Inc., North Chicago, IL, United States
| |
Collapse
|
31
|
RIP kinases as modulators of inflammation and immunity. Nat Immunol 2018; 19:912-922. [DOI: 10.1038/s41590-018-0188-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
|
32
|
Nuclear factor-kappa B subunits and their prognostic cancer-specific survival value in renal cell carcinoma patients. Pathology 2018; 50:511-518. [DOI: 10.1016/j.pathol.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 11/22/2022]
|
33
|
TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ 2018; 26:902-917. [PMID: 30042493 DOI: 10.1038/s41418-018-0169-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023] Open
Abstract
BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death.
Collapse
|
34
|
Miura Y, Morooka M, Sax N, Roychoudhuri R, Itoh-Nakadai A, Brydun A, Funayama R, Nakayama K, Satomi S, Matsumoto M, Igarashi K, Muto A. Bach2 Promotes B Cell Receptor-Induced Proliferation of B Lymphocytes and Represses Cyclin-Dependent Kinase Inhibitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2882-2893. [PMID: 29540581 DOI: 10.4049/jimmunol.1601863] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
BTB and CNC homology 2 (Bach2) is a transcriptional repressor that is required for the formation of the germinal center (GC) and reactions, including class switch recombination and somatic hypermutation of Ig genes in B cells, within the GC. Although BCR-induced proliferation is essential for GC reactions, the function of Bach2 in regulating B cell proliferation has not been elucidated. In this study, we demonstrate that Bach2 is required to sustain high levels of B cell proliferation in response to BCR signaling. Following BCR engagement in vitro, B cells from Bach2-deficient (Bach2-/-) mice showed lower incorporation of BrdU and reduced cell cycle progression compared with wild-type cells. Bach2-/- B cells also underwent increased apoptosis, as evidenced by an elevated frequency of sub-G1 cells and early apoptotic cells. Transcriptome analysis of BCR-engaged B cells from Bach2-/- mice revealed reduced expression of the antiapoptotic gene Bcl2l1 encoding Bcl-xL and elevated expression of cyclin-dependent kinase inhibitor (CKI) family genes, including Cdkn1a, Cdkn2a, and Cdkn2b Reconstitution of Bcl-xL expression partially rescued the proliferation defect of Bach2-/- B cells. Chromatin immunoprecipitation experiments showed that Bach2 bound to the CKI family genes, indicating that these genes are direct repression targets of Bach2. These findings identify Bach2 as a requisite factor for sustaining high levels of BCR-induced proliferation, survival, and cell cycle progression, and it promotes expression of Bcl-xL and repression of CKI genes. BCR-induced proliferation defects may contribute to the impaired GC formation observed in Bach2-/- mice.
Collapse
Affiliation(s)
- Yuichi Miura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Advanced Surgical Science and Technology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mizuho Morooka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nicolas Sax
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Ari Itoh-Nakadai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Andrey Brydun
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Susumu Satomi
- Division of Advanced Surgical Science and Technology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; and
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; and
| |
Collapse
|
35
|
Wu H, Medeiros LJ, Young KH. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev 2018; 32:8-28. [PMID: 28802908 DOI: 10.1016/j.blre.2017.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/05/2017] [Accepted: 08/06/2017] [Indexed: 12/14/2022]
Abstract
Apoptosis is an essential biological process involved in tissue homeostasis and immunity. Aberrations of the two main apoptotic pathways, extrinsic and intrinsic, have been identified in hematological malignancies; many of these aberrations are associated with pathogenesis, prognosis and resistance to standard chemotherapeutic agents. Targeting components of the apoptotic pathways, especially the chief regulatory BCL-2 family in the intrinsic pathway, has proved to be a promising therapeutic approach for patients with hematological malignances, with the expectation of enhanced efficacy and reduced adverse events. Continuous investigations regarding the biological importance of each of the BCL-2 family components and the clinical rationale to achieve optimal therapeutic outcomes, using either monotherapy or in combination with other targeted agents, have generated inspiring progress in the field. Genomic, epigenomic and biological analyses including BH3 profiling facilitate effective evaluation of treatment response, cancer recurrence and drug resistance. In this review, we summarize the biological features of each of the components in the BCL-2 apoptotic pathways, analyze the regulatory mechanisms and the pivotal roles of BCL-2 family members in the pathogenesis of major types of hematologic malignances, and evaluate the potential of apoptosis- and BCL-2-targeted strategies as effective approaches in anti-cancer therapies.
Collapse
Affiliation(s)
- Huanling Wu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Laboratory Medicine, Shandong Provincial Hospital affiliated to Shandong University, Shandong, China
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
36
|
Saba NS, Wong DH, Tanios G, Iyer JR, Lobelle-Rich P, Dadashian EL, Liu D, Fontan L, Flemington EK, Nichols CM, Underbayev C, Safah H, Melnick A, Wiestner A, Herman SEM. MALT1 Inhibition Is Efficacious in Both Naïve and Ibrutinib-Resistant Chronic Lymphocytic Leukemia. Cancer Res 2017; 77:7038-7048. [PMID: 28993409 PMCID: PMC5732856 DOI: 10.1158/0008-5472.can-17-2485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/13/2017] [Accepted: 10/03/2017] [Indexed: 11/16/2022]
Abstract
The clinical efficacy displayed by ibrutinib in chronic lymphocytic leukemia (CLL) has been challenged by the frequent emergence of resistant clones. The ibrutinib target, Bruton's tyrosine kinase (BTK), is essential for B-cell receptor signaling, and most resistant cases carry mutations in BTK or PLCG2, a downstream effector target of BTK. Recent findings show that MI-2, a small molecule inhibitor of the para-caspase MALT1, is effective in preclinical models of another type of BCR pathway-dependent lymphoma. We therefore studied the activity of MI-2 against CLL and ibrutinib-resistant CLL. Treatment of CLL cells in vitro with MI-2 inhibited MALT1 proteolytic activity reduced BCR and NF-κB signaling, inhibited nuclear translocation of RelB and p50, and decreased Bcl-xL levels. MI-2 selectively induced dose and time-dependent apoptosis in CLL cells, sparing normal B lymphocytes. Furthermore, MI-2 abrogated survival signals provided by stromal cells and BCR cross-linking and was effective against CLL cells harboring features associated with poor outcomes, including 17p deletion and unmutated IGHV Notably, MI-2 was effective against CLL cells collected from patients harboring mutations conferring resistance to ibrutinib. Overall, our findings provide a preclinical rationale for the clinical development of MALT1 inhibitors in CLL, in particular for ibrutinib-resistant forms of this disease. Cancer Res; 77(24); 7038-48. ©2017 AACR.
Collapse
Affiliation(s)
- Nakhle S Saba
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, New Orleans, Louisiana.
| | - Deanna H Wong
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Georges Tanios
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Jessica R Iyer
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia Lobelle-Rich
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Eman L Dadashian
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Delong Liu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lorena Fontan
- Section of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Cydney M Nichols
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hana Safah
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Ari Melnick
- Section of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sarah E M Herman
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
37
|
Abstract
The approval of venetoclax, a 'BH3-mimetic' antagonist of the BCL-2 anti-apoptotic protein, for chronic lymphocytic leukemia represents a major milestone in translational apoptosis research. Venetoclax has already received 'breakthrough' designation for acute myeloid leukemia, and is being studied in many other tumor types. However, resistance to BCL-2 inhibitor monotherapy may rapidly ensue. Several studies have shown that the other two major anti-apoptotic BCL-2 family proteins, BCL-XL and MCL-1, are the main determinants of resistance to venetoclax. This opens up possibilities for rationally combining venetoclax with other targeted agents to circumvent resistance. Here, we summarize the most promising combinations, and highlight those already in clinical trials. There is also increasing recognition that different tumors display different degrees of addiction to individual BCL-2 family proteins, and of the need to refine current 'BH3 profiling' techniques. Finally, the successful clinical development of potent and selective antagonists of BCL-XL and MCL-1 is eagerly awaited.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Biomimetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Clinical Trials as Topic
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Proto-Oncogene Proteins/pharmacology
- Proto-Oncogene Proteins/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Prithviraj Bose
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
- b Department of Experimental Therapeutics , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Marina Konopleva
- a Department of Leukemia , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
38
|
Hetero-oligomerization between the TNF receptor superfamily members CD40, Fas and TRAILR2 modulate CD40 signalling. Cell Death Dis 2017; 8:e2601. [PMID: 28182009 PMCID: PMC5386471 DOI: 10.1038/cddis.2017.22] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
Abstract
TNF receptor superfamily members (TNFRSF) such as CD40, Fas and TRAIL receptor 2 (TRAILR2) participate to the adaptive immune response by eliciting survival, proliferation, differentiation and/or cell death signals. The balance between these signals determines the fate of the immune response. It was previously reported that these receptors are able to self-assemble in the absence of ligand through their extracellular regions. However, the role of this oligomerization is not well understood, and none of the proposed hypotheses take into account potential hetero-association of receptors. Using CD40 as bait in a flow cytometry Förster resonance energy transfer assay, TNFRSF members with known functions in B cells were probed for interactions. Both Fas and TRAILR2 associated with CD40. Immunoprecipitation experiments confirmed the interaction of CD40 with Fas at the endogenous levels in a BJAB B-cell lymphoma cell line deficient for TRAILR2. TRAILR2-expressing BJAB cells displayed a robust CD40–TRAILR2 interaction at the expense of the CD40–Fas interaction. The same results were obtained by proximity ligation assay, using TRAILR2-positive and -negative BJAB cells and primary human B cells. Expression of the extracellular domains of Fas or TRAILR2 with a glycolipid membrane anchor specifically reduced the intrinsic signalling pathway of CD40 in 293T cells. Conversely, BJAB cells lacking endogenous Fas or TRAILR2 showed an increased NF-κB response to CD40L. Finally, upregulation of TRAILR2 in primary human B cells correlated with reduced NF-κB activation and reduced proliferation in response to CD40L. Altogether, these data reveal that selective interactions between different TNFRSF members may modulate ligand-induced responses upstream signalling events.
Collapse
|
39
|
CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes. Proc Natl Acad Sci U S A 2017; 114:E980-E989. [PMID: 28049849 DOI: 10.1073/pnas.1620036114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Refractory celiac disease type II (RCDII) is a severe complication of celiac disease (CD) characterized by the presence of an enlarged clonal population of innate intraepithelial lymphocytes (IELs) lacking classical B-, T-, and natural killer (NK)-cell lineage markers (Lin-IELs) in the duodenum. In ∼50% of patients with RCDII, these Lin-IELs develop into a lymphoma for which no effective treatment is available. Current evidence indicates that the survival and expansion of these malignant Lin-IELs is driven by epithelial cell-derived IL-15. Like CD, RCDII is strongly associated with HLA-DQ2, suggesting the involvement of HLA-DQ2-restricted gluten-specific CD4+ T cells. We now show that gluten-specific CD4+ T cells isolated from CD duodenal biopsy specimens produce cytokines able to trigger proliferation of malignant Lin-IEL lines as powerfully as IL-15. Furthermore, we identify TNF, IL-2, and IL-21 as CD4+ T-cell cytokines that synergistically mediate this effect. Like IL-15, these cytokines were found to increase the phosphorylation of STAT5 and Akt and transcription of antiapoptotic mediator bcl-xL Several small-molecule inhibitors targeting the JAK/STAT pathway blocked proliferation elicited by IL-2 and IL-15, but only an inhibitor targeting the PI3K/Akt/mTOR pathway blocked proliferation induced by IL-15 as well as the CD4+ T-cell cytokines. Confirming and extending these findings, TNF, IL-2, and IL-21 also synergistically triggered the proliferation of freshly isolated Lin-IELs and CD3-CD56+ IELs (NK-IELs) from RCDII as well as non-RCDII duodenal biopsy specimens. These data provide evidence implicating CD4+ T-cell cytokines in the pathogenesis of RCDII. More broadly, they suggest that adaptive immune responses can contribute to innate IEL activation during mucosal inflammation.
Collapse
|
40
|
Karimi M, Mohammadi H, Hemmatzadeh M, Mohammadi A, Rafatpanah H, Baradaran B. Role of the HTLV-1 viral factors in the induction of apoptosis. Biomed Pharmacother 2016; 85:334-347. [PMID: 27887847 DOI: 10.1016/j.biopha.2016.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
Adult T-cell leukemia (ATL) and HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) are the two main diseases that are caused by the HTLV-1 virus. One of the features of HTLV-1 infection is its resistance against programmed cell death, which maintains the survival of cells to oncogenic transformation and underlies the viruses' therapeutic resistance. Two main genes by which the virus develops cancer are Tax and HBZ; playing an essential role in angiogenesis in regulating viral transcription and modulating multiple host factors as well as apoptosis pathways. Here we have reviewed by prior research how the apoptosis pathways are suppressed by the Tax and HBZ and new drugs which have been designed to deal with this suppression.
Collapse
Affiliation(s)
- Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tabriz University of Medical Sciences, International Branch (Aras), Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Cox-2 Inhibition Protects against Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis via Akt-Dependent Enhancement of iNOS Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453059. [PMID: 27795807 PMCID: PMC5067333 DOI: 10.1155/2016/3453059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/02/2023]
Abstract
The present study explored the potential causal link between ischemia-driven cyclooxygenase-2 (COX-2) expression and enhanced apoptosis during myocardial ischemia/reperfusion (I/R) by using H9C2 cardiomyocytes and primary rat cardiomyocytes subjected to hypoxia/reoxygenation (H/R). The results showed that H/R resulted in higher COX-2 expression than that of controls, which was prevented by pretreatment with Helenalin (NFκB specific inhibitor). Furthermore, pretreatment with NS398 (COX-2 specific inhibitor) significantly attenuated H/R-induced cell injury [lower lactate dehydrogenase (LDH) leakage and enhanced cell viability] and apoptosis (higher Bcl2 expression and lower level of cleaved caspases-3 and TUNEL-positive cells) in cardiomyocytes. The amelioration of posthypoxic apoptotic cell death was paralleled by significant attenuation of H/R-induced increases in proinflammatory cytokines [interleukin 6 (IL6) and tumor necrosis factor (TNFα)] and reactive oxygen species (ROS) production and by higher protein expression of phosphorylated Akt and inducible nitric oxide synthase (iNOS) and enhanced nitric oxide production. Moreover, the application of LY294002 (Akt-specific inhibitor) or 1400W (iNOS-selective inhibitor) cancelled the cellular protective effects of NS398. Findings from the current study suggest that activation of NFκB during cardiomyocyte H/R induces the expression of COX-2 and that higher COX-2 expression during H/R exacerbates cardiomyocyte H/R injury via mechanisms that involve cross talks among inflammation, ROS, and Akt/iNOS/NO signaling.
Collapse
|
42
|
Hu Z, Song B, Xu L, Zhong Y, Peng F, Ji X, Zhu F, Yang C, Zhou J, Su Y, Chen S, He Y, He S. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials 2016; 108:187-96. [PMID: 27639114 DOI: 10.1016/j.biomaterials.2016.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023]
Abstract
The NF-κB pathway plays crucial roles in inflammatory responses and cell survival. Aberrant constitutive NF-κB activation is associated with various human diseases including cancer and inflammatory and auto-immune diseases. Consequently, it is highly desirable to develop new kinds of inhibitors, which are highly efficacious for blocking the NF-κB pathway. In this study, by using a typical kind of aqueous synthesized quantum dots (QDs), i.e., CdTe QDs, as a model, we for the first time demonstrated that the QDs could selectively affect the cellular nuclear factor-κB (NF-κB) signaling pathway, but do not affect the AKT or ERK pathways. Typically, the QDs efficiently inhibited the activation of IKKα and IKKβ, resulting in the suppression of both the canonical and the non-canonical NF-κB signaling pathways. Inhibition of NF-κB by QDs downregulates anti-apoptotic genes and promotes apoptosis in cancer cells. The QDs induced NF-κB inhibition and cytotoxicity could be blocked by N-acetylcysteine due to the reduced cellular uptake of QDs. Importantly, inhibition of NF-κB by QDs displayed promising effects against the viral replication and in vivo bacterial endotoxin-induced inflammatory responses. These data suggest the QDs as potent inhibitors of the NF-κB signaling pathway, both in vitro and in vivo. Our findings highlight the potential of using QDs in the development of anti-cancer, anti-viral, and anti-inflammatory approaches, and also facilitate better understanding of QDs-related cellular behavior under the molecular level.
Collapse
Affiliation(s)
- Zhilin Hu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lei Xu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yiling Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaoyuan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fang Zhu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Chengkui Yang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Jinying Zhou
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yuanyuan Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Suning Chen
- Jiangsu Institute of Hematology (JIH), Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yao He
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Sudan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China.
| |
Collapse
|
43
|
Vikström IB, Slomp A, Carrington EM, Moesbergen LM, Chang C, Kelly GL, Glaser SP, Jansen JHM, Leusen JHW, Strasser A, Huang DCS, Lew AM, Peperzak V, Tarlinton DM. MCL-1 is required throughout B-cell development and its loss sensitizes specific B-cell subsets to inhibition of BCL-2 or BCL-XL. Cell Death Dis 2016; 7:e2345. [PMID: 27560714 PMCID: PMC5108322 DOI: 10.1038/cddis.2016.237] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023]
Abstract
Pro-survival BCL-2 family members protect cells from programmed cell death that can be induced by multiple internal or external cues. Within the haematopoietic lineages, the BCL-2 family members BCL-2, BCL-XL and MCL-1 are known to support cell survival but the individual and overlapping roles of these pro-survival BCL-2 proteins for the persistence of individual leukocyte subsets in vivo has not yet been determined. By combining inducible knockout mouse models with the BH3-mimetic compound ABT-737, which inhibits BCL-2, BCL-XL and BCL-W, we found that dependency on MCL-1, BCL-XL or BCL-2 expression changes during B-cell development. We show that BCL-XL expression promotes survival of immature B cells, expression of BCL-2 is important for survival of mature B cells and long-lived plasma cells (PC), and expression of MCL-1 is important for survival throughout B-cell development. These data were confirmed with novel highly specific BH3-mimetic compounds that target either BCL-2, BCL-XL or MCL-1. In addition, we observed that combined inhibition of these pro-survival proteins acts in concert to delete specific B-cell subsets. Reduced expression of MCL-1 further sensitized immature as well as transitional B cells and splenic PC to loss of BCL-XL expression. More markedly, loss of MCL-1 greatly sensitizes PC populations to BCL-2 inhibition using ABT-737, even though the total wild-type PC pool in the spleen is not significantly affected by this drug and the bone marrow (BM) PC population only slightly. Combined loss or inhibition of MCL-1 and BCL-2 reduced the numbers of established PC >100-fold within days. Our data suggest that combination treatment targeting these pro-survival proteins could be advantageous for treatment of antibody-mediated autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Ingela B Vikström
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Anne Slomp
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Laura M Moesbergen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Catherine Chang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stefan P Glaser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - J H Marco Jansen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Victor Peperzak
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Laboratory of Translational Immunology, University Medical Center, Utrecht, The Netherlands
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Lange N, Tontsa AT, Wegscheid C, Mkounga P, Nkengfack AE, Loscher C, Sass G, Tiegs G. The Limonoids TS3 and Rubescin E Induce Apoptosis in Human Hepatoma Cell Lines and Interfere with NF-κB Signaling. PLoS One 2016; 11:e0160843. [PMID: 27518192 PMCID: PMC4982607 DOI: 10.1371/journal.pone.0160843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/26/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is extremely resistant towards pharmacological therapy. To date, the multi-kinase inhibitor Sorafenib is the only available therapeutic agent with the potential to prolong patient survival. Using the human hepatoma cell lines HepG2 and Huh7, we analyzed anti-cancer activities of 6 purified havanensin type limonoids isolated from the traditional African medicinal plant Trichilia rubescens Oliv. Our results show that two of the compounds, TR4 (TS3) and TR9 (Rubescin E) reduced hepatoma cell viability, but not primary hepatocyte viability, at TC50s of 5 to 10 μM. These were significantly lower than the TC50s for Sorafenib, the histone deacetylase inhibitor SAHA or 5-Fluoruracil. In comparison, TR3 (Rubescin D), a limonoid isolated in parallel and structurally highly similar to TR4 and TR9, did not interfere with hepatoma cell viability. Both, TR4 and TR9, but not TR3, induced apoptosis in hepatoma cells and interfered with NF-κB activation. TR4 as well as TR9 significantly supported anti-cancer activities of Sorafenib. In summary, the limonoids TR4 and TR9 exhibit anti-cancer activities and support Sorafenib effects in vitro, having the potential to support future HCC therapy.
Collapse
Affiliation(s)
- Nicole Lange
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Armelle Tsamo Tontsa
- University of Yaoundé I, Department of Organic Chemistry, P.O BOX: 812, Yaoundé, Cameroon
| | - Claudia Wegscheid
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Pierre Mkounga
- University of Yaoundé I, Department of Organic Chemistry, P.O BOX: 812, Yaoundé, Cameroon
| | | | - Christine Loscher
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gabriele Sass
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- California Institute for Medical Research, San Jose, CA, United States of America
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
45
|
Pozzolini M, Vergani L, Ragazzoni M, Delpiano L, Grasselli E, Voci A, Giovine M, Scarfì S. Different reactivity of primary fibroblasts and endothelial cells towards crystalline silica: A surface radical matter. Toxicology 2016; 361-362:12-23. [PMID: 27381660 DOI: 10.1016/j.tox.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/23/2022]
Abstract
Quartz is a well-known occupational fibrogenic agent able to cause fibrosis and other severe pulmonary diseases such as silicosis and lung cancer. The silicotic pathology owes its severity to the structural and chemo-physical properties of the particles such as shape, size and abundance of surface radicals. In earlier studies, we reported that significant amounts of surface radicals can be generated on crystalline silica by chemical aggression with ascorbic acid (AA), a vitamin naturally abundant in the lung surfactant, and this reaction led to enhanced cytotoxicity and production of inflammatory mediators in a macrophage cell line. However in the lung, other cells acting in the development of silicosis, like fibroblasts and endothelial cells, can come to direct contact with inhaled quartz. We investigated the cytotoxic/pro-inflammatory effects of AA-treated quartz microcrystals (QA) in human primary fibroblasts and endothelial cells as compared to unmodified microcrystals (Q). Our results show that, in fibroblasts, the abundance of surface radicals on quartz microcrystals (Q vs QA) significantly enhanced cell proliferation (with or without co-culture with macrophages), reactive oxygen species (ROS) production, NF-κB nuclear translocation, smooth muscle actin, fibronectin, Bcl-2 and tissue inhibitor of metalloproteinase-1 expression and collagen production. Contrariwise, endothelial cells reacted to the presence of quartz microcrystals independently from the abundance of surface radicals showing similar levels of cytotoxicity, ROS production, cell migration, MCP-1, ICAM-I and fibronectin gene expression when challenged with Q or QA. In conclusion, our in vitro experimental model demonstrates an important and quite unexplored direct contribute of silica surface radicals to fibroblast proliferation and fibrogenic responses.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Milena Ragazzoni
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Livia Delpiano
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy.
| |
Collapse
|
46
|
Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1081-90. [PMID: 27102559 DOI: 10.1152/ajpgi.00026.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a common factor in the development of many gastrointestinal malignancies. Examples include inflammatory bowel disease predisposing to colorectal cancer, Barrett's esophagus as a precursor of esophageal adenocarcinoma, and Helicobacter pylori-induced gastric cancer. The classical activation pathway of NF-κB signaling has been identified as regulating several sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these processes. This review brings together current knowledge of the role of the alternative NF-κB signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-associated cancer development.
Collapse
Affiliation(s)
- Yvette J Merga
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian O'Hara
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
47
|
Yu X, He S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol J 2016; 13:77. [PMID: 27154074 PMCID: PMC4859980 DOI: 10.1186/s12985-016-0528-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/17/2016] [Indexed: 01/16/2023] Open
Abstract
Human herpes simplex virus (HSV) is a ubiquitous human pathogen that establishes a lifelong latent infection and is associated with mucocutaneous lesions. In multicellular organisms, cell death is a crucial host defense mechanism that eliminates pathogen-infected cells. Apoptosis is a well-defined form of programmed cell death executed by a group of cysteine proteases, called caspases. Studies have shown that HSV has evolved strategies to counteract caspase activation and apoptosis by encoding anti-apoptotic viral proteins such as gD, gJ, Us3, LAT, and the ribonucleotide reductase large subunit (R1). Recently, necroptosis has been identified as a regulated form of necrosis that can be invoked in the absence of caspase activity. Receptor-interacting kinase 3 (RIP3 or RIPK3) has emerged as a central signaling molecule in necroptosis; it is activated via interaction with other RIP homotypic interaction motif (RHIM)-containing proteins such as RIP1 (or RIPK1). There is increasing evidence that HSV R1 manipulates necroptosis via the RHIM-dependent inactivation or activation ofRIP3 in a species-specific manner. This review summarizes the current understanding of the interplay between HSV infection and cell death pathways, with an emphasis on apoptosis and necroptosis.
Collapse
Affiliation(s)
- Xiaoliang Yu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow UniversitY, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Sudan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow UniversitY, Suzhou, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
48
|
Chiron D, Dousset C, Brosseau C, Touzeau C, Maïga S, Moreau P, Pellat-Deceunynck C, Le Gouill S, Amiot M. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma. Oncotarget 2016; 6:8750-9. [PMID: 25797245 PMCID: PMC4496181 DOI: 10.18632/oncotarget.3275] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 12/11/2022] Open
Abstract
The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL+MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-x(L) up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors.
Collapse
Affiliation(s)
- David Chiron
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France
| | - Christelle Dousset
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France.,CIC, INSERM, Nantes, France
| | - Carole Brosseau
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France
| | - Cyrille Touzeau
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France
| | - Sophie Maïga
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France
| | - Philippe Moreau
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France
| | - Catherine Pellat-Deceunynck
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France
| | - Steven Le Gouill
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France.,CIC, INSERM, Nantes, France
| | - Martine Amiot
- INSERM, UMR892 - CNRS, UMR 6299, Université de Nantes, France.,Service d'Hématologie Clinique, Unité d'Investigation Clinique, Centre Hospitalier Universitaire de Nantes, France
| |
Collapse
|
49
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
50
|
NF-κB/RelA and Nrf2 cooperate to maintain hepatocyte integrity and to prevent development of hepatocellular adenoma. J Hepatol 2016; 64:94-102. [PMID: 26348541 DOI: 10.1016/j.jhep.2015.08.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS The liver is frequently challenged by toxins and reactive oxygen species. Therefore, hepatocytes require cytoprotective strategies to cope with these insults. Since the transcription factors Nrf2 and NF-κB regulate the cellular antioxidant defense system and important survival pathways, we determined their individual and overlapping functions in the liver. METHODS We generated mice lacking Nrf2 and the NF-κB RelA/p65 subunit in hepatocytes and we analyzed their liver by using histopathology, immunohistochemistry, quantitative RT-PCR, Western blot and Oxyblot analysis. Human inflammatory hepatocellular adenomas (iHCA) were analyzed by immunohistochemistry. RESULTS Loss of either Nrf2 or NF-κB/RelA had only a minor effect on liver homeostasis, but the double knockout mice spontaneously developed liver inflammation and fibrosis. Upon aging, more than one-third of the female double mutant mice developed tumors, which histologically resemble human iHCA, a tumor that predominantly occurs in women. The mouse tumors also recapitulated the immunohistochemical marker profile characteristic for human iHCA. Moreover, pNRF2 and NF-κB RelA/p65 was not detectable in the nuclei of iHCA tumor cells. The mouse phenotype was not due to a synergistic effect of both transcription factors on cytoprotective Nrf2 target genes. Rather, loss of Nrf2 or NF-κB/RelA altered the expression of different genes, and the combination of these alterations likely affects liver homeostasis in the double mutant mice. CONCLUSIONS Our results provide genetic evidence for a functional cross-talk of Nrf2 and NF-κB/RelA in hepatocytes, which protects the liver from necrosis, inflammation and fibrosis. Furthermore, the double mutant mice represent a valuable animal model for iHCA.
Collapse
|