1
|
Campello L, Brooks MJ, Fadl BR, Choi HS, Pal S, Swaroop A. Transcriptional Heterogeneity and Differential Response of Rod Photoreceptor Pathway Uncovered by Single-Cell RNA Sequencing of the Aging Mouse Retina. Aging Cell 2025:e70001. [PMID: 39954235 DOI: 10.1111/acel.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/27/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Visual function deteriorates throughout the natural course of aging. Age-related structural and functional adaptations are observed in the retina, the light-sensitive neuronal tissue of the eye where visual perception begins. Molecular mechanisms underlying retinal aging are still poorly understood, highlighting the need to identify biomarkers for better prognosis and alleviation of aging-associated vision impairment. Here, we investigate dynamics of transcriptional dysregulation in the retina and identify affected pathways within distinct retinal cell types. Using an optimized protocol for single-cell RNA sequencing of mouse retinas at 3, 12, 18, and 24 months, we detect a progressive increase in the number of differentially expressed genes across all retinal cell types. The extent and direction of expression changes varies, with photoreceptor, bipolar, and Müller cells showing the maximum number of differentially expressed genes at all age groups. Furthermore, our analyses uncover transcriptionally distinct, heterogeneous subpopulations of rod photoreceptors and bipolar cells, distributed across distinct areas of the retina. Our findings provide a plausible molecular explanation for enhanced susceptibility of rod cells to aging and correlate with the observed loss of scotopic sensitivity in elderly individuals.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin R Fadl
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyo Sub Choi
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Soumitra Pal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Famiglietti EV. Mammalian Retinal Bipolar Cells: Morphological Identification and Systematic Classification in Rabbit Retina with a Comparative Perspective. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613998. [PMID: 39345639 PMCID: PMC11429971 DOI: 10.1101/2024.09.19.613998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Retinal bipolar cells (BCs) convey visual signals from photoreceptors to more than 50 types of rabbit retinal ganglion cells (Famiglietti, 2020). More than 40 years ago, 10-11 types of bipolar cell were recognized in rabbit and cat retinas (Famiglietti, 1981). Twenty years later 10 were identified in mouse, rat, and monkey, while recent molecular genetic studies indicate that there are 15 types of bipolar cell in mouse retina (Shekhar et al., 2016). The present detailed study of more than 800 bipolar cells in ten Golgi-impregnated rabbit retinas indicates that there are 14-16 types of cone bipolar cell and one type of rod bipolar cell in rabbit retina. These have been carefully analyzed in terms of dendritic and axonal morphology, and axon terminal stratification with respect to fiducial starburst amacrine cells. In fortuitous proximity, several types of bipolar cell can be related to identified ganglion cells by stratification and by contacts suggestive of synaptic connection. These results are compared with other studies of rabbit bipolar cells. Homologies with bipolar cells of mouse and monkey are considered in functional terms.
Collapse
|
3
|
Pan F, Massey SC. Dye coupling of horizontal cells in the primate retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1173706. [PMID: 38983052 PMCID: PMC11182241 DOI: 10.3389/fopht.2023.1173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/03/2023] [Indexed: 07/11/2024]
Abstract
In the monkey retina, there are two distinct types of axon-bearing horizontal cells, known as H1 and H2 horizontal cells (HCs). In this study, cell bodies were prelabled using 4',6-diamidino-2-phenylindole (DAPI), and both H1 and H2 horizontal cells were filled with Neurobiotin™ to reveal their coupling, cellular details, and photoreceptor contacts. The confocal analysis of H1 and H2 HCs was used to assess the colocalization of terminal dendrites with glutamate receptors at cone pedicles. After filling H1 somas, a large coupled mosaic of H1 cells was labeled. The dendritic terminals of H1 cells contacted red/green cone pedicles, with the occasional sparse contact with blue cone pedicles observed. The H2 cells were also dye-coupled. They had larger dendritic fields and lower densities. The dendritic terminals of H2 cells preferentially contacted blue cone pedicles, but additional contacts with nearly all cones within the dendritic field were still observed. The red/green cones constitute 99% of the input to H1 HCs, whereas H2 HCs receive a more balanced input, which is composed of 58% red/green cones and 42% blue cones. These observations confirm those made in earlier studies on primate horizontal cells by Dacey and Goodchild in 1996. Both H1 and H2 HCs were axon-bearing. H1 axon terminals (H1 ATs) were independently coupled and contacted rod spherules exclusively. In contrast, the H2 axon terminals contacted cones, with some preference for blue cone pedicles, as reported by Chan and Grünert in 1998. The primate retina contains three independently coupled HC networks in the outer plexiform layer (OPL), identified as H1 and H2 somatic dendrites, and H1 ATs. At each cone pedicle, the colocalization of both H1 and H2 dendritic tips with GluA4 subunits close to the cone synaptic ribbons indicates that glutamate signaling from the cones to H1 and H2 horizontal cells is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
Collapse
Affiliation(s)
- Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Sladek AL, Thoreson WB. Using optogenetics to dissect rod inputs to OFF ganglion cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1146785. [PMID: 37426783 PMCID: PMC10327572 DOI: 10.3389/fopht.2023.1146785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Light responses of rod photoreceptor cells traverse the retina through three pathways. The primary pathway involves synapses from rods to ON-type rod bipolar cells with OFF signals reaching retinal ganglion cells (RGCs) via sign-inverting glycinergic synapses. Secondly, rod signals can enter cones through gap junctions. Finally, rods can synapse directly onto cone OFF bipolar cells. Methods To analyze these pathways, we obtained whole cell recordings from OFF-type α RGCs in mouse retinas while expressing channelrhodopsin-2 in rods and/or cones. Results Optogenetic stimulation of rods or cones evoked large fast currents in OFF RGCs. Blocking the primary rod pathway with L-AP4 and/or strychnine reduced rod-driven optogenetic currents in OFF RGCs by ~1/3. Blocking kainate receptors of OFF cone bipolar cells suppressed both rod- and cone-driven optogenetic currents in OFF RGCs. Inhibiting gap junctions between rods and cones with mecloflenamic acid or quinpirole reduced rod-driven responses in OFF RGCs. Eliminating the exocytotic Ca2+ sensor, synaptotagmin 1 (Syt1), from cones abolished cone-driven optogenetic responses in RGCs. Rod-driven currents were not significantly reduced after isolating the secondary pathway by eliminating Syt1 and synaptotagmin 7 (Syt7) to block synaptic release from rods. Eliminating Syt1 from both rods and cones abolished responses to optogenetic stimulation. In Cx36 KO retinas lacking rod-cone gap junctions, optogenetic activation of rods evoked small and slow responses in most OFF RGCs suggesting rod signals reached them through an indirect pathway. Two OFF cells showed faster responses consistent with more direct input from cone OFF bipolar cells. Discussion These data show that the secondary rod pathway supports robust inputs into OFF α RGCs and suggests the tertiary pathway recruits both direct and indirect inputs.
Collapse
Affiliation(s)
- Asia L. Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
6
|
Frederiksen R, Fain GL, Sampath AP. A hyperpolarizing rod bipolar cell in the sea lamprey, Petromyzon marinus. J Exp Biol 2022; 225:jeb243949. [PMID: 35319772 PMCID: PMC10658897 DOI: 10.1242/jeb.243949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
Retinal bipolar cells receive direct input from rod and cone photoreceptors and send axons into the inner retina, synapsing onto amacrine and ganglion cells. Bipolar cell responses can be either depolarizing (ON) or hyperpolarizing (OFF); in lower vertebrates, bipolar cells receive mixed rod and cone input, whereas in mammals, input is mostly segregated into 14 classes of cone ON and OFF cells and a single rod ON bipolar cell. We show that lamprey, like mammals, have rod bipolar cells with little or no cone input, but these cells are OFF rather than ON. They have a characteristic morphology and a spectral sensitivity nearly indistinguishable from that of rod photoreceptors. In background light known to saturate rods, rod bipolar cells are also saturated and cannot respond to increment flashes. Our results suggest that early vertebrate progenitors of both agnathans and gnathostomes may have had a more fluid retinal organization than previously thought.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
| | - Gordon L. Fain
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Alapakkam P. Sampath
- Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7000, USA
| |
Collapse
|
7
|
Pang JJ, Gao F, Wu SM. Dual-Cell Patch-Clamp Recording Revealed a Mechanism for a Ribbon Synapse to Process Both Digital and Analog Inputs and Outputs. Front Cell Neurosci 2021; 15:722533. [PMID: 34720878 PMCID: PMC8552968 DOI: 10.3389/fncel.2021.722533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
A chemical synapse is either an action potential (AP) synapse or a graded potential (GP) synapse but not both. This study investigated how signals passed the glutamatergic synapse between the rod photoreceptor and its postsynaptic hyperpolarizing bipolar cells (HBCs) and light responses of retinal neurons with dual-cell and single-cell patch-clamp recording techniques. The results showed that scotopic lights evoked GPs in rods, whose depolarizing Phase 3 associated with the light offset also evoked APs of a duration of 241.8 ms and a slope of 4.5 mV/ms. The depolarization speed of Phase 3 (Speed) was 0.0001–0.0111 mV/ms and 0.103–0.469 mV/ms for rods and cones, respectively. On pairs of recorded rods and HBCs, only the depolarizing limbs of square waves applied to rods evoked clear currents in HBCs which reversed at −6.1 mV, indicating cation currents. We further used stimuli that simulated the rod light response to stimulate rods and recorded the rod-evoked excitatory current (rdEPSC) in HBCs. The normalized amplitude (R/Rmax), delay, and rising slope of rdEPSCs were differentially exponentially correlated with the Speed (all p < 0.001). For the Speed < 0.1 mV/ms, R/Rmax grew while the delay and duration reduced slowly; for the Speed between 0.1 and 0.4 mV/ms, R/Rmax grew fast while the delay and duration dramatically decreased; for the Speed > 0.4 mV/ms, R/Rmax reached the plateau, while the delay and duration approached the minimum, resembling digital signals. The rdEPSC peak was left-shifted and much faster than currents in rods. The scotopic-light-offset-associated major and minor cation currents in retinal ganglion cells (RGCs), the gigantic excitatory transient currents (GTECs) in HBCs, and APs and Phase 3 in rods showed comparable light-intensity-related locations. The data demonstrate that the rod-HBC synapse is a perfect synapse that can differentially decode and code analog and digital signals to process enormously varied rod and coupled-cone inputs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Fan Gao
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Whitaker CM, Nobles G, Ishibashi M, Massey SC. Rod and Cone Connections With Bipolar Cells in the Rabbit Retina. Front Cell Neurosci 2021; 15:662329. [PMID: 34025360 PMCID: PMC8134685 DOI: 10.3389/fncel.2021.662329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Rod and cone pathways are segregated in the first stage of the retina: cones synapse with both ON- and OFF-cone bipolar cells while rods contact only rod bipolar cells. However, there is an exception to this specific wiring in that rods also contact certain OFF cone bipolar cells, providing a tertiary rod pathway. Recently, it has been proposed that there is even more crossover between rod and cone pathways. Physiological recordings suggested that rod bipolar cells receive input from cones, and ON cone bipolar cells can receive input from rods, in addition to the established pathways. To image their rod and cone contacts, we have dye-filled individual rod bipolar cells in the rabbit retina. We report that approximately half the rod bipolar cells receive one or two cone contacts. Dye-filling AII amacrine cells, combined with subtractive labeling, revealed most of the ON cone bipolar cells to which they were coupled, including the occasional blue cone bipolar cell, identified by its contacts with blue cones. Imaging the AII-coupled ON cone bipolar dendrites in this way showed that they contact cones exclusively. We conclude that there is some limited cone input to rod bipolar cells, but we could find no evidence for rod contacts with ON cone bipolar cells. The tertiary rod OFF pathway operates via direct contacts between rods and OFF cone bipolar cells. In contrast, our results do not support the presence of a tertiary rod ON pathway in the rabbit retina.
Collapse
Affiliation(s)
| | | | | | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Medical School at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Dong X, Yang H, Zhou X, Xie X, Yu D, Guo L, Xu M, Zhang W, Liang G, Gan L. LIM-Homeodomain Transcription Factor LHX4 Is Required for the Differentiation of Retinal Rod Bipolar Cells and OFF-Cone Bipolar Subtypes. Cell Rep 2021; 32:108144. [PMID: 32937137 PMCID: PMC9245082 DOI: 10.1016/j.celrep.2020.108144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 07/13/2020] [Accepted: 08/21/2020] [Indexed: 12/01/2022] Open
Abstract
Retinal bipolar cells (BCs) connect with photoreceptors and relay visual information to retinal ganglion cells (RGCs). Retina-specific deletion of Lhx4 in mice results in a visual defect resembling human congenital stationary night blindness. This visual dysfunction results from the absence of rod bipolar cells (RBCs) and the loss of selective rod-connecting cone bipolar cell (CBC) subtypes and AII amacrine cells (ACs). Inactivation of Lhx4 causes the apoptosis of BCs and cell fate switch from some BCs to ACs, whereas Lhx4 overexpression promotes BC genesis. Moreover, Lhx4 positively regulates Lhx3 expression to drive the fate choice of type 2 BCs over the GABAergic ACs. Lhx4 inactivation ablates Bhlhe23 expression, whereas overexpression of Bhlhe23 partially rescues RBC development in the absence of Lhx4. Thus, by acting upstream of Bhlhe23, Prdm8, Fezf2, Lhx3, and other BC genes, Lhx4, together with Isl1, could play essential roles in regulating the subtype-specific development of RBCs and CBCs. Dong et al. show that the loss of Lhx4 in mice results in the loss of rod bipolar cells and rod-connecting bipolar cells and in a visual defect resembling human congenital stationary night blindness. Lhx4, together with Isl1, acts upstream of Bhlhe23, Prdm8, Fezf2, and Lhx3 to regulate bipolar cell development.
Collapse
Affiliation(s)
- Xuhui Dong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Hua Yang
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA; Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoling Xie
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Dongliang Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA; Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Wenjun Zhang
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA; Department of Plastic Surgery, Changzheng Hospital, Shanghai 20003, China
| | - Guoqing Liang
- Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Lin Gan
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Khani MH, Gollisch T. Linear and nonlinear chromatic integration in the mouse retina. Nat Commun 2021; 12:1900. [PMID: 33772000 PMCID: PMC7997992 DOI: 10.1038/s41467-021-22042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/23/2021] [Indexed: 11/09/2022] Open
Abstract
The computations performed by a neural circuit depend on how it integrates its input signals into an output of its own. In the retina, ganglion cells integrate visual information over time, space, and chromatic channels. Unlike the former two, chromatic integration is largely unexplored. Analogous to classical studies of spatial integration, we here study chromatic integration in mouse retina by identifying chromatic stimuli for which activation from the green or UV color channel is maximally balanced by deactivation through the other color channel. This reveals nonlinear chromatic integration in subsets of On, Off, and On-Off ganglion cells. Unlike the latter two, nonlinear On cells display response suppression rather than activation under balanced chromatic stimulation. Furthermore, nonlinear chromatic integration occurs independently of nonlinear spatial integration, depends on contributions from the rod pathway and on surround inhibition, and may provide information about chromatic boundaries, such as the skyline in natural scenes.
Collapse
Affiliation(s)
- Mohammad Hossein Khani
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
- International Max Planck Research School for Neuroscience, Göttingen, Germany.
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, Göttingen, Germany.
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.
| |
Collapse
|
13
|
Glycinergic Inhibition Targets Specific Off Cone Bipolar Cells in Primate Retina. eNeuro 2021; 8:ENEURO.0432-20.2020. [PMID: 33188005 PMCID: PMC7920536 DOI: 10.1523/eneuro.0432-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Adapting between scotopic and photopic illumination involves switching the routing of retinal signals between rod and cone-dominated circuits. In the daytime, cone signals pass through parallel On and Off cone bipolar cells (CBCs), that are sensitive to increments and decrements in luminance, respectively. At night, rod signals are routed into these cone-pathways via a key glycinergic interneuron, the AII amacrine cell (AII-AC). AII-ACs also provide On-pathway-driven crossover inhibition to Off-CBCs under photopic conditions. In primates, it is not known whether all Off-bipolar cell types receive functional inputs from AII-ACs. Here, we show that select Off-CBC types receive significantly higher levels of On-pathway-driven glycinergic input than others. The rise and decay kinetics of the glycinergic events are consistent with involvement of the α1 glycine receptor (GlyR) subunit, a result supported by a higher level of GLRA1 transcript in these cells. The Off-bipolar types that receive glycinergic input have sustained physiological properties and include the flat midget bipolar (FMB) cells, which provide excitatory input to the Off-midget ganglion cells (GCs; parvocellular pathway). Our results suggest that only a subset of Off-bipolar cells have the requisite receptors to respond to AII-AC input. Taken together with results in mouse retina, our findings suggest a conserved motif whereby signal output from AII-ACs is preferentially routed into sustained Off-bipolar signaling pathways.
Collapse
|
14
|
Rozenblit F, Gollisch T. What the salamander eye has been telling the vision scientist's brain. Semin Cell Dev Biol 2020; 106:61-71. [PMID: 32359891 PMCID: PMC7493835 DOI: 10.1016/j.semcdb.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Salamanders have been habitual residents of research laboratories for more than a century, and their history in science is tightly interwoven with vision research. Nevertheless, many vision scientists - even those working with salamanders - may be unaware of how much our knowledge about vision, and particularly the retina, has been shaped by studying salamanders. In this review, we take a tour through the salamander history in vision science, highlighting the main contributions of salamanders to our understanding of the vertebrate retina. We further point out specificities of the salamander visual system and discuss the perspectives of this animal system for future vision research.
Collapse
Affiliation(s)
- Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37073, Göttingen, Germany; Bernstein Center for Computational Neuroscience Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Sugita Y, Miura K, Furukawa T. Retinal ON and OFF pathways contribute to initial optokinetic responses with different temporal characteristics. Eur J Neurosci 2020; 52:3160-3165. [PMID: 32027443 DOI: 10.1111/ejn.14697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/05/2020] [Accepted: 01/29/2020] [Indexed: 11/30/2022]
Abstract
Visual information in the retina is processed via two pathways: ON and OFF pathways that originate from ON and OFF bipolar cells. The differences in the receptors that mediate signal transmission from photoreceptors imply that the response speed to light signals differs between ON and OFF pathways. We studied the initial optokinetic responses (OKRs) of mice using two-frame motion stimuli presented with interstimulus intervals (ISIs) to understand functional difference of these pathways. When two successive image frames were presented with an ISI, observers often perceived motion in the opposite direction of the actual shift. This directional reversal results from the biphasic nature of the temporal filters in visual systems whose characteristics can be estimated from the dependence on ISIs. We examined the dependence on ISIs in the OKRs of TRPM1-/- mice, whose ON bipolar cells are dysfunctional, as well as in those of wild-type control mice. Wild type and TRPM1-/- mice showed comparable OKRs in the veridical direction when no ISI was present. Both types of mice showed OKRs that decreased and eventually reversed as the ISI increased, but with a directional reversal at a shorter ISI in TRPM1-/- than wild-type mice. In addition, the temporal filters of TRPM1-/- mice estimated from dependence on ISIs were tuned for higher frequencies, suggesting that compared with wild-type mice, the visual system of TRPM1-/- mice responds to light signals with faster dynamics. We conclude that the ON and OFF pathways contribute to initial OKRs by providing visual signals processed with different temporal resolutions.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Sheng W, Jin M, Pan G, Weng S, Sik A, Han L, Liu K. Cellular localization of melatonin receptor Mel1b in pigeon retina. Neuropeptides 2019; 78:101974. [PMID: 31645269 DOI: 10.1016/j.npep.2019.101974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/10/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Melatonin, an important neuromodulator involved in circadian rhythms, modulates a series of physiological processes via activating its specific receptors, namely Mel1a (MT1), Mel1b (MT2) and Mel1c receptors. In this work, the localization of Mel1b receptor was studied in pigeon retina using double immunohistochemistry staining and confocal scanning microscopy. Our results showed that Mel1b receptor widely existed in the outer segment of photoreceptors and in the somata of dopaminergic amacrine cells, cholinergic amacrine cells, glycinergic AII amacrine cells, conventional ganglion cells and intrinsically photosensitive retinal ganglion cells, while horizontal cells, bipolar cells and Müller glial cells seemed to lack immunoreactivity of Mel1b receptor. That multiple types of retinal cells expressing Mel1b receptor suggests melatonin may directly modulate the activities of retina via activating Mel1b receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ge Pan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, University of Pecs, Pecs, Hungary; Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Medical School, University of Birmingham, Birmingham, UK
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
17
|
Rod Photoreceptors Signal Fast Changes in Daylight Levels Using a Cx36-Independent Retinal Pathway in Mouse. J Neurosci 2019; 40:796-810. [PMID: 31776212 DOI: 10.1523/jneurosci.0455-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Temporal contrast detected by rod photoreceptors is channeled into multiple retinal rod pathways that ultimately connect to cone photoreceptor pathways via Cx36 gap junctions or via chemical synapses. However, we do not yet understand how the different rod pathways contribute to the perception of temporal contrast (changes in luminance with time) at mesopic light levels, where both rods and cones actively respond to light. Here, we use a forced-choice, operant behavior assay to investigate rod-driven, temporal contrast sensitivity (TCS) in mice of either sex. Transgenic mice with desensitized cones (GNAT2 cpfl3 line) were used to identify rod contributions to TCS in mesopic lights. We found that at low mesopic lights (400 photons/s/μm2 at the retina), control and GNAT2 cpfl3 mice had similar TCS. Surprisingly, at upper mesopic lights (8000 photons/s/μm2), GNAT2 cpfl3 mice exhibited a relative reduction in TCS to low (<12 Hz) while maintaining normal TCS to high (12-36 Hz) temporal frequencies. The rod-driven responses to high temporal frequencies developed gradually over time (>30 min). Furthermore, the TCS of GNAT2 cpfl3 and GNAT2 cpfl3 ::Cx36-/- mice matched closely, indicating that transmission of high-frequency signals (1) does not require the rod-cone Cx36 gap junctions as has been proposed in the past; and (2) a Cx36-independent rod pathway(s) (e.g., direct rod to OFF cone bipolar cell synapses and/or glycinergic synapses from AII amacrine cells to OFF ganglion cells) is sufficient for fast, mesopic rod-driven vision. These findings extend our understanding of the link between visual circuits and perception in mouse.SIGNIFICANCE STATEMENT The contributions of specific retinal pathways to visual perception are not well understood. We found that the temporal processing properties of rod-driven vision in mice change significantly with light level. In dim lights, rods relay relatively slow temporal variations. However, in daylight conditions, rod pathways exhibit high sensitivity to fast but not to slow temporal variations, whereas cone-driven responses supplement the loss in rod-driven sensitivity to slow temporal variations. Our findings highlight the dynamic interplay of rod- and cone-driven vision as light levels rise from night to daytime levels. Furthermore, the fast, rod-driven signals do not require the rod-to-cone Cx36 gap junctions as proposed in the past, but rather, can be relayed by alternative Cx36-independent rod pathways.
Collapse
|
18
|
Nguyen MTT, Vemaraju S, Nayak G, Odaka Y, Buhr ED, Alonzo N, Tran U, Batie M, Upton BA, Darvas M, Kozmik Z, Rao S, Hegde RS, Iuvone PM, Van Gelder RN, Lang RA. An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye. Nat Cell Biol 2019; 21:420-429. [PMID: 30936473 PMCID: PMC6573021 DOI: 10.1038/s41556-019-0301-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.
Collapse
Affiliation(s)
- Minh-Thanh T Nguyen
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gowri Nayak
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yoshinobu Odaka
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
| | - Nuria Alonzo
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Uyen Tran
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew Batie
- Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian A Upton
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Martin Darvas
- Pathology, University of Washington Medical School, Seattle, WA, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Sujata Rao
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington Medical School, Seattle, WA, USA
- Pathology, University of Washington Medical School, Seattle, WA, USA
- Biological Structure, University of Washington Medical School, Seattle, WA, USA
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Ophthalmology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Grimes WN, Baudin J, Azevedo AW, Rieke F. Range, routing and kinetics of rod signaling in primate retina. eLife 2018; 7:38281. [PMID: 30299254 PMCID: PMC6218188 DOI: 10.7554/elife.38281] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/22/2018] [Indexed: 11/29/2022] Open
Abstract
Stimulus- or context-dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light-level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here, we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway – the dedicated rod bipolar pathway. Identical experiments in mouse and primate reveal substantial differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rod photoreceptors themselves rather than from different pathways with distinct kinetics.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Jacob Baudin
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
20
|
Grimes WN, Songco-Aguas A, Rieke F. Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception. Annu Rev Vis Sci 2018; 4:123-141. [PMID: 29883274 PMCID: PMC6153147 DOI: 10.1146/annurev-vision-091517-034055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We know a good deal about the operation of the retina when either rod or cone photoreceptors provide the dominant input (i.e., under very dim or very bright conditions). However, we know much less about how the retina operates when rods and cones are coactive (i.e., under intermediate lighting conditions, such as dusk). Such mesopic conditions span 20-30% of the light levels over which vision operates and encompass many situations in which vision is essential (e.g., driving at night). These lighting conditions are challenging because rod and cone signals differ substantially: Rod responses are nearing saturation, while cone responses are weak and noisy. A rich history of perceptual studies guides our investigation of how the retina operates under mesopic conditions and in doing so provides a powerful opportunity to link general issues about parallel processing in neural circuits with computation and perception. We review some of the successes and challenges in understanding the retinal basis of perceptual rod-cone interactions.
Collapse
Affiliation(s)
- William N Grimes
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Adree Songco-Aguas
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
21
|
Pang JJ, Yang Z, Jacoby RA, Wu SM. Cone synapses in mammalian retinal rod bipolar cells. J Comp Neurol 2018; 526:1896-1909. [PMID: 29667170 PMCID: PMC6031453 DOI: 10.1002/cne.24456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/25/2023]
Abstract
Some mammalian rod bipolar cells (RBCs) can receive excitatory chemical synaptic inputs from both rods and cones (DBCR2 ), but anatomical evidence for mammalian cone-RBC contacts has been sparse. We examined anatomical cone-RBC contacts using neurobiotin (NB) to visualize individual mouse cones and standard immuno-markers to identify RBCs, cone pedicles and synapses in mouse and baboon retinas. Peanut agglutinin (PNA) stained the basal membrane of all cone pedicles, and mouse cones were positive for red/green (R/G)-opsin, whereas baboon cones were positive for calbindin D-28k. All synapses in the outer plexiform layer were labeled for synaptic vesicle protein 2 (SV2) and PSD (postsynaptic density)-95, and those that coincided with PNA resided closest to bipolar cell somas. Cone-RBC synaptic contacts were identified by: (a) RBC dendrites deeply invaginating into the center of cone pedicles (invaginating synapses), (b) RBC dendritic spines intruding into the surface of cone pedicles (superficial synapses), and (c) PKCα immunoreactivity coinciding with synaptic marker SV2, PSD-95, mGluR6, G protein beta 5 or PNA at cone pedicles. One RBC could form 0-1 invaginating and 1-3 superficial contacts with cones. 20.7% and 38.9% of mouse RBCs contacted cones in the peripheral and central retina (p < .05, n = 14 samples), respectively, while 34.4% (peripheral) and 48.5% (central) of cones contacted RBCs (p > .05). In baboon retinas (n = 4 samples), cone-RBC contacts involved 12.2% of RBCs (n = 416 cells) and 22.5% of cones (n = 225 cells). This suggests that rod and cone signals in the ON pathway are integrated in some RBCs before reaching AII amacrine cells.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| | - Zhuo Yang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| | - Roy A Jacoby
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
22
|
Wang S, Liao L, Wang M, Zhou H, Huang Y, Wang Z, Chen D, Ji D, Xia X, Wang Y, Liu F, Huang J, Xiong K. Pin1 Promotes Regulated Necrosis Induced by Glutamate in Rat Retinal Neurons via CAST/Calpain2 Pathway. Front Cell Neurosci 2018; 11:425. [PMID: 29403356 PMCID: PMC5786546 DOI: 10.3389/fncel.2017.00425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to investigate whether peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) can interact with calpastatin (CAST) and regulate CAST/calpain2, under excessive glutamate conditions, and subsequently regulate necrosis in rat retinal neurons. Glutamate triggered CAST/calpain2-mediated necrosis regulation in primary cultured retinal neurons, as demonstrated by propidium iodide-staining and lactate dehydrogenase assay. Co-IP results and a computer simulation suggested that Pin1 could bind to CAST. Western blot, real-time quantitative polymerase chain reaction, immunofluorescence, and phosphorylation analysis results demonstrated that CAST was regulated by Pin1, as proven by the application of juglone (i.e., a Pin1 specific inhibitor). The retinal ganglion cell 5 cell line, combined with siRNA approach and flow cytometry, was then used to verify the regulatory pathway of Pin1 in CAST/calpain2-modulated neuronal necrosis that was induced by glutamate. Finally, in vivo studies further confirmed the role of Pin1 in CAST/calpain2-modulated necrosis following glutamate excitation, in the rat retinal ganglion cell and inner nuclear layers. In addition, a flash electroretinogram study provided evidence for the recovery of impaired visual function, which was induced by glutamate, with juglone treatment. Our work aims to investigate the involvement of the Pin1-CAST/calpain2 pathway in glutamate-mediated excitotoxicity.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Beaudoin DL, Kupershtok M, Demb JB. Selective synaptic connections in the retinal pathway for night vision. J Comp Neurol 2017; 527:117-132. [PMID: 28856684 DOI: 10.1002/cne.24313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.
Collapse
Affiliation(s)
- Deborah L Beaudoin
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Mania Kupershtok
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| |
Collapse
|
24
|
Functional Roles of Complexin 3 and Complexin 4 at Mouse Photoreceptor Ribbon Synapses. J Neurosci 2017; 36:6651-67. [PMID: 27335398 DOI: 10.1523/jneurosci.4335-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/10/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Complexins (Cplxs) are SNARE complex regulators controlling the speed and Ca(2+) sensitivity of SNARE-mediated synaptic vesicle fusion. We have shown previously that photoreceptor ribbon synapses in mouse retina are equipped with Cplx3 and Cplx4 and that lack of both Cplxs perturbs photoreceptor ribbon synaptic function; however, Cplx3/4 function in photoreceptor synaptic transmission remained elusive. To investigate Cplx3/4 function in photoreceptor ribbon synapses, voltage-clamp recordings from postsynaptic horizontal cells were performed in horizontal slice preparations of Cplx3/4 wild-type (WT) and Cplx3/4 double knock-out (DKO) mice. We measured tonic activity in light and dark, current responses to changes in luminous intensity, and electrically evoked postsynaptic responses. Cplx3/4 decreased the frequency of tonic events and shifted their amplitude distribution to smaller values. Light responses were sustained in the presence of Cplx3/4, but transient in their absence. Finally, Cplx3/4 increased synaptic vesicle release evoked by electrical stimulation. Using electron microscopy, we quantified the number of synaptic vesicles at presynaptic ribbons after light or dark adaptation. In Cplx3/4 WT photoreceptors, the number of synaptic vesicles associated with the ribbon base close to the release site was significantly lower in light than in dark. This is in contrast to Cplx3/4 DKO photoreceptors, in which the number of ribbon-associated synaptic vesicles remained unchanged regardless of the adaptational state. Our results indicate a suppressing and a facilitating action of Cplx3/4 on Ca(2+)-dependent tonic and evoked neurotransmitter release, respectively, and a regulatory role in the adaptation-dependent availability of synaptic vesicles for release at photoreceptor ribbon synapses. SIGNIFICANCE STATEMENT Synaptic vesicle fusion at active zones of chemical synapses is executed by SNARE complexes. Complexins (Cplxs) are SNARE complex regulators and photoreceptor ribbon synapses are equipped with Cplx3 and Cplx4. The absence of both Cplxs perturbs ribbon synaptic function. Because we lack information on Cplx function in photoreceptor synaptic transmission, we investigated Cplx function using voltage-clamp recordings from postsynaptic horizontal cells of Cplx3/4 wild-type and Cplx3/4 double knock-out mice and quantified synaptic vesicle number at the ribbon after light and dark adaptation using electron microscopy. The findings reveal a suppressing action of Cplx3/4 on tonic neurotransmitter release, a facilitating action on evoked release, and a regulatory role of Cplx3/4 in the adaptation-dependent availability of synaptic vesicles at mouse photoreceptor ribbon synapses.
Collapse
|
25
|
Dendritic stratification differs among retinal OFF bipolar cell types in the absence of rod photoreceptors. PLoS One 2017; 12:e0173455. [PMID: 28257490 PMCID: PMC5336283 DOI: 10.1371/journal.pone.0173455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 01/09/2023] Open
Abstract
Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the 'cone-full' Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells' dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL.
Collapse
|
26
|
Behrens C, Schubert T, Haverkamp S, Euler T, Berens P. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 2016; 5:e20041. [PMID: 27885985 PMCID: PMC5148610 DOI: 10.7554/elife.20041] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023] Open
Abstract
In the mouse retina, three different types of photoreceptors provide input to 14 bipolar cell (BC) types. Classically, most BC types are thought to contact all cones within their dendritic field; ON-BCs would contact cones exclusively via so-called invaginating synapses, while OFF-BCs would form basal synapses. By mining publically available electron microscopy data, we discovered interesting violations of these rules of outer retinal connectivity: ON-BC type X contacted only ~20% of the cones in its dendritic field and made mostly atypical non-invaginating contacts. Types 5T, 5O and 8 also contacted fewer cones than expected. In addition, we found that rod BCs received input from cones, providing anatomical evidence that rod and cone pathways are interconnected in both directions. This suggests that the organization of the outer plexiform layer is more complex than classically thought.
Collapse
Affiliation(s)
- Christian Behrens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Center for Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Silke Haverkamp
- Institute of Cellular and Molecular Anatomy, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K, Völgyi B, Akopian A, Bloomfield SA. Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol 2016; 594:6679-6699. [PMID: 27350405 DOI: 10.1113/jp272267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/23/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Retinal ganglion cells (RGCs) in dark-adapted retinas show a range of threshold sensitivities spanning ∼3 log units of illuminance. Here, we show that the different threshold sensitivities of RGCs reflect an inhibitory mechanism that masks inputs from certain rod pathways. The masking inhibition is subserved by GABAC receptors, probably on bipolar cell axon terminals. The GABAergic masking inhibition appears independent of dopaminergic circuitry that has been shown also to affect RGC sensitivity. The results indicate a novel mechanism whereby inhibition controls the sensitivity of different cohorts of RGCs. This can limit and thereby ensure that appropriate signals are carried centrally in scotopic conditions when sensitivity rather than acuity is crucial. ABSTRACT The responses of rod photoreceptors, which subserve dim light vision, are carried through the retina by three independent pathways. These pathways carry signals with largely different sensitivities. Retinal ganglion cells (RGCs), the output neurons of the retina, show a wide range of sensitivities in the same dark-adapted conditions, suggesting a divergence of the rod pathways. However, this organization is not supported by the known synaptic morphology of the retina. Here, we tested an alternative idea that the rod pathways converge onto single RGCs, but inhibitory circuits selectively mask signals so that one pathway predominates. Indeed, we found that application of GABA receptor blockers increased the sensitivity of most RGCs by unmasking rod signals, which were suppressed. Our results indicate that inhibition controls the threshold responses of RGCs under dim ambient light. This mechanism can ensure that appropriate signals cross the bottleneck of the optic nerve in changing stimulus conditions.
Collapse
Affiliation(s)
- Feng Pan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA.,Current address: School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Abduqodir Toychiev
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Yi Zhang
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tamas Atlasz
- Department of Sport Biology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | | | - Kaushambi Roy
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Béla Völgyi
- Department of Sport Biology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Janos Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| |
Collapse
|
28
|
Schweikert LE, Fasick JI, Grace MS. Evolutionary loss of cone photoreception in balaenid whales reveals circuit stability in the mammalian retina. J Comp Neurol 2016; 524:2873-85. [DOI: 10.1002/cne.23996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Lorian E. Schweikert
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| | - Jeffry I. Fasick
- Department of Biological SciencesThe University of TampaTampa Florida33606
| | - Michael S. Grace
- Department of Biological SciencesFlorida Institute of TechnologyMelbourne Florida32901
| |
Collapse
|
29
|
Li S, Mitchell J, Briggs DJ, Young JK, Long SS, Fuerst PG. Morphological Diversity of the Rod Spherule: A Study of Serially Reconstructed Electron Micrographs. PLoS One 2016; 11:e0150024. [PMID: 26930660 PMCID: PMC4773090 DOI: 10.1371/journal.pone.0150024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose Rod spherules are the site of the first synaptic contact in the retina’s rod pathway, linking rods to horizontal and bipolar cells. Rod spherules have been described and characterized through electron micrograph (EM) and other studies, but their morphological diversity related to retinal circuitry and their intracellular structures have not been quantified. Most rod spherules are connected to their soma by an axon, but spherules of rods on the surface of the Mus musculus outer plexiform layer often lack an axon and have a spherule structure that is morphologically distinct from rod spherules connected to their soma by an axon. Retraction of the rod axon and spherule is often observed in disease processes and aging, and the retracted rod spherule superficially resembles rod spherules lacking an axon. We hypothesized that retracted spherules take on an axonless spherule morphology, which may be easier to maintain in a diseased state. To test our hypothesis, we quantified the spatial organization and subcellular structures of rod spherules with and without axons. We then compared them to the retracted spherules in a disease model, mice that overexpress Dscam (Down syndrome cell adhesion molecule), to gain a better understanding of the rod synapse in health and disease. Methods We reconstructed serial EM images of wild type and DscamGoF (gain of function) rod spherules at a resolution of 7 nm in the X-Y axis and 60 nm in the Z axis. Rod spherules with and without axons, and retracted spherules in the DscamGoF retina, were reconstructed. The rod spherule intracellular organelles, the invaginating dendrites of rod bipolar cells and horizontal cell axon tips were also reconstructed for statistical analysis. Results Stereotypical rod (R1) spherules occupy the outer two-thirds of the outer plexiform layer (OPL), where they present as spherical terminals with large mitochondria. This spherule group is highly uniform and composed more than 90% of the rod spherule population. Rod spherules lacking an axon (R2) were also described and characterized. This rod spherule group consists of a specific spatial organization that is strictly located at the apical OPL-facing layer of the Outer Nuclear Layer (ONL). The R2 spherule displays a large bowl-shaped synaptic terminal that hugs the rod soma. Retracted spherules in the DscamGoF retina were also reconstructed to test if they are structurally similar to R2 spherules. The misplaced rod spherules in DscamGoF have a gross morphology that is similar to R2 spherules but have significant disruption in internal synapse organization. Conclusion We described a morphological diversity within Mus musculus rod spherules. This diversity is correlated with rod location in the ONL and contributes to the intracellular differences within spherules. Analysis of the DscamGoF retina indicated that their R2 spherules are not significantly different than wild type R2 spherules, but that their retracted rod spherules have abnormal synaptic organization.
Collapse
Affiliation(s)
- Shuai Li
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Joe Mitchell
- North Idaho College, Natural Sciences Division, Coeur d’Alene, Idaho, 83814, United States of America
| | - Deidrie J. Briggs
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Jaime K. Young
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
| | - Samuel S. Long
- Lewis-Clark State College, Department of Computer Sciences, Lewiston, Idaho, 83501, United States of America
| | - Peter G. Fuerst
- University of Idaho, Department of Biological Sciences, Moscow, Idaho, 83844, United States of America
- WWAMI Medical Education Program, Moscow, Idaho, 83844, United States of America
- * E-mail:
| |
Collapse
|
30
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
31
|
Cowan CS, Abd-El-Barr M, van der Heijden M, Lo EM, Paul D, Bramblett DE, Lem J, Simons DL, Wu SM. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes. Vision Res 2016; 119:99-109. [PMID: 26718442 PMCID: PMC5052632 DOI: 10.1016/j.visres.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022]
Abstract
Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. These comparisons reveal that rod pathway driven light sensitivity in retinal ganglion cells (RGCs) is entirely dependent on Trα, but partially independent of connexin 36 (Cx36) and rod bipolar cells. Pharmacological experiments show that rod pathway-driven and Cx36-independent RGC ON responses are also metabotropic glutamate receptor 6-dependent. To validate the RGC findings in awake, behaving animals we measured optokinetic reflexes (OKRs), which are sensitive to changes in ON pathways. Scotopic OKR contrast sensitivity was lost in Trα(-/-) mice, but indistinguishable from controls in Cx36(-/-) and rod bipolar cell knockout mice. Mesopic OKRs were also altered in mutant mice: Trα(-/-) mice had decreased spatial acuity, rod BC knockouts had decreased sensitivity, and Cx36(-/-) mice had increased sensitivity. These results provide compelling evidence against the complete Cx36 or rod BC dependence of night vision's ON component. Further, the findings suggest the parallel nature of rod pathways provides considerable redundancy to scotopic light sensitivity but distinct contributions to mesopic responses through complicated interactions with cone pathways.
Collapse
Affiliation(s)
- Cameron S Cowan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States.
| | - Muhammad Abd-El-Barr
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | | | - Eric M Lo
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - David Paul
- Department of Neurobiology, Harvard University, Boston, MA, United States
| | - Debra E Bramblett
- Department of Medical Education, Paul L. Foster School of Medicine-TTUHSC, El Paso, TX, United States
| | - Janis Lem
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, United States
| | - David L Simons
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
McKeown AS, Kraft TW, Loop MS. Increased visual sensitivity following periods of dim illumination. Invest Ophthalmol Vis Sci 2015; 56:1864-71. [PMID: 25698701 DOI: 10.1167/iovs.14-15958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We measured changes in the sensitivity of the human rod pathway by testing visual reaction times before and after light adaptation. We targeted a specific range of conditioning light intensities to see if a physiological adaptation recently discovered in mouse rods is observable at the perceptual level in humans. We also measured the noise spectrum of single mouse rods due to the importance of the signal-to-noise ratio in rod to rod bipolar cell signal transfer. METHODS Using the well-defined relationship between stimulus intensity and reaction time (Piéron's law), we measured the reaction times of eight human subjects (ages 24-66) to scotopic test flashes of a single intensity before and after the presentation of a 3-minute background. We also made recordings from single mouse rods and processed the cellular noise spectrum before and after similar conditioning exposures. RESULTS Subject reaction times to a fixed-strength stimulus were fastest 5 seconds after conditioning background exposure (79% ± 1% of the preconditioning mean, in darkness) and were significantly faster for the first 12 seconds after background exposure (P < 0.01). During the period of increased rod sensitivity, the continuous noise spectrum of individual mouse rods was not significantly increased. CONCLUSIONS A decrease in human reaction times to a dim flash after conditioning background exposure may originate in rod photoreceptors through a transient increase in the sensitivity of the phototransduction cascade. There is no accompanying increase in rod cellular noise, allowing for reliable transmission of larger rod signals after conditioning exposures and the observed increase in perceptual sensitivity.
Collapse
Affiliation(s)
- Alex S McKeown
- University of Alabama at Birmingham, Department of Vision Sciences, Birmingham, Alabama, United States
| | - Timothy W Kraft
- University of Alabama at Birmingham, Department of Vision Sciences, Birmingham, Alabama, United States
| | - Michael S Loop
- University of Alabama at Birmingham, Department of Vision Sciences, Birmingham, Alabama, United States
| |
Collapse
|
33
|
de Andrade GB, Long SS, Fleming H, Li W, Fuerst PG. DSCAM localization and function at the mouse cone synapse. J Comp Neurol 2015; 522:2609-33. [PMID: 24477985 DOI: 10.1002/cne.23552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 01/14/2023]
Abstract
The Down syndrome cell adhesion molecule (DSCAM) is required for regulation of cell number, soma spacing, and cell type-specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, whereas other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different from that of wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, density recovery profiling (DRP) analysis, and nearest neighbor analysis. Spacing was found to be significantly different when wild-type and mutant type 3b bipolar cell dendrites were compared. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque, and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells.
Collapse
Affiliation(s)
- Gabriel Belem de Andrade
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, 83844; Ministry of Education of Brazil, CAPES Foundation, Brasília-DF 70.040-020, Brazil
| | | | | | | | | |
Collapse
|
34
|
Popova E. ON-OFF Interactions in the Retina: Role of Glycine and GABA. Curr Neuropharmacol 2014; 12:509-26. [PMID: 25977678 PMCID: PMC4428025 DOI: 10.2174/1570159x13999150122165018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/03/2023] Open
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells and it apparently remains as signals propagate to higher brain visual centers. A fundamental question in visual neuroscience is how these two parallel pathways function: are they independent from each other or do they interact somehow? In the latter case, what kinds of mechanisms are involved and what are the consequences from this cross-talk? This review summarizes current knowledge about the types of interactions between the ON and OFF channels in nonmammalian and mammalian retina. Data concerning the ON-OFF interactions in distal retina revealed by recording of single bipolar cell activity and electroretinographic ON (b-wave) and OFF (d-wave) responses are presented. Special emphasis is put on the ON-OFF interactions in proximal retina and their dependence on the state of light adaptation in mammalian retina. The involvement of the GABAergic and glycinergic systems in the ON-OFF crosstalk is also discussed.
Collapse
Affiliation(s)
- Elka Popova
- Department of Physiology, Medical Phaculty, Medical University, 1431 Sofia, Country Bulgaria
| |
Collapse
|
35
|
Tsukamoto Y, Omi N. Some OFF bipolar cell types make contact with both rods and cones in macaque and mouse retinas. Front Neuroanat 2014; 8:105. [PMID: 25309346 PMCID: PMC4176460 DOI: 10.3389/fnana.2014.00105] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/08/2014] [Indexed: 11/13/2022] Open
Abstract
This study compared the types of OFF bipolar cells found in the macaque retina with those found in the mouse retina and determined whether these OFF bipolar cells make direct contacts with both rods and cones by serial section transmission electron microscopy. We performed scatter plots and cluster analysis of the morphological variables of their axon terminals such as the stratification level, the arbor thickness, the arbor area, and the number of ribbons. Five OFF bipolar cell types, including the recently discovered DB3b type, were identified in the macaque retina. The macaque OFF bipolar cell types FMB, DB1, DB2, DB3a, and DB3b corresponded to the mouse OFF bipolar cell types 2, 1, 4, 3a, and 3b, respectively. In addition to contacting rod bipolar cells, ~7% of rods in the macaque retina made basal contacts exclusively with one cell type, DB3b, whereas 18% of rods in the mouse retina made basal contacts with one or two of types, 3a, 3b, and 4. Approximately 3% of mouse rods were divergently connected to two OFF bipolar cells of different types, but macaque rods were solely connected to one OFF bipolar cell. Rod-rod gap junctions were localized at rod cell bodies and axons in the outer nuclear layer in both macaque and mouse retinas. The direct rod-OFF bipolar connection system is slightly more developed in the mouse retina than in the macaque retina, possibly as a fine-tuned adaptation to nocturnal conditions. This one-step direct synaptic pathway from rods to OFF bipolar cells may enhance the response speed to OFF light stimuli compared with more indirect pathways via rod-cone gap junctions (a two-step pathway) and via rod bipolar and AII amacrine cells (a three-step pathway).
Collapse
Affiliation(s)
- Yoshihiko Tsukamoto
- Studio Retina Nishinomiya, Japan ; Department of Biology, Hyogo College of Medicine Nishinomiya, Japan
| | - Naoko Omi
- Department of Biology, Hyogo College of Medicine Nishinomiya, Japan
| |
Collapse
|
36
|
Dunn FA, Wong ROL. Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. J Physiol 2014; 592:4809-23. [PMID: 25172948 DOI: 10.1113/jphysiol.2014.277228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The visual system has often been thought of as a parallel processor because distinct regions of the brain process different features of visual information. However, increasing evidence for convergence and divergence of circuit connections, even at the level of the retina where visual information is first processed, chips away at a model of dedicated and distinct pathways for parallel information flow. Instead, our current understanding is that parallel channels may emerge, not from exclusive microcircuits for each channel, but from unique combinations of microcircuits. This review depicts diagrammatically the current knowledge and remaining puzzles about the retinal circuit with a focus on the mouse retina. Advances in techniques for labelling cells and genetic manipulations have popularized the use of transgenic mice. We summarize evidence gained from serial electron microscopy, electrophysiology and light microscopy to illustrate the wiring patterns in mouse retina. We emphasize the need to explore proposed retinal connectivity using multiple methods to verify circuits both structurally and functionally.
Collapse
Affiliation(s)
- Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143-0730, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
37
|
|
38
|
Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina. J Neurosci 2014; 34:6128-39. [PMID: 24790183 DOI: 10.1523/jneurosci.4941-13.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.
Collapse
|
39
|
Nivison-Smith L, Sun D, Fletcher EL, Marc RE, Kalloniatis M. Mapping kainate activation of inner neurons in the rat retina. J Comp Neurol 2014; 521:2416-38. [PMID: 23348566 DOI: 10.1002/cne.23305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 11/10/2022]
Abstract
Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | | | | | | | | |
Collapse
|
40
|
Puller C, Ivanova E, Euler T, Haverkamp S, Schubert T. OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina. Neuroscience 2013; 243:136-48. [PMID: 23567811 DOI: 10.1016/j.neuroscience.2013.03.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/22/2022]
Abstract
Parallel representations of the visual world are already established at the very first synapse of the visual system. Cone photoreceptors, which hyperpolarize in response to light, forward the visual signal onto distinct types of ON and OFF cone bipolar cells (BCs). In the case of OFF BCs, the glutamatergic cone input is integrated by ionotropic glutamate receptors, giving rise to a sign-preserving mode of synaptic transmission. The combination of glutamate receptor (GluR) subunits, i.e. AMPA or kainate subunits, importantly contributes to shaping the OFF bipolar cells' distinct response properties. The mouse is one of the few mammals in which the (most likely) complete set of (five) retinal OFF BC types is identified. However, it is not clear which GluR subtypes are expressed by the different mouse OFF BC types. We addressed this question by combining immunolabeling, electrical whole-cell recordings and pharmacology, and present evidence that the different types of OFF BCs express distinct types of glutamate receptors: Type 1 BCs exclusively expressed AMPA receptors, whereas type 2 and type 3a BCs expressed kainate receptors of different subunit compositions. Additionally, we found that two OFF BC types (3b and 4) very likely express both AMPA and kainate receptors but, interestingly, the two receptor subunits were not co-localized at the same dendritic site. The complex, BC type-specific expression pattern of GluRs we describe here supports their essential role in establishing parallel pathways at the first synapse of the mouse visual system.
Collapse
Affiliation(s)
- C Puller
- Department of Neuroanatomy, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
41
|
Distinct synaptic localization patterns of brefeldin A-resistant guanine nucleotide exchange factors BRAG2 and BRAG3 in the mouse retina. J Comp Neurol 2013; 521:860-76. [DOI: 10.1002/cne.23206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/11/2012] [Accepted: 07/27/2012] [Indexed: 11/07/2022]
|
42
|
Völgyi B, Kovács-Oller T, Atlasz T, Wilhelm M, Gábriel R. Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 2013; 34:1-18. [PMID: 23313713 DOI: 10.1016/j.preteyeres.2012.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/18/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such as signal averaging and synchronization.
Collapse
Affiliation(s)
- Béla Völgyi
- Department of Ophthalmology, School of Medicine, New York University, 550 First Avenue, MSB 149, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
43
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
44
|
Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina. J Neurosci 2012; 32:10713-24. [PMID: 22855819 DOI: 10.1523/jneurosci.0442-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain, including the retina, interneurons show an enormous structural and functional diversity. Retinal horizontal cells represent a class of interneurons that form triad synapses with photoreceptors and ON bipolar cells. At this first retinal synapse, horizontal cells modulate signal transmission from photoreceptors to bipolar cells by feedback and feedforward inhibition. To test how the fully developed retina reacts to the specific loss of horizontal cells, these interneurons were specifically ablated from adult mice using the diphtheria toxin (DT)/DT-receptor system and the connexin57 promoter. Following ablation, the retinal network responded with extensive remodeling: rods retracted their axons from the outer plexiform layer and partially degenerated, whereas cones survived. Cone pedicles remained in the outer plexiform layer and preserved synaptic contacts with OFF but not with ON bipolar cells. Consistently, the retinal ON pathway was impaired, leading to reduced amplitudes and prolonged latencies in electroretinograms. However, ganglion cell responses showed only slight changes in time course, presumably because ON bipolar cells formed multiple ectopic synapses with photoreceptors, and visual performance, assessed with an optomotor system, was only mildly affected. Thus, the loss of an entire interneuron class can be largely compensated even by the adult retinal network.
Collapse
|
45
|
Lei B. Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse. PLoS One 2012; 7:e43856. [PMID: 22937111 PMCID: PMC3427186 DOI: 10.1371/journal.pone.0043856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 07/30/2012] [Indexed: 01/10/2023] Open
Abstract
Purpose The rodent retina does not exhibit a positive OFF-response in the electroretinogram (ERG), which makes it difficult to evaluate its OFF-pathway functions in vivo. We studied the rod-driven OFF pathway responses by using a dark-adapted 10-Hz flicker ERG procedure in mouse. Materials and Methods Conventional ERGs and 10-Hz dark-adapted flicker ERGs were obtained in wild-type mice (C57BL/6), in mice with pure rod (cpfl1) or pure cone (rho−/−) function, and in nob1 mice which have a selective ON-pathway defect. To isolate the response from ON or OFF pathway, glutamate analogs 2-amino-4-phosphobutyric acid (APB, an ON pathway blocker) and cis-2, 3-piperidine-dicarboxylic acid (PDA, an OFF pathway blocker), were injected intravitreally. Results The amplitude-intensity profile of the dark-adapted 10-Hz flicker ERG in the wild-type mice exhibits two peaks at middle and high light intensities. The two peaks represent rod- and cone-driven responses respectively. In APB-treated C57BL/6 mice and in nob1 mice, the dark-adapted ERG b-waves were absent. However, both rod- and cone-driven OFF pathway responses were evident with flicker ERG recording. At middle light intensities that activate only rod system, the flicker ERG responses in saline-injected nob1 mice were similar to those in APB-injected cpfl1 mice and wild-type mice. These responses are sensitive to PDA. The amplitudes of these rod-driven OFF pathway responses were approximately 20% of the total rod-driven flicker ERG responses. Conclusion We demonstrate that the rod-OFF bipolar cell pathway is functional in the outer retina. The dark-adapted flicker ERG is practical for the evaluation of rod- and cone-driven responses, and the residual OFF pathway signals in subjects with ON pathway defects.
Collapse
Affiliation(s)
- Bo Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
46
|
Abstract
Amacrine cells represent the most diverse class of retinal neuron, comprising dozens of distinct cell types. Each type exhibits a unique morphology and generates specific visual computations through its synapses with a subset of excitatory interneurons (bipolar cells), other amacrine cells, and output neurons (ganglion cells). Here, we review the intrinsic and network properties that underlie the function of the most common amacrine cell in the mammalian retina, the AII amacrine cell. The AII connects rod and cone photoreceptor pathways, forming an essential link in the circuit for rod-mediated (scotopic) vision. As such, the AII has become known as the rod-amacrine cell. We, however, now understand that AII function extends to cone-mediated (photopic) vision, and AII function in scotopic and photopic conditions utilizes the same underlying circuit: AIIs are electrically coupled to each other and to the terminals of some types of ON cone bipolar cells. The direction of signal flow, however, varies with illumination. Under photopic conditions, the AII network constitutes a crossover inhibition pathway that allows ON signals to inhibit OFF ganglion cells and contributes to motion sensitivity in certain ganglion cell types. We discuss how the AII's combination of intrinsic and network properties accounts for its unique role in visual processing.
Collapse
|
47
|
Topological analysis of small leucine-rich repeat proteoglycan nyctalopin. PLoS One 2012; 7:e33137. [PMID: 22485138 PMCID: PMC3317652 DOI: 10.1371/journal.pone.0033137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/10/2012] [Indexed: 11/24/2022] Open
Abstract
Nyctalopin is a small leucine rich repeat proteoglycan (SLRP) whose function is
critical for normal vision. The absence of nyctalopin results in the complete
form of congenital stationary night blindness. Normally, glutamate released by
photoreceptors binds to the metabotropic glutamate receptor type 6 (GRM6), which
through a G-protein cascade closes the non-specific cation channel, TRPM1, on
the dendritic tips of depolarizing bipolar cells (DBCs) in the retina.
Nyctalopin has been shown to interact with TRPM1 and expression of TRPM1 on the
dendritic tips of the DBCs is dependent on nyctalopin expression. In the current
study, we used yeast two hybrid and biochemical approaches to investigate
whether murine nyctalopin was membrane bound, and if so by what mechanism, and
also whether the functional form was as a homodimer. Our results show that
murine nyctalopin is anchored to the plasma membrane by a single transmembrane
domain, such that the LRR domain is located in the extracellular space.
Collapse
|
48
|
Abstract
Vision is the most important of the senses for humans, and the retina is the first stage in the processing of light signals in the visual system. In the retina, highly specialized light-sensing neurons, the rod and cone photoreceptors, convert light into neural signals. These signals are extensively processed and filtered in the subsequent retinal network before transmitted to the higher visual centres in the brain, where the perception of viewed objects and scenes is finally constructed. A key feature of signal processing in the mammalian retina is parallel processing. Visual information is segregated in parallel pathways already at the rod and cone photoreceptor terminals, which provide multiple output synapses for the faithful encoding and transfer of the visual signals to the post-receptoral retinal network. This review aims at highlighting the current knowledge about the structural and functional pre- and post-synaptic specializations of rod and cone photoreceptor ribbon synapses, which belong to the most complex chemical synapses in the central nervous system.
Collapse
Affiliation(s)
- H Regus-Leidig
- Animal Physiology, Department of Biology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
49
|
Puthussery T, Gayet-Primo J, Taylor WR, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol 2012; 519:3640-56. [PMID: 22006647 DOI: 10.1002/cne.22756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detailed analysis of the synaptic inputs to the primate DB1 bipolar cell has been precluded by the absence of a suitable immunohistochemical marker. Here we demonstrate that antibodies for the EF-hand calcium-binding protein, secretagogin, strongly label the DB1 bipolar cell as well as a mixed population of GABAergic amacrine cells in the macaque retina. Using secretagogin as a marker, we show that the DB1 bipolar makes synaptic contact with both L/M as well as S-cone photoreceptors and only minimal contact with rod photoreceptors. Electron microscopy showed that the DB1 bipolar makes flat contacts at both triad-associated and nontriad-associated positions on the cone pedicle. Double labeling with various glutamate receptor subunit antibodies failed to conclusively determine the subunit composition of the glutamate receptors on DB1 bipolar cells. In the IPL, DB1 bipolar cell axon terminals expressed the glycine receptor, GlyRα1, at sites of contact with AII amacrine cells, suggesting that these cells receive input from the rod pathway.
Collapse
Affiliation(s)
- Theresa Puthussery
- Casey Eye Institute, Department of Ophthalmology, Oregon Health and Sciences University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
50
|
Arman AC, Sampath AP. Dark-adapted response threshold of OFF ganglion cells is not set by OFF bipolar cells in the mouse retina. J Neurophysiol 2012; 107:2649-59. [PMID: 22338022 DOI: 10.1152/jn.01202.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system frequently integrates parallel streams of information to encode a broad range of stimulus strengths. In mammalian retina it is generally believed that signals generated by rod and cone photoreceptors converge onto cone bipolar cells prior to reaching the retinal output, the ganglion cells. Near absolute visual threshold a specialized mammalian retinal circuit, the rod bipolar pathway, pools signals from many rods and converges on depolarizing (AII) amacrine cells. However, whether subsequent signal flow to OFF ganglion cells requires OFF cone bipolar cells near visual threshold remains unclear. Glycinergic synapses between AII amacrine cells and OFF cone bipolar cells are believed to relay subsequently rod-driven signals to OFF ganglion cells. However, AII amacrine cells also make glycinergic synapses directly with OFF ganglion cells. To determine the route for signal flow near visual threshold, we measured the effect of the glycine receptor antagonist strychnine on response threshold in fully dark-adapted retinal cells. As shown previously, we found that response threshold for OFF ganglion cells was elevated by strychnine. Surprisingly, strychnine did not elevate response threshold in any subclass of OFF cone bipolar cell. Instead, in every OFF cone bipolar subclass strychnine suppressed tonic glycinergic inhibition without altering response threshold. Consistent with this lack of influence of strychnine, we found that the dominant input to OFF cone bipolar cells in darkness was excitatory and the response threshold of the excitatory input varied by subclass. Thus, in the dark-adapted mouse retina, the high absolute sensitivity of OFF ganglion cells cannot be explained by signal transmission through OFF cone bipolar cells.
Collapse
Affiliation(s)
- A Cyrus Arman
- Neurosciences Graduate Program, Department of Physiology and Biophysics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|