1
|
Lu P, Cheng Y, Xue L, Ren X, Xu X, Chen C, Cao L, Li J, Wu Q, Sun S, Hou J, Jia W, Wang W, Ma Y, Jiang Z, Li C, Qi X, Huang N, Han T. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 2024:S0092-8674(24)01197-8. [PMID: 39488207 DOI: 10.1016/j.cell.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (S)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.
Collapse
Affiliation(s)
- Panrui Lu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yalong Cheng
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Xue
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xintong Ren
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilong Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chenglong Chen
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junjie Hou
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Jia
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Ma
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaodi Jiang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xiangbing Qi
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Ting Han
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
2
|
Merigliano C, Ryu T, See CD, Caridi CP, Li X, Butova NL, Reynolds TW, Deng C, Chenoweth DM, Capelson M, Chiolo I. "Off-pore" nucleoporins relocalize heterochromatic breaks through phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570729. [PMID: 39071440 PMCID: PMC11275802 DOI: 10.1101/2023.12.07.570729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
Collapse
Affiliation(s)
- Chiara Merigliano
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Taehyun Ryu
- Harvard Medical School, Department of Genetics, Boston, MA, USA
| | - Colby D. See
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Christopher P. Caridi
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Xiao Li
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Nadejda L. Butova
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Trevor W. Reynolds
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Changfeng Deng
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - David M. Chenoweth
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - Maya Capelson
- San Diego State University, Department of Biology, San Diego, CA, USA
| | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| |
Collapse
|
3
|
Layish B, Goli R, Flick H, Huang SW, Zhang RZ, Kvaratskhelia M, Kane M. Virus specificity and nucleoporin requirements for MX2 activity are affected by GTPase function and capsid-CypA interactions. PLoS Pathog 2024; 20:e1011830. [PMID: 38512975 PMCID: PMC10986937 DOI: 10.1371/journal.ppat.1011830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.
Collapse
Affiliation(s)
- Bailey Layish
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ram Goli
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Haley Flick
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert Z. Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Chintala K, Yandrapally S, Faiz W, Kispotta CR, Sarkar S, Mishra K, Banerjee S. The nuclear pore protein NUP98 impedes LTR-driven basal gene expression of HIV-1, viral propagation, and infectivity. Front Immunol 2024; 15:1330738. [PMID: 38449868 PMCID: PMC10914986 DOI: 10.3389/fimmu.2024.1330738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Nucleoporins (NUPs) are cellular effectors of human immunodeficiency virus-1 (HIV-1) replication that support nucleocytoplasmic trafficking of viral components. However, these also non-canonically function as positive effectors, promoting proviral DNA integration into the host genome and viral gene transcription, or as negative effectors by associating with HIV-1 restriction factors, such as MX2, inhibiting the replication of HIV-1. Here, we investigated the regulatory role of NUP98 on HIV-1 as we observed a lowering of its endogenous levels upon HIV-1 infection in CD4+ T cells. Using complementary experiments in NUP98 overexpression and knockdown backgrounds, we deciphered that NUP98 negatively affected HIV-1 long terminal repeat (LTR) promoter activity and lowered released virus levels. The negative effect on promoter activity was independent of HIV-1 Tat, suggesting that NUP98 prevents the basal viral gene expression. ChIP-qPCR showed NUP98 to be associated with HIV-1 LTR, with the negative regulatory element (NRE) of HIV-1 LTR playing a dominant role in NUP98-mediated lowering of viral gene transcription. Truncated mutants of NUP98 showed that the attenuation of HIV-1 LTR-driven transcription is primarily contributed by its N-terminal region. Interestingly, the virus generated from the producer cells transiently expressing NUP98 showed lower infectivity, while the virus generated from NUP98 knockdown CD4+ T cells showed higher infectivity as assayed in TZM-bl cells, corroborating the anti-HIV-1 properties of NUP98. Collectively, we show a new non-canonical function of a nucleoporin adding to the list of moonlighting host factors regulating viral infections. Downregulation of NUP98 in a host cell upon HIV-1 infection supports the concept of evolutionary conflicts between viruses and host antiviral factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
5
|
Layish B, Goli R, Flick H, Huang SW, Zhang RZ, Kvaratskhelia M, Kane M. Virus specificity and nucleoporin requirements for MX2 activity are affected by GTPase function and capsid-CypA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567336. [PMID: 38014352 PMCID: PMC10680775 DOI: 10.1101/2023.11.16.567336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.
Collapse
Affiliation(s)
- Bailey Layish
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ram Goli
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Haley Flick
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert Z Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
6
|
Akey CW, Echeverria I, Ouch C, Nudelman I, Shi Y, Wang J, Chait BT, Sali A, Fernandez-Martinez J, Rout MP. Implications of a multiscale structure of the yeast nuclear pore complex. Mol Cell 2023; 83:3283-3302.e5. [PMID: 37738963 PMCID: PMC10630966 DOI: 10.1016/j.molcel.2023.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.
Collapse
Affiliation(s)
- Christopher W Akey
- Department of Pharmacology, Physiology and Biophysics, Boston University, Chobanian and Avedisian School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christna Ouch
- Department of Pharmacology, Physiology and Biophysics, Boston University, Chobanian and Avedisian School of Medicine, 700 Albany Street, Boston, MA 02118, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | - Ilona Nudelman
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Wolfram M, Tiwari MK, Hassenkam T, Li M, Bjerrum MJ, Meldal M. Cascade autohydrolysis of Alzheimer's Aβ peptides. Chem Sci 2023; 14:4986-4996. [PMID: 37206405 PMCID: PMC10189894 DOI: 10.1039/d2sc06668h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Protein/peptide self-assembly into amyloid structures associates with major neurodegenerative disorders such as Alzheimer's disease (AD). Soluble assemblies (oligomers) of the Aβ peptide and their aggregates are perceived as neurotoxic species in AD. While screening for synthetic cleavage agents that could break down such aberrant assemblies through hydrolysis, we observed that the assemblies of Aβ oligopeptides, containing the nucleation sequence Aβ14-24 (H14QKLVFFAEDV24), could act as cleavage agents by themselves. Autohydrolysis showed a common fragment fingerprint among various mutated Aβ14-24 oligopeptides, Aβ12-25-Gly and Aβ1-28, and full-length Aβ1-40/42, under physiologically relevant conditions. Primary endoproteolytic autocleavage at the Gln15-Lys16, Lys16-Leu17 and Phe19-Phe20 positions was followed by subsequent exopeptidase self-processing of the fragments. Control experiments with homologous d-amino acid enantiomers Aβ12-25-Gly and Aβ16-25-Gly showed the same autocleavage pattern under similar reaction conditions. The autohydrolytic cascade reaction (ACR) was resilient to a broad range of conditions (20-37 °C, 10-150 μM peptide concentration at pH 7.0-7.8). Evidently, assemblies of the primary autocleavage fragments acted as structural/compositional templates (autocatalysts) for self-propagating autohydrolytic processing at the Aβ16-21 nucleation site, showing the potential for cross-catalytic seeding of the ACR in larger Aβ isoforms (Aβ1-28 and Aβ1-40/42). This result may shed new light on Aβ behaviour in solution and might be useful in the development of intervention strategies to decompose or inhibit neurotoxic Aβ assemblies in AD.
Collapse
Affiliation(s)
- Martin Wolfram
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark +45 27202355 +45 21308299
| | - Manish K Tiwari
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark +45 27202355 +45 21308299
| | - Tue Hassenkam
- Globe Institute, Section for Geobiology, Copenhagen University Øster Voldgade 5-7 1350 Copenhagen K Denmark
| | - Ming Li
- Technical University of Denmark, The Danish Hydrocarbon Research and Technology Centre Elektrovej, 2800 Kongens Lyngby Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark +45 27202355 +45 21308299
| | - Morten Meldal
- Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark +45 27202355 +45 21308299
| |
Collapse
|
8
|
Nag N, Tripathi T. Tau-FG-nucleoporin98 interaction and impaired nucleocytoplasmic transport in Alzheimer's disease. Brief Funct Genomics 2022; 22:161-167. [PMID: 35923096 DOI: 10.1093/bfgp/elac022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
An emerging pathophysiology associated with the neurodegenerative Alzheimer's disease (AD) is the impairment of nucleocytoplasmic transport (NCT). The impairment can originate from damage to the nuclear pore complex (NPC) or other factors involved in NCT. The phenylalanine-glycine nucleoporins (FG-Nups) form a crucial component of the NPC, which is central to NCT. Recent discoveries have highlighted that the neuropathological protein tau is involved in direct interactions with the FG-Nups and impairment of the NCT process. Targeting such interactions may lead to the identification of novel interaction inhibitors and offer new therapeutic alternatives for the treatment of AD. This review highlights recent findings associated with impaired NCT in AD and the interaction between tau and the FG-Nups.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India
| |
Collapse
|
9
|
PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem Soc Trans 2022; 50:813-824. [PMID: 35343572 PMCID: PMC9162469 DOI: 10.1042/bst20211186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.
Collapse
|
10
|
Pulianmackal AJ, Kanakousaki K, Flegel K, Grushko OG, Gourley E, Rozich E, Buttitta LA. Misregulation of Nucleoporins 98 and 96 leads to defects in protein synthesis that promote hallmarks of tumorigenesis. Dis Model Mech 2022; 15:dmm049234. [PMID: 35107131 PMCID: PMC8938402 DOI: 10.1242/dmm.049234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/15/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleoporin 98KD (Nup98) is a promiscuous translocation partner in hematological malignancies. Most disease models of Nup98 translocations involve ectopic expression of the fusion protein under study, leaving the endogenous Nup98 loci unperturbed. Overlooked in these approaches is the loss of one copy of normal Nup98 in addition to the loss of Nup96 - a second Nucleoporin encoded within the same mRNA and reading frame as Nup98 - in translocations. Nup98 and Nup96 are also mutated in a number of other cancers, suggesting that their disruption is not limited to blood cancers. We found that reducing Nup98-96 function in Drosophila melanogaster (in which the Nup98-96 shared mRNA and reading frame is conserved) de-regulates the cell cycle. We found evidence of overproliferation in tissues with reduced Nup98-96, counteracted by elevated apoptosis and aberrant signaling associated with chronic wounding. Reducing Nup98-96 function led to defects in protein synthesis that triggered JNK signaling and contributed to hallmarks of tumorigenesis when apoptosis was inhibited. We suggest that partial loss of Nup98-96 function in translocations could de-regulate protein synthesis, leading to signaling that cooperates with other mutations to promote tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura A. Buttitta
- Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Fang Y, Gu Y. Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms. Front Immunol 2021; 12:771065. [PMID: 34938291 PMCID: PMC8685260 DOI: 10.3389/fimmu.2021.771065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes.
Collapse
Affiliation(s)
- Yiling Fang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States.,Innovative Genomics Institute, University of California, Berkeley, CA, United States
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States.,Innovative Genomics Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
12
|
The Retinoblastoma Tumor Suppressor Is Required for the NUP98-HOXA9-Induced Aberrant Nuclear Envelope Phenotype. Cells 2021; 10:cells10112851. [PMID: 34831074 PMCID: PMC8616146 DOI: 10.3390/cells10112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal translocations involving the nucleoporin NUP98 gene are recurrently identified in leukemia; yet, the cellular defects accompanying NUP98 fusion proteins are poorly characterized. NUP98 fusions cause changes in nuclear and nuclear envelope (NE) organization, in particular, in the nuclear lamina and the lamina associated polypeptide 2α (LAP2α), a regulator of the tumor suppressor retinoblastoma protein (RB). We demonstrate that, for NUP98-HOXA9 (NHA9), the best-studied NUP98 fusion protein, its effect(s) on nuclear architecture largely depend(s) on RB. Morphological alterations caused by the expression of NHA9 are largely diminished in the absence of RB, both in human cells expressing the human papillomavirus 16 E7 protein and in mouse embryonic fibroblasts lacking RB. We further show that NHA9 expression associates with distinct histone modification. Moreover, the pattern of trimethylation of histone H3 lysine-27 is affected by NHA9, again in an RB-dependent manner. Our results pinpoint to an unexpected interplay between NUP98 fusion proteins and RB, which may contribute to leukemogenesis.
Collapse
|
13
|
Evolution and diversification of the nuclear pore complex. Biochem Soc Trans 2021; 49:1601-1619. [PMID: 34282823 PMCID: PMC8421043 DOI: 10.1042/bst20200570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
Collapse
|
14
|
Bludau I, Frank M, Dörig C, Cai Y, Heusel M, Rosenberger G, Picotti P, Collins BC, Röst H, Aebersold R. Systematic detection of functional proteoform groups from bottom-up proteomic datasets. Nat Commun 2021; 12:3810. [PMID: 34155216 PMCID: PMC8217233 DOI: 10.1038/s41467-021-24030-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Max Frank
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christian Dörig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yujia Cai
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Division of Infection Medicine (BMC), Department of Clinical Sciences, Lund University, Lund, Sweden
| | - George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Columbia University, New York, NY, USA
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Fu W, Huang A, Cheng H, Luo Y, Gao L, Tang G, Yang J, Wang J, Ni X. First case report of a NUP98-PMX1 rearrangement in de novo acute myeloid leukemia and literature review. BMC Med Genomics 2021; 14:130. [PMID: 34001105 PMCID: PMC8130325 DOI: 10.1186/s12920-021-00979-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleoporin 98 (NUP98)-paired related homeobox 1 (PMX1) fusion gene, which results from t(1;11)(q23;p15), is rare in patients with acute myeloid leukemia (AML). Currently, only two cases of chronic myeloid leukemia in the accelerated phase or blast crisis and three cases of therapy-related AML have been reported. Here, we first report a patient with de novo AML carrying the NUP98-PMX1 fusion gene. CASE PRESENTATION A 49-year-old man diagnosed with AML presented the karyotype 46,XY,t(1;11)(q23;p15)[20] in bone marrow (BM) cells. Fluorescence in situ hybridization analysis using dual-color break-apart probes showed the typical signal pattern. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested the presence of the NUP98-PMX1 fusion transcript. The patient received idarubicin and cytarabine as induction chemotherapy. After 3 weeks, the BM aspirate showed complete remission, and the RT-PCR result for the NUP98-PMX1 fusion gene was negative. Subsequently, the patient received three cycles of high-dose Ara-c as consolidation chemotherapy, after which he underwent partially matched (human leukocyte antigen-DP locus mismatch) unrelated allogeneic hematopoietic stem cell transplantation (HSCT). The follow-up period ended on September 30, 2020 (6 months after HSCT), and the patient exhibited no recurrence or transplantation-related complications. CONCLUSION This is the first report of a patient with de novo AML carrying the NUP98-PMX1 fusion gene. The reported case may contribute to a more comprehensive profile of the NUP98-PMX1 rearrangement, but mechanistic studies are warranted to fully understand the role of this fusion gene in leukemia pathogenesis.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Hui Cheng
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Yanrong Luo
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
16
|
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020; 136:2275-2289. [PMID: 32766874 PMCID: PMC7702474 DOI: 10.1182/blood.2020007093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation. Based on data in both experimental models and patient samples, NUP98 fusion oncoprotein-driven leukemogenesis is mediated by changes in chromatin structure and gene expression. Multiple cofactors associate with NUP98 fusion oncoproteins to mediate transcriptional changes possibly via phase separation, in a manner likely dependent on the fusion partner. NUP98 gene fusions co-occur with a set of additional mutations, including FLT3-internal tandem duplication and other events contributing to increased proliferation. To improve the currently dire outcomes for patients with NUP98-rearranged malignancies, therapeutic strategies have been considered that target transcriptional and epigenetic machinery, cooperating alterations, and signaling or cell-cycle pathways. With the development of more faithful experimental systems and continued study, we anticipate great strides in our understanding of the molecular mechanisms and therapeutic vulnerabilities at play in NUP98-rearranged models. Taken together, these studies should lead to improved clinical outcomes for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
17
|
Zheng L, Rui C, Zhang H, Chen J, Jia X, Xiao Y. Sonic hedgehog signaling in epithelial tissue development. Regen Med Res 2019; 7:3. [PMID: 31898580 PMCID: PMC6941452 DOI: 10.1051/rmr/190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
The Sonic hedgehog (SHH) signaling pathway is essential for embryonic development and tissue regeneration. The dysfunction of SHH pathway is involved in a variety of diseases, including cancer, birth defects, and other diseases. Here we reviewed recent studies on main molecules involved in the SHH signaling pathway, specifically focused on their function in epithelial tissue and appendages development, including epidermis, touch dome, hair, sebaceous gland, mammary gland, tooth, nail, gastric epithelium, and intestinal epithelium. The advance in understanding the SHH signaling pathway will give us more clues to the mechanisms of tissue repair and regeneration, as well as the development of new treatment for diseases related to dysregulation of SHH signaling pathway.
Collapse
Affiliation(s)
- Lu Zheng
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Chen Rui
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Hao Zhang
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Jing Chen
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Xiuzhi Jia
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Ying Xiao
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| |
Collapse
|
18
|
Abstract
During my postdoc interview in June of 1998, I asked Günter why he was moving more towards the nucleus in his latest studies. He said, "Well Joe, that's where everything starts." By the end of the interview, I accepted the postdoc. He had a way of making everything sound so cool. Günter's progression was natural, since the endoplasmic reticulum and the nucleus are the only organelles that share the same membrane. The nuclear envelope extends into a double membrane system with nuclear pore complexes embedded in the pore membrane openings. Even while writing this review, I remember Günter stressing; it is the nuclear pore complex. Just saying nuclear pore doesn't encompass the full magnitude of its significance. The nuclear pore complex is one of the largest collection of proteins that fit together for an overall function: transport. This review will cover the Blobel lab contributions in the quest for the blueprint of the nuclear pore complex from isolation of the nuclear envelope and nuclear lamin to the ring structures.
Collapse
|
19
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
20
|
Kane M, Rebensburg SV, Takata MA, Zang TM, Yamashita M, Kvaratskhelia M, Bieniasz PD. Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. eLife 2018; 7:e35738. [PMID: 30084827 PMCID: PMC6101944 DOI: 10.7554/elife.35738] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
HIV-1 accesses the nuclear DNA of interphase cells via a poorly defined process involving functional interactions between the capsid protein (CA) and nucleoporins (Nups). Here, we show that HIV-1 CA can bind multiple Nups, and that both natural and manipulated variation in Nup levels impacts HIV-1 infection in a manner that is strikingly dependent on cell-type, cell-cycle, and cyclophilin A (CypA). We also show that Nups mediate the function of the antiviral protein MX2, and that MX2 can variably inhibit non-viral NLS function. Remarkably, both enhancing and inhibiting effects of cyclophilin A and MX2 on various HIV-1 CA mutants could be induced or abolished by manipulating levels of the Nup93 subcomplex, the Nup62 subcomplex, NUP88, NUP214, RANBP2, or NUP153. Our findings suggest that several Nup-dependent 'pathways' are variably exploited by HIV-1 to target host DNA in a cell-type, cell-cycle, CypA and CA-sequence dependent manner, and are differentially inhibited by MX2.
Collapse
Affiliation(s)
- Melissa Kane
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
| | - Stephanie V Rebensburg
- Division of Infectious DiseasesUniversity of Colorado School of MedicineAuroraUnited States
| | - Matthew A Takata
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
| | - Trinity M Zang
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | | | - Mamuka Kvaratskhelia
- Division of Infectious DiseasesUniversity of Colorado School of MedicineAuroraUnited States
| | - Paul D Bieniasz
- Laboratory of RetrovirologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
21
|
Kehrer J, Kuss C, Andres-Pons A, Reustle A, Dahan N, Devos D, Kudryashev M, Beck M, Mair GR, Frischknecht F. Nuclear Pore Complex Components in the Malaria Parasite Plasmodium berghei. Sci Rep 2018; 8:11249. [PMID: 30050042 PMCID: PMC6062611 DOI: 10.1038/s41598-018-29590-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Claudia Kuss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Amparo Andres-Pons
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anna Reustle
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Noa Dahan
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Damien Devos
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Centro Andaluz de Biología del Desarrollo CABD, Universidad Pablo de Olavide-CSIC, Carretera de Utrera, 41013, Sevilla, Spain
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Str. 17, 60438, Frankfurt am Main, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany. .,Iowa State University, Biomedical Sciences, College of Veterinary Medicine, 1800 Christensen Drive, Ames, IA, 50011, USA.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Teimer R, Kosinski J, von Appen A, Beck M, Hurt E. A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nat Commun 2017; 8:1107. [PMID: 29062044 PMCID: PMC5653651 DOI: 10.1038/s41467-017-01160-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Nucleocytoplasmic transport occurs through nuclear pore complexes (NPCs), which are formed from multiple copies of ~30 different nucleoporins (Nups) and inserted into the double nuclear membrane. Many of these Nups are organized into subcomplexes, of which the Y-shaped Nup84 complex is the major constituent of the nuclear and cytoplasmic rings. The Nup82–Nup159–Nsp1 complex is another module that, however, is only assembled into the cytoplasmic ring. By means of crosslinking mass spectrometry, biochemical reconstitution, and molecular modeling, we identified a short linear motif in the unstructured N-terminal region of Chaetomium thermophilum Nup145C, a subunit of the Y-complex, that is sufficient to recruit the Nup82 complex, but only in its assembled state. This finding points to a more general mechanism that short linear motifs in structural Nups can act as sensors to cooperatively connect pre-assembled NPC modules, thereby facilitating the formation and regulation of the higher-order NPC assembly. The Nup82–Nup159–Nsp1 complex, which plays a key role in mRNA export, is recruited late during the process of nuclear pore complex (NPC) assembly. Here the authors combine crosslinking mass spectrometry, biochemical reconstitution and molecular modeling to gain insights into the mechanism of Nup82 recruitment to the NPC.
Collapse
Affiliation(s)
- Roman Teimer
- Biochemistry Center of Heidelberg University (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Alexander von Appen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Ed Hurt
- Biochemistry Center of Heidelberg University (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Fu G, Tu LC, Zilman A, Musser SM. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017; 6:e28716. [PMID: 28949296 PMCID: PMC5693140 DOI: 10.7554/elife.28716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.
Collapse
Affiliation(s)
- Guo Fu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Anton Zilman
- Department of PhysicsUniversity of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| |
Collapse
|
24
|
Hayama R, Rout MP, Fernandez-Martinez J. The nuclear pore complex core scaffold and permeability barrier: variations of a common theme. Curr Opin Cell Biol 2017. [PMID: 28624666 DOI: 10.1016/j.ceb.2017.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of the nuclear pore complex (NPC) is a fascinating endeavor, as it not only implies uncovering the 'engineering marvel' of its architecture and function, but also provides a key window into a significant evolutionary event: the origin of the eukaryotic cell. The combined efforts of many groups in the field, with the help of novel methodologies and new model organisms, are facilitating a much deeper understanding of this complex assembly. Here we cover recent advances on the characterization of the structure of the NPC scaffold and of the biophysical mechanisms that define the permeability barrier. We identify common architectural and functional principles between those two NPC compartments, expanding the previous protocoatomer hypothesis to suggest possible evolutionary origins for the FG nucleoporins and the NPC permeability barrier.
Collapse
Affiliation(s)
- Ryo Hayama
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
25
|
Fahrenkrog B, Martinelli V, Nilles N, Fruhmann G, Chatel G, Juge S, Sauder U, Di Giacomo D, Mecucci C, Schwaller J. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype. PLoS One 2016; 11:e0152321. [PMID: 27031510 PMCID: PMC4816316 DOI: 10.1371/journal.pone.0152321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/11/2016] [Indexed: 01/15/2023] Open
Abstract
Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Cycle
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Homeodomain Proteins/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/analysis
- Membrane Proteins/metabolism
- Mice
- Mitosis
- Nuclear Envelope/genetics
- Nuclear Envelope/metabolism
- Nuclear Envelope/pathology
- Nuclear Pore Complex Proteins/analysis
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Translocation, Genetic
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
- * E-mail: (BF); (JS)
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nadine Nilles
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Gernot Fruhmann
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
| | - Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Sabine Juge
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
| | - Ursula Sauder
- Biozentrum, Microscopy Center, University of Basel, Basel, Switzerland
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Jürg Schwaller
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
- * E-mail: (BF); (JS)
| |
Collapse
|
26
|
Interactome Mapping Reveals the Evolutionary History of the Nuclear Pore Complex. PLoS Biol 2016; 14:e1002365. [PMID: 26891179 PMCID: PMC4758718 DOI: 10.1371/journal.pbio.1002365] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/23/2015] [Indexed: 02/08/2023] Open
Abstract
The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes. Dissection of the nuclear pore complex—an ancient eukaryotic molecular machine—exposes a fundamental divergence in structure and function between yeast and humans versus trypanosomes and provides insights into the evolution of the nucleus. Much of the core architecture of the eukaryotic cell was established over one billion years ago. Significantly, many cellular systems possess lineage-specific features, and architectural and compositional variation of complexes and pathways that are likely keyed to specific functional adaptations. The nuclear pore complex (NPC) contributes to many processes, including nucleocytoplasmic transport, interactions with the nuclear lamina, and mRNA processing. We exploited trypanosome parasites to investigate NPC evolution and conservation at the level of protein–protein interactions and composition. We unambiguously assigned NPC components to specific substructures and found that the NPC structural scaffold is generally conserved, albeit with lineage-specific elements. However, there is significant variation in pore membrane proteins and an absence of critical components involved in mRNA export in fungi and animals (opisthokonts). This is reflected by the completely symmetric localization of all trypanosome nucleoporins, with the exception of the nuclear basket. This architecture is highly distinct from opisthokonts. We also identify features that suggest a Ran-dependent system for mRNA export in trypanosomes, a system that may presage distinct mechanisms of protein and mRNA transport in animals and fungi. Our study highlights that shared composition of macromolecular assemblies does not necessarily equate to shared architecture. Identification of lineage-specific features within the trypanosome NPC significantly advances our understanding of mechanisms of nuclear transport, gene expression, and evolution of the nucleus.
Collapse
|
27
|
Formation of Nup98-containing nuclear bodies in HeLa sublines is linked to genomic rearrangements affecting chromosome 11. Chromosoma 2015; 125:789-805. [PMID: 26685999 DOI: 10.1007/s00412-015-0567-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/06/2015] [Accepted: 12/10/2015] [Indexed: 01/23/2023]
Abstract
Nup98 is an important component of the nuclear pore complex (NPC) and also a rare but recurrent target for chromosomal translocation in leukaemogenesis. Nup98 contains multiple cohesive Gly-Leu-Phe-Gly (GLFG) repeats that are critical notably for the formation of intranuclear GLFG bodies. Previous studies have reported the existence of GLFG bodies in cells overexpressing exogenous Nup98 or in a HeLa subline (HeLa-C) expressing an unusual elevated amount of endogenous Nup98. Here, we have analysed the presence of Nup98-containing bodies in several human cell lines. We found that HEp-2, another HeLa subline, contains GLFG bodies that are distinct from those identified in HeLa-C. Rapid amplification of cDNA ends (RACE) revealed that HEp-2 cells express additional truncated forms of Nup98 fused to a non-coding region of chromosome 11q22.1. Cytogenetic analyses using FISH and array-CGH further revealed chromosomal rearrangements that were distinct from those observed in leukaemic cells. Indeed, HEp-2 cells feature a massive amplification of juxtaposed NUP98 and 11q22.1 loci on a chromosome marker derived from chromosome 3. Unexpectedly, minor co-amplifications of NUP98 and 11q22.1 loci were also observed in other HeLa sublines, but on rearranged chromosomes 11. Altogether, this study reveals that distinct genomic rearrangements affecting NUP98 are associated with the formation of GLFG bodies in specific HeLa sublines.
Collapse
|
28
|
Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat Struct Mol Biol 2015; 22:774-81. [DOI: 10.1038/nsmb.3084] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/10/2015] [Indexed: 11/08/2022]
|
29
|
Asakawa H, Mori C, Ohtsuki C, Iwamoto M, Hiraoka Y, Haraguchi T. Uncleavable Nup98-Nup96 is functional in the fission yeast Schizosaccharomyces pombe. FEBS Open Bio 2015; 5:508-14. [PMID: 26137436 PMCID: PMC4483485 DOI: 10.1016/j.fob.2015.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/18/2015] [Accepted: 06/07/2015] [Indexed: 11/19/2022] Open
Abstract
Essential nucleoporins Nup98 and Nup96 are coded by a single open reading frame, and produced by autopeptidase cleavage. The autocleavage site of Nup98-Nup96 is highly conserved in a wide range of organisms. To understand the importance of autocleavage, we examined a mutant that produces the Nup98-Nup96 joint molecule as a sole protein product of the nup189 (+) gene in the fission yeast Schizosaccharomyces pombe. Cells expressing only the joint molecule were found to be viable. This result indicates that autocleavage of Nup98-Nup96 is dispensable for cell growth, at least under normal culture conditions in S. pombe.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Chizuru Ohtsuki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Corresponding authors at: Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan. Tel.: +81 668794620; fax: +81 668794622 (Y. Hiraoka), Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan. Tel.: +81 789692241; fax: +81 789692249 (T. Haraguchi).
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Corresponding authors at: Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan. Tel.: +81 668794620; fax: +81 668794622 (Y. Hiraoka), Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan. Tel.: +81 789692241; fax: +81 789692249 (T. Haraguchi).
| |
Collapse
|
30
|
Morchoisne-Bolhy S, Geoffroy MC, Bouhlel IB, Alves A, Audugé N, Baudin X, Van Bortle K, Powers MA, Doye V. Intranuclear dynamics of the Nup107-160 complex. Mol Biol Cell 2015; 26:2343-56. [PMID: 25904327 PMCID: PMC4462950 DOI: 10.1091/mbc.e15-02-0060] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
The Nup107-160 nuclear pore subcomplex (Y-complex) and the chromatin-binding nucleoporin Elys dynamically colocalize with Nup98 and the export factor CRM1 in nuclear GLFG bodies present in HeLa sublines. Thus, in addition to its structural role at the NPC and its mitotic functions, the Y-complex may also act inside the nucleus during interphase. Nup98 is a glycine-leucine-phenylalanine-glycine (GLFG) repeat–containing nucleoporin that, in addition to nuclear transport, contributes to multiple aspects of gene regulation. Previous studies revealed its dynamic localization within intranuclear structures known as GLFG bodies. Here we show that the mammalian Nup107-160 complex (Y-complex), a major scaffold module of the nuclear pore, together with its partner Elys, colocalizes with Nup98 in GLFG bodies. The frequency and size of GLFG bodies vary among HeLa sublines, and we find that an increased level of Nup98 is associated with the presence of bodies. Recruitment of the Y-complex and Elys into GLFG bodies requires the C-terminal domain of Nup98. During cell division, Y-Nup–containing GLFG bodies are disassembled in mitotic prophase, significantly ahead of nuclear pore disassembly. FRAP studies revealed that, unlike at nuclear pores, the Y-complex shuttles into and out of GLFG bodies. Finally, we show that within the nucleoplasm, a fraction of Nup107, a key component of the Y-complex, displays reduced mobility, suggesting interaction with other nuclear components. Together our data uncover a previously neglected intranuclear pool of the Y-complex that may underscore a yet-uncharacterized function of these nucleoporins inside the nucleus, even in cells that contain no detectable GLFG bodies.
Collapse
Affiliation(s)
| | - Marie-Claude Geoffroy
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Imène B Bouhlel
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Annabelle Alves
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud, 91405 Orsay, France
| | - Nicolas Audugé
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Xavier Baudin
- ImagoSeine Imaging Facility, Institut Jacques Monod, 75205 Paris, France
| | - Kevin Van Bortle
- Department of Cell Biology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | - Maureen A Powers
- Department of Cell Biology and Biochemistry, Cell and Developmental Biology Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | - Valérie Doye
- Institut Jacques Monod, CNRS UMR7592-Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
31
|
Tailhades J, Patil NA, Hossain MA, Wade JD. Intramolecular acyl transfer in peptide and protein ligation and synthesis. J Pept Sci 2015; 21:139-47. [DOI: 10.1002/psc.2749] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Julien Tailhades
- The Florey Institute of Neuroscience and Mental Health; University of Melbourne; Victoria 3010 Australia
| | - Nitin A. Patil
- The Florey Institute of Neuroscience and Mental Health; University of Melbourne; Victoria 3010 Australia
- School of Chemistry; University of Melbourne; Victoria 3010 Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health; University of Melbourne; Victoria 3010 Australia
- School of Chemistry; University of Melbourne; Victoria 3010 Australia
| | - John D. Wade
- The Florey Institute of Neuroscience and Mental Health; University of Melbourne; Victoria 3010 Australia
- School of Chemistry; University of Melbourne; Victoria 3010 Australia
| |
Collapse
|
32
|
Schmidt HB, Görlich D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 2015; 4. [PMID: 25562883 PMCID: PMC4283134 DOI: 10.7554/elife.04251] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/20/2014] [Indexed: 01/28/2023] Open
Abstract
Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic 'FG particles'. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTR⋅cargo complexes, while cargo shielding and increased NTR⋅cargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore.
Collapse
Affiliation(s)
- Hermann Broder Schmidt
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
33
|
Liao Y, Pei J, Cheng H, Grishin NV. An ancient autoproteolytic domain found in GAIN, ZU5 and Nucleoporin98. J Mol Biol 2014; 426:3935-3945. [PMID: 25451782 DOI: 10.1016/j.jmb.2014.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 10/12/2014] [Indexed: 01/16/2023]
Abstract
A large family of G protein-coupled receptors (GPCRs) involved in cell adhesion has a characteristic autoproteolysis motif of HLT/S known as the GPCR proteolysis site (GPS). GPS is also shared by polycystic kidney disease proteins and it precedes the first transmembrane segment in both families. Recent structural studies have elucidated the GPS to be part of a larger domain named GPCR autoproteolysis inducing (GAIN) domain. Here we demonstrate the remote homology relationships of GAIN domain to ZU5 domain and Nucleoporin98 (Nup98) C-terminal domain by structural and sequence analysis. Sequence homology searches were performed to extend ZU5-like domains to bacteria and archaea, as well as new eukaryotic families. We found that the consecutive ZU5-UPA-death domain domain organization is commonly used in human cytoplasmic proteins with ZU5 domains, including CARD8 (caspase recruitment domain-containing protein 8) and NLRP1 (NACHT, LRR and PYD domain-containing protein 1) from the FIIND (Function to Find) family. Another divergent family of extracellular ZU5-like domains was identified in cartilage intermediate layer proteins and FAM171 proteins. Current diverse families of GAIN domain subdomain B, ZU5 and Nup98 C-terminal domain likely evolved from an ancient autoproteolytic domain with an HFS motif. The autoproteolytic site was kept intact in Nup98, p53-induced protein with a death domain and UNC5C-like, deteriorated in many ZU5 domains and changed in GAIN and FIIND. Deletion of the strand after the cleavage site was observed in zonula occluden-1 and some Nup98 homologs. These findings link several autoproteolytic domains, extend our understanding of GAIN domain origination in adhesion GPCRs and provide insights into the evolution of an ancient autoproteolytic domain.
Collapse
Affiliation(s)
- Yuxing Liao
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Hua Cheng
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Nick V Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA.
| |
Collapse
|
34
|
Buller AR, Freeman MF, Schildbach JF, Townsend CA. Exploring the role of conformational heterogeneity in cis-autoproteolytic activation of ThnT. Biochemistry 2014; 53:4273-81. [PMID: 24933323 PMCID: PMC4095933 DOI: 10.1021/bi500385d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In
the past decade, there have been major achievements in understanding
the relationship between enzyme catalysis and protein structural plasticity.
In autoprocessing systems, however, there is a sparsity of direct
evidence of the role of conformational dynamics, which are complicated
by their intrinsic chemical reactivity. ThnT is an autoproteolytically
activated enzyme involved in the biosynthesis of the β-lactam
antibiotic thienamycin. Conservative mutation of ThnT results in multiple
conformational states that can be observed via X-ray crystallography,
establishing ThnT as a representative and revealing system for studing
how conformational dynamics control autoactivation at a molecular
level. Removal of the nucleophile by mutation to Ala disrupts the
population of a reactive state and causes widespread structural changes
from a conformation that promotes autoproteolysis to one associated
with substrate catalysis. Finer probing of the active site polysterism
was achieved by EtHg derivatization of the nucleophile, which indicates
the active site and a neighboring loop have coupled dynamics. Disruption
of these interactions by mutagenesis precludes the ability to observe
a reactive state through X-ray crystallography, and application of
this insight to other autoproteolytically activated enzymes offers
an explanation for the widespread crystallization of inactive states.
We suggest that the N → O(S) acyl shift in cis-autoproteolysis might occur through a si-face attack,
thereby unifying the fundamental chemistry of these enzymes through
a common mechanism.
Collapse
Affiliation(s)
- Andrew R Buller
- Department of Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
35
|
Abstract
Nuclear pore complexes (NPCs) are the sole gateways between the nucleus and the cytoplasm of eukaryotic cells and they mediate all macromolecular trafficking between these cellular compartments. Nucleocytoplasmic transport is highly selective and precisely regulated and as such an important aspect of normal cellular function. Defects in this process or in its machinery have been linked to various human diseases, including cancer. Nucleoporins, which are about 30 proteins that built up NPCs, are critical players in nucleocytoplasmic transport and have also been shown to be key players in numerous other cellular processes, such as cell cycle control and gene expression regulation. This review will focus on the three nucleoporins Nup98, Nup214, and Nup358. Common to them is their significance in nucleocytoplasmic transport, their multiple other functions, and being targets for chromosomal translocations that lead to haematopoietic malignancies, in particular acute myeloid leukaemia. The underlying molecular mechanisms of nucleoporin-associated leukaemias are only poorly understood but share some characteristics and are distinguished by their poor prognosis and therapy outcome.
Collapse
|
36
|
Light WH, Freaney J, Sood V, Thompson A, D'Urso A, Horvath CM, Brickner JH. A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 2013; 11:e1001524. [PMID: 23555195 PMCID: PMC3608542 DOI: 10.1371/journal.pbio.1001524] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/14/2013] [Indexed: 11/29/2022] Open
Abstract
In yeast and humans, interaction of a nuclear pore protein with promoters alters chromatin structure and allows RNA polymerase II to bind, poising them for faster reactivation for several generations. The interaction of nuclear pore proteins (Nups) with active genes can promote their transcription. In yeast, some inducible genes interact with the nuclear pore complex both when active and for several generations after being repressed, a phenomenon called epigenetic transcriptional memory. This interaction promotes future reactivation and requires Nup100, a homologue of human Nup98. A similar phenomenon occurs in human cells; for at least four generations after treatment with interferon gamma (IFN-γ), many IFN-γ-inducible genes are induced more rapidly and more strongly than in cells that have not previously been exposed to IFN-γ. In both yeast and human cells, the recently expressed promoters of genes with memory exhibit persistent dimethylation of histone H3 lysine 4 (H3K4me2) and physically interact with Nups and a poised form of RNA polymerase II. However, in human cells, unlike yeast, these interactions occur in the nucleoplasm. In human cells transiently depleted of Nup98 or yeast cells lacking Nup100, transcriptional memory is lost; RNA polymerase II does not remain associated with promoters, H3K4me2 is lost, and the rate of transcriptional reactivation is reduced. These results suggest that Nup100/Nup98 binding to recently expressed promoters plays a conserved role in promoting epigenetic transcriptional memory. Cells respond to changes in nutrients or signaling molecules by altering the expression of genes. The rate at which genes are turned on is not uniform; some genes are induced rapidly and others are induced slowly. In brewer's yeast, previous experience can enhance the rate at which genes are turned on again, a phenomenon called “transcriptional memory.” After repression, such genes physically interact with the nuclear pore complex, leading to altered chromatin structure and binding of a poised RNA polymerase II. Human genes that are induced by interferon gamma show a similar behavior. In both cases, the phenomenon persists through several cell divisions, suggesting that it is epigenetically inherited. Here, we find that yeast and human cells utilize a similar molecular mechanism to prime genes for reactivation. In both species, the nuclear pore protein Nup100/Nup98 binds to the promoters of genes that exhibit transcriptional memory. This leads to an altered chromatin state in the promoter and binding of RNA polymerase II, poising genes for future expression. We conclude that both unicellular and multicellular organisms use nuclear pore proteins in a novel way to alter transcription based on previous experiences.
Collapse
Affiliation(s)
- William H. Light
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Jonathan Freaney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Abbey Thompson
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Jason H. Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Certain FG nucleoporins are believed to associate by cohesive interactions within the NPC. FRAP is used to compare cohesive interactions of different vertebrate FG domains. Although some human repeat domain properties may differ from those of their yeast orthologue, GLFG repeats are most cohesive and support a major contribution of Nup98 to the permeability barrier of the NPC. The nuclear pore complex (NPC), assembled from ∼30 proteins termed nucleoporins (Nups), mediates selective nucleocytoplasmic trafficking. A subset of nucleoporins bear a domain with multiple phenylalanine–glycine (FG) motifs. As binding sites for transport receptors, FG Nups are critical in translocation through the NPC. Certain FG Nups are believed to associate via low-affinity, cohesive interactions to form the permeability barrier of the pore, although the form and composition of this functional barrier are debated. We used green fluorescent protein–Nup98/HoxA9 constructs with various numbers of repeats and also substituted FG domains from other nucleoporins for the Nup98 domain to directly compare cohesive interactions in live cells by fluorescence recovery after photobleaching (FRAP). We find that cohesion is a function of both number and type of FG repeats. Glycine–leucine–FG (GLFG) repeat domains are the most cohesive. FG domains from several human nucleoporins showed no interactions in this assay; however, Nup214, with numerous VFG motifs, displayed measurable cohesion by FRAP. The cohesive nature of a human nucleoporin did not necessarily correlate with that of its yeast orthologue. The Nup98 GLFG domain also functions in pore targeting through binding to Nup93, positioning the GLFG domain in the center of the NPC and supporting a role for this nucleoporin in the permeability barrier.
Collapse
Affiliation(s)
- Songli Xu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
38
|
Singer S, Zhao R, Barsotti AM, Ouwehand A, Fazollahi M, Coutavas E, Breuhahn K, Neumann O, Longerich T, Pusterla T, Powers MA, Giles KM, Leedman PJ, Hess J, Grunwald D, Bussemaker HJ, Singer RH, Schirmacher P, Prives C. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes. Mol Cell 2012; 48:799-810. [PMID: 23102701 PMCID: PMC3525737 DOI: 10.1016/j.molcel.2012.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/06/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022]
Abstract
The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins.
Collapse
MESH Headings
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- 3' Untranslated Regions
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Binding Sites
- Camptothecin/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cellular Senescence
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Exosomes/metabolism
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Knockout
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- Time Factors
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Stephan Singer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruiying Zhao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anthony M. Barsotti
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Anette Ouwehand
- Department of Bionanoscience, Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Mina Fazollahi
- Department of Physics, Columbia University, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 100
| | - Elias Coutavas
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Pusterla
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maureen A. Powers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keith M. Giles
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth 6000, Australia
| | - Peter J. Leedman
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth 6000, Australia
| | - Jochen Hess
- Junior Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - David Grunwald
- Department of Bionanoscience, Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, Netherlands
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 100
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
39
|
Buller AR, Labonte JW, Freeman MF, Wright NT, Schildbach JF, Townsend CA. Autoproteolytic activation of ThnT results in structural reorganization necessary for substrate binding and catalysis. J Mol Biol 2012; 422:508-18. [PMID: 22706025 PMCID: PMC3428426 DOI: 10.1016/j.jmb.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 11/01/2022]
Abstract
cis-Autoproteolysis is a post-translational modification necessary for the function of ThnT, an enzyme involved in the biosynthesis of the β-lactam antibiotic thienamycin. This modification generates an N-terminal threonine nucleophile that is used to hydrolyze the pantetheinyl moiety of its natural substrate. We determined the crystal structure of autoactivated ThnT to 1.8Å through X-ray crystallography. Comparison to a mutationally inactivated precursor structure revealed several large conformational rearrangements near the active site. To probe the relevance of these transitions, we designed a pantetheine-like chloromethyl ketone inactivator and co-crystallized it with ThnT. Although this class of inhibitor has been in use for several decades, the mode of inactivation had not been determined for an enzyme that uses an N-terminal nucleophile. The co-crystal structure revealed the chloromethyl ketone bound to the N-terminal nucleophile of ThnT through an ether linkage, and analysis suggests inactivation through a direct displacement mechanism. More importantly, this inactivated complex shows that three regions of ThnT that are critical to the formation of the substrate binding pocket undergo rearrangement upon autoproteolysis. Comparison of ThnT with other autoproteolytic enzymes of disparate evolutionary lineage revealed a high degree of similarity within the proenzyme active site, reflecting shared chemical constraints. However, after autoproteolysis, many enzymes, like ThnT, are observed to rearrange in order to accommodate their specific substrate. We propose that this is a general phenomenon, whereby autoprocessing systems with shared chemistry may possess similar structural features that dissipate upon rearrangement into a mature state.
Collapse
Affiliation(s)
- Andrew R. Buller
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason W. Labonte
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael F. Freeman
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nathan T. Wright
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joel F. Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Craig A. Townsend
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
40
|
Stelter P, Kunze R, Radwan M, Thomson E, Thierbach K, Thoms M, Hurt E. Monitoring Spatiotemporal Biogenesis of Macromolecular Assemblies by Pulse-Chase Epitope Labeling. Mol Cell 2012; 47:788-96. [DOI: 10.1016/j.molcel.2012.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/30/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
41
|
Abstract
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.
Collapse
|
42
|
Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswami C, Bertin J, Bertin JJ, Gough PJ. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 2012; 287:25030-7. [PMID: 22665479 DOI: 10.1074/jbc.m112.378323] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nucleotide-binding domain leucine-rich repeat proteins (NLRs) play a key role in immunity and disease through their ability to modulate inflammation in response to pathogen-derived and endogenous danger signals. Here, we identify the requirements for activation of NLRP1, an NLR protein associated with a number of human pathologies, including vitiligo, rheumatoid arthritis, and Crohn disease. We demonstrate that NLRP1 activity is dependent upon ASC, which associates with the C-terminal CARD domain of NLRP1. In addition, we show that NLRP1 activity is dependent upon autolytic cleavage at Ser(1213) within the FIIND. Importantly, this post translational event is dependent upon the highly conserved distal residue His(1186). A disease-associated single nucleotide polymorphism near His(1186) and a naturally occurring mRNA splice variant lacking exon 14 differentially affect this autolytic processing and subsequent NLRP1 activity. These results describe key molecular pathways that regulate NLRP1 activity and offer insight on how small sequence variations in NLR genes may influence human disease pathogenesis.
Collapse
Affiliation(s)
- Joshua N Finger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Stuwe T, von Borzyskowski LS, Davenport AM, Hoelz A. Molecular basis for the anchoring of proto-oncoprotein Nup98 to the cytoplasmic face of the nuclear pore complex. J Mol Biol 2012; 419:330-46. [PMID: 22480613 DOI: 10.1016/j.jmb.2012.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/22/2012] [Accepted: 03/26/2012] [Indexed: 01/09/2023]
Abstract
The cytoplasmic filament nucleoporins of the nuclear pore complex (NPC) are critically involved in nuclear export and remodeling of mRNA ribonucleoprotein particles and are associated with various human malignancies. Here, we report the crystal structure of the Nup98 C-terminal autoproteolytic domain, frequently missing from leukemogenic forms of the protein, in complex with the N-terminal domain of Nup82 and the C-terminal tail fragment of Nup159. The Nup82 β propeller serves as a noncooperative binding platform for both binding partners. Interaction of Nup98 with Nup82 occurs through a reciprocal exchange of loop structures. Strikingly, the same Nup98 groove promiscuously interacts with Nup82 and Nup96 in a mutually excusive fashion. Simultaneous disruption of both Nup82 interactions in yeast causes severe defects in mRNA export, while the severing of a single interaction is tolerated. Thus, the cytoplasmic filament network of the NPC is robust, consistent with its essential function in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Tobias Stuwe
- California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
44
|
Insights into cis-autoproteolysis reveal a reactive state formed through conformational rearrangement. Proc Natl Acad Sci U S A 2012; 109:2308-13. [PMID: 22308359 DOI: 10.1073/pnas.1113633109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ThnT is a pantetheine hydrolase from the DmpA/OAT superfamily involved in the biosynthesis of the β-lactam antibiotic thienamycin. We performed a structural and mechanistic investigation into the cis-autoproteolytic activation of ThnT, a process that has not previously been subject to analysis within this superfamily of enzymes. Removal of the γ-methyl of the threonine nucleophile resulted in a rate deceleration that we attribute to a reduction in the population of the reactive rotamer. This phenomenon is broadly applicable and constitutes a rationale for the evolutionary selection of threonine nucleophiles in autoproteolytic systems. Conservative substitution of the nucleophile (T282C) allowed determination of a 1.6-Å proenzyme ThnT crystal structure, which revealed a level of structural flexibility not previously observed within an autoprocessing active site. We assigned the major conformer as a nonreactive state that is unable to populate a reactive rotamer. Our analysis shows the system is activated by a structural rearrangement that places the scissile amide into an oxyanion hole and forces the nucleophilic residue into a forbidden region of Ramachandran space. We propose that conformational strain may drive autoprocessing through the destabilization of nonproductive states. Comparison of our data with previous reports uncovered evidence that many inactivated structures display nonreactive conformations. For penicillin and cephalosporin acylases, this discrepancy between structure and function may be resolved by invoking the presence of a hidden conformational state, similar to that reported here for ThnT.
Collapse
|
45
|
Bock FJ, Peintner L, Tanzer M, Manzl C, Villunger A. P53-induced protein with a death domain (PIDD): master of puppets? Oncogene 2012; 31:4733-9. [PMID: 22266869 DOI: 10.1038/onc.2011.639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
P53-induced protein with a death domain (PIDD) has been described as primary p53 target gene, induced upon DNA damage. More than 10 years after its discovery, its physiological role in the DNA damage response remains enigmatic, as it seems to be able to execute life-death decisions in vitro, yet genetic ablation in mice failed to reveal an obvious phenotype. Nonetheless, evidence is accumulating that it contributes to the fine-tuning of the DNA-damage response by orchestrating critical processes such as caspase activation or nuclear factor κB translocation and can also exert additional nuclear functions, for example, the modulation of translesion synthesis. In this review, we aim to integrate these observations and propose possible unexplored functions of PIDD.
Collapse
Affiliation(s)
- F J Bock
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
46
|
The death domain-containing protein Unc5CL is a novel MyD88-independent activator of the pro-inflammatory IRAK signaling cascade. Cell Death Differ 2011; 19:722-31. [PMID: 22158417 DOI: 10.1038/cdd.2011.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The family of death domain (DD)-containing proteins are involved in many cellular processes, including apoptosis, inflammation and development. One of these molecules, the adapter protein MyD88, is a key factor in innate and adaptive immunity that integrates signals from the Toll-like receptor/interleukin (IL)-1 receptor (TLR/IL-1R) superfamily by providing an activation platform for IL-1R-associated kinases (IRAKs). Here we show that the DD-containing protein Unc5CL (also known as ZUD) is involved in a novel MyD88-independent mode of IRAK signaling that culminates in the activation of the transcription factor nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase. Unc5CL required IRAK1, IRAK4 and TNF receptor-associated factor 6 but not MyD88 for its ability to activate these pathways. Interestingly, the protein is constitutively autoproteolytically processed, and is anchored by its N-terminus specifically to the apical face of mucosal epithelial cells. Transcriptional profiling identified mainly chemokines, including IL-8, CXCL1 and CCL20 as Unc5CL target genes. Its prominent expression in mucosal tissues, as well as its ability to induce a pro-inflammatory program in cells, suggests that Unc5CL is a factor in epithelial inflammation and immunity as well as a candidate gene involved in mucosal diseases such as inflammatory bowel disease.
Collapse
|
47
|
Janssens S, Tinel A. The PIDDosome, DNA-damage-induced apoptosis and beyond. Cell Death Differ 2011; 19:13-20. [PMID: 22095286 DOI: 10.1038/cdd.2011.162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P53-induced protein with a death domain (PIDD) was cloned as a death domain (DD)-containing protein whose expression is induced by p53. It was later described as the core of a molecular platform-activating caspase-2, named the PIDDosome. These first results pointed towards a role for PIDD in apoptosis, in response to DNA damage. Identification of new PIDDosome complexes involved in DNA repair and nuclear factor-κB signaling challenged this early concept. PIDD functions are growing as new complexes and new interaction partners are being discovered, and as additional functions are being revealed. A fascinating feature of PIDD lies within its complex and tight regulation mechanisms, which allow the molecule to fine-tune its different functions: from transcriptional regulation to the expression of different isoforms, and from the interaction with regulatory proteins to an ingenious post-translational cleavage mechanism generating various active fragments with specific functions. Further studies still need to be carried out to provide answers to many unresolved issues and to reconcile conflicting results. This review aims at providing an overview of the current PIDD knowledge status.
Collapse
Affiliation(s)
- S Janssens
- GROUP-ID Consortium, Department of Pulmonary Medicine, University Hospital of Ghent, Ghent, Belgium.
| | | |
Collapse
|
48
|
Domain topology of nucleoporin Nup98 within the nuclear pore complex. J Struct Biol 2011; 177:81-9. [PMID: 22100335 DOI: 10.1016/j.jsb.2011.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/22/2022]
Abstract
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.
Collapse
|
49
|
Abstract
In eukaryotic cells, the spatial segregation of replication and transcription in the nucleus and translation in the cytoplasm imposes the requirement of transporting thousands of macromolecules between these two compartments. Nuclear pore complexes (NPCs) are the sole gateways that facilitate this macromolecular exchange across the nuclear envelope with the help of soluble transport receptors. Whereas the mobile transport machinery is reasonably well understood at the atomic level, a commensurate structural characterization of the NPC has only begun in the past few years. Here, we describe the recent progress toward the elucidation of the atomic structure of the NPC, highlight emerging concepts of its underlying architecture, and discuss key outstanding questions and challenges. The applied structure determination as well as the described design principles of the NPC may serve as paradigms for other macromolecular assemblies.
Collapse
Affiliation(s)
- André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
50
|
Abstract
Structural chromosomal rearrangements of the Nucleoporin 98 gene (NUP98), primarily balanced translocations and inversions, are associated with a wide array of hematopoietic malignancies. NUP98 is known to be fused to at least 28 different partner genes in patients with hematopoietic malignancies, including acute myeloid leukemia, chronic myeloid leukemia in blast crisis, myelodysplastic syndrome, acute lymphoblastic leukemia, and bilineage/biphenotypic leukemia. NUP98 gene fusions typically encode a fusion protein that retains the amino terminus of NUP98; in this context, it is important to note that several recent studies have demonstrated that the amino-terminal portion of NUP98 exhibits transcription activation potential. Approximately half of the NUP98 fusion partners encode homeodomain proteins, and at least 5 NUP98 fusions involve known histone-modifying genes. Several of the NUP98 fusions, including NUP98-homeobox (HOX)A9, NUP98-HOXD13, and NUP98-JARID1A, have been used to generate animal models of both lymphoid and myeloid malignancy; these models typically up-regulate HOXA cluster genes, including HOXA5, HOXA7, HOXA9, and HOXA10. In addition, several of the NUP98 fusion proteins have been shown to inhibit differentiation of hematopoietic precursors and to increase self-renewal of hematopoietic stem or progenitor cells, providing a potential mechanism for malignant transformation.
Collapse
|