1
|
Han SY, Yu JE, You BH, Kim SY, Bae M, Chae HS, Chin YW, Hong SH, Lee JH, Jung SH, Choi YH. No Interference of H9 Extract on Trastuzumab Pharmacokinetics in Their Combinations. Int J Mol Sci 2023; 24:16677. [PMID: 38068999 PMCID: PMC10706748 DOI: 10.3390/ijms242316677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Trastuzumab is used to treat breast cancer patients overexpressing human epidermal growth factor receptor 2, but resistance and toxicity limit its uses, leading to attention to trastuzumab combinations. Recently, the synergistic effect of trastuzumab and H9 extract (H9) combination against breast cancer has been reported. Because drug exposure determines its efficacy and toxicity, the question of whether H9 changes trastuzumab exposure in the body has been raised. Therefore, this study aimed to characterize trastuzumab pharmacokinetics and elucidate the effect of H9 on trastuzumab pharmacokinetics at a combination dose that shows synergism in mice. As a result, trastuzumab showed linear pharmacokinetics after its intravenous administration from 1 to 10 mg/kg. In the combination of trastuzumab and H9, single and 2-week treatments of oral H9 (500 mg/kg) did not influence trastuzumab pharmacokinetics. In the multiple-combination treatments of trastuzumab and H9 showing their synergistic effect (3 weeks of trastuzumab with 2 weeks of H9), the pharmacokinetic profile of trastuzumab was comparable to that of 3 weeks of trastuzumab alone. In tissue distribution, the tissue to plasma ratios of trastuzumab below 1.0 indicated its limited distributions within the tissues, and these patterns were unaffected by H9. These results suggest that the systemic and local exposures of trastuzumab are unchanged by single and multiple-combination treatments of H9.
Collapse
Affiliation(s)
- Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
| | - Jeong-Eun Yu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
| | - Seo-Yeon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
| | - Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
| | - Hee-Sung Chae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Soo-Hwa Hong
- Department of Korean Internal Medicine, Dongguk University Bundang Korean Medicine Hospital, Seongnam-si 13601, Gyeonggi-do, Republic of Korea;
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Gyeongju-si 38066, Gyeongsangbuk-do, Republic of Korea; (J.-H.L.); (S.H.J.)
| | - Seung Hyun Jung
- College of Korean Medicine, Dongguk University, Gyeongju-si 38066, Gyeongsangbuk-do, Republic of Korea; (J.-H.L.); (S.H.J.)
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.Y.H.); (J.-E.Y.); (B.H.Y.); (S.-Y.K.); (M.B.); (H.-S.C.)
| |
Collapse
|
2
|
Ye H, Wang Y, Yao S, Liu Z, Liang C, Zhu Y, Cui Y, Zhao K. Necrosis score as a prognostic factor in stage I-III colorectal cancer: a retrospective multicenter study. Discov Oncol 2023; 14:61. [PMID: 37155090 PMCID: PMC10167085 DOI: 10.1007/s12672-023-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Tumor necrosis results from failure to meet the requirement for rapid proliferation of tumor, related to unfavorable prognosis in colorectal cancer (CRC). However, previous studies used traditional microscopes to evaluate necrosis on slides, lacking a simultaneous phase and panoramic view for assessment. Therefore, we proposed a whole-slide images (WSIs)-based method to develop a necrosis score and validated its prognostic value in multicenter cohorts. METHODS Necrosis score was defined as the proportion of necrosis in the tumor area, semi-quantitatively classified into 3-level score groups by the cut-off of 10% and 30% on HE-stained WSIs. 768 patients from two centers were enrolled in this study, divided into a discovery (N = 445) and a validation (N = 323) cohort. The prognostic value of necrosis score was evaluated by Kaplan-Meier curves and the Cox model. RESULT Necrosis score was associated with overall survival, with hazard ratio for high vs. low in discovery and validation cohorts being 2.62 (95% confidence interval 1.59-4.32) and 2.51 (1.39-4.52), respectively. The 3-year disease free survival rates of necrosis-low, middle, and high were 83.6%, 80.2%, and 59.8% in discovery cohort, and 86.5%, 84.2%, and 66.5% in validation cohort. In necrosis middle plus high subgroup, there was a trend but no significant difference in overall survival between surgery alone and adjuvant chemotherapy group in stage II CRC (P = .075). CONCLUSION As a stable prognostic factor, high-level necrosis evaluated by the proposed method on WSIs was associated with unfavorable outcomes. Additionally, adjuvant chemotherapy provide survival benefits for patients with high necrosis in stage II CRC.
Collapse
Affiliation(s)
- Huifen Ye
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yiting Wang
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuan Cun 2 Cross Road, TianHe District, Guangzhou, 510655, China
| | - Su Yao
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, 26 Yuan Cun 2 Cross Road, TianHe District, Guangzhou, 510655, China.
| | - Yanfen Cui
- Department of Radiology, Shanxi Cancer Hospital, Shanxi Medical University, No.3, Xinjie West Alley, Taiyuan, 030013, China.
| | - Ke Zhao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Majumder S, Islam MT, Righetti R. Non-invasive imaging of interstitial fluid transport parameters in solid tumors in vivo. Sci Rep 2023; 13:7132. [PMID: 37130836 PMCID: PMC10154396 DOI: 10.1038/s41598-023-33651-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
In this paper, new and non-invasive imaging methods to assess interstitial fluid transport parameters in tumors in vivo are developed, analyzed and experimentally validated. These parameters include extracellular volume fraction (EVF), interstitial fluid volume fraction (IFVF) and interstitial hydraulic conductivity (IHC), and they are known to have a critical role in cancer progression and drug delivery effectiveness. EVF is defined as the volume of extracellular matrix per unit volume of the tumor, while IFVF refers to the volume of interstitial fluid per unit bulk volume of the tumor. There are currently no established imaging methods to assess interstitial fluid transport parameters in cancers in vivo. We develop and test new theoretical models and imaging techniques to assess fluid transport parameters in cancers using non-invasive ultrasound methods. EVF is estimated via the composite/mixture theory with the tumor being modeled as a biphasic (cellular phase and extracellular phase) composite material. IFVF is estimated by modeling the tumor as a biphasic poroelastic material with fully saturated solid phase. Finally, IHC is estimated from IFVF using the well-known Kozeny-Carman method inspired by soil mechanics theory. The proposed methods are tested using both controlled experiments and in vivo experiments on cancers. The controlled experiments were performed on tissue mimic polyacrylamide samples and validated using scanning electron microscopy (SEM). In vivo applicability of the proposed methods was demonstrated using a breast cancer model implanted in mice. Based on the controlled experimental validation, the proposed methods can estimate interstitial fluid transport parameters with an error below 10% with respect to benchmark SEM data. In vivo results demonstrate that EVF, IFVF and IHC increase in untreated tumors whereas these parameters are observed to decrease over time in treated tumors. The proposed non-invasive imaging methods may provide new and cost-effective diagnostic and prognostic tools to assess clinically relevant fluid transport parameters in cancers in vivo.
Collapse
Affiliation(s)
- Sharmin Majumder
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Bhattacharya S, M KR, Priyadarshani J, Ganguly R, Chakraborty S. Targeting Magnetic Nanoparticles in Physiologically Mimicking Tissue Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31689-31701. [PMID: 35786842 DOI: 10.1021/acsami.2c07246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic nanoparticles as drug carriers, despite showing immense promises in preclinical trials, have remained to be only of limited use in real therapeutic practice primarily due to unresolved anomalies concerning their grossly contrasting controllability and variability in performance in artificial test benches as compared to human tissues. To circumvent the deficits of reported in vitro drug testing platforms that deviate significantly from the physiological features of the living systems and result in this puzzling contrast, here, we fabricate a biomimetic microvasculature in a flexible tissue phantom and demonstrate distinctive mechanisms of magnetic-field-assisted controllable penetration of biocompatible iron oxide nanoparticles across the same, exclusively modulated by tissue deformability, which has by far remained unraveled. Our experiments deciphering the transport of magnetic nanoparticles in a blood analogue medium unveil a decisive interplay of the flexibility of the microvascular pathways, magnetic pull, and viscous friction toward orchestrating the optimal vascular penetration and targeting efficacy of the nanoparticles in colorectal tissue-mimicking bioengineered media. Subsequent studies with biological cells confirm the viability of using localized magnetic forces for aiding nanoparticle penetration within cancerous lesions. We establish nontrivially favorable conditions to induce a threshold force for vascular rupture and eventual target of the nanoparticles toward the desired extracellular site. These findings appear to be critical in converging the success of in vitro trials toward patient-specific targeted therapies depending on personalized vascular properties obtained from medical imaging data.
Collapse
Affiliation(s)
- Soumya Bhattacharya
- Department of Mechanical Engineering, IIT-Kharagpur, Kharagpur 721302, India
| | - Kiran Raj M
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Ranjan Ganguly
- Department of Power Engineering, Jadavpur University, LB-8, Sector-III, Salt Lake, Kolkata 700106, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, IIT-Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
6
|
Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1730. [PMID: 34124849 DOI: 10.1002/wnan.1730] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) has been recognized as a major contributor to cancer malignancy and therapeutic resistance. Thus, strategies directed to re-engineer the TME are emerging as promising approaches for improving the efficacy of antitumor therapies by enhancing tumor perfusion and drug delivery, as well as alleviating the immunosuppressive TME. In this regard, nanomedicine has shown great potential for developing effective treatments capable of re-modeling the TME by controlling drug action in a spatiotemporal manner and allowing long-lasting modulatory effects on the TME. Herein, we review recent progress on TME re-engineering by using nanomedicine, particularly focusing on formulations controlling TME characteristics through targeted interaction with cellular components of the TME. Importantly, the TME should be re-engineering to a quiescent phenotype rather than be destroyed. Finally, immediate challenges and future perspectives of TME-re-engineering nanomedicines are discussed, anticipating further innovation in this growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Abstract
Cancer treatment remains a challenge due to a high level of intra- and intertumoral heterogeneity and the rapid development of chemoresistance. In the brain, this is further hampered by the blood-brain barrier that reduces passive diffusion of drugs to a minimum. Tumors grow invasively and form new blood vessels, also in brain tissue where remodeling of pre-existing vasculature is substantial. The cancer-associated vessels in the brain are considered leaky and thus could facilitate the transport of chemotherapeutic agents. Yet, brain tumors are extremely difficult to treat, and, in this review, we will address how different aspects of the vasculature in brain tumors contribute to this.
Collapse
Affiliation(s)
- Casper Hempel
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| | - Kasper B Johnsen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Serhii Kostrikov
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thomas L Andresen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
Fakhri KU, Sultan A, Mushtaque M, Hasan MR, Nafees S, Hafeez ZB, Zafaryab M, Rizwanullah M, Sharma D, Bano F, AlMalki WH, Ahmad FJ, Rizvi MMA. Obstructions in Nanoparticles Conveyance, Nano-Drug Retention, and EPR Effect in Cancer Therapies. HANDBOOK OF RESEARCH ON ADVANCEMENTS IN CANCER THERAPEUTICS 2021. [DOI: 10.4018/978-1-7998-6530-8.ch026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, the authors first review nano-devices that are mixtures of biologic molecules and synthetic polymers like nano-shells and nano-particles for the most encouraging applications for different cancer therapies. Nano-sized medications additionally spill especially into tumor tissue through penetrable tumor vessels and are then held in the tumor bed because of diminished lymphatic drainage. This procedure is known as the enhanced penetrability and retention (EPR) impact. Nonetheless, while the EPR impact is generally held to improve conveyance of nano-medications to tumors, it in certainty offers not exactly a 2-overlay increment in nano-drug conveyance contrasted with basic ordinary organs, bringing about medication concentration that is not adequate for restoring most malignant growths. In this chapter, the authors likewise review different obstructions for nano-sized medication conveyance and to make the conveyance of nano-sized medications to tumors progressively successful by expanding on the EPR impact..
Collapse
Affiliation(s)
| | | | | | | | | | | | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Md Rizwanullah
- School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Deepti Sharma
- Institute of Nuclear Medicine and Allied Sciences, India
| | - Farhad Bano
- National Institute of Immunology, New Delhi, India
| | | | - Farhan Jalees Ahmad
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
9
|
Interstitial Hypertension Suppresses Escape of Human Breast Tumor Cells Via Convection of Interstitial Fluid. Cell Mol Bioeng 2020; 14:147-159. [PMID: 33868497 DOI: 10.1007/s12195-020-00661-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Interstitial hypertension, a rise in interstitial fluid pressure, is a common feature of many solid tumors as they progress to an invasive state. It is currently unclear whether this elevated pressure alters the probability that tumor cells eventually escape into a neighboring blood or lymphatic vessel. Methods In this study, we analyze the escape of MDA-MB-231 human breast tumor cells from a ~3-mm-long preformed aggregate into a 120-μm-diameter empty cavity in a micromolded type I collagen gel. The "micro-tumors" were located within ~300 μm of one or two cavities. Pressures of ~0.65 cm H2O were applied only to the tumor ("interstitial hypertension") or to its adjacent cavity. Results This work shows that interstitial hypertension suppresses escape into the adjacent cavity, but not because tumor cells respond directly to the pressure profile. Instead, hypertension alters the chemical microenvironment at the tumor margin to one that hampers escape. Administration of tumor interstitial fluid phenocopies the effects of hypertension. Conclusions This work uncovers a link between tumor pressure, interstitial flow, and tumor cell escape in MDA-MB-231 cells, and suggests that interstitial hypertension serves to hinder further progression to metastatic escape. Electronic Supplementary Material The online version of this article (10.1007/s12195-020-00661-w) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
11
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
12
|
Slimano F, Djerada Z, Guerin J, Bellouch MI, Brassart-Pasco S, Dukic S. Intratumoral distribution of YSNSG cyclopeptide in a mouse melanoma model using microdialysis. Eur J Pharm Sci 2019; 143:105201. [PMID: 31866565 DOI: 10.1016/j.ejps.2019.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
The YSNSG peptide is a synthetic cyclopeptide targeting αvβ3 integrin with antitumor activity. Previous study has determined main pharmacokinetic parameters in plasma and in tissue in healthy animals using microdialysis. First we aim to assess the impact of a 20 mg/kg dosage instead of 10 mg/kg in tumor growth inhibition. Secondly we aim to investigate the YSNSG peptide distribution in two different tumor regions in animals with melanoma. C57BL/6 mice were exposed at Days 8, 10 and 12 after melanoma cells implantation (B16F1) to different dosage of YSNSG peptide or control, respectively (n = 10 per group). Data analysis was performed at D16, 20 and 24 with a Nonlinear Mixed-Effects (NLME) approach. For pharmacokinetic study n = 8 mice (same disease condition) received YSNSG peptide by intravenous after insertion of two microdialysis probes in central peripheral region of tumor, respectively. Plasma and tissue samples were collected during 2 h. A non-compartmental analysis was performed to determine main pharmacokinetic parameters. There was a significant tumor growth inhibition in mice receiving 20 mg/kg vs Control (p < 0.02). Main plasma parameters were half-life elimination 25.8 ± 8.2 min, volume of distribution 11.9 ± 0.4 mL, clearance 19.8 ± 9.4 mL/h and area under the curve 1,173.6 µg.min/mL. Penetration rate of the YSNSG peptide from plasma to tumor tissue were 3.3 ± 2.1% and 3.4 ± 2.7% in central and peripheral, respectively. Contrary to subcutaneous distribution in healthy animals the distribution of the YSNSG peptide into tumoral tissue is low but seems non-heterogeneous between central and peripheral tumor region.
Collapse
Affiliation(s)
- Florian Slimano
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France; Department of Pharmacy, CHU Reims, Avenue du General Koenig, and Faculty of Pharmacy, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France.
| | - Zoubir Djerada
- Department of Pharmacology and Toxicology, CHU Reims, Avenue du General Koenig, 51100 Reims, France; EA3801, SFR CAP-Santé, Faculty of Medicine, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Juline Guerin
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Morad Id Bellouch
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Sylvie Brassart-Pasco
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| | - Sylvain Dukic
- MEDyC Research Unit, UMR CNRS/URCA n°7369, SFR CAP-Santé, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France; Department of Pharmacy, CHU Reims, Avenue du General Koenig, and Faculty of Pharmacy, Reims University, 51, rue Cognacq-Jay, 51100 Reims, France
| |
Collapse
|
13
|
Focused Ultrasonography-Mediated Blood-Brain Barrier Disruption in the Enhancement of Delivery of Brain Tumor Therapies. World Neurosurg 2019; 131:65-75. [PMID: 31323404 DOI: 10.1016/j.wneu.2019.07.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Glioblastoma is the most common intracranial malignancy in adults and carries a poor prognosis. Chemotherapeutic treatment figures prominently in the management of primary and recurrent disease. However, the blood-brain barrier presents a significant and formidable impediment to the entry of oncotherapeutic compounds to target tumor tissue. Several strategies have been developed to effect disruption of the blood-brain barrier and in turn enhance the efficacy of cytotoxic chemotherapy, as well as newly developed biologic agents. Focused ultrasonography is one such treatment modality, using acoustic cavitation of parenterally administered microbubbles to mechanically effect disruption of the vascular endothelium. We review and discuss the preclinical and clinical studies evaluating the biophysical basis for, and efficacy of, focused ultrasonography in the enhancement of oncotherapeutic agent delivery. Further, we provide some perspectives regarding future directions for the role of focused ultrasound in facilitating and improving the safe and effective delivery of oncotherapeutic agents in the treatment of glioblastoma.
Collapse
|
14
|
Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01270-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Innovative Therapeutic Strategies for Effective Treatment of Brain Metastases. Int J Mol Sci 2019; 20:ijms20061280. [PMID: 30875730 PMCID: PMC6471202 DOI: 10.3390/ijms20061280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are the most prevalent of intracranial malignancies. They are associated with a very poor prognosis and near 100% mortality. This has been the case for decades, largely because we lack effective therapeutics to augment surgery and radiotherapy. Notwithstanding improvements in the precision and efficacy of these life-prolonging treatments, with no reliable options for adjunct systemic therapy, brain recurrences are virtually inevitable. The factors limiting intracranial efficacy of existing agents are both physiological and molecular in nature. For example, heterogeneous permeability, abnormal perfusion and high interstitial pressure oppose the conventional convective delivery of circulating drugs, thus new delivery strategies are needed to achieve uniform drug uptake at therapeutic concentrations. Brain metastases are also highly adapted to their microenvironment, with complex cross-talk between the tumor, the stroma and the neural compartments driving speciation and drug resistance. New strategies must account for resistance mechanisms that are frequently engaged in this milieu, such as HER3 and other receptor tyrosine kinases that become induced and activated in the brain microenvironment. Here, we discuss molecular and physiological factors that contribute to the recalcitrance of these tumors, and review emerging therapeutic strategies, including agents targeting the PI3K axis, immunotherapies, nanomedicines and MRI-guided focused ultrasound for externally controlling drug delivery.
Collapse
|
16
|
Zhang L, Su H, Liu Y, Pang N, Li J, Qi XR. Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery. J Control Release 2018; 294:1-16. [PMID: 30527754 DOI: 10.1016/j.jconrel.2018.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Nanomedicines are often designed to target and treat solid tumors. Unfortunately, tumor and stroma composed of dense extracellular matrix, abnormal vascular barriers, elevated interstitial fluid pressure, et al., which impede the access and accumulation of nanomedicines into tumors. Strategies to disrupt these deterministic obstacles require a unique combination of promoter drugs and cytotoxic agents to target stroma and tumor simultaneously. Here, we engineered a novel strategy by co-delivery dexamethasone (DEX) and docetaxel (DTX) in the 2-in-1 liposome, namely (DEX + DTX)-Lip, with sequential release property. We proved that the engineered liposomal therapy approach could potentially achieve two objectives in tumor drug delivery: modulate tumor stroma and promote drug penetration and accumulation in tumor. Thus more DTX tenured in intratumoral site to kill tumor cells in a strong way with minimize systemic toxicity. The sequentially released liposomes won excellent antitumor efficacy in multifarious models, including KB, multidrug resistant KBv and metastatic 4 T1 tumor models and low toxicities compared with the combination of free drugs in vivo. Moreover, they demonstrated the potential of prevention tumor cells colonization and anti-metastasis in vivo models. These findings give insights in overcoming the deterministic stroma obstacles and provide a rational strategy to increase antitumor efficacy of combination nanomedicines with practical value.
Collapse
Affiliation(s)
- Lu Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ji Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
17
|
Wischhusen J, Wilson KE, Delcros JG, Molina-Peña R, Gibert B, Jiang S, Ngo J, Goldschneider D, Mehlen P, Willmann JK, Padilla F. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-5142. [PMID: 30429890 PMCID: PMC6217066 DOI: 10.7150/thno.27221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
In ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment. In this study, we studied netrin-1 as a target for USMI and its potential as a companion diagnostic in breast cancer models. Methods: To verify netrin-1 expression and localization, an in vivo immuno-localization approach was applied, in which anti-netrin-1 antibody was injected into living mice 24 h before tumor collection, and revealed with secondary fluorescent antibody for immunofluorescence analysis. Netrin-1 interactions with the cell surface were studied by flow cytometry. Netrin-1-targeted MBs were prepared using MicroMarker Target-Ready (VisualSonics), and validated in in vitro binding assays in static conditions or in a flow chamber using purified netrin-1 protein or netrin-1-expressing cancer cells. In vivo USMI of netrin-1 was validated in nude mice bearing human netrin-1-positive SKBR7 tumors or weakly netrin-1-expressing MDA-MB-231 tumors using the Vevo 2100 small animal imaging device (VisualSonics). USMI feasibility was further tested in transgenic murine FVB/N Tg(MMTV/PyMT634Mul) (MMTV-PyMT) mammary tumors. Results: Netrin-1 co-localized with endothelial CD31 in netrin-1-positive breast tumors. Netrin-1 binding to the surface of endothelial HUVEC and cancer cells was partially mediated by heparan sulfate proteoglycans. MBs targeted with humanized monoclonal anti-netrin-1 antibody bound to netrin-1-expressing cancer cells in static and dynamic conditions. USMI signal was significantly increased with anti-netrin-1 MBs in human SKBR7 breast tumors and transgenic murine MMTV-PyMT mammary tumors compared to signals recorded with either isotype control MBs or after blocking of netrin-1 with humanized monoclonal anti-netrin-1 antibody. In weakly netrin-1-expressing human tumors and normal mammary glands, no difference in imaging signal was observed with anti-netrin-1- and isotype control MBs. Ex vivo analysis confirmed netrin-1 expression in MMTV-PyMT tumors. Conclusions: These results show that USMI allowed reliable detection of netrin-1 on the endothelium of netrin-1-positive human and murine tumors. Significant differences in USMI signal for netrin-1 reflected the significant differences in netrin-1 mRNA & protein expression observed between different breast tumor models. The imaging approach was non-invasive and safe, and provided the netrin-1 expression status in near real-time. Thus, USMI of netrin-1 has the potential to become a companion diagnostic for the stratification of patients for netrin-1 interference therapy in future clinical trials.
Collapse
|
18
|
|
19
|
Lee YH, Lai CW, Cheng YC. Fluid Shear Stress Induces Cell Cycle Arrest in Human Urinary Bladder Transitional Cell Carcinoma Through Bone Morphogenetic Protein Receptor-Smad1/5 Pathway. Cell Mol Bioeng 2018; 11:185-195. [PMID: 31719885 DOI: 10.1007/s12195-018-0523-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022] Open
Abstract
Introduction Mechanical force generated from the interstitial fluid flow inside and surrounding tissue has been known to play a significant role in cancer pathophysiology. In this study, we aimed to investigate the role of laminar shear stress (LSS) in modulating the cell cycle of human bladder transitional carcinoma (BFTC-905) cells which are frequently stimulated by not only the interstitial fluid flow, but also the urine flow transported from kidney to bladder in the urinary tract. Methods The BFTC-905 cells were subjected to 0-12 dynes cm-2 LSS for 1, 4, 8, or 12 h, respectively, followed by cellular and molecular assays for investigations of cell cycle regulation protein expressions, cell growth rates, and the potential mechanism. Results The results showed that the LSS with ≥ 8 dynes cm-2 for ≥ 8 h significantly increased protein expressions of cyclin B1, Wee1, p21, and p-CDK1(Tyr15) (p < 0.05 for each), but conversely decreased protein expressions of cyclin A2, D1, E1, and CDK-1, -2, -4, and -6 (p < 0.05 for each) in the BFTC-905 cells, indicating that a G2/M cell cycle arrest was obtained after shearing stimulation. Furthermore, our data demonstrated that the LSS-induced G2/M arrest and the corresponding changes in cell cycle regulatory protein expressions were modulated by bone morphogenetic protein (BMP) receptor-Smad1/5 signaling pathway. Conclusions Our findings provided evidences for the effect of mechanical microenvironment on urothelial cancer pathobiology and generated insights into mechanism of LSS-regulated bladder tumor cell cycle.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001 Taiwan, ROC.,Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, ROC
| | - Chia-Wei Lai
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001 Taiwan, ROC
| | - Yu-Che Cheng
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001 Taiwan, ROC.,Proteomics Laboratory, Cathay Medical Research Institute, Cathay General Hospital, No.32, Ln.160, Jiancheng Rd., New Taipei City, 22174 Taiwan, ROC.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| |
Collapse
|
20
|
Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018; 4:292-319. [PMID: 29606314 PMCID: PMC5930008 DOI: 10.1016/j.trecan.2018.02.005] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Physical forces have a crucial role in tumor progression and cancer treatment. The application of principles of engineering and physical sciences to oncology has provided powerful insights into the mechanisms by which these forces affect tumor progression and confer resistance to delivery and efficacy of molecular, nano-, cellular, and immuno-medicines. Here, we discuss the mechanics of the solid and fluid components of a tumor, with a focus on how they impede the transport of therapeutic agents and create an abnormal tumor microenvironment (TME) that fuels tumor progression and treatment resistance. We also present strategies to reengineer the TME by normalizing the tumor vasculature and the extracellular matrix (ECM) to improve cancer treatment. Finally, we summarize various mathematical models that have provided insights into the physical barriers to cancer treatment and revealed new strategies to overcome these barriers.
Collapse
Affiliation(s)
- Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Aghevlian S, Lu Y, Winnik MA, Hedley DW, Reilly RM. Panitumumab Modified with Metal-Chelating Polymers (MCP) Complexed to 111In and 177Lu-An EGFR-Targeted Theranostic for Pancreatic Cancer. Mol Pharm 2018; 15:1150-1159. [PMID: 29314858 DOI: 10.1021/acs.molpharmaceut.7b01000] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A metal-chelating polymer (MCP) with a polyglutamide (PGlu) backbone presenting on average 13 DOTA (tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators for complexing 111In or 177Lu and 10 polyethylene glycol (PEG) chains to minimize liver and spleen uptake was conjugated to antiepidermal growth factor receptor (EGFR) monoclonal antibody (mAb), panitumumab. Because panitumumab-MCP may be dual-labeled with 111In and 177Lu for SPECT, or radioimmunotherapy (RIT) exploiting the Auger electrons or β-particle emissions, respectively, we propose that panitumumab-MCP could be a useful theranostic agent for EGFR-positive PnCa. Bioconjugation was achieved by reaction of a hydrazine nicotinamide (HyNIC) group on the MCP with an aryl aromatic aldehyde introduced into panitumumab by reaction with succinimidyl-4-formylbenzamide (S-4FB). The conjugation reaction was monitored by measurement of the chromophoric bis-aryl hydrazone bond formed (ε350 nm = 24 500 M-1 cm-1) to achieve two MCPs/panitumumab. Labeling of panitumumab-MCP with 111In or 177Lu demonstrated that masses as small as 0.1 μg were labeled to >90% labeling efficiency (L.E.) and a specific activity (SA) of >70 MBq/μg. Panitumumab-DOTA incorporating two DOTA per mAb was labeled with 111In or 177Lu to a maximum SA of 65 MBq/μg and 46 MBq/μg, respectively. Panitumumab-MCP-177Lu exhibited saturable binding to EGFR-overexpressing MDA-MB-468 human breast cancer cells. The Kd for binding of panitumumab-MCP-177Lu to EGFR (2.2 ± 0.6 nmol/L) was not significantly different than panitumumab-DOTA-177Lu (1.0 ± 0.4 nmol/L). 111In and 177Lu were stably complexed to panitumumab-MCP. Panitumumab-MCP-111In exhibited similar whole body retention (55-60%) as panitumumab-DOTA-111In in NOD-scid mice up to 72 h postinjection (p.i.) and equivalent excretion of radioactivity into the urine and feces. The uptake of panitumumab-MCP-111In in most normal tissues in NOD-scid mice with EGFR-positive PANC-1 human pancreatic cancer (PnCa) xenografts at 72 h p.i. was not significantly different than panitumumab-DOTA-111In, except for the liver which was 3-fold greater for panitumumab-MCP-111In. Tumor uptake of panitumumab-MCP-111In (6.9 ± 1.3%ID/g) was not significantly different than panitumumab-DOTA-11In (6.6 ± 3.3%ID/g). Tumor uptake of panitumumab-MCP-111In and panitumumab-DOTA-111In were reduced by preadministration of excess panitumumab, suggesting EGFR-mediated uptake. Tumor uptake of nonspecific IgG-MCP (5.4 ± 0.3%ID/g) was unexpectedly similar to panitumumab-MCP-111In. An increased hydrodynamic radius of IgG when conjugated to an MCP may encourage tumor uptake via the enhanced permeability and retention (EPR) effect. Tumor uptake of panitumumab-DOTA-111In was 3.5-fold significantly higher than IgG-DOTA-111In. PANC-1 tumors were imaged by microSPECT/CT at 72 h p.i. of panitumumab-MCP-111In or panitumumab-DOTA-111In. Tumors were not visualized with preadministration of excess panitumumab to block EGFR, or with nonspecific IgG radioimmunoconjugates. We conclude that linking panitumumab to an MCP enabled higher SA labeling with 111In and 177Lu than DOTA-conjugated panitumumab, with preserved EGFR binding in vitro and comparable tumor localization in vivo in mice with s.c. PANC-1 human PnCa xenografts. Normal tissue distribution was similar except for the liver which was higher for the polymer radioimmunoconjugates.
Collapse
Affiliation(s)
- Sadaf Aghevlian
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Yijie Lu
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Mitchell A Winnik
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - David W Hedley
- Department of Medical Oncology, Princess Margaret Cancer Centre , 610 University Avenue , Toronto , ON M5G 2M9 , Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada.,Department of Medical Imaging , University of Toronto , 263 McCaul Street , Toronto , ON M5T 1W7 , Canada.,Toronto General Research Institute and Joint Department of Medical Imaging , University Health Network , 200 Elizabeth Street , Toronto , ON M5G 2C4 , Canada
| |
Collapse
|
22
|
Shen Y, Pi Z, Yan F, Yeh CK, Zeng X, Diao X, Hu Y, Chen S, Chen X, Zheng H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int J Nanomedicine 2017; 12:5613-5629. [PMID: 28848341 PMCID: PMC5557914 DOI: 10.2147/ijn.s136401] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Paclitaxel liposomes (PTX-LIPO) are a clinically promising antineoplastic drug formulation for the treatment of various extracranial cancers, excluding glioblastoma. A main reason for this is the presence of the blood–brain barrier (BBB) or blood–tumor barrier (BTB), preventing liposomal drugs from crossing at a therapeutically meaningful level. Focused ultrasound (FUS) in conjunction with microbubbles (MBs) has been suggested in many studies to be an effective approach to increase the BBB or BTB permeability. In this study, we investigated the feasibility of enhancing the delivery of PTX-LIPO in intracranial glioblastoma-bearing nude mice using pulsed low-intensity FUS exposure in the presence of MBs. Our results showed that the delivery efficiency of PTX-LIPO could be effectively improved in terms of the penetration of both the BBB in vitro and BTB in vivo by pulsed FUS sonication with a 10 ms pulse length and 1 Hz pulse repetition frequency at 0.64 MPa peak-rarefactional pressure in the presence of MBs. Quantitative analysis showed that a 2-fold higher drug concentration had accumulated in the glioblastoma 3 h after FUS treatment, with 7.20±1.18 µg PTX per g glioma tissue. Longitudinal magnetic resonance imaging analysis illustrated that the intracranial glioblastoma progression in nude mice treated with PTX-LIPO delivered via FUS with MBs was suppressed consistently for 4 weeks compared to the untreated group. The medium survival time of these tumor-bearing nude mice was significantly prolonged by 20.8%, compared to the untreated nude mice. Immunohistochemical analysis further confirmed the antiproliferation effect and cell apoptosis induction. Our study demonstrated that noninvasive low-intensity FUS with MBs can be used as an effective approach to deliver PTX-LIPO in order to improve their chemotherapy efficacy toward glioblastoma.
Collapse
Affiliation(s)
- Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Zhaoke Pi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Fei Yan
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Xiaojun Zeng
- Shenzhen Second People's Hospital, Shenzhen, People's Republic of China
| | - Xianfen Diao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Yaxin Hu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
23
|
Song G, Luo T, Dong L, Liu Q. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression. ACTA ACUST UNITED AC 2017; 50:e5403. [PMID: 28678913 PMCID: PMC5496150 DOI: 10.1590/1414-431x20175403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.
Collapse
Affiliation(s)
- G Song
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - T Luo
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - L Dong
- Department of Radiology, The Secondary Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Q Liu
- Department of Radiology, The Secondary Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
24
|
DuFort CC, DelGiorno KE, Carlson MA, Osgood RJ, Zhao C, Huang Z, Thompson CB, Connor RJ, Thanos CD, Scott Brockenbrough J, Provenzano PP, Frost GI, Michael Shepard H, Hingorani SR. Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase. Biophys J 2017; 110:2106-19. [PMID: 27166818 DOI: 10.1016/j.bpj.2016.03.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022] Open
Abstract
Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.
Collapse
Affiliation(s)
- Christopher C DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kathleen E DelGiorno
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markus A Carlson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc., San Diego, California
| | | | | | | | | | - J Scott Brockenbrough
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paolo P Provenzano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
25
|
Bourgeois M, Bailly C, Frindel M, Guerard F, Chérel M, Faivre-Chauvet A, Kraeber-Bodéré F, Bodet-Milin C. Radioimmunoconjugates for treating cancer: recent advances and current opportunities. Expert Opin Biol Ther 2017; 17:813-819. [DOI: 10.1080/14712598.2017.1322577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mickaël Bourgeois
- Department of Nuclear Medicine, University Hospital, 44093 Nantes, France
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
- Department of radiopharmacy, ARRONAX Cyclotron, Saint Herblain, France
| | - Clément Bailly
- Department of Nuclear Medicine, University Hospital, 44093 Nantes, France
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
| | - Mathieu Frindel
- Department of Nuclear Medicine, Institut de Cancérologie de l’Ouest (ICO) – Site Gauducheau, Saint Herblain, France
| | - François Guerard
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
| | - Michel Chérel
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
- Department of Nuclear Medicine, Institut de Cancérologie de l’Ouest (ICO) – Site Gauducheau, Saint Herblain, France
| | - Alain Faivre-Chauvet
- Department of Nuclear Medicine, University Hospital, 44093 Nantes, France
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- Department of Nuclear Medicine, University Hospital, 44093 Nantes, France
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
- Department of Nuclear Medicine, Institut de Cancérologie de l’Ouest (ICO) – Site Gauducheau, Saint Herblain, France
| | - Caroline Bodet-Milin
- Department of Nuclear Medicine, University Hospital, 44093 Nantes, France
- Nantes-Angers Cancer Research Center (CRCNA), University of Nantes, Nantes, France
- Department of Nuclear Medicine, Institut de Cancérologie de l’Ouest (ICO) – Site Gauducheau, Saint Herblain, France
| |
Collapse
|
26
|
Lokerse WJM, Bolkestein M, Dalm SU, Eggermont AMM, de Jong M, Grüll H, Koning GA. Comparing the therapeutic potential of thermosensitive liposomes and hyperthermia in two distinct subtypes of breast cancer. J Control Release 2017; 258:34-42. [PMID: 28479096 DOI: 10.1016/j.jconrel.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023]
Abstract
Local drug delivery of Doxorubicin (Dox) with thermosensitive liposomes (TSL) and hyperthermia (HT) has shown preclinically to achieve high local drug concentrations with good therapeutic efficacy. Currently, this is clinically studied for treatment of chest wall recurrence of breast cancer, however with various outcomes. This study examines the potency of neoadjuvant TSL HT combination therapy in two orthotopic mouse models of human breast cancer, MDA-MB-231 and T-47D, which morphologically correlate to mesenchymal and epithelial phenotypes, respectively. Both cell lines showed improved in vitro chemosensitivity and Dox uptake at HT. Dox-loaded TSL (TSLDox) was stable in vitro in FBS, BALB/c-nu plasma and human plasma, although release of the drug at HT was incomplete for the latter two. Combination treatment with TSLDox and HT in vivo was significantly more effective against MDA-MB-231 tumors, whereas T-47D tumors showed no significant therapeutic response. Ex vivo investigation revealed a higher mean vessel density and poorly differentiated extracellular matrix (ECM) in MDA-MB-231 tumors relative to T-47D tumors. Although in vitro results of the TSLDox and HT treatment were favorable for both cell types, the therapeutic efficacy in vivo was remarkably different. The well-differentiated and slowly-growing T-47D tumors may provide a microenvironment that limits drug delivery to the target cell and therefore renders the therapy ineffective. Mesenchymal and invasive MDA-MB-231 tumors display higher vascularization and less mature ECM, significantly enhancing tumor response to TSLDox and HT treatment. These results yield insight into the efficacy of TSL treatment within different tumor microenvironments, and further advance our understanding of factors that contribute to heterogeneous therapeutic outcomes in clinical trials.
Collapse
Affiliation(s)
- Wouter J M Lokerse
- Department of Surgery, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Michiel Bolkestein
- Department of Surgery, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Simone U Dalm
- Department of Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiology, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Alexander M M Eggermont
- Cancer Institute Gustave-Roussy, 114 Rue Edouard Vaillant, Villejuif/Paris-Sud 94800, France
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiology, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Holger Grüll
- Department of Radiology, University Hospital of Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Gerben A Koning
- Department of Surgery, Erasmus MC, 's-Gravendijkwal 230, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
27
|
Wilson KE, Bachawal SV, Abou-Elkacem L, Jensen K, Machtaler S, Tian L, Willmann JK. Spectroscopic Photoacoustic Molecular Imaging of Breast Cancer using a B7-H3-targeted ICG Contrast Agent. Am J Cancer Res 2017; 7:1463-1476. [PMID: 28529630 PMCID: PMC5436506 DOI: 10.7150/thno.18217] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022] Open
Abstract
Purpose: Breast cancer imaging methods lack diagnostic accuracy, in particular for patients with dense breast tissue, and improved techniques are critically needed. The purpose of this study was to evaluate antibody-indocyanine green (ICG) conjugates, which undergo dynamic absorption spectrum shifts after cellular endocytosis and degradation, and spectroscopic photoacoustic (sPA) imaging to differentiate normal breast tissue from breast cancer by imaging B7-H3, a novel breast cancer associated molecular target. Methods: Quantitative immunohistochemical staining of endothelial and epithelial B7-H3 expression was assessed in 279 human breast tissue samples, including normal (n=53), benign lesions (11 subtypes, n=129), and breast cancers (4 subtypes, n=97). After absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control-ICG (Iso-ICG) were characterized, sPA imaging in a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was performed and compared to imaging of control conditions [B7-H3-ICG in tumor negative animals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)] and validated with ex vivo histological analysis. Results: Immunostaining showed differential B7-H3 expression on both the endothelium and tumor epithelium in human breast cancer with an area under the ROC curve of 0.93 to differentiate breast cancer vs non-cancer. Combined in vitro/in vivo imaging showed that sPA allowed specific B7-H3-ICG detection down to the 13 nM concentration and differentiation from Iso-ICG. sPA molecular imaging of B7-H3-ICG showed a 3.01-fold (P<0.01) increase in molecular B7-H3-ICG signal in tumors compared to control conditions. Conclusions: B7-H3 is a promising target for both vascular and epithelial sPA imaging of breast cancer. Leveraging antibody-ICG contrast agents and their dynamic optical absorption spectra allows for highly specific sPA imaging of breast cancer.
Collapse
|
28
|
DuFort CC, DelGiorno KE, Hingorani SR. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2016; 150:1545-1557.e2. [PMID: 27072672 PMCID: PMC4957812 DOI: 10.1053/j.gastro.2016.03.040] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/21/2022]
Abstract
The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted.
Collapse
Affiliation(s)
- Christopher C. DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kathleen E. DelGiorno
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sunil R. Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
29
|
Curry FRE. Drug delivery: Redefining tumour vascular barriers. NATURE NANOTECHNOLOGY 2016; 11:494-496. [PMID: 26878144 DOI: 10.1038/nnano.2016.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Fitz-Roy E Curry
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
30
|
Durymanov MO, Yarutkin AV, Bagrov DV, Klinov DV, Kedrov AV, Chemeris NK, Rosenkranz AA, Sobolev AS. Application of vasoactive and matrix-modifying drugs can improve polyplex delivery to tumors upon intravenous administration. J Control Release 2016; 232:20-8. [DOI: 10.1016/j.jconrel.2016.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/05/2023]
|
31
|
Daldrup-Link HE, Mohanty S, Ansari C, Lenkov O, Shaw A, Ito K, Hong SH, Hoffmann M, Pisani L, Boudreau N, Gambhir SS, Coussens LM. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight 2016; 1:e85608. [PMID: 27182558 PMCID: PMC4864003 DOI: 10.1172/jci.insight.85608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/29/2016] [Indexed: 12/24/2022] Open
Abstract
Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies.
Collapse
Affiliation(s)
- Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Celina Ansari
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Olga Lenkov
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Aubie Shaw
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Ken Ito
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Su Hyun Hong
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Matthias Hoffmann
- Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt, Germany
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
| | - Nancy Boudreau
- Department of Surgery, UCSF, San Francisco, California, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Department of Bioengineering and
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
32
|
Lawrence J, Cameron D, Argyle D. Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0233. [PMID: 26056373 DOI: 10.1098/rstb.2014.0233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite advances in chemotherapy, radiotherapy and targeted drug development, cancer remains a disease of high morbidity and mortality. The treatment of human cancer patients with chemotherapy has become commonplace and accepted over the past 100 years. In recent years, and with a similar incidence of cancer to people, the use of cancer chemotherapy drugs in veterinary patients such as the dog has also become accepted clinical practice. The poor predictability of tumour responses to cancer chemotherapy drugs in rodent models means that the standard drug development pathway is costly, both in terms of money and time, leading to many drugs failing in Phase I and II clinical trials. This has led to the suggestion that naturally occurring cancers in pet dogs may offer an alternative model system to inform rational drug development in human oncology. In this review, we will explore the species variation in tumour responses to conventional chemotherapy and highlight our understanding of the differences in pharmacodynamics, pharmacokinetics and pharmacogenomics between humans and dogs. Finally, we explore the potential hurdles that need to be overcome to gain the greatest value from comparative oncology studies.
Collapse
Affiliation(s)
- Jessica Lawrence
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - David Cameron
- University of Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh EH4 2LF, UK
| | - David Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK
| |
Collapse
|
33
|
Kachalaki S, Ebrahimi M, Mohamed Khosroshahi L, Mohammadinejad S, Baradaran B. Cancer chemoresistance; biochemical and molecular aspects: a brief overview. Eur J Pharm Sci 2016; 89:20-30. [PMID: 27094906 DOI: 10.1016/j.ejps.2016.03.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 01/27/2023]
Abstract
The effectiveness of chemotherapy is one of the main challenges in cancer treatment and resistance to classic drugs and traditional treatment processes is an obstacle to this goal. Drug resistance that may be inherent or adventitious can cause poor treatment outcome and tumor relapse. In most cases, resistance to a drug can lead to resistance to many other drugs structure and function of which is not necessarily similar to the first drug. This phenomenon is the main mechanism behind failure of many of metastatic cancers. There are various molecular mechanisms involved in multidrug resistance, including change in the activity of membrane transporters (such as ABC transporters), increase of drug metabolism, change of the target enzyme (such as mutations that change thymidylate synthase and topoisomerases), promotion of DNA damage repair, and escape from drug induced apoptosis. Clinical and laboratory investigations on biomarkers involved in the response to chemotherapy have characterized the key factors behind the failure of treatments. Knowing the molecular factors involved in drug resistance may help us to develop new strategies for more promising chemotherapy and reduce the rate of relapse. In this brief review, molecular mechanisms and tumor microenvironment leading to decreased drug sensitivity, and strategies of reversing drug resistance are described.
Collapse
Affiliation(s)
- Saeed Kachalaki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Ebrahimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Sina Mohammadinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Han B, Qu C, Park K, Konieczny SF, Korc M. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Lett 2015; 380:319-29. [PMID: 26688098 DOI: 10.1016/j.canlet.2015.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Targeted delivery aims to selectively distribute drugs to targeted tumor tissues but not to healthy tissues. This can address many clinical challenges by maximizing the efficacy but minimizing the toxicity of anti-cancer drugs. However, a complex tumor microenvironment poses various barriers hindering the transport of drugs and drug delivery systems. New tumor models that allow for the systematic study of these complex environments are highly desired to provide reliable test beds to develop drug delivery systems for targeted delivery. Recently, research efforts have yielded new in vitro tumor models, the so called tumor-microenvironment-on-chip, that recapitulate certain characteristics of the tumor microenvironment. These new models show benefits over other conventional tumor models, and have the potential to accelerate drug discovery and enable precision medicine. However, further research is warranted to overcome their limitations and to properly interpret the data obtained from these models. In this article, key features of the in vivo tumor microenvironment that are relevant to drug transport processes for targeted delivery were discussed, and the current status and challenges for developing in vitro transport model systems were reviewed.
Collapse
Affiliation(s)
- Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Chunjing Qu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Kinam Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Stephen F Konieczny
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Murray Korc
- Departments of Medicine, Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Pancreatic Cancer Signature Center, Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
High efficacy vasopermeability drug candidates identified by screening in an ex ovo chorioallantoic membrane model. Sci Rep 2015; 5:15756. [PMID: 26510887 PMCID: PMC4625159 DOI: 10.1038/srep15756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/28/2015] [Indexed: 11/08/2022] Open
Abstract
The use of rodent models to evaluate efficacy during testing is accompanied by significant economic and regulatory hurdles which compound the costs of screening for promising drug candidates. Vasopermeation Enhancement Agents (VEAs) are a new class of biologics that are designed to increase the uptake of cancer therapeutics at the tumor site by modifying vascular permeability in the tumor to increase the therapeutic index of co-administered drugs. To evaluate the efficacy of a panel of VEA clinical candidates, we compared the rodent Miles assay to an equivalent assay in the ex ovo chicken embryo model. Both model systems identified the same candidate (PVL 10) as the most active promoter of vasopermeation in non-tumor tissues. An ex ovo chicken embryo system was utilized to test each candidate VEA in two human tumor models at a range of concentrations. Vasopermeation activity due to VEA was dependent on tumor type, with HEp3 tumors displaying higher levels of vasopermeation than MDA-MB-435. One candidate (PVL 10) proved optimal for HEp3 tumors and another (PVL 2) for MDA-MB-435. The use of the ex ovo chicken embryo model provides a rapid and less costly alternative to the use of rodent models for preclinical screening of drug candidates.
Collapse
|
36
|
Hylander BL, Sen A, Beachy SH, Pitoniak R, Ullas S, Gibbs JF, Qiu J, Prey JD, Fetterly GJ, Repasky EA. Tumor priming by Apo2L/TRAIL reduces interstitial fluid pressure and enhances efficacy of liposomal gemcitabine in a patient derived xenograft tumor model. J Control Release 2015; 217:160-9. [PMID: 26342663 DOI: 10.1016/j.jconrel.2015.08.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Interstitial fluid pressure (IFP) is elevated in tumors and high IFP, a negative cancer prognosticator, is known to limit the uptake and efficacy of anti-tumor therapeutics. Approaches that alter the tumor microenvironment and enhance uptake of therapeutics are collectively referred to as tumor "priming". Here we show that the cytotoxic biological therapy Apo2L/TRAIL can prime the tumor microenvironment and significantly lower IFP in three different human tumor xenograft models (Colo205, MiaPaca-2 and a patient gastrointestinal adenocarcinoma tumor xenograft). We found that a single dose of Apo2L/TRAIL resulted in a wave of apoptosis which reached a maximum at 8h post-treatment. Apoptotic debris subsequently disappeared concurrent with an increase in macrophage infiltration. By 24h post-treatment, treated tumors appeared less condensed with widening of the stromal areas which increased at 48 and 72h. Analysis of tumor vasculature demonstrated a significant increase in overall vessel size at 48 and 72h although the number of vessels did not change. Notably, IFP was significantly reduced in these tumors by 48h after Apo2L/TRAIL treatment. Administration of gemcitabine at this time resulted in increased tumor uptake of both gemcitabine and liposomal gemcitabine and significantly improved anti-tumor efficacy of liposomal gemcitabine. These results suggest that Apo2L/TRAIL has a potential as a tumor priming agent and provides a rationale for developing a sequencing schema for combination therapy such that an initial dose of Apo2L/TRAIL would precede administration of gemcitabine or other therapies.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Arindam Sen
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sarah H Beachy
- Dept. of Cell Stress, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rose Pitoniak
- Dept. of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Soumya Ullas
- Dept. of Cell Stress, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - John F Gibbs
- Dept. of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jingxin Qiu
- Dept. of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joshua D Prey
- Dept. of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
37
|
Coutelle O, Schiffmann LM, Liwschitz M, Brunold M, Goede V, Hallek M, Kashkar H, Hacker UT. Dual targeting of Angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer 2015; 112:495-503. [PMID: 25562438 PMCID: PMC4453651 DOI: 10.1038/bjc.2014.629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/23/2014] [Accepted: 11/28/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Effective vascular normalisation following vascular endothelial growth factor (VEGF) inhibition is associated with endothelial cell regression leaving empty basement membrane sleeves (BMS). These long-lived BMS permit the rapid regrowth of tumour vasculature upon treatment cessation and promote resistance to VEGF-targeting drugs. Previous attempts at removing BMS have failed. Angiopoietin-2 (Ang2) is a vascular destabilizing factor that antagonises normalisation. We hypothesised that Ang2 inhibition could permit vascular normalisation at significantly reduced doses of VEGF inhibition, avoiding excessive vessel regression and the formation of empty BMS. METHODS Mice xenografted with human colorectal cancer cells (LS174T) were treated with low (0.5 mg kg(-1)) or high (5 mg kg(-1)) doses of the VEGF-targeting antibody bevacizumab with or without an Ang2 blocking peptibody L1-10. Tumour growth, BMS formation and normalisation parameters were examined including vessel density, pericyte coverage, adherence junctions, leakiness, perfusion, hypoxia and proliferation. RESULTS Dual targeting of VEGF and Ang2 achieved effective normalisation at only one-tenth of the dose required with bevacizumab alone. Pericyte coverage, vascular integrity, adherence junctions and perfusion as prerequisites for improved access of chemotherapy were improved without inducing empty BMS that facilitate rapid vascular regrowth. CONCLUSIONS Dual targeting of VEGF and Ang2 can potentiate the effectiveness of VEGF inhibitors and avoid the formation of empty BMS.
Collapse
Affiliation(s)
- O Coutelle
- Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | - L M Schiffmann
- Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | - M Liwschitz
- Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | - M Brunold
- Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | - V Goede
- 1] Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany [2] Deptartment for Geriatric Care, St Marien Hospital, Kunibertskloster 11-13, 50668 Cologne, Germany
| | - M Hallek
- Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | - H Kashkar
- 1] Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany [2] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany [3] Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Straße 39, 50931 Cologne, Germany
| | - U T Hacker
- 1] Department I for Internal Medicine, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany [2] University Cancer Center Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| |
Collapse
|
38
|
Jain RK, Netti PA. Letter to the editor regarding recent article by Wu et al. [J. Theor. Biol. 355 (2014) pp. 194-207]. J Theor Biol 2014; 363:453. [PMID: 25219622 DOI: 10.1016/j.jtbi.2014.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Rakesh K Jain
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, 100 Blossom Street, Cox 7, Boston, MA 02114, USA.
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials , University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
39
|
Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma: a Brown University Oncology Group Study. Am J Clin Oncol 2014; 37:444-9. [PMID: 23388562 DOI: 10.1097/coc.0b013e31827de92b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Paclitaxel poliglumex (PPX), a drug conjugate that links paclitaxel to poly-L-glutamic acid, is a potent radiation sensitizer. Prior studies in esophageal cancer have demonstrated that PPX (50 mg/m/wk) can be administered with concurrent radiation with acceptable toxicity. The primary objective of this study was to determine the safety of the combination of PPX with temozolomide and concurrent radiation for high-grade gliomas. METHODS Eligible patients were required to have WHO grade 3 or 4 gliomas. Patients received weekly PPX (50 mg/m/wk) combined with standard daily temozolomide (75 mg/m) for 6 weeks with concomitant radiation (2.0 Gy, 5 d/wk for a total dose of 60 Gy). RESULTS Twenty-five patients were enrolled, 17 with glioblastoma and 8 with grade 3 gliomas. Seven of 25 patients had grade 4 myelosuppression. Hematologic toxicity lasted up to 5 months suggesting a drug interaction between PPX and temozolomide. For patients with glioblastoma, the median progression-free survival was 11.5 months and the median overall survival was 18 months. CONCLUSIONS PPX could not be safely combined with temozolomide due to grade 4 hematologic toxicity. However, the favorable progression-free and overall survival suggest that PPX may enhance radiation for glioblastoma. A randomized study of single agent PPX/radiation versus temozolomide/radiation for glioblastoma without MGMT methylation is underway.
Collapse
|
40
|
MAGADOUX L, ISAMBERT N, PLENCHETTE S, JEANNIN J, LAURENS V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (Review). Int J Oncol 2014; 45:919-28. [DOI: 10.3892/ijo.2014.2517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
|
41
|
Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine 2014; 9:2539-55. [PMID: 24904213 PMCID: PMC4039421 DOI: 10.2147/ijn.s47129] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The growing research interest in nanomedicine for the treatment of cancer and inflammatory-related pathologies is yielding encouraging results. Unfortunately, enthusiasm is tempered by the limited specificity of the enhanced permeability and retention effect. Factors such as lack of cellular specificity, low vascular density, and early release of active agents prior to reaching their target contribute to the limitations of the enhanced permeability and retention effect. However, improved nanomedicine designs are creating opportunities to overcome these problems. In this review, we present examples of the advances made in this field and endeavor to highlight the potential of these emerging technologies to improve targeting of nanomedicine to specific pathological cells and tissues.
Collapse
Affiliation(s)
- Hayley Nehoff
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Neha N Parayath
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Laura Domanovitch
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Sebastien Taurin
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Khaled Greish
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand ; Department of Oncology, Faculty of Medicine, Suez Canal University, Egypt
| |
Collapse
|
42
|
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66:2-25. [PMID: 24270007 PMCID: PMC4219254 DOI: 10.1016/j.addr.2013.11.009] [Citation(s) in RCA: 1889] [Impact Index Per Article: 188.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
Cancer nanotherapeutics are progressing at a steady rate; research and development in the field has experienced an exponential growth since early 2000's. The path to the commercialization of oncology drugs is long and carries significant risk; however, there is considerable excitement that nanoparticle technologies may contribute to the success of cancer drug development. The pace at which pharmaceutical companies have formed partnerships to use proprietary nanoparticle technologies has considerably accelerated. It is now recognized that by enhancing the efficacy and/or tolerability of new drug candidates, nanotechnology can meaningfully contribute to create differentiated products and improve clinical outcome. This review describes the lessons learned since the commercialization of the first-generation nanomedicines including DOXIL® and Abraxane®. It explores our current understanding of targeted and non-targeted nanoparticles that are under various stages of development, including BIND-014 and MM-398. It highlights the opportunities and challenges faced by nanomedicines in contemporary oncology, where personalized medicine is increasingly the mainstay of cancer therapy. We revisit the fundamental concepts of enhanced permeability and retention effect (EPR) and explore the mechanisms proposed to enhance preferential "retention" in the tumor, whether using active targeting of nanoparticles, binding of drugs to their tumoral targets or the presence of tumor associated macrophages. The overall objective of this review is to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancers.
Collapse
Affiliation(s)
- Nicolas Bertrand
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wu
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Xiaoyang Xu
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nazila Kamaly
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
43
|
Treatment with EGCG in NSCLC leads to decreasing interstitial fluid pressure and hypoxia to improve chemotherapy efficacy through rebalance of Ang-1 and Ang-2. Chin J Nat Med 2013; 11:245-53. [PMID: 23725836 DOI: 10.1016/s1875-5364(13)60023-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Indexed: 12/12/2022]
Abstract
AIM Microvasculature and microenvironment play important roles in proliferation, invasion, metastasis and prognosis in non-small cell lung cancer (NSCLC), which might be altered by many anti-angiogenic drugs. Epigallocatechin-3-gallate (EGCG), a natural anti-angiogenesis agent refined from green tea, was defined to have multiple effects on angiogenesis factors, such as endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and angiopoietins (ANGs). Hypothesizing that EGCG might regulate microvasculature and microenvironment in NSCLC, the effects of EGCG on microvessel density (MVD), expression of Ang-1 and Ang-2, interstitial fluid pressure (IFP), tumor hypoxia, and chemotherapy sensitivity were examined. METHODS AND RESULTS EGCG treatment of A549 cells in mice bearing xenografts in vivo led to a significant decrease of MVD detected by CD31, and of Ang-2 expression detected by quantum dots double-label immunofluorescence assessment, while Ang-1 decreased with no significance. Decreased IFP was measured by the Wink-in-needle method, while hypoxia was assessed by polarographic electrode and pimonidazole (PIMO) immunohistochemistry. Assuming that these changes would increase response to chemotherapy, tumor growth studies were p[erformed in nude mice with xenografts, which were then treated with EGCG and the chemotherapeutic agent cisplatin. EGCG therapy combined with cisplatin led to synergistic inhibition of tumor growth, compared with administration of each treatment separately (P < 0.001). According to linear regression analysis, IFP was positively correlated with PIMO staining (R(2) = 0.618, P = 0.002), Ang-2 was correlated with MVD (R(2) = 0.423, P = 0.022), IFP (R(2) = 0.663, P = 0.01) and PIMO staining (R(2) = 0.694, P = 0.01). CONCLUSION IFP and delivery of oxygen might be improved by rebalance of Ang-1/Ang-2 under the treatment of EGCG in NSCLC, which also acts as a sensitizer of chemotherapy. These studies established a new mechanism for using EGCG as an adjuvant chemotherapy agent through modifying microvasculature and microenvironment.
Collapse
|
44
|
Therapeutic applications of anti-sense mechanisms for the treatment of cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Abstract
There are many obstacles to effective cancer chemotherapy, including drug penetration and accumulation in tumors and drug systemic toxicity. The penetration of therapies into tumors is limited by the dense tumor matrix and by compression of the tumor vasculature. We have developed spiropyran-based nanoparticles that shrink from 103 to 49 nm upon irradiation at 365 nm. That shrinkage enhanced tissue penetration and drug release. Irradiation of s.c. HT-1080 tumors in nude mice administered i.v. docetaxel-containing nanoparticles was more effective treatment than free docetaxel or encapsulated docetaxel without irradiation. Irradiation at the tumor site also resulted in less systemic toxicity than if the nanoparticles were irradiated before injection, presumably because of less systemically distributed free drug. The enhanced efficacy of nanoparticles in irradiated tumors may have been related to the observed enhanced tumor penetration by nanoparticles and decompression of tumor blood vessels, which may also increase nanoparticle delivery into tumors.
Collapse
|
46
|
Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li SD. Docetaxel conjugate nanoparticles that target α-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis. Cancer Res 2013; 73:4862-71. [PMID: 23907638 DOI: 10.1158/0008-5472.can-13-0062] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Docetaxel-conjugate nanoparticles, known as Cellax, were synthesized by covalently conjugating docetaxel and polyethylene glycol to acetylated carboxymethylcellulose via ester linkages, yielding a polymeric conjugate that self-assembled into 120 nm particles suitable for intravenous administration. In 4T1 and MDA-MB-231 orthotopic breast tumor models, Cellax therapy reduced α-smooth muscle actin (α-SMA) content by 82% and 70%, respectively, whereas native docetaxel and nab-paclitaxel (albumin-paclitaxel nanoparticle, Abraxane) exerted no significant antistromal activity. In Cellax-treated mice, tumor perfusion was increased by approximately 70-fold (FITC-lectin binding), tumor vascular permeability was enhanced by more than 30% (dynamic contrast-enhanced magnetic resonance imaging), tumor matrix was decreased by 2.5-fold (immunohistochemistry), and tumor interstitial fluid pressure was suppressed by approximately 3-fold after Cellax therapy compared with the control, native docetaxel, and nab-paclitaxel groups. The antistromal effect of Cellax treatment corresponded to a significantly enhanced antimetastatic effect: lung nodules were reduced by 7- to 24-fold by Cellax treatment, whereas native docetaxel and nab-paclitaxel treatments were ineffective. Studies of the 4T1 tumor showed that more than 85% of the Cellax nanoparticles were delivered to the α-SMA+ stroma. Significant tumor stromal depletion occurred within 16 hours (∼50% depletion) postinjection, and the α-SMA+ stroma population was almost undetectable (∼3%) by 1 week. The 4T1 tumor epithelial cell population was not significantly reduced in the week after Cellax injection. These data suggest that Cellax targets tumor stroma and performs more efficaciously than docetaxel and nab-paclitaxel.
Collapse
Affiliation(s)
- Mami Murakami
- Drug Delivery and Formulation, Drug Discovery Program, Ontario Institute for Cancer Research, 101 College Street, MaRS Centre South Tower, Suite 800,Toronto, Ontario M5G 0A3, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Diffusion of solutes and macromolecules in the extracellular space (ECS) in brain is important for non-synaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. Diffusion in tumor ECS is important for delivery of anti-tumor drugs. The ECS in brain comprises ∼20% of brain parenchymal volume and contains cell-cell gaps down to ∼50 nm. We have developed fluorescence methods to quantify solute diffusion in the ECS, allowing measurements deep in solid tissues using microfiberoptics with micron tip size. Diffusion through the tortuous ECS in brain is generally slowed by ∼3-5-fold compared with that in water, with approximately half of the slowing due to tortuous ECS geometry and half due to the mildly viscous extracellular matrix (ECM). Mathematical modeling of slowed diffusion in an ECS with reasonable anatomical accuracy is in good agreement with experiment. In tumor tissue, diffusion of small macromolecules is only mildly slowed (<3-fold slower than in water) in superficial tumor, but is greatly slowed (>10-fold) at a depth of few millimeters as the tumor tissue becomes more compact. Slowing by ECM components such as collagen contribute to the slowed diffusion. Therefore, as found within cells, cellular crowding and highly tortuous transport can produce only minor slowing of diffusion in the ECS.
Collapse
Affiliation(s)
- A S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA 94143-0521, USA
| |
Collapse
|
48
|
Guo P, Fu BM. Effect of wall compliance and permeability on blood-flow rate in counter-current microvessels formed from anastomosis during tumor-induced angiogenesis. J Biomech Eng 2012; 134:041003. [PMID: 22667678 DOI: 10.1115/1.4006338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor blood-flow is inhomogeneous because of heterogeneity in tumor vasculature, vessel-wall leakiness, and compliance. Experimental studies have shown that normalization of tumor vasculature by antiangiogenic therapy can improve tumor microcirculation and enhance the delivery of therapeutic agents to tumors. To elucidate the quantitative relationship between the vessel-wall compliance and permeability and the blood-flow rate in the microvessels of the tumor tissue, the tumor tissue with the normalized vasculature, and the normal tissue, we developed a transport model to simultaneously predict the interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and the blood-flow rate in a counter-current microvessel loop, which occurs from anastomosis in tumor-induced angiogenesis during tumor growth. Our model predicts that although the vessel-wall leakiness greatly affects the IFP and IFV, it has a negligible effect on the intravascular driving force (pressure gradient) for both rigid and compliant vessels, and thus a negligible effect on the blood-flow rate if the vessel wall is rigid. In contrast, the wall compliance contributes moderately to the IFP and IFV, but significantly to the vessel radius and to the blood-flow rate. However, the combined effects of vessel leakiness and compliance can increase IFP, which leads to a partial collapse in the blood vessels and an increase in the flow resistance. Furthermore, our model predictions speculate a new approach for enhancing drug delivery to tumor by modulating the vessel-wall compliance in addition to reducing the vessel-wall leakiness and normalizing the vessel density.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
49
|
Marcucci F, Bellone M, Rumio C, Corti A. Approaches to improve tumor accumulation and interactions between monoclonal antibodies and immune cells. MAbs 2012; 5:34-46. [PMID: 23211740 DOI: 10.4161/mabs.22775] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies (mAb) have become a mainstay in tumor therapy. Clinical responses to mAb therapy, however, are far from optimal, with many patients presenting native or acquired resistance or suboptimal responses to a mAb therapy. MAbs exert antitumor activity through different mechanisms of action and we propose here a classification of these mechanisms. In many cases mAbs need to interact with immune cells to exert antitumor activity. We summarize evidence showing that interactions between mAbs and immune cells may be inadequate for optimal antitumor activity. This may be due to insufficient tumor accumulation of mAbs or immune cells, or to low-affinity interactions between these components. The possibilities to improve tumor accumulation of mAbs and immune cells, and to improve the affinity of the interactions between these components are reviewed. We also discuss future directions of research that might further improve the therapeutic efficacy of antitumor mAbs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della Salute, Istituto Superiore di Sanita', Roma, Italy.
| | | | | | | |
Collapse
|
50
|
Simonsen TG, Gaustad JV, Leinaas MN, Rofstad EK. High interstitial fluid pressure is associated with tumor-line specific vascular abnormalities in human melanoma xenografts. PLoS One 2012; 7:e40006. [PMID: 22768196 PMCID: PMC3386940 DOI: 10.1371/journal.pone.0040006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/30/2012] [Indexed: 12/22/2022] Open
Abstract
Purpose Interstitial fluid pressure (IFP) is highly elevated in many solid tumors. High IFP has been associated with low radiocurability and high metastatic frequency in human melanoma xenografts and with poor survival after radiation therapy in cervical cancer patients. Abnormalities in tumor vascular networks have been identified as an important cause of elevated tumor IFP. The aim of this study was to investigate the relationship between tumor IFP and the functional and morphological properties of tumor vascular networks. Materials and Methods A-07-GFP and R-18-GFP human melanomas growing in dorsal window chambers in BALB/c nu/nu mice were used as preclinical tumor models. Functional and morphological parameters of the vascular network were assessed from first-pass imaging movies and vascular maps recorded after intravenous bolus injection of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran. IFP was measured in the center of the tumors using a Millar catheter. Angiogenic profiles of A-07-GFP and R-18-GFP cells were obtained with a quantitative PCR array. Results High IFP was associated with low growth rate and low vascular density in A-07-GFP tumors, and with high growth rate and high vascular density in R-18-GFP tumors. A-07-GFP tumors showed chaotic and highly disorganized vascular networks, while R-18-GFP tumors showed more organized vascular networks with supplying arterioles in the tumor center and draining venules in the tumor periphery. Furthermore, A-07-GFP and R-18-GFP cells differed substantially in angiogenic profiles. A-07-GFP tumors with high IFP showed high geometric resistance to blood flow due to high vessel tortuosity. R-18-GFP tumors with high IFP showed high geometric resistance to blood flow due to a large number of narrow tumor capillaries. Conclusions High IFP in A-07-GFP and R-18-GFP human melanoma xenografts was primarily a consequence of high blood flow resistance caused by tumor-line specific vascular abnormalities.
Collapse
Affiliation(s)
- Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | | | | | | |
Collapse
|