1
|
Germann AL, Pierce SR, Steinbach JH, Akk G. Null method to estimate the maximal PA at subsaturating concentrations of agonist. J Gen Physiol 2025; 157:e202413644. [PMID: 39585302 PMCID: PMC11602654 DOI: 10.1085/jgp.202413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
The maximal probability of being in an active state (PA,max) is a measure of gating efficacy for a given agonist acting on a given receptor channel. In macroscopic electrophysiological recordings, PA,max is typically estimated by comparing the amplitude of the current response to a saturating concentration of a test agonist to that of a reference agonist with known PA. Here, we describe an approach to estimate the PA,max for low-efficacy agonists at subsaturating concentrations. In this approach, the amplitude of the response to a high-efficacy control agonist applied alone is compared with the amplitude of the response to a control agonist coapplied with the low-efficacy test agonist that binds to the same site(s). If the response to the combination is larger than the response to the control agonist alone, then the PA,max of the test agonist is greater than the PA of the control response. Conversely, if the response to the control agonist is reduced upon exposure to the test agonist, then the PA,max of the test agonist is smaller than the PA of the control response. The exact PA,max of the test agonist can be determined by testing its effect at different concentrations of the control agonist to estimate the PA at which the effect changes direction. The main advantage of this approach lies in the ability to use low, subsaturating concentrations of the test agonist. The model-based predictions are supported by observations from activation of heteromeric and homomeric GABAA receptors by combinations of high- and low-efficacy orthosteric agonists.
Collapse
Affiliation(s)
- Allison L. Germann
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Spencer R. Pierce
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Joe Henry Steinbach
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustav Akk
- Department of Anesthesiology, Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Agonist efficiency from concentration-response curves: Structural implications and applications. Biophys J 2021; 120:1800-1813. [PMID: 33675765 DOI: 10.1016/j.bpj.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC50) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC50 and the asymptotes of a CRC derived from either single-channel or whole-cell responses. For 20 agonists of skeletal muscle nicotinic receptors, the distribution of η-values is bimodal with population means at 51% (including acetylcholine, nornicotine, and dimethylphenylpiperazinium) and 40% (including epibatidine, varenicline, and cytisine). The value of η is related inversely to the size of the agonist's headgroup, with high- versus low-efficiency ligands having an average volume of 70 vs. 102 Å3. Most binding site mutations have only a small effect on acetylcholine efficiency, except for αY190A (35%), αW149A (60%), and those at αG153 (42%). If η is known, the EC50 and high-concentration asymptote can be calculated from each other. Hence, an entire CRC can be estimated from the response to a single agonist concentration, and efficacy can be estimated from EC50 of a CRC that has been normalized to 1. Given η, the level of constitutive activity can be estimated from a single CRC.
Collapse
|
3
|
Shen XM, Milone M, Wang HL, Banwell B, Selcen D, Sine SM, Engel AG. Slow-channel myasthenia due to novel mutation in M2 domain of AChR delta subunit. Ann Clin Transl Neurol 2019; 6:2066-2078. [PMID: 31560172 PMCID: PMC6801167 DOI: 10.1002/acn3.50902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/01/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To characterize the molecular and phenotypic basis of a severe slow-channel congenital myasthenic syndrome (SCCMS). METHODS Intracellular and single-channel recordings from patient endplates; alpha-bungarotoxin binding studies; direct sequencing of AChR genes; microsatellite analysis; kinetic analysis of AChR activation; homology modeling of adult human AChR structure. RESULTS Among 24 variants reported to cause SCCMS only two appear in the AChR δ-subunit. We here report a 16-year-old patient harboring a novel δL273F mutation (δL294F in HGVS nomenclature) in the second transmembrane domain (M2) of the AChR δ subunit. Kinetic analyses with ACh and the weak agonist choline indicate that δL273F prolongs the channel opening bursts 9.4-fold due to a 75-fold increase in channel gating efficiency, whereas a previously identified εL269F mutation (εL289F in HGVS nomenclature) at an equivalent location in the AChR ε-subunit prolongs channel opening bursts 4.4-fold due to a 30-fold increase in gating efficiency. Structural modeling of AChR predicts that inter-helical hydrophobic interactions between the mutant residue in the δ and ε subunit and nearby M2 domain residues in neighboring α subunits contribute to structural stability of the open relative to the closed channel states. INTERPRETATION The greater increase in gating efficiency by δL273F than by εL269F explains why δL273F has more severe clinical effects. Both δL273F and εL269F impair channel gating by disrupting hydrophobic interactions with neighboring α-subunits. Differences in the extent of impairment of channel gating in δ and ε mutant receptors suggest unequal contributions of ε/α and δ/α subunit pairs to gating efficiency.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Margherita Milone
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Hang-Long Wang
- Department of Neurology and Vesicular Biology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Brenda Banwell
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering and Receptor Biology Laboratory, Mayo Clinic, Rochester, Minnesota.,Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Andrew G Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Nayak TK, Vij R, Bruhova I, Shandilya J, Auerbach A. Efficiency measures the conversion of agonist binding energy into receptor conformational change. J Gen Physiol 2019; 151:465-477. [PMID: 30635369 PMCID: PMC6445574 DOI: 10.1085/jgp.201812215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Receptors alternate between resting↔active conformations that bind agonists with low↔high affinity. Here, we define a new agonist attribute, energy efficiency (η), as the fraction of ligand-binding energy converted into the mechanical work of the activation conformational change. η depends only on the resting/active agonist-binding energy ratio. In a plot of activation energy versus binding energy (an "efficiency" plot), the slope gives η and the y intercept gives the receptor's intrinsic activation energy (without agonists; ΔG0). We used single-channel electrophysiology to estimate η for eight different agonists and ΔG0 in human endplate acetylcholine receptors (AChRs). From published equilibrium constants, we also estimated η for agonists of KCa1.1 (BK channels) and muscarinic, γ-aminobutyric acid, glutamate, glycine, and aryl-hydrocarbon receptors, and ΔG0 for all of these except KCa1.1. Regarding AChRs, η is 48-56% for agonists related structurally to acetylcholine but is only ∼39% for agonists related to epibatidine; ΔG0 is 8.4 kcal/mol in adult and 9.6 kcal/mol in fetal receptors. Efficiency plots for all of the above receptors are approximately linear, with η values between 12% and 57% and ΔG0 values between 2 and 12 kcal/mol. Efficiency appears to be a general attribute of agonist action at receptor binding sites that is useful for understanding binding mechanisms, categorizing agonists, and estimating concentration-response relationships.
Collapse
Affiliation(s)
- Tapan K Nayak
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Ridhima Vij
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Iva Bruhova
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Jayasha Shandilya
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY
| |
Collapse
|
5
|
Bouzat C, Mukhtasimova N. The nicotinic acetylcholine receptor as a molecular machine for neuromuscular transmission. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Abstract
Agonists turn on receptors because they have a higher affinity for active versus resting conformations of the protein. Activation can occur by either of two pathways that connect to form a cycle: Agonists bind to resting receptors that then become active, or resting receptors activate and then bind agonists. We used mutations to construct endplate acetylcholine receptors (AChRs) having only one functional neurotransmitter-binding site and single-channel electrophysiology to measure independently binding constants for four different agonists, to both resting and active conformations of each site. For all agonists and sites, the total free energy change in each pathway was the same, confirming the activation cycle without external energy. Other results show that (i) there is no cooperativity between sites; (ii) agonist association is slower than diffusion in resting receptors but nearly diffusional in active receptors; (iii) whereas resting affinity is determined mainly by agonist association, active affinity is determined mainly by agonist dissociation; and (iv) at each site and for all agonists, receptor activation approximately doubles the agonist-binding free energy. We discuss a two-step mechanism for binding that involves diffusion and a local conformational change ("catch") that is modulated by receptor activation. The results suggest that binding to a resting site and the switch to high affinity are both integral parts of a single allosteric transition. We hypothesize that catch ensures proper signal recognition in complex chemical environments and that binding site compaction is a determinant of both resting and active affinity.
Collapse
|
7
|
Shen XM, Okuno T, Milone M, Otsuka K, Takahashi K, Komaki H, Giles E, Ohno K, Engel AG. Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating. Hum Mutat 2016; 37:1051-9. [PMID: 27375219 DOI: 10.1002/humu.23043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/18/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022]
Abstract
We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore, which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by fourfold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration four- and eightfold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota. ,
| | - Tatsuya Okuno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kenji Otsuka
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Takahashi
- Department of Child Neurology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | | | - Kinji Ohno
- Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Shen XM, Brengman J, Neubauer D, Sine SM, Engel AG. Investigation of Congenital Myasthenia Reveals Functional Asymmetry of Invariant Acetylcholine Receptor (AChR) Cys-loop Aspartates. J Biol Chem 2016; 291:3291-301. [PMID: 26698174 PMCID: PMC4751375 DOI: 10.1074/jbc.m115.683995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/04/2015] [Indexed: 11/06/2022] Open
Abstract
We identify two heteroallelic mutations in the acetylcholine receptor δ-subunit from a patient with severe myasthenic symptoms since birth: a novel δD140N mutation in the signature Cys-loop and a mutation in intron 7 of the δ-subunit gene that disrupts splicing of exon 8. The mutated Asp residue, which determines the disease phenotype, is conserved in all eukaryotic members of the Cys-loop receptor superfamily. Studies of the mutant acetylcholine receptor expressed in HEK 293 cells reveal that δD140N attenuates cell surface expression and apparent channel gating, predicting a reduced magnitude and an accelerated decay of the synaptic response, thus reducing the safety margin for neuromuscular transmission. Substituting Asn for Asp at equivalent positions in the α-, β-, and ϵ-subunits also suppresses apparent channel gating, but the suppression is much greater in the α-subunit. Mutant cycle analysis applied to single and pairwise mutations reveals that αAsp-138 is energetically coupled to αArg-209 in the neighboring pre-M1 domain. Our findings suggest that the conserved αAsp-138 and αArg-209 contribute to a principal pathway that functionally links the ligand binding and pore domains.
Collapse
Affiliation(s)
- Xin-Ming Shen
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905,
| | - Joan Brengman
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905
| | - David Neubauer
- the Department of Pediatric Neurology, University Children's Hospital, Ljubljana 1525, Slovenia, and
| | - Steven M Sine
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, the Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905
| | - Andrew G Engel
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
9
|
Abstract
The interaction of a small molecule made in one cell with a large receptor made in another is the signature event of cell signaling. Understanding the structure and energy changes associated with agonist activation is important for engineering drugs, receptors and synapses. The nicotinic acetylcholine receptor (AChR) is a ∼300kD ion channel that binds the neurotransmitter acetylcholine (ACh) and other cholinergic agonists to elicit electrical responses in the central and peripheral nervous systems. This mini-review is in two sections. First, general concepts of skeletal muscle AChR operation are discussed in terms of energy landscapes for conformational change. Second, adult vs. fetal AChRs are compared with regard to interaction energies between ACh and agonist-site side chains, measured by single-channel electrophysiology and molecular dynamics simulations. The five aromatic residues that form the core of each agonist binding site can be divided into two working groups, a triad (led by αY190) that behaves similarly at all sites and a coupled pair (led by γW55) that has a large influence on affinity only in fetal AChRs. Each endplate AChR has 5 homologous subunits, two of α(1) and one each of β, δ, and either γ (fetal) or ϵ (adult). These nicotinic AChRs have only 2 functional agonist binding sites located in the extracellular domain, at αδ and either αγ or αϵ subunit interfaces. The receptor undergoes a reversible, global isomerization between structures called C and O. The C shape does not conduct ions and has a relatively low affinity for ACh, whereas O conducts cations and has a higher affinity. When both agonist sites are empty (filled only with water) the probability of taking on the O conformation (PO) is low, <10(-6). When ACh molecules occupy the agonist sites the C→O opening rate constant and C↔O gating equilibrium constant increase dramatically. Following a pulse of ACh at the nerve-muscle synapse, the endplate current rises rapidly to reach a peak that corresponds to PO ∼0.96.
Collapse
Affiliation(s)
- Anthony Auerbach
- Dept. of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
10
|
Dionisio L, Bergé I, Bravo M, Esandi MDC, Bouzat C. Neurotransmitter GABA Activates Muscle but Not α7 Nicotinic Receptors. Mol Pharmacol 2014; 87:391-400. [DOI: 10.1124/mol.114.095539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL, Kirk KL. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. J Biol Chem 2014; 289:19942-57. [PMID: 24876383 DOI: 10.1074/jbc.m114.562116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.
Collapse
Affiliation(s)
- Shipeng Wei
- From the Departments of Cell, Developmental, and Integrative Biology
| | - Bryan C Roessler
- From the Departments of Cell, Developmental, and Integrative Biology
| | - Sylvain Chauvet
- From the Departments of Cell, Developmental, and Integrative Biology
| | | | | | - Kevin L Kirk
- From the Departments of Cell, Developmental, and Integrative Biology, Neurobiology and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham Alabama 35294-0005
| |
Collapse
|
12
|
Bruhova I, Gregg T, Auerbach A. Energy for wild-type acetylcholine receptor channel gating from different choline derivatives. Biophys J 2013; 104:565-74. [PMID: 23442907 DOI: 10.1016/j.bpj.2012.11.3833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/01/2023] Open
Abstract
Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter's ester acetyl group with a hydroxyl (ACh→choline) results in a + 1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔG(B)). To understand the distinct actions of structurally related agonist molecules, we measured ΔG(B) for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔG(B) more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist's quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site.
Collapse
Affiliation(s)
- Iva Bruhova
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, New York, USA
| | | | | |
Collapse
|
13
|
McPartland JM, Simons DG. Myofascial Trigger Points: Translating Molecular Theory into Manual Therapy. J Man Manip Ther 2013. [DOI: 10.1179/106698106790819982] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Jadey S, Purohit P, Auerbach A. Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue αG153. ACTA ACUST UNITED AC 2013; 141:95-104. [PMID: 23277476 PMCID: PMC3536520 DOI: 10.1085/jgp.201210896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A primary target for nicotine is the acetylcholine receptor channel (AChR). Some of the ability of nicotine to activate differentially AChR subtypes has been traced to a transmitter-binding site amino acid that is glycine in lower affinity and lysine in higher affinity AChRs. We studied the effects of mutations of this residue (αG153) in neuromuscular AChRs activated by nicotine and eight other agonists including nornicotine and anabasine. All of the mutations increased the unliganded gating equilibrium constant. The affinity of the resting receptor (Kd) and the net binding energy from the agonist for gating (ΔGB) were estimated by cross-concentration fitting of single-channel currents. In all but one of the agonist/mutant combinations there was a moderate decrease in Kd and essentially no change in ΔGB. The exceptional case was nicotine plus lysine, which showed a large, >8,000-fold decrease in Kd but no change in ΔGB. The extraordinary specificity of this combination leads us to speculate that AChRs with a lysine at position αG153 may be exposed to a nicotine-like compound in vivo.
Collapse
Affiliation(s)
- Snehal Jadey
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
15
|
Okeyo G, Wang W, Wei S, Kirk KL. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. J Biol Chem 2013; 288:17122-33. [PMID: 23620589 DOI: 10.1074/jbc.m112.442582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is the only ligand-gated ion channel that hydrolyzes its agonist, ATP. CFTR gating has been argued to be tightly coupled to its enzymatic activity, but channels do open occasionally in the absence of ATP and are reversibly activated (albeit weakly) by nonhydrolyzable nucleotides. Why the latter only weakly activates CFTR is not understood. Here we show that CFTR activation by adenosine 5'-O-(thiotriphosphate) (ATPγS), adenosine 5'-(β,γ-imino)triphosphate (AMP-PNP), and guanosine 5'-3-O-(thio)triphosphate (GTPγS) is enhanced substantially by gain of function (GOF) mutations in the cytosolic loops that increase unliganded activity. This enhancement correlated with the base-line nucleotide-independent activity for several GOF mutations. AMP-PNP or ATPγS activation required both nucleotide binding domains (NBDs) and was disrupted by a cystic fibrosis mutation in NBD1 (G551D). GOF mutant channels deactivated very slowly upon AMP-PNP or ATPγS removal (τdeac ∼ 100 s) implying tight binding between the two NBDs. Despite this apparently tight binding, neither AMP-PNP nor ATPγS activated even the strongest GOF mutant as strongly as ATP. ATPγS-activated wild type channels deactivated more rapidly, indicating that GOF mutations in the cytosolic loops reciprocally/allosterically affect nucleotide occupancy of the NBDs. A GOF mutation substantially rescued defective ATP-dependent gating of G1349D-CFTR, a cystic fibrosis NBD2 signature sequence mutant. Interestingly, the G1349D mutation strongly disrupted activation by AMP-PNP but not by ATPγS, indicating that these analogs interact differently with the NBDs. We conclude that poorly hydrolyzable nucleotides are less effective than ATP at opening CFTR channels even when they bind tightly to the NBDs but are converted to stronger agonists by GOF mutations.
Collapse
Affiliation(s)
- George Okeyo
- Department of Cell, Developmental, and Integrative Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | |
Collapse
|
16
|
Gupta S, Purohit P, Auerbach A. Function of interfacial prolines at the transmitter-binding sites of the neuromuscular acetylcholine receptor. J Biol Chem 2013; 288:12667-79. [PMID: 23519471 DOI: 10.1074/jbc.m112.443911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuromuscular acetylcholine (ACh) receptor has two conserved prolines in loop D of the complementary subunit at each of its two transmitter-binding sites (α-ε and α-δ). We used single-channel electrophysiology to estimate the energy changes caused by mutations of these prolines with regard to unliganded gating (ΔG0) and the affinity change for ACh that increases the open channel probability (ΔGB). The effects of mutations of ProD2 (εPro-121/δPro-123) were greater than those of its neighbor (εPro-120/δPro-122) and were greater at α-ε versus α-δ. The main consequence of the congenital myasthenic syndrome mutation εProD2-L was to impair the establishment of a high affinity for ACh and thus make ΔGB less favorable. At both binding sites, most ProD2 mutations decreased constitutive activity (increased ΔG0). LRYHQG and RL substitutions reduced substantially the net binding energy (made ΔGB(ACh) less favorable) by ≥2 kcal/mol at α-ε and α-δ, respectively. Mutant cycle analyses were used to estimate energy coupling between the two ProD2 residues and between each ProD2 and glycine residues (αGly-147 and αGly-153) on the primary (α subunit) side of each binding pocket. The distant binding site prolines interact weakly. ProD2 interacts strongly with αGly-147 but only at α-ε and only when ACh is present. The results suggest that in the low to-high affinity change there is a concerted inter-subunit strain in the backbones at εProD2 and αGly-147. It is possible to engineer receptors having a single functional binding site by using a α-ε or α-δ ProD2-R knock-out mutation. In adult-type ACh receptors, the energy from the affinity change for ACh is approximately the same at the two binding sites (approximately -5 kcal/mol).
Collapse
Affiliation(s)
- Shaweta Gupta
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
17
|
Auerbach A. The energy and work of a ligand-gated ion channel. J Mol Biol 2013; 425:1461-75. [PMID: 23357172 DOI: 10.1016/j.jmb.2013.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/28/2012] [Accepted: 01/17/2013] [Indexed: 11/30/2022]
Abstract
Ligand-gated ion channels are allosteric membrane proteins that isomerize between C(losed) and O(pen) conformations. A difference in affinity for ligands in the two states influences the C↔O "gating" equilibrium constant. The energies associated with adult-type mouse neuromuscular nicotinic acetylcholine receptor (AChR) channel gating have been measured by using single-channel electrophysiology. Without ligands, the free energy, enthalpy and entropy of gating are ΔG0=+8.4, ΔH0=+10.9 and TΔS0=+2.5kcal/mol (-100mV, 23°C). Many mutations throughout the protein change ΔG0, including natural ones that cause disease. Agonists and most mutations change approximately independently the ground-state energy difference; thus, it is possible to forecast and engineer AChR responses simply by combining perturbations. The free energy of the low↔high affinity change for the neurotransmitter at each of two functionally equivalent binding sites is ΔGB(ACh)=-5.1kcal/mol. ΔGB(ACh) is set mainly by interactions of ACh with just three binding site aromatic groups. For a series of structurally related agonists, there is a correlation between the energies of low- and high-affinity binding, which implies that gating commences with the formation of the low-affinity complex. Brief, intermediate states in binding and gating have been detected. Several proposals for the nature of the gating transition-state energy landscape and the isomerization mechanism are discussed.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
18
|
Nayak TK, Purohit PG, Auerbach A. The intrinsic energy of the gating isomerization of a neuromuscular acetylcholine receptor channel. ACTA ACUST UNITED AC 2012; 139:349-58. [PMID: 22547665 PMCID: PMC3343375 DOI: 10.1085/jgp.201110752] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinic acetylcholine receptor (AChR) channels at neuromuscular synapses rarely open in the absence of agonists, but many different mutations increase the unliganded gating equilibrium constant (E0) to generate AChRs that are active constitutively. We measured E0 for two different sets of mutant combinations and by extrapolation estimated E0 for wild-type AChRs. The estimates were 7.6 and 7.8 × 10−7 in adult-type mouse AChRs (−100 mV at 23°C). The values are in excellent agreement with one obtained previously by using a completely different method (6.5 × 10−7, from monoliganded gating). E0 decreases with depolarization to the same extent as does the diliganded gating equilibrium constant, e-fold with ∼60 mV. We estimate that at −100 mV the intrinsic energy of the unliganded gating isomerization is +8.4 kcal/mol (35 kJ/mol), and that in the absence of a membrane potential, the intrinsic chemical energy of this global conformational change is +9.4 kcal/mol (39 kJ/mol). Na+ and K+ in the extracellular solution have no measureable effect on E0, which suggests that unliganded gating occurs with only water occupying the transmitter binding sites. The results are discussed with regard to the energy changes in receptor activation and the competitive antagonism of ions in agonist binding.
Collapse
Affiliation(s)
- Tapan K Nayak
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
19
|
Abstract
Slow-channel syndrome (SCS) is an autosomal-dominant disease resulting from mutations in muscle acetylcholine (ACh) receptor subunits. The associated fatigue and muscle degeneration are proposed to result from prolonged synaptic responses that overload intracellular calcium. Single-channel studies on reconstituted receptors bearing human mutations indicate that the prolonged responses result from an increase in receptor open duration and, in some cases, increased sensitivity to ACh. We show that both of these aberrant receptor properties are recapitulated in heterozygotic zebrafish bearing an L258P mutation in the α subunit, thus affording the unique opportunity to compare the single-channel properties of mutant receptors to the synaptic currents in vivo. Whole-cell recordings revealed synaptic currents that decayed along a multiexponential time course, reflecting receptors containing mixtures of wild-type and mutant α subunits. Treatment with quinidine, an open-channel blocker used to treat the human disorder, restored fast synaptic current kinetics and the ability to swim. Quinidine block also revealed that mutant receptors generate a large steady-state current in the absence of ACh. The spontaneous openings reflected a destabilization of the closed state, leading to an apparent increase in the sensitivity of these receptors to ACh. The effective block by quinidine on synaptic currents as well as nonliganded openings points to dual sources for the calcium-dependent myopathy in certain forms of SCS.
Collapse
|
20
|
Mukherjee S, Thomas NL, Williams AJ. A mechanistic description of gating of the human cardiac ryanodine receptor in a regulated minimal environment. ACTA ACUST UNITED AC 2012; 140:139-58. [PMID: 22802361 PMCID: PMC3409104 DOI: 10.1085/jgp.201110706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cardiac muscle contraction, triggered by the action potential, is mediated by the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor (RyR)2 channels. In situ, RyR2 gating is modulated by numerous physiological and pharmacological agents, and altered RyR2 function underlies the occurrence of arrhythmias in both inherited and acquired diseases. To understand fully the mechanisms underpinning the regulation of RyR2 in the normal heart and how these systems are altered in pathological conditions, we must first gain a detailed knowledge of the fundamental processes of RyR2 gating. In this investigation, we provide key novel mechanistic insights into the physical reality of RyR2 gating revealed by new experimental and analytical approaches. We have examined in detail the single-channel gating kinetics of the purified human RyR2 when activated by cytosolic Ca2+ in a stringently regulated environment where the modulatory influence of factors external to the channel were minimized. The resulting gating schemes are based on an accurate description of single-channel kinetics using hidden Markov model analysis and reveal several novel aspects of RyR2 gating behavior: (a) constitutive gating is observed as unliganded opening events; (b) binding of Ca2+ to the channel stabilizes it in different open states; (c) RyR2 exists in two preopening closed conformations in equilibrium, one of which binds Ca2+ more readily than the other; (d) the gating of RyR2 when bound to Ca2+ can be described by a kinetic scheme incorporating bursts; and (e) analysis of flicker closing events within bursts reveals gating activity that is not influenced by ligand binding. The gating schemes generated in this investigation provide a framework for future studies in which the mechanisms of action of key physiological regulatory factors, disease-linked mutations, and potential therapeutic compounds can be described precisely.
Collapse
Affiliation(s)
- Saptarshi Mukherjee
- Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | | | | |
Collapse
|
21
|
Abstract
Neuromuscular acetylcholine receptors have long been a model system for understanding the mechanisms of operation of ligand-gated ion channels and fast chemical synapses. These five subunit membrane proteins have two allosteric (transmitter) binding sites and a distant ion channel domain. Occupation of the binding sites by agonist molecules transiently increases the probability that the channel is ion-permeable. Recent experiments show that the Monod, Wyman and Changeux formalism for allosteric proteins, originally developed for haemoglobin, is an excellent model for acetylcholine receptors. By using mutations and single-channel electrophysiology, the gating equilibrium constants for receptors with zero, one or two bound agonist molecules, and the agonist association and dissociation rate constants from both the closed- and open-channel conformations, have been estimated experimentally. The change in affinity for each transmitter molecule between closed and open conformations provides ~-5.1 kcal mol(-1) towards the global gating isomerization of the protein.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
22
|
Design and control of acetylcholine receptor conformational change. Proc Natl Acad Sci U S A 2011; 108:4328-33. [PMID: 21368211 DOI: 10.1073/pnas.1016617108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric proteins use energy derived from ligand binding to promote a global change in conformation. The "gating" equilibrium constant of acetylcholine receptor-channels (AChRs) is influenced by ligands, mutations, and membrane voltage. We engineered AChRs to have specific values of this constant by combining these perturbations, and then calculated the corresponding values for a reference condition. AChRs were designed to have specific rate and equilibrium constants simply by adding multiple, energetically independent mutations with known effects on gating. Mutations and depolarization (to remove channel block) changed the diliganded gating equilibrium constant only by changing the unliganded gating equilibrium constant (E(0)) and did not alter the energy from ligand binding. All of the tested perturbations were approximately energetically independent. We conclude that naturally occurring mutations mainly adjust E(0) and cause human disease because they generate AChRs that have physiologically inappropriate values of this constant. The results suggest that the energy associated with a structural change of a side chain in the gating isomerization is dissipated locally and is mainly independent of rigid body or normal mode motions of the protein. Gating rate and equilibrium constants are estimated for seven different AChR agonists using a stepwise engineering approach.
Collapse
|
23
|
Purohit P, Auerbach A. Glycine hinges with opposing actions at the acetylcholine receptor-channel transmitter binding site. Mol Pharmacol 2010; 79:351-9. [PMID: 21115636 DOI: 10.1124/mol.110.068767] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extent to which agonists activate synaptic receptor-channels depends on both the intrinsic tendency of the unliganded receptor to open and the amount of agonist binding energy realized in the channel-opening process. We examined mutations of the nicotinic acetylcholine receptor transmitter binding site (α subunit loop B) with regard to both of these parameters. αGly147 is an "activation" hinge where backbone flexibility maintains high values for intrinsic gating, the affinity of the resting conformation for agonists and net ligand binding energy. αGly153 is a "deactivation" hinge that maintains low values for these parameters. αTrp149 (between these two glycines) serves mainly to provide ligand binding energy for gating. We propose that a concerted motion of the two glycine hinges (plus other structural elements at the binding site) positions αTrp149 so that it provides physiologically optimal binding and gating function at the nerve-muscle synapse.
Collapse
Affiliation(s)
- Prasad Purohit
- Department of Physiology and Biophysics, SUNY at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
24
|
Abstract
Acetylcholine receptor-channels are allosteric proteins that isomerize ('gate') between conformations that have a low vs. high affinity for the transmitter and conductance for ions. In order to comprehend the mechanism by which the affinity and conductance changes are linked it is of value to know the magnitude, timing and distribution of energy flowing through the system. Knowing both the di- and unliganded gating equilibrium constants (E(2) and E(0)) is a foundation for understanding the AChR gating mechanism and for engineering both the ligand and the protein to operate in predictable ways. In adult mouse neuromuscular receptors activated by acetylcholine, E(2) = 28 and E(0) approximately 6.5 x 10(7). At each (equivalent) transmitter binding site acetylcholine provides approximately 5.2 kcal mol(1) to motivate the isomerization. The partial agonist choline provides approximately 3.3 kcal mol(1). The relative time of a residue's gating energy change is revealed by the slope of its rate-equilibrium constant relationship. A map of this parameter suggests that energy propagates as a conformational cascade between the transmitter binding sites and the gate region. Although gating energy changes are widespread throughout the protein, some residues are particularly sensitive to perturbations. Several specific proposals for the structural events that comprise the gating conformational cascade are discussed.
Collapse
Affiliation(s)
- Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
25
|
Spitzmaul G, Corradi J, Bouzat C. Mechanistic contributions of residues in the M1 transmembrane domain of the nicotinic receptor to channel gating. Mol Membr Biol 2009; 21:39-50. [PMID: 14668137 DOI: 10.1080/09687680310001607341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nicotinic receptor (AChR) is a pentamer of homologous subunits with an alpha(2)betaepsilondelta composition in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 15' of the M1 domain is phenylalanine in alpha subunits while it is isoleucine in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle AChR activation by combining mutagenesis with single-channel kinetic analysis. AChRs containing the mutant alpha subunit (alphaF15'I) as well as those containing the reverse mutations in the non-alpha subunits (betaI15'F, deltaI15'F, and epsilonI15'F) show prolonged lifetimes of the diliganded open channel resulting from a slower closing rate with respect to wild-type AChRs. The kinetic changes are not equivalent among subunits, the beta subunit, being the one that produces the most significant stabilization of the open state. Kinetic analysis of betaI15'F of AChR channels activated by the low-efficacious agonist choline revealed a 10-fold decrease in the closing rate, a 2.5-fold increase in the opening rate, a 28-fold increase in the gating equilibrium constant in the diliganded receptor, and a significant increase opening in the absence of agonist. Mutations at betaI15' showed that the structural bases of its contribution to gating is complex. Rate-equilibrium linear free-energy relationships suggest an approximately 70% closed-state-like environment for the beta15' position at the transition state of gating. The overall results identify position 15' as a subunit-selective determinant of channel gating and add new experimental evidence that gives support to the involvement of the M1 domain in the operation of the channel gating apparatus.
Collapse
Affiliation(s)
- Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
26
|
Tantama M, Licht S. Functional equivalence of the nicotinic acetylcholine receptor transmitter binding sites in the open state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:936-44. [PMID: 19366595 DOI: 10.1016/j.bbamem.2009.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/14/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The subunits of the muscle-type nicotinic acetylcholine receptor (AChR) are not uniformly oriented in the resting closed conformation: the two alpha subunits are rotated relative to its non-alpha subunits. In contrast, all the subunits overlay well with one another when agonist is bound to the AChR, suggesting that they are uniformly oriented in the open receptor. This gating-dependent increase in orientational uniformity due to rotation of the alpha subunits might affect the relative affinities of the two transmitter binding sites, making the two affinities dissimilar (functionally non-equivalent) in the initial ligand-bound closed state but similar (functionally equivalent) in the open state. To test this hypothesis, we measured single-channel activity of the alphaG153S gain-of-function mutant receptor evoked by choline, and estimated the resting closed-state and open-state affinities of the two transmitter binding sites. Both model-independent analyses and maximum-likelihood estimation of microscopic rate constants indicate that channel opening makes the binding sites' affinities more similar to each other. These results support the hypothesis that open-state affinities to the transmitter binding sites are primarily determined by the alpha subunits.
Collapse
Affiliation(s)
- Mathew Tantama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 573B, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
27
|
Abstract
We estimated the unliganded opening and closing rate constants of neuromuscular acetylcholine receptor-channels (AChRs) having mutations that increased the gating equilibrium constant. For some mutant combinations, spontaneous openings occurred in clusters. For 25 different constructs, the unliganded gating equilibrium constant (E(0)) was correlated with the product of the predicted fold-increase in the diliganded gating equilibrium constant caused by each mutation alone. We estimate that (i) E(0) for mouse, wild-type alpha(2)beta delta epsilon AChRs is approximately 1.15 x 10(-7); (ii) unliganded AChRs open for approximately 80 micros, once every approximately 15 min; (iii) the affinity for ACh of the O(pen) conformation is approximately 10 nM, or approximately 15,600 times greater than for the C(losed) conformation; (iv) the ACh-monoliganded gating equilibrium constant is approximately 1.7 x 10(-3); (v) the C-->O isomerization reduces substantially ACh dissociation, but only slightly increases association; and (vi) ACh provides only approximately 0.9 k(B)T more binding energy per site than carbamylcholine but approximately 3.1 k(B)T more than choline, mainly because of a low O conformation affinity. Most mutations of binding site residue alphaW149 increase E(0). We estimate that the mutation alphaW149F reduces the ACh affinity of C only by 13-fold, but of O by 190-fold. Rate-equilibrium free-energy relationships for different regions of the protein show similar slopes (Phi values) for un- vs. diliganded gating, which suggests that the conformational pathway of the gating structural change is fundamentally the same with and without agonists. Agonist binding is a perturbation that (like most mutations) changes the energy, but not the mechanism, of the gating conformational change.
Collapse
|
28
|
Militante J, Ma BW, Akk G, Steinbach JH. Activation and block of the adult muscle-type nicotinic receptor by physostigmine: single-channel studies. Mol Pharmacol 2008; 74:764-76. [PMID: 18523135 DOI: 10.1124/mol.108.047134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plant-derived acetylcholinesterase inhibitor physostigmine has previously been shown to act on the nicotinic acetylcholine receptor (nAChR) causing either direct activation or potentiation of currents elicited by low concentrations of nicotinic agonists, or, at higher concentrations, channel block. We examined mouse adult-type muscle nAChR activation by physostigmine and found that channel activation by physostigmine exhibits many characteristics common with channel activity elicited by nicotinic agonists. Single-channel conductance was indistinguishable, and mutants known to slow channel closing in the presence of nicotinic agonists had a similar effect in the presence of physostigmine. However, physostigmine is a very inefficacious agonist. The presence of physostigmine did not alter the effective opening rate for a subsaturating dosage of carbachol, suggesting that physostigmine does not interact with the nicotinic agonist binding site. Mutations to a residue (alphaLys125) previously identified as part of the putative binding site for physostigmine reduced the duration of openings elicited by physostigmine, but the effects were generally small and, in most cases, nonsignificant. At higher concentrations, physostigmine blocked channel activity. Block manifested as a reduction in the mean open time and the emergence of a closed state, with a mean duration of 3 to 7 ms. The properties of block were consistent with two equivalent blocking sites per receptor with microscopic binding and unbinding rate constants for physostigmine of 20 microM(-1) s(-1) and 450 s(-1) (K(D) = 23 microM). These observations indicate that physostigmine is able to activate muscle nAChR by interacting with a site other than the nicotinic ligand binding site.
Collapse
Affiliation(s)
- Julius Militante
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
29
|
Taly A, Changeux JP. Functional Organization and Conformational Dynamics of the Nicotinic Receptor. Ann N Y Acad Sci 2008; 1132:42-52. [DOI: 10.1196/annals.1405.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Jha A, Cadugan DJ, Purohit P, Auerbach A. Acetylcholine receptor gating at extracellular transmembrane domain interface: the cys-loop and M2-M3 linker. ACTA ACUST UNITED AC 2008; 130:547-58. [PMID: 18040057 PMCID: PMC2151658 DOI: 10.1085/jgp.200709856] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a “gate” in the transmembrane domain (TMD). We used Φ-value analysis to probe the relative timing of the gating motions of α-subunit residues located near the ECD–TMD interface. Mutation of four of the seven amino acids in the M2–M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (Keq) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Φ-value for the whole linker was ∼0.64. One interpretation of this result is that the gating motions of the M2–M3 linker are approximately synchronous with those of much of M2 (∼0.64), but occur after those of the transmitter binding site region (∼0.93) and loops 2 and 7 (∼0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed Keq by 2800-, 10-, and 18-fold, respectively, and with an average Φ-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (≤0.51 kcal mol−1). The M2–M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an ∼16-Å border and involve about a dozen residues.
Collapse
Affiliation(s)
- Archana Jha
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
31
|
Corradi J, Spitzmaul G, De Rosa MJ, Costabel M, Bouzat C. Role of pairwise interactions between M1 and M2 domains of the nicotinic receptor in channel gating. Biophys J 2006; 92:76-86. [PMID: 17028140 PMCID: PMC1697868 DOI: 10.1529/biophysj.106.088757] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adult form of the nicotinic acetylcholine receptor (AChR) consists of five subunits (alpha(2)betaepsilondelta), each having four transmembrane domains (M1-M4). The atomic model of the nicotinic acetylcholine receptor shows that the pore-lining M2 domains make no extensive contacts with the rest of the transmembrane domains. However, there are several sites where close appositions between segments occur. It has been suggested that the pair alphaM1-F15' and alphaM2-L11' is one of the potential interactions between segments. To determine experimentally if these residues are interacting and to explore if this interhelical interaction is essential for channel gating, we combined mutagenesis with single-channel kinetic analysis. Mutations in alphaM1-F15' lead to profound changes in the opening rate and slighter changes in the closing rate. Channel gating is impaired as the volume of the residue increases. Rate-equilibrium linear free-energy relationship analysis reveals an approximately 70% open-state-like environment for alphaM1-F15' at the transition state of the gating reaction, suggesting that it moves early during the gating process. Replacing the residue at alphaM1-15' by that at alphaM2-11' and vice versa profoundly alters gating, but the combination of the two mutations restores gating to near normal, indicating that alphaM1-F15' and alphaM2-L11' are interchangeable. Double-mutant cycle analysis shows that these residues are energetically coupled. Thus, the interaction between M1 and M2 plays a key role in channel gating.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas, Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
32
|
Purohit Y, Grosman C. Block of muscle nicotinic receptors by choline suggests that the activation and desensitization gates act as distinct molecular entities. ACTA ACUST UNITED AC 2006; 127:703-17. [PMID: 16735755 PMCID: PMC2151541 DOI: 10.1085/jgp.200509437] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ion channel block in muscle acetylcholine nicotinic receptors (AChRs) is an extensively reported phenomenon. Yet, the mechanisms underlying the interruption of ion flow or the interaction of the blocker with the channel's gates remain incompletely characterized. In this paper, we studied fast channel block by choline, a quaternary-ammonium cation that is also an endogenous weak agonist of this receptor, and a valuable tool in structure-function studies. Analysis of the single-channel current amplitude as a function of both choline concentration and voltage revealed that extracellular choline binds to the open-channel pore with millimolar apparent affinity (K(B) congruent with 12 mM in the presence of approximately 155 mM monovalent and 3.5 mM divalent, inorganic cations), and that it permeates the channel faster than acetylcholine. This, together with its relatively small size ( approximately 5.5 A along its longest axis), suggests that the pore-blocking choline binding site is the selectivity filter itself, and that current blockages simply reflect the longer-lived sojourns of choline at this site. Kinetic analysis of single-channel traces indicated that increasing occupancy of the pore-blocking site by choline (as judged from the reduction of the single-channel current amplitude) is accompanied by the lengthening of (apparent) open interval durations. Consideration of a number of possible mechanisms firmly suggests that this prolongation results from the local effect of choline interfering with the operation of the activation gate (closure of blocked receptors is slower than that of unblocked receptors by a factor of approximately 13), whereas closure of the desensitization gate remains unaffected. Thus, we suggest that these two gates act as distinct molecular entities. Also, the detailed understanding gained here on how choline distorts the observed open-time durations can be used to compensate for this artifact during activation assays. This correction is necessary if we are to understand how choline binds to and gates the AChR.
Collapse
Affiliation(s)
- Yamini Purohit
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | | |
Collapse
|
33
|
Shen XM, Deymeer F, Sine SM, Engel AG. Slow-channel mutation in acetylcholine receptor alphaM4 domain and its efficient knockdown. Ann Neurol 2006; 60:128-36. [PMID: 16685696 DOI: 10.1002/ana.20861] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To identify the genetic basis of a slow-channel myasthenic syndrome, characterize functional properties of the mutant receptor, and selectively silence the mutant allele. METHODS We performed nutation analysis, cloning, and patch-clamp analysis of the functional properties of the mutant receptor; screening for a small interfering RNA with check plasmid; and assessed of the efficacy of small interfering RNA at the messenger RNA, protein, and functional levels. RESULTS We traced the cause of a slow-channel myasthenic syndrome to a C418W mutation in the M4 domain of the acetylcholine receptor alpha subunit. The mutation is the first one to occur spontaneously in an M4 domain of the receptor, and it is positioned within a stripe of hydrophobic residues facing the lipid bilayer. Kinetic analysis shows that alphaC418W enhances the channel opening equilibrium constant 26-fold without altering agonist affinity. Using a check plasmid as a screening tool, we identified a small interfering RNA that markedly suppresses the mutant but not the wild-type allele at the messenger RNA, protein, and functional levels. INTERPRETATION alphaC418W occurring in humans causes a slow-channel syndrome by enhancing the relative stability of the channel open state. Efficient and selective knockdown of the mutant allele holds promise of therapeutic gene silencing.
Collapse
MESH Headings
- Adult
- Bungarotoxins/metabolism
- Bungarotoxins/pharmacology
- Cells, Cultured
- DNA Mutational Analysis
- Down-Regulation/genetics
- Gene Expression
- Humans
- Iodine Radioisotopes
- Kidney/cytology
- Male
- Mutagenesis, Site-Directed
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/physiopathology
- Patch-Clamp Techniques
- Plasmids
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering
- Radioligand Assay
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Xin-Ming Shen
- Neuromuscular Research Laboratory and Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
34
|
Yuan Z, Tie A, Tarnopolsky M, Bakovic M. Genomic organization, promoter activity, and expression of the human choline transporter-like protein 1. Physiol Genomics 2006; 26:76-90. [PMID: 16609143 DOI: 10.1152/physiolgenomics.00107.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Choline transporter-like (CTL) proteins of the CTL1 family are novel transmembrane proteins implicated in choline transport for phospholipid synthesis. In this study, we characterized the 5'-flanking region of the human (h)CTL1 gene and examined some of the possible mechanisms of its regulation, including promoter activity, splicing, and expression. The transcription start site of the hCTL1 gene was mapped by 5'-rapid amplification of cDNA ends (RACE), and the presence of two splice variants, hCTL1a and hCTL1b, was investigated using isoform-specific PCR and 3'-RACE. The hCTL1 promoter region of approximately 900 bp was isolated from MCF-7 human breast cancer cells. The promoter was TATA-less and driven by a long stretch of GC-rich sequence in accordance with widespread expression of hCTL1 at both mRNA and protein levels. Deletion analyses demonstrated that a very strong promoter is contained within 500 bp of the transcription start site, and more upstream regions did not increase its activity. The core promoter that conferred the minimal transcription is within the -188/+27-bp region, and its activity varied in human breast cancer and mouse skeletal muscle cells. Multiple motifs within the promoter regulatory region bound nuclear factors from both cultured cells and normal human skeletal muscle. The motifs within the three regions [S1 (-92/-61 bp), S2 (-174/-145 bp), and S3 (-289/-260 bp)] contained overlapping binding sites for hematopoietic transcription factors and ubiquitous transcription factors, in line with the expected gene function. Genomic analyses demonstrated a high conservation of hCTL1 and mouse CTL1 proximal promoters. Accordingly, mRNA profiles demonstrated that human splice variants were expressed ubiquitously, as demonstrated for the mouse transcripts; however, they differed from the profiles of rat CTL1 transcripts, which were more restricted to neurons and intestinal tissues. The shorter hCTL1b variant contained the cytosolic COOH-terminal motif L651KKR654 for endoplasmic reticulum retrieval/retention. This retention signal was conserved in hCTL1b and rat and mouse CTL1b and is typical for transmembrane proteins of type 1 topology.
Collapse
Affiliation(s)
- Zongfei Yuan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Akk G, Steinbach JH. Galantamine activates muscle-type nicotinic acetylcholine receptors without binding to the acetylcholine-binding site. J Neurosci 2005; 25:1992-2001. [PMID: 15728839 PMCID: PMC6726061 DOI: 10.1523/jneurosci.4985-04.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Galantamine (Reminyl; Janssen Pharmaceutica, Titusville, NJ) belongs to a class of acetylcholinesterase inhibitors approved for symptomatic treatment of Alzheimer's disease. The drug presumably acts by raising and prolonging the profile of acetylcholine (ACh) via an inhibitory effect on the esterase. However, there is also evidence demonstrating that galantamine can activate the nicotinic ACh receptor or modulate its activation by ACh. In this study, we have examined the ability of galantamine to directly activate the muscle-type nicotinic ACh receptor or to modulate receptor activation by selected nicotinic agonists. Studies of direct activation by galantamine demonstrated that this ligand is a low-efficacy agonist of the muscle-type ACh receptor. Point mutations in the M2-M3 linker (alphaS269I) and the M2 transmembrane domain (epsilonT264P) had similar effects on receptor activation by galantamine and nicotinic agonists, suggesting that the general features of receptor activation by galantamine are similar to that in the presence of ACh. Experiments performed in the simultaneous presence of galantamine and various nicotinic ligands showed that channel activation by the nicotinic ligands studied (ACh, carbachol, and choline) was not affected by the presence of galantamine at concentrations up to 100 microm. In addition, galantamine did not reduce the initial rate of binding for 125I-alpha-bungarotoxin. These results demonstrate that galantamine does not interfere with the occupation of the nicotinic agonist binding site by ACh, carbachol, or choline. We conclude that galantamine activates the muscle-type ACh receptor by interacting with a binding site that is distinct from the site for nicotinic agonists.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
36
|
Mitra A, Cymes GD, Auerbach A. Dynamics of the acetylcholine receptor pore at the gating transition state. Proc Natl Acad Sci U S A 2005; 102:15069-74. [PMID: 16217024 PMCID: PMC1257706 DOI: 10.1073/pnas.0505090102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are ion channels that alternatively adopt stable conformations that either allow (open) or prohibit (closed) ionic conduction. We probed the dynamics of pore (M2) residues at the diliganded gating transition state by using single-channel kinetic and rate-equilibrium free energy relationship (phi-value) analyses of mutant AChRs. The mutations were at the equatorial (9') position of the alpha, beta, and epsilon subunits (n = 15) or at sites between the equator and the extracellular domain in the alpha-subunit (n = 8). We also studied AChRs having only one of the two alpha-subunits mutated. The results indicate that the alpha-subunit, like the delta-subunit, has a region of flexure near the middle of M2, that the two alpha-subunits experience distinct energy barriers to gating at the equator (but not elsewhere), and that the collective subunit motions at the equator are asymmetric during the AChR gating isomerization.
Collapse
Affiliation(s)
- Ananya Mitra
- Center for Single Molecule Biophysics and Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
37
|
Mitra A, Tascione R, Auerbach A, Licht S. Plasticity of acetylcholine receptor gating motions via rate-energy relationships. Biophys J 2005; 89:3071-8. [PMID: 16113115 PMCID: PMC1366804 DOI: 10.1529/biophysj.105.068783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other protein conformational changes, ion channel gating requires the protein to achieve a high-energy transition-state structure. It is not known whether ion channel gating takes place on a broad energy landscape on which many alternative transition state structures are accessible, or on a narrow energy landscape where only a few transition-state structures are possible. To address this question, we measured how rate-equilibrium free energy relationships (REFERs) for di-liganded and unliganded acetylcholine receptor gating vary as a function of the gating equilibrium constant. A large slope for the REFER plot indicates an openlike transition state, whereas a small slope indicates a closedlike transition state. Due to this relationship between REFERs and transition-state structure, the sensitivity of the REFER slope to mutation-induced energetic perturbations allows estimation of the breadth of the energy landscape underlying gating. The relatively large sensitivity of di-liganded REFER slopes to energetic perturbations suggests that the motions underlying di-liganded gating take place on a broad, shallow energy landscape where many alternative transition-state structures are accessible.
Collapse
Affiliation(s)
- Ananya Mitra
- Center for Single Molecule Biophysics and the Department of Physiology and Biophysics, The State University of New York, Buffalo, NY, USA
| | | | | | | |
Collapse
|
38
|
Mitra A, Bailey TD, Auerbach AL. Structural dynamics of the M4 transmembrane segment during acetylcholine receptor gating. Structure 2005; 12:1909-18. [PMID: 15458639 DOI: 10.1016/j.str.2004.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 11/22/2022]
Abstract
The transition state structures that link the stable end states of allosteric proteins are largely unresolved. We used single-molecule kinetic analysis to probe the dynamics of the M4 transmembrane segments during the closed<==>open isomerization of the neuromuscular acetylcholine receptor ion channel (AChR). We measured the slopes (phi) of the free energy relationships for 87 mutants, which reveal the open- versus closed-like characters of the mutated residues at the transition state and hence the sequence and organization of gating molecular motions. phi was constant throughout the length of the alpha subunit M4 segment with an average value of 0.54, suggesting that this domain moves as a unit, approximately midway through the reaction. Analysis of a hybrid construct indicates that the two alpha subunits move synchronously. Between subunits, the sequence of M4 motions is alpha-epsilon-beta. The AChR ion channel emerges as a dynamic nanomachine with many moving parts.
Collapse
Affiliation(s)
- Ananya Mitra
- Center for Single-Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
39
|
Abstract
The activation of the mouse muscle-type nicotinic acetylcholine receptor was studied in the presence of carbachol, and in the simultaneous presence of carbachol and choline. The channel currents were recorded under steady-state conditions using cell-attached single-channel patch clamp, and during transient exposures to the agonists using a piezo-driven fast application system. The presence of choline resulted in inhibition of currents elicited by carbachol. The inhibitory effect of choline manifested as a reduction in the effective opening rate (increase in the mean intracluster closed time duration) in single-channel recordings. In the fast application experiments, the peak current amplitude was reduced and the current rise time increased when choline was co-applied with carbachol. The data were analysed according to a model in which receptor interactions with carbachol and choline resulted in three types of ligation: receptors occupied by two carbachol molecules, receptors occupied by two choline molecules, and receptors in which one agonist binding site was occupied by carbachol and the other by choline, i.e. heteroliganded receptors. All three agonist-bound receptor populations could open albeit with different efficacies. The affinity of the resting receptor to choline was estimated to be 1-2 mm, and heteroliganded receptors opened with an opening rate constant of approximately 3000 s(-1). The results of the analysis suggest that the presence of choline in the neuromuscular junction in vivo has little effect on the time course of synaptic currents. Nevertheless, the contribution of heteroliganded receptors should be taken into consideration when the receptor is exposed simultaneously to two or more agonists.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University, Campus Box 8054, 660 S. Euclid Ave, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
40
|
Chakrapani S, Auerbach A. A speed limit for conformational change of an allosteric membrane protein. Proc Natl Acad Sci U S A 2004; 102:87-92. [PMID: 15618401 PMCID: PMC544059 DOI: 10.1073/pnas.0406777102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular acetylcholine receptors are synaptic ion channels that open and close with rate constants of approximately equal to 48,000 s(-1) and approximately equal to 1,700 s(-1), respectively (in adult mouse, at 24 degrees C, -100 mV membrane potential). Perturbations of many different sites in the protein can change these rate constants, with those in the extracellular domain mainly affecting channel-opening and many of those in the membrane and intracellular domains mainly affecting channel-closing. We used single-channel recordings to measure the total open time per activation (tau(b)) elicited by a low concentration of the natural transmitter, acetylcholine. tau(b) increased in constructs with mutations that increased the gating equilibrium constant by either increasing the opening or decreasing the closing rate constant. However, tau(b) did not approach the same asymptote in fast-opening and slow-closing constructs. The maximum value for the slow closers was about twice that for the fast openers. One interpretation of this difference is that there is an upper limit to the channel-opening rate constant, which we estimate to be approximately 0.86 mus(-1). One possibility is that this limit is the rate of conformational change in the absence of an overall activation barrier and thus reflects the kinetic prefactor for the acetylcholine receptor opening isomerization.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Center for Single Molecule Biophysics and Department of Physiology and Biophysics, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
41
|
Chakrapani S, Bailey TD, Auerbach A. Gating dynamics of the acetylcholine receptor extracellular domain. ACTA ACUST UNITED AC 2004; 123:341-56. [PMID: 15051806 PMCID: PMC2217457 DOI: 10.1085/jgp.200309004] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the alpha-subunit of mouse muscle-type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a beta-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the beta-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the alpha-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Phi = 0.93) and is followed by the loop 2/loop 7 domain (Phi = 0.80). These movements precede that of the extracellular linker (Phi = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Center for Single-Molecule Biophysics and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
42
|
Tonini R, Renzi M, Eusebi F. Unliganded human mutant alpha 7 nicotinic receptors are modulated by Ca2+ and trace levels of Zn2+. Neuropharmacology 2004; 46:727-33. [PMID: 14996550 DOI: 10.1016/j.neuropharm.2003.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 09/16/2003] [Accepted: 10/31/2003] [Indexed: 11/30/2022]
Abstract
A large body of evidence indicates that ligand-gated channels may open spontaneously, exhibiting a basal activity in the absence of the neurotransmitter. In the present work, we were interested in studying the Ca(2+)-induced modulation of the basal channel activity of unliganded human L248Talpha7 receptors expressed in Xenopus oocytes. While the basal channel activity was blocked by either the nicotinic antagonist methyllycaconitine or the superfusion with a Ca(2+)-free medium, it was enhanced by increasing external Ca2+ concentrations. External Ca2+ significantly influenced the channel properties lengthening the channel duration and reducing the channel conductance, in a dose dependent manner. Furthermore, the basal channel activity in standard medium was blocked by N,N,N',N'-tetrakis-2-pyridylmethyl-ethylenediamine, the chelator of divalent cations with very high affinity for Zn2+, and was induced by Zn2+ when Ca2+ was present in the external medium. We conclude that basal activity of alpha7 mutant receptor-channels is caused by divalent cation contaminants present in the external medium, namely Zn2+; is positively modulated by the external Ca2+; and is inhibited when Ca2+ is absent from the medium. The patho-physiological consequences of these findings are discussed.
Collapse
Affiliation(s)
- Raffaella Tonini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza BEMM, Università di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | | | | |
Collapse
|
43
|
Abstract
Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse alpha-subunit 92-100) that links the beta4 and beta5 strands of the extracellular domain and that (in the alpha-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to alphaD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most alphaD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that alphaD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Phi = 0.93, which implies an open-like character at the transition state). alphaD97 mutations in the two alpha-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of alphaD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Center for Single-Molecule Biophysics and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
44
|
Engel AG, Ohno K, Shen XM, Sine SM. Congenital Myasthenic Syndromes: Multiple Molecular Targets at the Neuromuscular Junction. Ann N Y Acad Sci 2003; 998:138-60. [PMID: 14592871 DOI: 10.1196/annals.1254.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Congenital myasthenic syndromes (CMS) stem from defects in presynaptic, synaptic, and postsynaptic proteins. The presynaptic CMS are associated with defects that curtail the evoked release of acetylcholine (ACh) quanta or ACh resynthesis. Defects in ACh resynthesis have now been traced to mutations in choline acetyltransferase. A synaptic CMS is caused by mutations in the collagenic tail subunit (ColQ) of the endplate species of acetylcholinesterase that prevent the tail subunit from associating with catalytic subunits or from becoming inserted into the synaptic basal lamina. Most postsynaptic CMS are caused by mutations in subunits of the acetylcholine receptor (AChR) that alter the kinetic properties or decrease the expression of AChR. The kinetic mutations increase or decrease the synaptic response to ACh and result in slow- and fast-channel syndromes, respectively. Most low-expressor mutations reside in the AChR epsilon subunit and are partially compensated by residual expression of the fetal-type gamma subunit. In a subset of CMS patients, endplate AChR deficiency is caused by mutations in rapsyn, a molecule that plays a critical role in concentrating AChR in the postsynaptic membrane.
Collapse
Affiliation(s)
- Andrew G Engel
- Neuromuscular Disease Research Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
45
|
Akk G, Steinbach JH. Activation and block of mouse muscle-type nicotinic receptors by tetraethylammonium. J Physiol 2003; 551:155-68. [PMID: 12824448 PMCID: PMC2343137 DOI: 10.1113/jphysiol.2003.043885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have studied the activation and inhibition of the mouse muscle adult-type nicotinic acetylcholine receptor by tetraethylammonium (TEA) and related quaternary ammonium derivatives. The data show that TEA is a weak agonist of the nicotinic receptor. No single-channel clusters were observed at concentrations as high as 5 mM TEA or in the presence of a mutation which selectively increases the efficacy of the receptor. When coapplied with 1 mM carbamylcholine (CCh), TEA decreased the effective opening rate demonstrating that it acts as a competitive antagonist of CCh-mediated activation. Kinetic analysis of currents elicited by CCh and TEA allowed an estimate of receptor affinity for TEA of about 1 mM, while an upper limit of 10 s-1 could be set for the wild-type channel-opening rate constant for receptors activated by TEA alone. At millimolar concentrations, TEA inhibited nicotinic receptor currents by depressing the single-channel amplitude. The effect had an IC50 of 2-3 mM, depending on the conditions of the experiment, and resembled a standard open-channel block. However, the decrease in channel amplitudes was not accompanied by an increase in the mean burst duration, indicating that a linear open-channel blocking mechanism is not applicable. Upon studying block by other nicotinic receptor ligands it was found that block by CCh, tetramethylammonium and phenyltrimethylammonium can be accounted for by the sequential blocking mechanism while block in the presence of methyltriethylammonium, ethyltrimethylammonium or choline was inconsistent with such a mechanism. A mechanism in which receptors blocked by TEA can close would account for the experimental findings.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology, Washington University-St Louis, Campus Box 8054, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
46
|
Auerbach A. Life at the top: the transition state of AChR gating. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:re11. [PMID: 12824477 DOI: 10.1126/stke.2003.188.re11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most neurotransmitter receptors belong to either the pentameric nicotinoid receptor family or the tetrameric glutamatergic receptor family. The muscle nicotinic acetylcholine receptor (AChR), the prototype of the nicotinoid receptor family, gates by switching between a closed configuration (in which ion permeation is forbidden) and an open configuration (which allows ions to pass through). Rate-equilibrium linear free energy relationship analysis has allowed us to explore the transition state that links these two stable conformations. A series of point mutations were made to individual AChR residues, and the ensuing changes in the rate constants of channel opening and closing for the fully liganded receptor were determined. These experiments suggest that gating occurs approximately as a reversible, solitary conformational wave that propagates between the neurotransmitter binding site and the membrane domain, along the long axis of the receptor. A detailed knowledge of the gating mechanism can serve as a basis for understanding the shape of the postsynaptic ion current and for the differences in synaptic responses among different ligand-gated channels.
Collapse
Affiliation(s)
- Anthony Auerbach
- Center for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
47
|
Hatton CJ, Shelley C, Brydson M, Beeson D, Colquhoun D. Properties of the human muscle nicotinic receptor, and of the slow-channel myasthenic syndrome mutant epsilonL221F, inferred from maximum likelihood fits. J Physiol 2003; 547:729-60. [PMID: 12562900 PMCID: PMC2342726 DOI: 10.1113/jphysiol.2002.034173] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms that underlie activation of nicotinic receptors are investigated using human recombinant receptors, both wild type and receptors that contain the slow channel myasthenic syndrome mutation, epsilonL221F. The method uses the program HJCFIT, which fits the rate constants in a specified mechanism directly to a sequence of observed open and shut times by maximising the likelihood of the sequence with exact correction for missed events. A mechanism with two different binding sites was used. The rate constants that apply to the diliganded receptor (opening, shutting and total dissociation rates) were estimated robustly, being insensitive to the exact assumptions made during fitting, as expected from simulation studies. They are sufficient to predict the main physiological properties of the receptors. The epsilonL221F mutation causes an approximately 4-fold reduction in dissociation rate from diliganded receptors, and a smaller increase in opening rate and mean open time. These are sufficient to explain the approximately 6-fold slowing of decay of miniature synaptic currents seen in patients. The distinction between the two binding sites was less robust, the estimates of rate constants being dependent to some extent on assumptions, e.g. whether an extra short-lived shut state was included or whether the EC50 was constrained. The results suggest that the two binding sites differ by roughly 10-fold in the affinity of the shut receptor for ACh in the wild type, and that in the epsilonL221F mutation the lower affinity is increased so the sites become more similar.
Collapse
Affiliation(s)
- C J Hatton
- Department of Pharmacology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
48
|
Rush R, Kuryatov A, Nelson ME, Lindstrom J. First and second transmembrane segments of alpha3, alpha4, beta2, and beta4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine. Mol Pharmacol 2002; 61:1416-22. [PMID: 12021403 DOI: 10.1124/mol.61.6.1416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The first three transmembrane segments (M1-M3) of human nicotinic acetylcholine receptors (nAChRs) have been implicated in determining the efficacy of nicotine by studies of alpha3/alpha4 subunit chimeras. Nicotine has full efficacy on the alpha4beta2 nAChR and partial efficacy on the alpha3beta2 nAChR. Now, we have exchanged individually three amino acids between the alpha4 and the alpha3 subunits at positions 226(M1), 258(M2), and 262(M2). Also, similar exchanges were made in the beta2 and beta4 subunits at positions 224(M1), 226(M1), and 254(M2) (using alpha subunit numbering). Expression of these mutated nAChRs in Xenopus laevis oocytes showed that the mutated M1 amino acids were important in influencing the potency of ACh and nicotine. It is hypothesized that these M1 amino acids affect the stability between the resting and activated states of the nAChR. M2 amino acids altered the efficacy of nicotine, usually without altering its potency. When the residue located at position 258 in the M2 region of the alpha subunit was valine (as in the alpha3 subunit), the resulting nAChR exhibited partial efficacy for nicotine that was voltage-dependent. Therefore, we believe that these M2 amino acids contribute to the formation of a binding site for nicotine in the alpha3beta2 nAChR channel, which results in a low-affinity channel block, causing the lower efficacy of nicotine on this nAChR.
Collapse
Affiliation(s)
- Ray Rush
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | | | |
Collapse
|
49
|
Downie DL, Vicente-Agullo F, Campos-Caro A, Bushell TJ, Lieb WR, Franks NP. Determinants of the anesthetic sensitivity of neuronal nicotinic acetylcholine receptors. J Biol Chem 2002; 277:10367-73. [PMID: 11741933 DOI: 10.1074/jbc.m107847200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some neurotransmitter-gated ion channels are very much more sensitive to general anesthetics than others, even when they are genetically and structurally related. The most striking example of this is the extreme sensitivity of heteromeric neuronal nicotinic acetylcholine receptors to inhalational general anesthetics compared with the marked insensitivity of the closely related homomeric neuronal nicotinic receptors. Here we investigate the role of the alpha subunit in determining the anesthetic sensitivity of these receptors by using alpha(3)/alpha(7) chimeric subunits that are able to form functional homomeric receptors. By comparing the sensitivities of a number of chimeras to the inhalational agent halothane we show that the short (13 amino acids) putative extracellular loop connecting the second and third transmembrane segments is a critical determinant of anesthetic sensitivity. In addition, using site-directed mutagenesis, we show that two particular amino acids in this loop play a dominant role. When mutations are made in this loop, there is a good correlation between increasing anesthetic sensitivity and decreasing acetylcholine sensitivity. We conclude that this extracellular loop probably does not participate directly in anesthetic binding, but rather determines receptor sensitivity indirectly by playing a critical role in transducing anesthetic binding into an effect on channel gating.
Collapse
Affiliation(s)
- David Lindsay Downie
- Biophysics Group, The Blackett Laboratory, Imperial College of Science, Technology & Medicine, London SW7 2BW, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Engel AE. 73(rd) ENMC International Workshop: congenital myasthenic syndromes. 22-23 October, 1999, Naarden, The Netherlands. Neuromuscul Disord 2001; 11:315-21. [PMID: 11297949 DOI: 10.1016/s0960-8966(00)00189-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A E Engel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|