1
|
Venkadakrishnan VB, Presser AG, Singh R, Booker MA, Traphagen NA, Weng K, Voss NCE, Mahadevan NR, Mizuno K, Puca L, Idahor O, Ku SY, Bakht MK, Borah AA, Herbert ZT, Tolstorukov MY, Barbie DA, Rickman DS, Brown M, Beltran H. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. Nat Commun 2024; 15:6779. [PMID: 39117665 PMCID: PMC11310309 DOI: 10.1038/s41467-024-51156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs in NEPC, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam G Presser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole A Traphagen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Boston College, Chestnut Hill, MA, USA
| | - Nathaniel C E Voss
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Belmont Hill School, Belmont, MA, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard University, Cambridge, MA, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashir A Borah
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Singh S, Gleason CE, Fang M, Laimon YN, Khivansara V, Xie S, Durmaz YT, Sarkar A, Ngo K, Savla V, Li Y, Abu-Remaileh M, Li X, Tuladhar B, Odeh R, Hamkins-Indik F, He D, Membreno MW, Nosrati M, Gushwa NN, Leung SSF, Fraga-Walton B, Hernandez L, Baldomero MP, Lent BM, Spellmeyer D, Luna JF, Hoang D, Gritsenko Y, Chand M, DeMart MK, Metobo S, Bhatt C, Shapiro JA, Yang K, Dupper NJ, Bockus AT, Doench JG, Aggen JB, Liu LF, Levin B, Wang EW, Vendrell I, Fischer R, Kessler B, Gokhale PC, Signoretti S, Spektor A, Kreatsoulas C, Singh R, Earp DJ, Garcia PD, Nijhawan D, Oser MG. Cyclin A/B RxL Macrocyclic Inhibitors to Treat Cancers with High E2F Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605889. [PMID: 39211113 PMCID: PMC11360997 DOI: 10.1101/2024.08.01.605889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.
Collapse
|
3
|
Aba PE, Ihedioha JI, Asuzu IU. A review of the mechanisms of anti-cancer activities of some medicinal plants-biochemical perspectives. J Basic Clin Physiol Pharmacol 2023; 34:419-428. [PMID: 34936737 DOI: 10.1515/jbcpp-2021-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Cancer is a disease resulting in unbridled growth of cells due to dysregulation in the balance of cell populations. Various management procedures in handling cases of cancer are not without their adverse side effects on the normal cells. Medicinal plants/herbs have been in use in the management of various ailments, including cancer, for a long time. Medicinal plants have been credited with wide safety margins, cost effectiveness, availability and diverse activities. This study reviewed various mechanisms of anti-cancer activities of some medicinal plants from a biochemical perspective. The mechanisms of anti-cancer activities of plant compounds addressed in this article include induction of apoptosis, anti-angiogenic effects, anti-metastasis, inhibition of cell cycle, inhibition of DNA destruction and effects on key enzymes, cytotoxic and anti-oxidant effects. The anti-cancer activities of some of the plants involve more than one mechanism.
Collapse
Affiliation(s)
- Patrick E Aba
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - John I Ihedioha
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Isaac U Asuzu
- Department of Veterinary Physiology and Pharmacology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
4
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Abrigo NA, Dods KK, Makovsky CA, Lohan S, Mitra K, Newcomb KM, Le A, Hartman MCT. Development of a Cyclic, Cell Penetrating Peptide Compatible with In Vitro Selection Strategies. ACS Chem Biol 2023; 18:746-755. [PMID: 36920103 PMCID: PMC11165944 DOI: 10.1021/acschembio.2c00680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A key limitation for the development of peptides as therapeutics is their lack of cell permeability. Recent work has shown that short, arginine-rich macrocyclic peptides containing hydrophobic amino acids are able to penetrate cells and reach the cytosol. Here, we have developed a new strategy for developing cyclic cell penetrating peptides (CPPs) that shifts some of the hydrophobic character to the peptide cyclization linker, allowing us to do a linker screen to find cyclic CPPs with improved cellular uptake. We demonstrate that both hydrophobicity and position of the alkylation points on the linker affect uptake of macrocyclic cell penetrating peptides (CPPs). Our best peptide, 4i, is on par with or better than prototypical CPPs Arg9 (R9) and CPP12 under assays measuring total cellular uptake and cytosolic delivery. 4i was also able to carry a peptide previously discovered from an in vitro selection, 8.6, and a cytotoxic peptide into the cytosol. A bicyclic variant of 4i showed even better cytosolic entry than 4i, highlighting the plasticity of this class of peptides toward modifications. Since our CPPs are cyclized via their side chains (as opposed to head-to-tail cyclization), they are compatible with powerful technologies for peptide ligand discovery including phage display and mRNA display. Access to diverse libraries with inherent cell permeability will afford the ability to find cell permeable hits to many challenging intracellular targets.
Collapse
Affiliation(s)
- Nicolas A Abrigo
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Chelsea A Makovsky
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Sandeep Lohan
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Koushambi Mitra
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Kaylee M Newcomb
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Anthony Le
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23284 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, 23219 Virginia, United States
| |
Collapse
|
6
|
Jhaveri K, Burris Rd HA, Yap TA, Hamilton E, Rugo HS, Goldman JW, Dann S, Liu F, Wong GY, Krupka H, Shapiro GI. The evolution of cyclin dependent kinase inhibitors in the treatment of cancer. Expert Rev Anticancer Ther 2021; 21:1105-1124. [PMID: 34176404 DOI: 10.1080/14737140.2021.1944109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The cell cycle cyclin dependent kinases (CDKs) play a critical role in controlling the transition between cell cycle phases, as well as cellular transcription. Aberrant CDK activation is common in cancer, and deregulation of the cell cycle a key hallmark of cancer. Although CDK4/6 inhibitors are now a standard-of-care option for first- and second-line HR+HER2- metastatic breast cancer, resistance inevitably limits their clinical benefit. AREAS COVERED Early pan-CDK inhibitors targeted the cell cycle and RNA polymerase II phosphorylation, but were complicated by toxicity, providing a rationale and need for the development of selective CDK inhibitors. In this review, we highlight selected recent literature to provide a narrative review summarizing the current CDK inhibitor therapeutic landscape. We detail the challenges associated with targeting CDKs for the treatment of breast and other cancers and review emerging biomarkers that may aid response prediction. We also discuss the risk-benefit ratio for CDK therapy and explore promising combination approaches. EXPERT OPINION Although CDK inhibitors may stem the proliferation of cancer cells, resistance remains an issue, and currently there are limited biomarkers to predict response to therapy. Ongoing research investigating CDK inhibitors in cancer is of paramount importance to define appropriate and effective treatment regimens.
Collapse
Affiliation(s)
- Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Howard A Burris Rd
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - Timothy A Yap
- The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - Hope S Rugo
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | | | | | | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
7
|
Asif M, Usman M, Ayub S, Farhat S, Huma Z, Ahmed J, Kamal MA, Hussein D, Javed A, Khan I. Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates. Curr Pharm Des 2021; 26:4747-4763. [PMID: 32091329 DOI: 10.2174/1381612826666200224112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Despite gigantic advances in medical research and development, chemotherapeutic resistance remains a major challenge in complete remission of CNS tumors. The failure of complete eradication of CNS tumors has been correlated with the existence of several factors including overexpression of transporter proteins. To date, 49 ABC-transporter proteins (ABC-TPs) have been reported in humans, and the evidence of their strong association with chemotherapeutics' influx, dissemination, and efflux in CNS tumors, is growing. Research studies on CNS tumors are implicating ABC-TPs as diagnostic, prognostic and therapeutic biomarkers that may be utilised in preclinical and clinical studies. With the current advancements in cell biology, molecular analysis of genomic and transcriptomic interplay, and protein homology-based drug-transporters interaction, our research approaches are streamlining the roles of ABC-TPs in cancer and multidrug resistance. Potential inhibitors of ABC-TP for better clinical outcomes in CNS tumors have emerged. Elacridar has shown to enhance the chemo-sensitivity of Dasatanib and Imatinib in various glioma models. Tariquidar has improved the effectiveness of Temozolomide's in CNS tumors. Although these inhibitors have been effective in preclinical settings, their clinical outcomes have not been as significant in clinical trials. Thus, to have a better understanding of the molecular evaluations of ABC-TPs, as well as drug-interactions, further research is being pursued in research labs. Our lab aims to better comprehend the biological mechanisms involved in drug resistance and to explore novel strategies to increase the clinical effectiveness of anticancer chemotherapeutics, which will ultimately improve clinical outcomes.
Collapse
Affiliation(s)
- M Asif
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - M Usman
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ayub
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan,Department of Neurosurgery, Hayatabad Medical Complex, KPK Medical Teaching Institute, Peshawar, Pakistan
| | - Sahar Farhat
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zilli Huma
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jawad Ahmed
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,4Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Deema Hussein
- Neurooncology Translational Group, Medical Technology, College of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology,
Islamabad 44000, Pakistan,Department of Infectious diseases, Brigham and Women Hospital, Harvard Medical School, Cambridge, Boston, MA 02139, USA
| | - Ishaq Khan
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
8
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
9
|
In Vitro Evaluation of Chemically Analyzed Hypericum Triquetrifolium Extract Efficacy in Apoptosis Induction and Cell Cycle Arrest of the HCT-116 Colon Cancer Cell Line. Molecules 2019; 24:molecules24224139. [PMID: 31731693 PMCID: PMC6891740 DOI: 10.3390/molecules24224139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Naturally derived drugs and plant-based products are attractive commodities that are being explored for cancer treatment. This in vitro study aimed to investigate the role of Hypericum triquetrifolium (50% ethanol: 50% water) extract (HTE) treatment on apoptosis, cell cycle modulation, and cell cycle arrest in human colon cancer cell line (HCT-116). HTE induced cell death via an apoptotic process, as assayed by an Annexin V-Cy3 assay. Exposing HCT-116 cells to 0.064, 0.125, 0.25, and 0.5 mg/mL of HTE for 24 h led to 50 ± 9%, 71.6 ± 8%, 85 ± 5%, and 96 ± 1.5% apoptotic cells, respectively. HCT-116 cells treated with 0.25 and 0.5 mg/mL HTE for 3 h resulted in 38.9 ± 1.5% and 57.2 ± 3% cleavage of caspase-3-specific substrate, respectively. RT-PCR analysis revealed that the HTE extract had no effect on mRNA levels of Apaf-1 and NOXA. Moreover, the addition of 0.125 mg/mL and 0.25 mg/mL HTE for 24 h was clearly shown to attenuate the cell cycle progression machinery in HCT-116 cells. GC/MS analysis of the extract identified 21 phytochemicals that are known as apoptosis inducers and cell cycle arrest agents. All the compounds detected are novel in H. triquetrifolium. These results suggest that HTE-induced apoptosis of human colon cells is mediated primarily through the caspase-dependent pathway. Thus, HTE appears to be a potent therapeutic agent for colon cancer treatment.
Collapse
|
10
|
Chen J, Pang L, Wang W, Wang L, Zhang JZH, Zhu T. Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. J Biomol Struct Dyn 2019; 38:985-996. [PMID: 30843759 DOI: 10.1080/07391102.2019.1591304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CDK2 can be used as an attractive target for development of efficient inhibitors curing multiple disease relating with CDK2. In this work, molecular dynamics (MD) simulations and binding free energy calculations were coupled to probe conformational changes of CDK2 due to inhibitor associations and binding mechanisms of inhibitors PM1, FMD and X64 to CDK2. The results suggest that the binding strength of FMD and X64 to CDK2 is stronger than that of PM1. Principal component (PC) analysis and cross-correlation map calculations based on the equilibrated MD trajectories demonstrate that the structural difference in inhibitors exerts important impact on motion modes and dynamics behavior of CDK2. Residue-based free energy decomposition method was adopted to estimate the inhibitor-residue spectrum. The results not only efficiently identify the hot interaction spot of inhibitors with CDK2 but also show that the hydrophobic rings R1, R2 and R3 as well as polar groups of three inhibitors play key roles in favorably binding of inhibitors to CDK2. This work is expected to contribute energetic basis and dynamics information to development of promising inhibitors toward CDK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzadeh A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci 2018; 213:236-247. [PMID: 30308184 DOI: 10.1016/j.lfs.2018.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023]
Abstract
Silibinin is a natural plant polyphenol with high antioxidant and anticancer properties, which causes broad-spectrum efficacy against cancer, including cell cycle arrest and apoptosis in most cancer cell types. Silibinin, by modulating the apoptosis, cell cycle progression and autophagic pathways in various cellular and molecular routs might be used to design more effective anticancer strategies. Silibinin also regulates aberrant miRNAs expression linked to many aspects of cell biology in cancer. Maybe the most interesting aspect of silibinin is its ability to trigger multiple cellular signaling pathways to induce a particular biologic effect in various cell types. This review discusses investigations supporting the ability of silibinin to be as a natural modulator of involved cellular biological events in cancer progression. In this review, we introduce the salient features of silibinin therapy to optimize clinical outcomes for oncology patients. The goal of the treatments is to make it possible to eliminate the tumor with the minimum side effects and cure the patient in the early stage cancer. Therefore, plant extracts such as silibinin can be included in the treatments.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Cell and Molecular Biology, Faculty of Science, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Beate Rinner
- Division of Biomedical Research, Medical University Graz, Graz, Austria
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Syn NL, Lim PL, Kong LR, Wang L, Wong ALA, Lim CM, Loh TKS, Siemeister G, Goh BC, Hsieh WS. Pan-CDK inhibition augments cisplatin lethality in nasopharyngeal carcinoma cell lines and xenograft models. Signal Transduct Target Ther 2018; 3:9. [PMID: 29666673 PMCID: PMC5897350 DOI: 10.1038/s41392-018-0010-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 01/28/2023] Open
Abstract
In addition to their canonical roles in regulating cell cycle transition and transcription, cyclin-dependent kinases (CDKs) have been shown to coordinate DNA damage response pathways, suggesting a rational pairing of CDK inhibitors with genotoxic chemotherapeutic agents in the treatment of human malignancies. Here, we report that roniciclib (BAY1000394), a potent pan-CDK inhibitor, displays promising anti-neoplastic activity as a single agent and potentiates cisplatin lethality in preclinical nasopharyngeal carcinoma (NPC) models. Proliferation of the NPC cell lines HONE-1, CNE-2, C666-1, and HK-1 was effectively curbed by roniciclib treatment, with IC50 values between 11 and 38 nmol/L. These anticancer effects were mediated by pleiotropic mechanisms consistent with successful blockade of cell cycle CDKs 1, 2, 3, and 4 and transcriptional CDKs 7 and 9, ultimately resulting in arrest at G1/S and G2/M, downregulation of the transcriptional apparatus, and repression of anti-apoptotic proteins. Considerably enhanced tumor cell apoptosis was achieved following combined treatment with 10 nmol/L roniciclib and 2.0 μmol/L cisplatin; this combination therapy achieved a response over 250% greater than either drug alone. Although roniciclib chemosensitized NPC cells to cisplatin, it did not sensitize untransformed (NP69) cells. The administration of 0.5 mg/kg roniciclib to BALB/c xenograft mice was well tolerated and effectively restrained tumor growth comparable to treatment with 6 mg/kg cisplatin, whereas combining these two agents produced far greater tumor suppression than either of the monotherapies. In summary, these data demonstrate that roniciclib has strong anti-NPC activity and synergizes with cisplatin chemotherapy at clinically relevant doses, thus justifying further evaluation of this combinatorial approach in clinical settings. Nasopharyngeal carcinoma (NPC) is an uncommon malignancy arising from the nasopharynx epithelium, and is endemic to east and southeast parts of Asia where they account for 70% of worldwide incidence. Researchers from the Cancer Science Institute of Singapore examined the anti-tumor effects of roniciclib—a small-molecule drug that blocks a family of enzymes known as cyclin-dependent kinases (CDKs) which are classically involved in cell cycle progression and transcription—in cell lines and mouse models of nasopharyngeal carcinoma. Because CDK/cyclin complexes have a putative role in DNA repair, roniciclib was combined with cisplatin, a DNA-damaging agent which is currently used in chemotherapy of NPC. The authors found that roniciclib had potent anti-NPC effects when given alone, whereas the combination of roniciclib and cisplatin proved to be highly synergistic and restrained tumor growth to a greater extent than either drugs given alone. Interestingly, roniciclib appeared to selectively enhance the anti-cancer effects of cisplatin in cancerous cells while this “chemo-sensitizing” phenomenon was not seen in non-cancerous cells, suggesting that giving both drugs together could improve the effectiveness of standard chemotherapy without incurring additional toxicities. These findings suggest that roniciclib should be evaluated clinically in patients with NPC.
Collapse
Affiliation(s)
- Nicholas L Syn
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,2Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Pei Li Lim
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Ren Kong
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,3Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Andrea Li-Ann Wong
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,2Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Chwee Ming Lim
- 4Department of Otolaryngology-Head and Neck Surgery, National University Health System, Singapore, Singapore
| | - Thomas Kwok Seng Loh
- 4Department of Otolaryngology-Head and Neck Surgery, National University Health System, Singapore, Singapore
| | | | - Boon Cher Goh
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,2Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,3Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Wen-Son Hsieh
- 1Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Rampogu S, Baek A, Zeb A, Lee KW. Exploration for novel inhibitors showing back-to-front approach against VEGFR-2 kinase domain (4AG8) employing molecular docking mechanism and molecular dynamics simulations. BMC Cancer 2018. [PMID: 29514608 PMCID: PMC5842552 DOI: 10.1186/s12885-018-4050-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Angiogenesis is a process of formation of new blood vessels and is an important criteria demonstrated by cancer cells. Over a period of time, these cancer cells infect the other parts of the healthy body by a process called progression. The objective of the present article is to identify a drug molecule that inhibits angiogenesis and progression. Methods In this pursuit, ligand based pharmacophore virtual screening was employed, generating a pharmacophore model, Hypo1 consisting of four features. Furthermore, this Hypo1 was validated recruiting, Fischer’s randomization, test set method and decoy set method. Later, Hypo1 was allowed to screen databases such as Maybridge, Chembridge, Asinex and NCI and were further filtered by ADMET filters and Lipinski’s Rule of Five. A total of 699 molecules that passed the above criteria, were challenged against 4AG8, an angiogenic drug target employing GOLD v5.2.2. Results The results rendered by molecular docking, DFT and the MD simulations showed only one molecule (Hit) obeyed the back-to-front approach. This molecule displayed a dock score of 89.77, involving the amino acids, Glu885 and Cys919, Asp1046, respectively and additionally formed several important hydrophobic interactions. Furthermore, the identified lead molecule showed interactions with key residues when challenged with CDK2 protein, 1URW. Conclusion The lead candidate showed several interactions with the crucial residues of both the targets. Furthermore, we speculate that the residues Cys919 and Leu83 are important in the development of dual inhibitor. Therefore, the identified lead molecule can act as a potential inhibitor for angiogenesis and progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4050-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Ayoung Baek
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Amir Zeb
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
14
|
Bacevic K, Noble R, Soffar A, Wael Ammar O, Boszonyik B, Prieto S, Vincent C, Hochberg ME, Krasinska L, Fisher D. Spatial competition constrains resistance to targeted cancer therapy. Nat Commun 2017; 8:1995. [PMID: 29222471 PMCID: PMC5722825 DOI: 10.1038/s41467-017-01516-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023] Open
Abstract
Adaptive therapy (AT) aims to control tumour burden by maintaining therapy-sensitive cells to exploit their competition with resistant cells. This relies on the assumption that resistant cells have impaired cellular fitness. Here, using a model of resistance to a pharmacological cyclin-dependent kinase inhibitor (CDKi), we show that this assumption is valid when competition between cells is spatially structured. We generate CDKi-resistant cancer cells and find that they have reduced proliferative fitness and stably rewired cell cycle control pathways. Low-dose CDKi outperforms high-dose CDKi in controlling tumour burden and resistance in tumour spheroids, but not in monolayer culture. Mathematical modelling indicates that tumour spatial structure amplifies the fitness penalty of resistant cells, and identifies their relative fitness as a critical determinant of the clinical benefit of AT. Our results justify further investigation of AT with kinase inhibitors. Adaptive therapy aims to control tumours by exploiting competition between therapy-sensitive and resistant cells. Here, the authors show that tumour spatial structure is a critical parameter for adaptive therapy as competition for space increases fitness differentials, allowing suppression of resistance with low-dose treatments.
Collapse
Affiliation(s)
- Katarina Bacevic
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France
| | - Robert Noble
- ISEM, University of Montpellier, 34090, Montpellier, France.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ahmed Soffar
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France.,Division of Molecular Biology, Department of Zoology, Faculty of Science Alexandria University, 21526, Alexandria, Egypt
| | | | | | - Susana Prieto
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France
| | | | - Michael E Hochberg
- ISEM, University of Montpellier, 34090, Montpellier, France.,Santa Fe Institute, Santa Fe, NM, 87501, USA
| | | | - Daniel Fisher
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France.
| |
Collapse
|
15
|
Donaires FS, Godoy PRDV, Leandro GS, Puthier D, Sakamoto-Hojo ET. E2F transcription factors associated with up-regulated genes in glioblastoma. Cancer Biomark 2017; 18:199-208. [PMID: 27983535 DOI: 10.3233/cbm-161628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Glioblastoma is considered to the most common and malignant brain tumor in adults. Patients have a median survival of approximately one year from diagnosis due to poor response to therapy. OBJECTIVE We applied bioinformatics approaches to predict transcription factors (TF) that are deregulated in glioblastoma in an attempt to point out molecular targets for therapy. METHODS Up-regulated genes in glioblastoma selected from public microarray data were submitted to two TF association analyses. Thereafter, the expression levels of TF obtained in the overlap of analyses were assessed by RT-qPCR carried out in seven glioblastoma cell lines (T98, U251, U138, U87, U343, M059J, and M059K). RESULTS E2F1 and E2F4 were highlighted in both TF analyses. However, only E2F1 was confirmed as significantly up-regulated in all glioblastoma cell lines in vitro. CONCLUSION E2F1 is a potential common regulator of differentially expressed genes in glioblastoma, despite the genetic heterogeneity of tumor cells.
Collapse
Affiliation(s)
- Flávia S Donaires
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo R D V Godoy
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovana S Leandro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denis Puthier
- Technological Advances for Genomics and Clinics (TAGC), UMR, S 1090 INSERM Aix-Marseille Université, U928 Parc Scientifique de Luminy Case 928 163, Avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences, and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Nagel R, Semenova EA, Berns A. Drugging the addict: non-oncogene addiction as a target for cancer therapy. EMBO Rep 2016; 17:1516-1531. [PMID: 27702988 PMCID: PMC5090709 DOI: 10.15252/embr.201643030] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Historically, cancers have been treated with chemotherapeutics aimed to have profound effects on tumor cells with only limited effects on normal tissue. This approach was followed by the development of small‐molecule inhibitors that can target oncogenic pathways critical for the survival of tumor cells. The clinical targeting of these so‐called oncogene addictions, however, is in many instances hampered by the outgrowth of resistant clones. More recently, the proper functioning of non‐mutated genes has been shown to enhance the survival of many cancers, a phenomenon called non‐oncogene addiction. In the current review, we will focus on the distinct non‐oncogenic addictions found in cancer cells, including synthetic lethal interactions, the underlying stress phenotypes, and arising therapeutic opportunities.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Premnath PN, Craig SN, Liu S, McInnes C. Benzamide capped peptidomimetics as non-ATP competitive inhibitors of CDK2 using the REPLACE strategy. Bioorg Med Chem Lett 2016; 26:3754-60. [PMID: 27297568 DOI: 10.1016/j.bmcl.2016.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
Abstract
Inhibition of cyclin dependent kinase 2 (CDK2) in complex with cyclin A in G1/S phase of the cell cycle has been shown to promote selective apoptosis of cancer cells through the E2F1 pathway. An alternative approach to catalytic inhibition is to target the substrate recruitment site also known as the cyclin binding groove (CBG) to generate selective non-ATP competitive inhibitors. The REPLACE strategy has been applied to identify fragment alternatives and substituted benzoic acid derivatives were evaluated as a promising scaffold to present appropriate functionality to mimic key peptide determinants. Fragment Ligated Inhibitory Peptides (FLIPs) are described which potently inhibit both CDK2/cyclin A and CDK4/cyclin D1 and have preliminary anti-tumor activity. A structural rationale for binding was obtained through molecular modeling further demonstrating their potential for further development as next generation non ATP competitive CDK inhibitors.
Collapse
Affiliation(s)
- Padmavathy Nandha Premnath
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Sandra N Craig
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Shu Liu
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
18
|
Venkatesan N, Kanwar JR, Deepa PR, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact 2016; 252:141-9. [PMID: 27062892 DOI: 10.1016/j.cbi.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 03/07/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Retinoblastoma (RB) is a childhood retinal malignancy. Effective therapeutic strategies are still being investigated in RB disease management. Here, the anti-cancer effect of shepherdin, a peptido-mimetic inhibiting heat shock protein (HSP90)-Survivin interaction has been analyzed. METHODS We analyzed HSP (HSP70/90) and Survivin protein expressions by immunohistochemistry (29 archival tumors), qRT-PCR, FACS and Western analysis (10 un-fixed RB tumors). We also analyzed cellular cytotoxicity and anti-proliferative effect in peptide treated RB cells (Y79, Weri Rb1) and MIO-M1 cells. RESULTS Heterogeneous expressions of HSP70/90 and Survivin with a significant association between HSP70 and HSP90 (r(2) = 0.59, p = 0.001) was observed. In RB cells, anti-tumor effects were detected with 0.42 μg/ml of shepherdin at 4 h s of serum starvation. Decreased Survivin, Bcl2, MMP-2 activity with increased Bax, Bim, and Caspase-9 protein expressions were noticed. No significant changes were observed in shepherdin treated non-neoplastic MIO-M1, nor in scramble-peptide treated RB cells. CONCLUSION The presence of HSPs (HSP70/90) and Survivin reveals multiple cellular mechanisms adopted by RB cells during cancer progression. Serum starvation induced HSP90 whose interactions with Survivin were specifically inhibited by shepherdin. The associated molecular shuffling has been reported. These findings strongly implicate the potential of targeting HSP90-Survivin interaction as an adjuvant therapy in RB management.
Collapse
Affiliation(s)
- Nalini Venkatesan
- Department of Larsen & Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College Road, Chennai 600006, India; Birla Institute of Technology and Science (BITS), Pilani, Rajasthan 333031, India
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia
| | - Perinkulam Ravi Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan 333031, India
| | - Saranya Navaneethakrishnan
- Department of Larsen & Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College Road, Chennai 600006, India
| | - Chitra Joseph
- Department of Larsen & Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College Road, Chennai 600006, India
| | - Subramanian Krishnakumar
- Department of Larsen & Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18/41, College Road, Chennai 600006, India.
| |
Collapse
|
19
|
Taylor-Harding B, Aspuria PJ, Agadjanian H, Cheon DJ, Mizuno T, Greenberg D, Allen JR, Spurka L, Funari V, Spiteri E, Wang Q, Orsulic S, Walsh C, Karlan BY, Wiedemeyer WR. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS. Oncotarget 2015; 6:696-714. [PMID: 25557169 PMCID: PMC4359249 DOI: 10.18632/oncotarget.2673] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023] Open
Abstract
High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC.
Collapse
Affiliation(s)
- Barbie Taylor-Harding
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul-Joseph Aspuria
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hasmik Agadjanian
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dong-Joo Cheon
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takako Mizuno
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Danielle Greenberg
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jenieke R Allen
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lindsay Spurka
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vincent Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elizabeth Spiteri
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qiang Wang
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christine Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90048, USA
| | - W Ruprecht Wiedemeyer
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Nandha Premnath P, Craig S, McInnes C. Development of Inhibitors of Protein-protein Interactions through REPLACE: Application to the Design and Development Non-ATP Competitive CDK Inhibitors. J Vis Exp 2015:e52441. [PMID: 26554946 DOI: 10.3791/52441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
REPLACE is a unique strategy developed to more effectively target protein-protein interactions (PPIs). It aims to expand available drug target space by providing improved methodology for the identification of inhibitors for such binding sites and which represent the majority of potential drug targets. The main goal of this paper is to provide a methodological overview of the use and application of the REPLACE strategy which involves computational and synthetic chemistry approaches. REPLACE is exemplified through its application to the development of non-ATP competitive cyclin dependent kinases (CDK) inhibitors as anti-tumor therapeutics. CDKs are frequently deregulated in cancer and hence are considered as important targets for drug development. Inhibition of CDK2/cyclin A in S phase has been reported to promote selective apoptosis of cancer cells in a p53 independent manner through the E2F1 pathway. Targeting the protein-protein interaction at the cyclin binding groove (CBG) is an approach which will allow the specific inhibition of cell cycle over transcriptional CDKs. The CBG is recognized by a consensus sequence derived from CDK substrates and tumor suppressor proteins termed the cyclin binding motif (CBM). The CBM has previously been optimized to an octapeptide from p21Waf (HAKRRIF) and then further truncated to a pentapeptide retaining sufficient activity (RRLIF). Peptides in general are not cell permeable, are metabolically unstable and therefore the REPLACE (REplacement with Partial Ligand Alternatives through Computational Enrichment) strategy has been applied in order to generate more drug-like inhibitors. The strategy begins with the design of Fragment ligated inhibitory peptides (FLIPs) that selectively inhibit cell cycle CDK/cyclin complexes. FLIPs were generated by iteratively replacing residues of HAKRRLIF/RRLIF with fragment like small molecules (capping groups), starting from the N-terminus (Ncaps), followed by replacement on the C-terminus. These compounds are starting points for the generation of non-ATP competitive CDK inhibitors as anti-tumor therapeutics.
Collapse
Affiliation(s)
| | - Sandra Craig
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina
| | - Campbell McInnes
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina;
| |
Collapse
|
21
|
Tarasewicz E, Rivas L, Hamdan R, Dokic D, Parimi V, Bernabe BP, Thomas A, Shea LD, Jeruss JS. Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells. Cell Cycle 2015; 13:3191-201. [PMID: 25485498 DOI: 10.4161/15384101.2014.950126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Breast cancer onset and disease progression have been linked to members of the TGFβ superfamily and their downstream signaling components, the Smads. Alterations in Smad3 signaling are associated with the dichotomous role of TGFβ in malignancy, mediating both tumor suppressant and pro-metastatic behaviors. Overexpression of cell cycle regulators, cyclins D and E, renders cyclin-dependent kinases (CDKs) 4/2 hyperactive. Noncanonical phosphorylation of Smad3 by CDK4/2 inhibits tumor suppressant actions of Smad3. We hypothesized that CDK inhibition (CDKi) would restore Smad3 action and help promote cancer cell regression. Treatment of triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-436, Hs578T) with CDK2i or CDK4i resulted in increased Smad3 activity and decreased cell migration. Transfection with a 5M Smad3 construct containing inhibitory mutations in 5 CDK phosphorylation sites also resulted in decreased TNBC cell migration and invasion. MDA-MB-231 cells treated with CDK2i or CDK4i resulted in decreased Smad3 protein phosphorylation at the CDK phosphorylation T179 site, decreased MMP2 and c-myc expression, and increased p15 and p21 expression. Using a novel transfected cell array, we found that CDK2i treatment decreased activity of the epithelial-to-mesenchymal transition related transcription factors Snail and Twist. In vivo studies in an MDA-MB-231 tumor model showed that individual and combination treatment with paclitaxel and CDK2i resulted in decreased tumor volume and Ki67 staining. Collectively, these data support further investigation of targeted CDK inhibitors as a promising therapeutic strategy for TNBC, a breast cancer subtype with limited treatment options.
Collapse
Key Words
- BCSC, breast cancer stem cells
- CDK
- CDK, cyclin dependent kinase
- CDKi, cyclin dependent kinase inhibitor
- CK, cytokeratin
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ER, estrogen receptor
- HER2, human epidermal growth factor receptor 2
- PR, progesterone receptor
- Pin1, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
- Smad3
- TNBC, triple negative breast cancer
- cyclin
- paclitaxel
- triple negative breast cancer
Collapse
Affiliation(s)
- Elizabeth Tarasewicz
- a Department of Surgery ; Northwestern University Feinberg School of Medicine ; Chicago , IL USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolch W, Halasz M, Granovskaya M, Kholodenko BN. The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 2015; 15:515-27. [PMID: 26289315 DOI: 10.1038/nrc3983] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is often considered a genetic disease. However, much of the enormous plasticity of cancer cells to evolve different phenotypes, to adapt to challenging microenvironments and to withstand therapeutic assaults is encoded by the structure and spatiotemporal dynamics of signal transduction networks. In this Review, we discuss recent concepts concerning how the rich signalling dynamics afforded by these networks are regulated and how they impinge on cancer cell proliferation, survival, invasiveness and drug resistance. Understanding this dynamic circuitry by mathematical modelling could pave the way to new therapeutic approaches and personalized treatments.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Marina Granovskaya
- Roche Moscow Limited, Business Center Neglinnaya Plaza, Building 2, Trubnaya Square, 107031 Moscow, Russia
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin
- Conway Institute of Biomolecular &Biomedical Research, University College Dublin
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Grigoroudis AI, McInnes C, Premnath PN, Kontopidis G. Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones. Protein Expr Purif 2015; 113:8-16. [PMID: 25956535 DOI: 10.1016/j.pep.2015.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/06/2015] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove.
Collapse
Affiliation(s)
- Asterios I Grigoroudis
- Institute for Research and Technology-Thessaly (I.RE.TE.TH.) Centre for Research & Technology Hellas (CE.R.TH.), 95 Dimitriados & Pavlou Mela Street, GR 38333, Volos, Greece; Laboratory of Biochemistry, Faculty of Veterinary Science, University of Thessaly, GR-43100 Karditsa, Greece
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Padmavathy Nandha Premnath
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - George Kontopidis
- Institute for Research and Technology-Thessaly (I.RE.TE.TH.) Centre for Research & Technology Hellas (CE.R.TH.), 95 Dimitriados & Pavlou Mela Street, GR 38333, Volos, Greece; Laboratory of Biochemistry, Faculty of Veterinary Science, University of Thessaly, GR-43100 Karditsa, Greece.
| |
Collapse
|
24
|
Mahale S, Bharate SB, Manda S, Joshi P, Jenkins PR, Vishwakarma RA, Chaudhuri B. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis 2015; 6:e1743. [PMID: 25950473 PMCID: PMC4669722 DOI: 10.1038/cddis.2015.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/09/2022]
Abstract
The marine natural product fascaplysin (1) is a potent Cdk4 (cyclin-dependent kinase 4)-specific inhibitor, but is toxic to all cell types possibly because of its DNA-intercalating properties. Through the design and synthesis of numerous fascaplysin analogues, we intended to identify inhibitors of cancer cell growth with good therapeutic window with respect to normal cells. Among various non-planar tryptoline analogues prepared, N-(biphenyl-2-yl) tryptoline (BPT, 6) was identified as a potent inhibitor of cancer cell growth and free from DNA-binding properties owing to its non-planar structure. This compound was tested in over 60 protein kinase assays. It displayed inhibition of Cdk4-cyclin D1 enzyme in vitro far more potently than many other kinases including Cdk family members. Although it blocks growth of cancer cells deficient in the mitotic-spindle checkpoint at the G0/G1 phase of the cell cycle, the block occurs primarily at the G2/M phase. BPT inhibits tubulin polymerization in vitro and acts as an enhancer of tubulin depolymerization of paclitaxel-stabilized tubulin in live cells. Western blot analyses indicated that, in p53-positive cells, BPT upregulates the expression of p53, p21 and p27 proteins, whereas it downregulates the expression of cyclin B1 and Cdk1. BPT selectively kills SV40-transformed mouse embryonic hepatic cells and human fibroblasts rather than untransformed cells. BPT inhibited the growth of several human cancer cells with an IC50<1 μM. The pharmacokinetic study in BALB/c mice indicated good plasma exposure after intravenous administration. It was found to be efficacious at 1/10th the maximum-tolerated dose (1000 mg/kg) against human tumours derived from HCT-116 (colon) and NCI-H460 (lung) cells in SCID (severe-combined immunodeficient) mice models. BPT is a relatively better anticancer agent than fascaplysin with an unusual ability to block two overlapping yet crucial phases of the cell cycle, mitosis and G0/G1. Its ability to effectively halt tumour growth in human tumour-bearing mice would suggest that BPT has the potential to be a candidate for further clinical development.
Collapse
Affiliation(s)
- S Mahale
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - S B Bharate
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - S Manda
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - P Joshi
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - P R Jenkins
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - R A Vishwakarma
- 1] Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India [2] Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - B Chaudhuri
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
25
|
Premnath PN, Craig SN, Liu S, Anderson EL, Grigoroudis AI, Kontopidis G, Perkins TL, Wyatt MD, Pittman DL, McInnes C. Iterative conversion of cyclin binding groove peptides into druglike CDK inhibitors with antitumor activity. J Med Chem 2014; 58:433-42. [PMID: 25454794 PMCID: PMC4334226 DOI: 10.1021/jm5015023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
The cyclin groove is an important
recognition site for substrates
of the cell cycle cyclin dependent kinases and provides an opportunity
for highly selective inhibition of kinase activity through a non-ATP
competitive mechanism. The key peptide residues of the cyclin binding
motif have been studied in order to precisely define the structure–activity
relationship for CDK kinase inhibition. Through this information,
new insights into the interactions of peptide CDK inhibitors with
key subsites of the cyclin binding groove provide for the replacement
of binding determinants with more druglike functionality through REPLACE,
a strategy for the iterative conversion of peptidic blockers of protein–protein
interactions into pharmaceutically relevant compounds. As a result,
REPLACE is further exemplified in combining optimized peptidic sequences
with effective N-terminal capping groups to generate more stable compounds
possessing antitumor activity consistent with on-target inhibition
of cell cycle CDKs. The compounds described here represent prototypes
for a next generation of kinase therapeutics with high efficacy and
kinome selectivity, thus avoiding problems observed with first generation
CDK inhibitors.
Collapse
Affiliation(s)
- Padmavathy Nandha Premnath
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Xia Y, Lei Q, Zhu Y, Ye T, Wang N, Li G, Shi X, Liu Y, Shao B, Yin T, Zhao L, Wu W, Song X, Xiong Y, Wei Y, Yu L. SKLB316, a novel small-molecule inhibitor of cell-cycle progression, induces G2/M phase arrest and apoptosis in vitro and inhibits tumor growth in vivo. Cancer Lett 2014; 355:297-309. [PMID: 25301449 DOI: 10.1016/j.canlet.2014.09.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/05/2023]
Abstract
Benzothiazole derivatives have received considerable attentions for their potencies in cancer therapy. In the present study, we reported that SKLB316, a novel synthesized benzothiazole derivative, exhibits activities to inhibit colorectal and pancreatic cancer in vitro and in vivo by inducing G2/M cell cycle arrest and apoptosis. In vitro, it exhibited significant anti-proliferative activities against human cancer cells derived from different histotypes including the colorectal cancer cell line HCT116 and pancreatic cancer cell line CFPAC-1. We chose these cell lines to study the possible anti-tumor mechanism because they are sensitive to SKLB316 treatment. Flow cytometry assays showed that SKLB316 could induce G2/M cell cycle arrest. Mechanistically, SKLB316 could decrease the activities of cdc2/cyclin B1 complex, including decreasing the synthesis of cyclin B1, cdc2 and cdc25c, while accumulating the levels of phosphorylated cdc2 (Tyr15) and checkpoint kinase 2. SKLB316 could also decrease the level of cyclin E and A2. Moreover, SKLB316 could induce cancer cell apoptosis, which was associated with activation of caspase 9, downregulation of Bcl-2 and upregulation of Bax. SKLB316 could also decrease the mitochondrial membrane potential and induce the generation of reactive oxygen species in cells. The results implied that SKLB316 may induce apoptosis via the mitochondria-mediated apoptotic pathway. Moreover, SKLB316 could suppress the growth of established colorectal and pancreatic cancer tumors in nude mice without causing obvious side effects. TUNEL assays confirmed that SKLB316 could also induce tumor cell apoptosis in vivo. Taken together, these findings demonstrate the potential value of SKLB316 as a novel anti-tumor drug candidate.
Collapse
Affiliation(s)
- Yong Xia
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ningyu Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Guobo Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuanhong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yantong Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Bin Shao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Xiong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
27
|
Liu H, Westergard TD, Cashen A, Piwnica-Worms DR, Kunkle L, Vij R, Pham CG, DiPersio J, Cheng EH, Hsieh JJ. Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell 2014; 25:530-42. [PMID: 24735925 PMCID: PMC4097146 DOI: 10.1016/j.ccr.2014.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/24/2013] [Accepted: 03/10/2014] [Indexed: 01/22/2023]
Abstract
Chromosomal translocations disrupting MLL generate MLL-fusion proteins that induce aggressive leukemias. Unexpectedly, MLL-fusion proteins are rarely observed at high levels, suggesting excessive MLL-fusions may be incompatible with a malignant phenotype. Here, we used clinical proteasome inhibitors, bortezomib and carfilzomib, to reduce the turnover of endogenous MLL-fusions and discovered that accumulated MLL-fusions induce latent, context-dependent tumor suppression programs. Specifically, in MLL pro-B lymphoid, but not myeloid, leukemias, proteasome inhibition triggers apoptosis and cell cycle arrest involving activation cleavage of BID by caspase-8 and upregulation of p27, respectively. Furthermore, proteasome inhibition conferred preliminary benefit to patients with MLL-AF4 leukemia. Hence, feasible strategies to treat cancer-type and oncogene-specific cancers can be improvised through harnessing inherent tumor suppression properties of individual oncogenic fusions.
Collapse
Affiliation(s)
- Han Liu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Todd D Westergard
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Amanda Cashen
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - David R Piwnica-Worms
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63105, USA
| | | | - Ravi Vij
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Can G Pham
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John DiPersio
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Emily H Cheng
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - James J Hsieh
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
28
|
He JP, Hao Y, Wang XL, Yang XJ, Shao JF, Guo FJ, Feng JX. Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev 2014; 15:5967-5976. [PMID: 25124559 DOI: 10.7314/apjcp.2014.15.15.5967] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Treating the osteosarcoma (OSA) remains a challenge. Current strategies focus on the primary tumor and have limited efficacy for metastatic OSA. A better understanding of the OSA pathogenesis may provide a rational basis for innovative treatment strategies especially for metastases. The aim of this review is to give an overview of the molecular mechanisms of OSA tumorigenesis, OSA cell proliferation, apoptosis, migration, and chemotherapy resistance, and how improved understanding might contribute to designing a better treatment target for OSA.
Collapse
Affiliation(s)
- Jin-Peng He
- Pediatric Surgery Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
29
|
Premnath PN, Liu S, Perkins T, Abbott J, Anderson E, McInnes C. Fragment based discovery of arginine isosteres through REPLACE: towards non-ATP competitive CDK inhibitors. Bioorg Med Chem 2013; 22:616-22. [PMID: 24286762 DOI: 10.1016/j.bmc.2013.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 11/26/2022]
Abstract
In order to develop non-ATP competitive CDK2/cyclin A inhibitors, the REPLACE strategy has been applied to generate fragment alternatives for the N-terminal tetrapeptide of the cyclin binding motif (HAKRRLIF) involved in substrate recruitment prior to phosphotransfer. The docking approach used for the prediction of small molecule mimics for peptide determinants was validated through reproduction of experimental binding modes of known inhibitors and provides useful information for evaluating binding to protein-protein interaction sites. Further to this, potential arginine isosteres predicted using the validated LigandFit docking method were ligated to the truncated C-terminal peptide, RLIF using solid phase synthesis and evaluated in a competitive binding assay. After testing, identified fragments were shown to represent not only appropriate mimics for a critical arginine residue but also to interact effectively with a minor hydrophobic pocket present in the binding groove. Further evaluation of binding modes was undertaken to optimize the potency of these compounds. Through further application of the REPLACE strategy in this study, peptide-small molecule hybrid CDK2 inhibitors were identified that are more drug-like and suitable for further optimization as anti-tumor therapeutics.
Collapse
Affiliation(s)
- Padmavathy Nandha Premnath
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Shu Liu
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Tracy Perkins
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Jennifer Abbott
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Erin Anderson
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
30
|
Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S, McGouran JF, Alexander L, Fedorov O, Munro S, Kessler B, Bedford MT, Yu Q, La Thangue NB. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 2013; 52:37-51. [PMID: 24076217 PMCID: PMC4129656 DOI: 10.1016/j.molcel.2013.08.039] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022]
Abstract
The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity.
Collapse
Affiliation(s)
- Shunsheng Zheng
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology, and Research), Biopolis, Singapore 138672, Republic of Singapore
| | - Jutta Moehlenbrink
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Yi-Chien Lu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lykourgos-Panagiotis Zalmas
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Cari A. Sagum
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Centre, Smithville, TX78957, USA
| | - Simon Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Joanna F. McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Leila Alexander
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Oleg Fedorov
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Shonagh Munro
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark T. Bedford
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Centre, Smithville, TX78957, USA
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology, and Research), Biopolis, Singapore 138672, Republic of Singapore
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
31
|
Rangel R, Dobroff AS, Guzman-Rojas L, Salmeron CC, Gelovani JG, Sidman RL, Pasqualini R, Arap W. Targeting mammalian organelles with internalizing phage (iPhage) libraries. Nat Protoc 2013; 8:1916-39. [PMID: 24030441 PMCID: PMC4309278 DOI: 10.1038/nprot.2013.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Techniques that are largely used for protein interaction studies and the discovery of intracellular receptors, such as affinity-capture complex purification and the yeast two-hybrid system, may produce inaccurate data sets owing to protein insolubility, transient or weak protein interactions or irrelevant intracellular context. A versatile tool for overcoming these limitations, as well as for potentially creating vaccines and engineering peptides and antibodies as targeted diagnostic and therapeutic agents, is the phage-display technique. We have recently developed a new technology for screening internalizing phage (iPhage) vectors and libraries using a ligand/receptor-independent mechanism to penetrate eukaryotic cells. iPhage particles provide a unique discovery platform for combinatorial intracellular targeting of organelle ligands along with their corresponding receptors and for fingerprinting functional protein domains in living cells. Here we explain the design, cloning, construction and production of iPhage-based vectors and libraries, along with basic ligand-receptor identification and validation methodologies for organelle receptors. An iPhage library screening can be performed in ∼8 weeks.
Collapse
Affiliation(s)
- Roberto Rangel
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Andrey S. Dobroff
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liliana Guzman-Rojas
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Carolina C. Salmeron
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Juri G. Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, USA
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Renata Pasqualini
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wadih Arap
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Bose P, Simmons GL, Grant S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin Investig Drugs 2013; 22:723-38. [PMID: 23647051 PMCID: PMC4039040 DOI: 10.1517/13543784.2013.789859] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cyclin-dependent kinases (CDKs) regulate cell cycle progression. Certain CDKs (e.g., CDK7, CDK9) also control cellular transcription. Consequently, CDKs represent attractive targets for anticancer drug development, as their aberrant expression is common in diverse malignancies, and CDK inhibition can trigger apoptosis. CDK inhibition may be particularly successful in hematologic malignancies, which are more sensitive to inhibition of cell cycling and apoptosis induction. AREAS COVERED A number of CDK inhibitors, ranging from pan-CDK inhibitors such as flavopiridol (alvocidib) to highly selective inhibitors of specific CDKs (e.g., CDK4/6), such as PD0332991, that are currently in various phases of development, are profiled in this review. Flavopiridol induces cell cycle arrest, and globally represses transcription via CDK9 inhibition. The latter may represent its major mechanism of action via down-regulation of multiple short-lived proteins. In early phase trials, flavopiridol has shown encouraging efficacy across a wide spectrum of hematologic malignancies. Early results with dinaciclib and PD0332991 also appear promising. EXPERT OPINION In general, the antitumor efficacy of CDK inhibitor monotherapy is modest, and rational combinations are being explored, including those involving other targeted agents. While selective CDK4/6 inhibition might be effective against certain malignancies, broad-spectrum CDK inhibition will likely be required for most cancers.
Collapse
Affiliation(s)
- Prithviraj Bose
- Virginia Commonwealth University, Internal Medicine, 1101 E Marshall
St, Sanger Hall, Richmond, VA 23298, USA
| | - Gary L Simmons
- Virginia Commonwealth University, Internal Medicine, 1101 E Marshall
St, Sanger Hall, Richmond, VA 23298, USA
| | - Steven Grant
- Virginia Commonwealth University, Internal Medicine, 1101 E Marshall
St, Sanger Hall, Richmond, VA 23298, USA
| |
Collapse
|
33
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
34
|
Abstract
The cell cycle of eukaryotic cells varies greatly from species to species and tissue to tissue. Since an erroneous control of the cell cycle can have disastrous consequences for cellular life, there are genetically programmed signals, so-called cell cycle checkpoints, which ensure that all events of each stage are completed before beginning the next phase. Among the numerous molecules involved in this process, the most important are the cyclin-dependent kinases (CDKs), proteins that are activated only when bound to cyclins (regulatory proteins with fluctuating concentrations). In general, more CDKs are overexpressed in cancer cells than in normal cells, which explains why cancer cells divide uncontrollably. Succeeding in modulating CDK activity with pharmacological agents could result in decreasing the abnormal proliferation rate of cancer cells. This review offers an overview of CDK-cyclin complexes in relation to different cell cycle phases, an analysis of CDK activation and inhibition of molecular mechanisms, and an extensive report, including clinical trials, regarding four new drugs acting as CDK modulators: alvocidib, P276-00, SNS-032 and seliciclib.
Collapse
|
35
|
Liu S, Premnath PN, Bolger JK, Perkins TL, Kirkland LO, Kontopidis G, McInnes C. Optimization of non-ATP competitive CDK/cyclin groove inhibitors through REPLACE-mediated fragment assembly. J Med Chem 2013; 56:1573-82. [PMID: 23323521 DOI: 10.1021/jm3013882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A major challenge in drug discovery is to develop and improve methods for targeting protein-protein interactions. Further exemplification of the REPLACE (REplacement with Partial Ligand Alternatives through Computational Enrichment) strategy for generating inhibitors of protein-protein interactions demonstrated that it can be used to optimize fragment alternatives of key determinants, to combine these in an effective way, and this was achieved for compounds targeting the cyclin-dependent kinase 2 (CDK2) substrate recruitment site on the cyclin regulatory subunit. Phenylheterocyclic isosteres replacing a critical charge-charge interaction provided new structural insights for binding to the cyclin groove. In particular, these results shed light onto the key contributions of a H-bond observed in crystal structures of N-terminally capped peptides. Furthermore, the structure-activity relationship of a bis(aryl) ether C-terminal capping group mimicking dipeptide interactions was probed through ring substitutions, allowing increased complementarity with the primary hydrophobic pocket. This study further validates REPLACE as an effective strategy for converting peptidic compounds to more pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Shu Liu
- Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W, Shelley JC, Lin T, Abel R. Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors. J Chem Theory Comput 2013; 9:1282-93. [PMID: 26588769 DOI: 10.1021/ct300911a] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lingle Wang
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Yuqing Deng
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Jennifer L. Knight
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Yujie Wu
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Byungchan Kim
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Woody Sherman
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - John C. Shelley
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Teng Lin
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| | - Robert Abel
- Schrodinger, 120 West 45st Street, New York, New York
10036, United States
| |
Collapse
|
37
|
Martin KL, Hill GA, Klein RR, Arnett DG, Burd R, Limesand KH. Prevention of radiation-induced salivary gland dysfunction utilizing a CDK inhibitor in a mouse model. PLoS One 2012; 7:e51363. [PMID: 23236487 PMCID: PMC3517508 DOI: 10.1371/journal.pone.0051363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/05/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Treatment of head and neck cancer with radiation often results in damage to surrounding normal tissues such as salivary glands. Permanent loss of function in the salivary glands often leads patients to discontinue treatment due to incapacitating side effects. It has previously been shown that IGF-1 suppresses radiation-induced apoptosis and enhances G2/M arrest leading to preservation of salivary gland function. In an effort to recapitulate the effects of IGF-1, as well as increase the likelihood of translating these findings to the clinic, the small molecule therapeutic Roscovitine, is being tested. Roscovitine is a cyclin-dependent kinase inhibitor that acts to transiently inhibit cell cycle progression and allow for DNA repair in damaged tissues. METHODOLOGY/PRINCIPAL FINDINGS Treatment with Roscovitine prior to irradiation induced a significant increase in the percentage of cells in the G(2)/M phase, as demonstrated by flow cytometry. In contrast, mice treated with radiation exhibit no differences in the percentage of cells in G(2)/M when compared to unirradiated controls. Similar to previous studies utilizing IGF-1, pretreatment with Roscovitine leads to a significant up-regulation of p21 expression and a significant decrease in the number of PCNA positive cells. Radiation treatment leads to a significant increase in activated caspase-3 positive salivary acinar cells, which is suppressed by pretreatment with Roscovitine. Administration of Roscovitine prior to targeted head and neck irradiation preserves normal tissue function in mouse parotid salivary glands, both acutely and chronically, as measured by salivary output. CONCLUSIONS/SIGNIFICANCE These studies suggest that induction of transient G(2)/M cell cycle arrest by Roscovitine allows for suppression of apoptosis, thus preserving normal salivary function following targeted head and neck irradiation. This could have an important clinical impact by preventing the negative side effects of radiation therapy in surrounding normal tissues.
Collapse
Affiliation(s)
- Katie L. Martin
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, United States of America
| | - Grace A. Hill
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Rob R. Klein
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Deborah G. Arnett
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Randy Burd
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, United States of America
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ang C, O'Reilly EM, Carvajal RD, Capanu M, Gonen M, Doyle L, Ghossein R, Schwartz L, Jacobs G, Ma J, Schwartz GK, Abou-Alfa GK. A Nonrandomized, Phase II Study of Sequential Irinotecan and Flavopiridol in Patients With Advanced Hepatocellular Carcinoma. GASTROINTESTINAL CANCER RESEARCH : GCR 2012; 5:185-189. [PMID: 23293699 PMCID: PMC3533846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Flavopiridol, a Cdk inhibitor, potentiates irinotecan-induced apoptosis. In a phase I trial of sequential irinotecan and flavopiridol, 2 patients with advanced hepatocellular carcinoma (HCC) had stable disease (SD) for ≥14 months. We thus studied the sequential combination of irinotecan and flavopiridol in patients with HCC. METHODS Patients with advanced HCC naïve to systemic therapy, Child-Pugh ≤B8, and Karnofsky performance score (KPS) ≥70% received 100 mg/m(2) irinotecan followed 7 hours later by flavopiridol 60 mg/m(2) weekly for 4 of 6 weeks. The primary end point was an improvement in progression-free survival at 4 months (PFS-4) from 33% to 54%, using a Simon's two-stage design. Tumors were stained for p53. RESULTS Only 16 patients in the first stage were enrolled: median age, 64 years; median KPS, 80%; Child-Pugh A, 87.5%; and stage III/IV, 25%/75%. The primary end point was not met; PFS-4 was 20%, leading to early termination of the study. Ten patients were evaluable for response: 1 had SD >1 year and 9 had disease progression. Grade 3 fatigue, dehydration, diarrhea, neutropenia with or without fever, lymphopenia, anemia, hyperbilirubinemia, and transaminitis occurred in ≥10% of the patients. Of the 9 patients who progressed, 5 had mutant p53 and 4 had wild-type p53. The patient with stable disease had wild-type p53. CONCLUSION Sequential irinotecan and flavopiridol are ineffective and poorly tolerated in patients with advanced HCC. Despite our limited assessments, it is possible that the presence of wild-type p53 is necessary but not sufficient to predict response in HCC.
Collapse
Affiliation(s)
- Celina Ang
- Memorial Sloan-Kettering Cancer Center New York, NY
| | - Eileen M. O'Reilly
- Memorial Sloan-Kettering Cancer Center New York, NY
- Weill Medical College Cornell University New York, NY
| | - Richard D. Carvajal
- Memorial Sloan-Kettering Cancer Center New York, NY
- Weill Medical College Cornell University New York, NY
| | | | - Mithat Gonen
- Memorial Sloan-Kettering Cancer Center New York, NY
| | - Laurence Doyle
- Cancer Therapy Evaluation Program (CTEP) National Cancer Institute Bethesda, MD
| | | | | | - Gria Jacobs
- Memorial Sloan-Kettering Cancer Center New York, NY
| | - Jennifer Ma
- Memorial Sloan-Kettering Cancer Center New York, NY
| | - Gary K. Schwartz
- Memorial Sloan-Kettering Cancer Center New York, NY
- Weill Medical College Cornell University New York, NY
| | - Ghassan K. Abou-Alfa
- Memorial Sloan-Kettering Cancer Center New York, NY
- Weill Medical College Cornell University New York, NY
| |
Collapse
|
39
|
Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun 2012; 3:788. [PMID: 22510693 PMCID: PMC3337985 DOI: 10.1038/ncomms1773] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/05/2012] [Indexed: 12/29/2022] Open
Abstract
Phage display screening allows the study of functional protein–protein interactions at the cell surface, but investigating intracellular organelles remains a challenge. Here we introduce internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-independent mechanism and target-specific organelles as a tool to select ligand peptides and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-derived peptide, can be displayed on the phage envelope and mediate receptor-independent uptake of internalizing phage into cells. We also show that an internalizing-phage construct displaying an established mitochondria-specific localization signal targets mitochondria, and that an internalizing-phage random peptide library selects for peptide motifs that localize to different intracellular compartments. As a proof-of-concept, we demonstrate that one such peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to mitochondria, and promotes cell death. This combinatorial platform technology has potential applications in cell biology and drug development. Phage display screening can unravel protein–protein interactions, but its application has been mainly restricted to the cell surface. Here, a phage-based reagent is introduced that allows the targeting of combinatorial peptides to cell organelles, providing a tool for the discovery of intracellular ligand-receptors.
Collapse
|
40
|
Svensen N, Walton JG, Bradley M. Peptides for cell-selective drug delivery. Trends Pharmacol Sci 2012; 33:186-92. [DOI: 10.1016/j.tips.2012.02.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
41
|
Progress in the Development of Non-ATP-Competitive Protein Kinase Inhibitors for Oncology. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396492-2.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
42
|
Wang F, Ma Z, Li Y, Zhu S, Xiao Z, Zhang H, Wang Y. Development of in silico models for pyrazoles and pyrimidine derivatives as cyclin-dependent kinase 2 inhibitors. J Mol Graph Model 2011; 30:67-81. [PMID: 21763166 DOI: 10.1016/j.jmgm.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Fangfang Wang
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100,China
| | | | | | | | | | | | | |
Collapse
|
43
|
Todorova R. Comparative analysis of the methods of drug and protein delivery for the treatment of cancer, genetic diseases and diagnostics. Drug Deliv 2011; 18:586-98. [DOI: 10.3109/10717544.2011.600783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
44
|
Targeting low molecular weight cyclin E (LMW-E) in breast cancer. Breast Cancer Res Treat 2011; 132:575-88. [PMID: 21695458 DOI: 10.1007/s10549-011-1638-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
Low molecular weight cyclin E (LMW-E) plays an important oncogenic role in breast cancer. LMW-E, which is not found in normal tissue, can promote the formation of aggressive tumors and can lead to increased genomic instability and tumorigenesis. Additionally, breast cancer patients whose tumors express LMW-E have a very poor prognosis. Therefore, we investigated LMW-E as a potential specific target for treatment either alone or in combination therapy. We hypothesized that because LMW-E binds to CDK2 more efficiently than full length cyclin E, resulting in increased activity, CDK inhibitors could be used to target tumors with LMW-E bound to CDK2. To test the hypothesis, an inducible full length and LMW-E MCF7-Tet-On system was established. Cyclin E (full length (EL) or LMW-E) is only expressed upon induction of the transgene. The doubling times of cells were unchanged when the transgenes were induced. However, upon induction, the kinase activity associated with LMW-E was much higher than that in the EL induced cells or any of the uninduced cells. Additionally only the LMW-E induced cells underwent chromosome aberrations and increased polyploidy. By examining changes in proliferation and survival in cells with induced full length and LMW-E, CDK inhibitors alone were determined to be insufficient to specifically inhibit LMW-E expressing cells. However, in combination with doxorubicin, the CDK inhibitor, roscovitine (seliciclib, CYC202), synergistically led to increased cell death in LMW-E expressing cells. Clinically, the combination of CDK inhibitors and chemotherapy such as doxorubicin provides a viable personalized treatment strategy for those breast cancer patients whose tumors express the LMW-E.
Collapse
|
45
|
Hui S, Choi J, Zaidi S, Momen A, Steinbach SK, Sadi AM, Ban K, Husain M. Peptide-Mediated Disruption of Calmodulin–Cyclin E Interactions Inhibits Proliferation of Vascular Smooth Muscle Cells and Neointima Formation. Circ Res 2011; 108:1053-62. [DOI: 10.1161/circresaha.110.239483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sonya Hui
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Jaehyun Choi
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Syed Zaidi
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Abdul Momen
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Sarah K. Steinbach
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Al-Muktafi Sadi
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Kiwon Ban
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| | - Mansoor Husain
- From the Division of Cell and Molecular Biology (S.H., J.C., S.Z., A.M., S.K.S., A.-M.S., K.B., M.H.), Toronto General Hospital Research Institute; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (M.H.), Institute of Medical Science (J.C., M.H.), and Departments of Medicine (S.Z., M.H.) and Physiology (S.H., K.B., M.H.), University of Toronto, Canada
| |
Collapse
|
46
|
van den Berg A, Dowdy SF. Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 2011; 22:888-93. [PMID: 21489777 DOI: 10.1016/j.copbio.2011.03.008] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 01/24/2023]
Abstract
Owing to their unprecedented selectivity, specific activity and potential for 1000+ fold amplification of signal, macromolecules, such as peptides, catalytic protein domains, complete proteins, and oligonucleotides, offer great potential as therapeutic molecules. However, therapeutic use of macromolecules is limited by their poor penetration in tissues and their inability to cross the cellular membrane. The discovery of small cationic peptides that cross the membrane, called Protein Transduction Domains (PTDs) or Cell Penetrating Peptides (CPPs), in the late 1980s opened the door to cellular delivery of large, bioactive molecules. Now, PTDs are widely used as research tools, and impressively, multiple clinical trials are testing PTD-mediated delivery of macromolecular drug conjugates in patients with a variety of diseases.
Collapse
Affiliation(s)
- Arjen van den Berg
- Howard Hughes Medical Institute, Department of Cellular & Molecular Medicine, UCSD School of Medicine, La Jolla, CA 92093-0686, United States
| | | |
Collapse
|
47
|
Idowu MA. Cyclin-Dependent Kinases as Drug Targets for Cell Growth and Proliferation Disorders. A Role for Systems Biology Approach in Drug Development. Part I—Cyclin-Dependent Kinases as Drug Targets in Cancer. BIOTECHNOL BIOTEC EQ 2011. [DOI: 10.5504/bbeq.2011.0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Abstract
Sarcomas are a group of heterogeneous tumours with varying genetic basis. Cytogenetic abnormalities range from distinct genomic rearrangements such as pathognomonic translocation events and common chromosomal amplification or loss, to more complex rearrangements involving multiple chromosomes. The different subtypes of liposarcoma are spread across this spectrum and constitute an interesting tumour type for molecular review. This paper will outline molecular pathogenesis of the three main subtypes of liposarcoma: well-differentiated/dedifferentiated, myxoid/round cell, and pleomorphic liposarcoma. Both the molecular basis and future avenues for therapeutic intervention will be discussed.
Collapse
|
49
|
Liu S, Bolger JK, Kirkland LO, Premnath PN, McInnes C. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements. ACS Chem Biol 2010; 5:1169-82. [PMID: 20843055 DOI: 10.1021/cb1001262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been synthesized in order to explore structure-activity relationship for binding to the cyclin D1 groove, which to date has not been carried out in a systematic fashion. Collectively, the data presented provide new insights into how compounds can be developed that function as chemical biology probes to determine the cellular and antitumor effects of CDK inhibition. Furthermore, such compounds will serve as templates for structure-guided efforts to develop potential therapeutics based on selective inhibition of CDK4/cyclin D activity.
Collapse
Affiliation(s)
- Shu Liu
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Joshua K. Bolger
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Lindsay O. Kirkland
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Padmavathy N. Premnath
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Campbell McInnes
- Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
50
|
Fidelak J, Juraszek J, Branduardi D, Bianciotto M, Gervasio FL. Free-energy-based methods for binding profile determination in a congeneric series of CDK2 inhibitors. J Phys Chem B 2010; 114:9516-24. [PMID: 20593892 DOI: 10.1021/jp911689r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free-energy pathway methods show great promise in computing the mode of action and the free energy profile associated with the binding of small molecules with proteins, but are generally very computationally demanding. Here we apply a novel approach based on metadynamics and path collective variables. We show that this combination is able to find an optimal reaction coordinate and the free energy profile of binding with explicit solvent and full flexibility, while minimizing human intervention and computational costs. We apply it to predict the binding affinity of a congeneric series of 5 CDK2 inhibitors. The predicted binding free energy profiles are in accordance with experiment.
Collapse
Affiliation(s)
- Jérémy Fidelak
- Chemical and Analytical Sciences/In Silico Sciences, Sanofi-Aventis SA, 195 route d'Espagne, Toulouse, France
| | | | | | | | | |
Collapse
|