1
|
Di Bona M, Bakhoum SF. Micronuclei and Cancer. Cancer Discov 2024; 14:214-226. [PMID: 38197599 PMCID: PMC11265298 DOI: 10.1158/2159-8290.cd-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.
Collapse
Affiliation(s)
- Melody Di Bona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
Aragão FB, Galter IN, Grecco KD, Coelho EJR, da Silva TT, Bonomo MM, Fernandes MN, Matsumoto ST. Toxic risk evaluation of effluents from a swine biodigester in the plant models Lactuca sativa and Allium cepa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:64. [PMID: 38112861 DOI: 10.1007/s10661-023-12173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Pig farming is recognized as an activity with great polluting potential. The aim was to investigate possible environmental risks of effluents from the stabilization pond (SP) and the raw effluent (RE) from the biodigestion process of swine residues, in different concentrations in the models Lactuca sativa and Allium cepa. Seeds were germinated in different dilutions, 100% (C1), 50% (C2), 25% (C3), 12.5% (C4), 6.25% (C5), 3.12% (C6), 0.78% (C7), and 0.39% (C8). Distilled water was used as the negative control (CN) and trifluralin (0.84 g/L-1) as the positive control. Germination (GR), root growth (RG), cell cycle, and oxidative stress (OS) were analyzed. To assess OS, the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and the quantification of glutathione (GSH) and lipid peroxidation (LPO) were analyzed. Data were submitted to ANOVA (one way), followed by the Kruskal-Wallis mean test (P ≤ 0.05). Chemical analysis showed high values of Cu, Fe, Mn, and Zn. Dilutions (C1, C2, C3 RE) and (C1 and C2 SP) inhibited GR and RG of L. sativa and A. cepa than other concentrations. The mitotic index showed a reduction in C5 (RE), C6, and C7 (SP) of L. sativa and C3 and C4 (SP) of A. cepa in relation to CN and higher frequencies of chromosomal alterations. Regarding the OS, only the concentrations of SP treatment showed statistical difference in relation to the NC: in L. sativa model, GSH at (C5 and C8) concentrations and LPO (C7); in A. cepa model, SOD (C3 and C4), GST (C4, C5 and C6), GSH (C5 and C8), and CAT (C3 and C7). The alterations in metabolism are possibly related to the metals, such as zinc and copper, observed in high amounts in the raw waste. The results allowed us to conclude that the raw and stabilization pond effluents offer environmental risks, requiring caution and monitoring in the use of these effluents.
Collapse
Affiliation(s)
- Francielen Barroso Aragão
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil.
| | - Iasmini Nicoli Galter
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Kalia Dável Grecco
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Edvar Junior Roncetti Coelho
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Tainá Turial da Silva
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Marina Marques Bonomo
- Physiological Sciences Department, Center of Human and Health, Federal University of São Carlos, Sao Carlos, SP, 13565-905, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Center of Human and Health, Federal University of São Carlos, Sao Carlos, SP, 13565-905, Brazil
| | - Silvia Tamie Matsumoto
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| |
Collapse
|
3
|
The impact of monosomies, trisomies and segmental aneuploidies on chromosomal stability. PLoS One 2022; 17:e0268579. [PMID: 35776704 PMCID: PMC9249180 DOI: 10.1371/journal.pone.0268579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN.
Collapse
|
4
|
Kornilova AA, Zhapbasov RZ, Zhomartov AM, Sibataev AK, Begimbetova DA, Bekmanov BO. Genotoxic Effect of Unused and Banned Pesticides on the Body of Cattle Kept on the Territory of South Kazakhstan. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Walen KH. Cell cycle stress in normal human cells: A route to "first cells" (with/without fitness gain) and cancer-like cell-shape changes. Semin Cancer Biol 2021; 81:73-82. [PMID: 33440246 DOI: 10.1016/j.semcancer.2020.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
We have presented an in vitro trackable model system, atavistic induced from conservation in our genome, which strongly is applicable to tumorigenesis start and evolution. The inducing factor was death signals to proliferating normal human cells (primary cell strains), which respon-ded by a special type of tetraploidization, chromosomes with 4-chromatids (diplochromosomes, earlier described in cancer cells). The response included cell cycle stress, which prolonged S-period with result of mitotic slippage process, forming the special 4n cells by re-replication of diploid cells, which showed cell division capability to unexpected, genome reduced diploid cells which remarkably, showed fitness gain. This unique response through cell cycle stress and mitotic slippage process was further discovered to be linked to a rather special characteristic of the, 4n nucleus. The nucleus turned, self-inflicted, 90° perpendicular to the cell's cytoskeleton axis, importantly, before the special 4n-division system produced genome reduce diploid cells, we call "first cells", because of fitness gain. These 2n cells also showed the nuclear dependent 90° turn, which in both cases was associated with cells gaining cell shape changes, herein illustrated from normal fibroblastic cells changing to roundness cells, indistinguishable from todays' diagnostic cancer cell morphology. This 3-D ball-like cell shape, in metastasis, sque-ezing in and out between (?) endothelial cells in the lining of blood veins during disbursement, would be advantageous.
Collapse
|
6
|
Wang JS, Wang MJ, Lu X, Zhang J, Liu QX, Zhou D, Dai JG, Zheng H. Artesunate inhibits epithelial-mesenchymal transition in non-small-cell lung cancer (NSCLC) cells by down-regulating the expression of BTBD7. Bioengineered 2020; 11:1197-1207. [PMID: 33108235 PMCID: PMC8291784 DOI: 10.1080/21655979.2020.1834727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, more and more studies have shown that antiparasitic drugs can affect a variety of biological processes of tumor cells and exhibit a potential anti-tumor activity. Although artesunate (ART), a strong bioactive derivative of artemisinin and widely used clinically against malaria, was found to have an inhibitory effect on tumor cells, it is still unclear whether ART could regulate the tumor malignancy of non-small-cell lung cancer (NSCLC) cells. In this study, we aimed to investigate the effect of ART on migration capacities in NSCLC cell lines of A549 and H1975. Cell migration capacity was remarkably inhibited by ART treatment. The expression of epithelial marker E-cadherin was upregulated, while mesenchymal markers (N-cadherin, vimentin and FN1) were inhibited by ART in both protein and mRNA levels in A549 and H1975 cells, indicating ART could suppress the epidermal interstitial transformation (EMT) of NSCLC cells. Meanwhile, BTBD7 was found highly expressed in tumor tissues of NSCLC patient and associated with poor prognosis. The anti-migration activity of ART was found to be mediated by the inhibition of BTBD7 mRNA expression and was reversed when the cells were transiently transfected with the BTBD7 overexpression plasmid. Our study demonstrated the potent anti-migratory activity of ART, thereby presenting it as a new candidate for clinical therapy in NSCLC.
Collapse
Affiliation(s)
- Jing-Si Wang
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| | - Ming-Juan Wang
- Department of Anesthesiology, Chonggang General Hospital, Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army (Third) Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Discovery of Novel Agents on Spindle Assembly Checkpoint to Sensitize Vinorelbine-Induced Mitotic Cell Death Against Human Non-Small Cell Lung Cancers. Int J Mol Sci 2020; 21:ijms21165608. [PMID: 32764382 PMCID: PMC7460560 DOI: 10.3390/ijms21165608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts about 80% of all lung cancers. More than two-thirds of NSCLC patients have inoperable, locally advanced or metastatic tumors. Non-toxic agents that synergistically potentiate cancer-killing activities of chemotherapeutic drugs are in high demand. YL-9 was a novel and non-cytotoxic compound with the structure related to sildenafil but showing much less activity against phosphodiesterase type 5 (PDE5). NCI-H460, an NSCLC cell line with low PDE5 expression, was used as the cell model. YL-9 synergistically potentiated vinorelbine-induced anti-proliferative and apoptotic effects in NCI-H460 cells. Vinorelbine induced tubulin acetylation and Bub1-related kinase (BUBR1) phosphorylation, a necessary component in spindle assembly checkpoint. These effects, as well as BUBR1 cleavage, were substantially enhanced in co-treatment with YL-9. Several mitotic arrest signals were enhanced under combinatory treatment of vinorelbine and YL-9, including an increase of mitotic spindle abnormalities, increased cyclin B1 expression, B-cell lymphoma 2 (Bcl-2) phosphorylation and increased phosphoproteins. Moreover, YL-9 also displayed synergistic activity in combining with vinorelbine to induce apoptosis in A549 cells which express PDE5. In conclusion. the data suggest that YL-9 is a novel agent that synergistically amplifies vinorelbine-induced NSCLC apoptosis through activation of spindle assembly checkpoint and increased mitotic arrest of the cell cycle. YL-9 shows the potential for further development in combinatory treatment against NSCLC.
Collapse
|
8
|
Walen KH. Near-Dead Cells to Special Tetraploidy to First Cells to Cancer Diagnostic Morphology: Unlikely Therapy-Gain from For-Profit Industrial Goliath. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/jct.2020.117036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Abbasi BA, Iqbal J, Ahmad R, Bibi S, Mahmood T, Kanwal S, Bashir S, Gul F, Hameed S. Potential phytochemicals in the prevention and treatment of esophagus cancer: A green therapeutic approach. Pharmacol Rep 2019; 71:644-652. [DOI: 10.1016/j.pharep.2019.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/07/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
|
10
|
Chien HT, Cheng SD, Liao CT, Wang HM, Huang SF. Amplification of the EGFR and CCND1 Are Coordinated and Play Important Roles in the Progression of Oral Squamous Cell Carcinomas. Cancers (Basel) 2019; 11:cancers11060760. [PMID: 31159251 PMCID: PMC6627096 DOI: 10.3390/cancers11060760] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/20/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer in Taiwan and worldwide. To provide some clues for clinical management of OSCC, 72 advanced-stage OSCCs were analyzed using two microarray platforms (26 cases with Affymetrix 500 K and 46 cases with Affymetrix SNP 6.0). Genomic identification of significant targets in cancer analyses were used to identify significant copy number alterations (CNAs) using a q-value cutoff of 0.25. Among the several significant regions, 12 CNAs were common between these two platforms. Two gain regions contained the well-known oncogenes EGFR (7p11.2) and CCND1 (11q13.3) and several known cancer suppressor genes, such as FHIT (3p14.2-p12.1), FAT1 (4q35.1), CDKN2A (9p21.3), and ATM (11q22.3-q24.3), reside within the 10 deletion regions. Copy number gains of EGFR and CCND1 were further confirmed by fluorescence in situ hybridization and TaqMan CN assay, respectively, in 257 OSCC cases. Our results indicate that EGFR and CCND1 CNAs are significantly associated with clinical stage, tumor differentiation, and lymph node metastasis. Furthermore, EGFR and CCND1 CNAs have an additive effect on OSCC tumor progression. Thus, current genome-wide CNA analysis provides clues for future characterization of important oncogenes and tumor suppressor genes associated with the behaviors of the disease.
Collapse
Affiliation(s)
- Huei-Tzu Chien
- Department of Public Health, Chang Gung University, Tao-Yuan 33302, Taiwan.
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Tao-Yuan 33302, Taiwan.
| | - Sou-De Cheng
- Department of Anatomy, Chang Gung University, Tao-Yuan 33302, Taiwan.
| | - Chun-Ta Liao
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou branch, Tao-Yuan 33302, Taiwan.
| | - Hung-Ming Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou branch, Tao-Yuan 33302, Taiwan.
| | - Shiang-Fu Huang
- Department of Public Health, Chang Gung University, Tao-Yuan 33302, Taiwan.
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou branch, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
11
|
Silva PMA, Delgado ML, Ribeiro N, Florindo C, Tavares ÁA, Ribeiro D, Lopes C, do Amaral B, Bousbaa H, Monteiro LS. Spindly and Bub3 expression in oral cancer: Prognostic and therapeutic implications. Oral Dis 2019; 25:1291-1301. [PMID: 30866167 DOI: 10.1111/odi.13089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/24/2019] [Accepted: 03/07/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Bub3 and Spindly are essential proteins required for the activation and inactivation of the spindle assembly checkpoint, respectively. Here, we explored the clinicopathological significance and the therapeutic potential of the opposing roles of the two proteins in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Bub3 and Spindly expression was evaluated by immunohistochemistry in 62 tissue microarrays from OSCC and by real-time PCR in OSCC cell lines and in normal human oral keratinocytes. The results were analyzed as to their clinicopathological significance. RNA interference-mediated Spindly or Bub3 inhibition was combined with cisplatin treatment, and the effect on the viability of OSCC cells was assessed. RESULTS Overexpression of Bub3 and Spindly was detected in OSCC patients. High expression of Spindly, Bub3, or both was an independent prognostic indicator for cancer-specific survival and was associated with increased cellular proliferation. Accordingly, Bub3 and Spindly were upregulated in OSCC cells comparatively to their normal counterpart. Inhibition of Bub3 or Spindly was cytotoxic to OSCC cells and enhanced their chemosensitivity to cisplatin. CONCLUSIONS The data point out Bub3 and Spindly as potential markers of proliferation and prognosis, and highlight the potential therapeutic benefit of combining their inhibition with cisplatin.
Collapse
Affiliation(s)
- Patrícia M A Silva
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Maria Leonor Delgado
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Nilza Ribeiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Cláudia Florindo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro, Portugal
| | - Álvaro A Tavares
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Departamento Ciências Biomédicas e Medicina, University of Algarve, Faro, Portugal
| | - Diana Ribeiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| | - Carlos Lopes
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal.,Molecular Pathology and Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University, Porto, Portugal
| | - Barbas do Amaral
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal.,Stomatology Department, Oporto Hospitalar Centre, Hospital de Santo António, Porto, Portugal
| | - Hassan Bousbaa
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Luís Silva Monteiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
12
|
Wheeler NJ, Dinguirard N, Marquez J, Gonzalez A, Zamanian M, Yoshino TP, Castillo MG. Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line. Parasit Vectors 2018; 11:496. [PMID: 30180879 PMCID: PMC6122571 DOI: 10.1186/s13071-018-3059-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background The aquatic pulmonate snail Biomphalaria glabrata is a significant vector and laboratory host for the parasitic flatworm Schistosoma mansoni, an etiological agent for the neglected tropical disease schistosomiasis. Much is known regarding the host-parasite interactions of these two organisms, and the B. glabrata embryonic (Bge) cell line has been an invaluable resource in these studies. The B. glabrata BB02 genome sequence was recently released, but nothing is known of the sequence variation between this reference and the Bge cell genome, which has likely accumulated substantial genetic variation in the ~50 years since its isolation. Results Here, we report the genome sequence of our laboratory subculture of the Bge cell line (designated Bge3), which we mapped to the B. glabrata BB02 reference genome. Single nucleotide variants (SNVs) were predicted and focus was given to those SNVs that are most likely to affect the structure or expression of protein-coding genes. Furthermore, we have highlighted and validated high-impact SNVs in genes that have often been studied using Bge cells as an in vitro model, and other genes that may have contributed to the immortalization of this cell line. We also resolved representative karyotypes for the Bge3 subculture, which revealed a mixed population exhibiting substantial aneuploidy, in line with previous reports from other Bge subcultures. Conclusions The Bge3 genome differs from the B. glabrata BB02 reference genome in both sequence and structure, and these are likely to have significant biological effects. The availability of the Bge3 genome sequence, and an awareness of genomic differences with B. glabrata, will inform the design of experiments to understand gene function in this unique in vitro snail cell model. Additionally, this resource will aid in the development of new technologies and molecular approaches that promise to reveal more about this schistosomiasis-transmitting snail vector. Electronic supplementary material The online version of this article (10.1186/s13071-018-3059-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Timothy P Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
13
|
Ying J, Zhang M, Qiu X, Lu Y. The potential of herb medicines in the treatment of esophageal cancer. Biomed Pharmacother 2018; 103:381-390. [PMID: 29674273 DOI: 10.1016/j.biopha.2018.04.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is one of common malignant neoplasms in the world. Due to dietary habits, environmental factors, stress and so on, larger numbers of person are diagnose with EC every year. Currently, the clinical treatment of EC mainly includes radiotherapy, chemotherapy, surgical resection alone or combined strategy. These treatment options are insufficient and often associated with a number of side effects. Medicinal herbs containing Traditional Chinese Medicine (TCM) have been used as an adjunct treatment for alleviating the side effects of chemotherapy or radiotherapy and for improving the quality of life of cancer patients. The monomer compounds obtained from medicinal herbs also exhibit potential anti-cancer activity against various type cancer cell lines including esophageal cancer, and have the ability to enhance cancer cells sensitizing to chemotherapy or radiotherapy. In this review, we summarize some monomers and composite of medicinal herbs with anti-cancer activity for EC, and elaborate their mechanism of action. Understanding the exact mechanism of their actions may provide valuable information for their possible application in cancer therapy and prevention. This is beneficial for the use and development of medicinal herbs for diseases therapy in the future.
Collapse
Affiliation(s)
- Jie Ying
- Department of Clinical Research Center, Xuyi People's Hospital, PR China
| | - Miaomiao Zhang
- Department of Clinical Research Center, Xuyi People's Hospital, PR China
| | - Xiaoyan Qiu
- Department of Clinical Research Center, Xuyi People's Hospital, PR China
| | - Yu Lu
- Department of Clinical Research Center, Xuyi People's Hospital, PR China.
| |
Collapse
|
14
|
Ni Y, Qin Y, Fang Z, Zhang Z. ROCK Inhibitor Y-27632 Promotes Human Retinal Pigment Epithelium Survival by Altering Cellular Biomechanical Properties. Curr Mol Med 2018; 17:637-646. [PMID: 29546834 PMCID: PMC6040175 DOI: 10.2174/1566524018666180316150936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/04/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Purpose: Dysfunction or death of retinal pigment epithelial (RPE) cells is a common pathogenesis of various types of retinal degenerative diseases. Recent reports indicated that ROCK pathway inhibitors regulate cell proliferation or apoptosis in a cell-type-dependent manner. Here, we aim to investigate the effect of ROCK inhibitor Y-27632 on the human retinal pigment epithelium (RPE) in vitro. Methods: Cell proliferation and apoptosis were analyzed by CCK-8 and flow cytometry respectively. Cell proliferation markers were detected by immunofluorescence and western blot. Cell morphology was evaluated using scanning electron microscopy. The topography and biomechanical properties of living cells were assessed using atomic force microscope (AFM). In addition, cytoskeleton and epithelial-mesenchymal transition (EMT) markers were detected by western blot and immunofluorescence. Results: 30μM Y-27632 significantly promoted cell proliferation and decreased apoptosis. Compared with control group, human retinal pigment epithelial cell line ARPE-19 cells treated with 30μM Y-27632 exhibited significantly decreased cytomembrane roughness (Ra: 41.04±1.63nm vs. 24.41±0.75nm, P<0.01; Rq: 51.56±2.03nm vs. 30.81±0.95nm, P<0.01) and increased elasticity modulus (16.66±0.83KPa vs. 32.55±1.48KPa, P<0.01). In addition, the inhibition of ROCK activity by Y-27632 caused cell elongation and reorganization of microfilaments and microtubules of cytoskeletons. Conclusion: Taken together, our data demonstrated that Y-27632 could alter biomechanical properties and reorganized cytoskeletons to promote RPE cell survival. These results are an important step toward the future application of Y-27632 in retinal degenerative diseases.
Collapse
Affiliation(s)
- Y Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Y Qin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Z Fang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Z Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
15
|
Ribeiro IP, Rodrigues JM, Mascarenhas A, Kosyakova N, Caramelo F, Liehr T, Melo JB, Carreira IM. Cytogenetic, genomic, and epigenetic characterization of the HSC-3 tongue cell line with lymph node metastasis. J Oral Sci 2018; 60:70-81. [PMID: 29479029 DOI: 10.2334/josnusd.16-0811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Oral carcinoma develops from squamous epithelial cells by the acquisition of multiple (epi) genetic alterations that target different genes and molecular pathways. Herein, we performed a comprehensive genomic and epigenetic characterization of the HSC-3 cell line through karyotyping, multicolor fluorescence in situ hybridization, array comparative genomic hybridization, and methylation-specific multiplex ligation-dependent probe amplification. HSC-3 turned out to be a near-triploid cell line with a modal number of 61 chromosomes. Banding and molecular cytogenetic analyses revealed that nonrandom gains of chromosomal segments occurred more frequently than losses. Overall, gains of chromosome 1, 3q, 5p, 7p, 8q, 9q, 10, 11p, 11q13, 12, 13, 14, 17, 18p, 20, Yp, and Xq were observed. The largest region affected by copy number loss was observed at chromosome 18q. Several of the observed genomic imbalances and their mapped genes were already associated with oral carcinoma and/or adverse prognosis, invasion, and metastasis in cancer. The most common rearrangements observed were translocations in the centromeric/near-centromeric regions. RARB, ESR1, and CADM1 genes were methylated and showed copy number losses, whereas TP73 and GATA5 presented with methylation and copy number gains. Thus, the current study presents a comprehensive characterization of the HSC-3 cell line; the use of this cell line may contribute to enriching the resources available for oral cancer research, especially for the testing of therapeutic agents.
Collapse
Affiliation(s)
- Ilda P Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| | - Joana M Rodrigues
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra
| | | | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| |
Collapse
|
16
|
Molecular progression of head and neck squamous cell carcinoma. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Diaphanous-related formin 1 as a target for tumor therapy. Biochem Soc Trans 2017; 44:1289-1293. [PMID: 27911711 DOI: 10.1042/bst20160120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Formins nucleate actin and stabilize microtubules (MTs). Expression of the formin Diaphanous homolog 1 (DIAPH1) is increased in malignant colon carcinoma cells, while expression of DIAPH3 is up-regulated in breast and prostate carcinoma cells. Both DIAPH1 isoforms are required to stabilize interphase MTs of cancer cells, and it has been shown that loss of this function decreases the metastatic potential of these cells. Moreover, depletion of DIAPH3 increases the sensitivity of breast and prostate carcinoma cells to taxanes. In contrast with DIAPH1 + 3, DIAPH2 regulates metaphase MTs of tumor cells by stabilizing binding of kinetochore MTs to chromosomes. Depletion of DIAPH2 impairs chromosome alignment, thus proper chromosome segregation during mitosis. In summary, expression of DIAPH formins in tumor cells is essential for stabilizing interphase or metaphase MTs, respectively. Thus, it would be very interesting to analyze if tumor cells exhibiting low DIAPH expression are more sensitive to taxanes than those with high DIAPH expression.
Collapse
|
18
|
|
19
|
Saha N, Dutta Gupta S. Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. JOURNAL OF HAZARDOUS MATERIALS 2017; 330:18-28. [PMID: 28208089 DOI: 10.1016/j.jhazmat.2017.01.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Chemically synthesized silver nanoparticles (chem-AgNPs) have been assessed extensively to show adverse effects on plant cells but the role of biologically synthesized nanoparticles (bio-AgNPs) at lower concentrations and their toxicological impact on plant cells have not been sufficiently studied. In this study, bio-AgNPs were prepared using aqueous leaf extracts of Swertia chirata. This AgNPs showed absorption peak at 440nm of the visible spectrum. TEM analysis revealed that the average size of AgNPs were 20nm and mainly spherical in shape. AFM topographic images depicted the three dimensional aspects of AgNPs. XRD analysis confirmed the crystalline nature. FTIR spectrum of the AgNPs revealed the possible biomolecules involved in bioreduction and efficient stabilization of the particles. Low-dose of bio-AgNPs concentrations (5, 10 and 20μgml-1) were used for toxicity studies on Allium cepa. The studies revealed that various chromosomal aberrations were induced in both mitotic and meiotic cells of Allium cepa even at lower concentrations of bio-AgNPs. Abnormalities in post meiotic products were also observed. Both mitotic and meiotic indexes decreased with increasing concentrations of bio-AgNPs in the treated cells. These findings implied that low dose bio-AgNPs can induce significant clastogenic effects on both meristematic and reproductive plant cells.
Collapse
Affiliation(s)
- Nirlipta Saha
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| | - S Dutta Gupta
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
20
|
Walen KH. Mitotic Slippage Process Concealed Cancer-Sought Chromosome Instability Mechanism (S-CIN). ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jct.2017.86052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Occupational exposure to cytostatic/antineoplastic drugs and cytogenetic damage measured using the lymphocyte cytokinesis-block micronucleus assay: A systematic review of the literature and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:35-45. [DOI: 10.1016/j.mrrev.2016.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/23/2022]
|
22
|
Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells. Int J Mol Sci 2016; 17:ijms17091437. [PMID: 27598149 PMCID: PMC5037716 DOI: 10.3390/ijms17091437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.
Collapse
|
23
|
Kaseb HO, Lewis DW, Saunders WS, Gollin SM. Cell division patterns and chromosomal segregation defects in oral cancer stem cells. Genes Chromosomes Cancer 2016; 55:694-709. [PMID: 27123539 DOI: 10.1002/gcc.22371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a serious public health problem caused primarily by smoking and alcohol consumption or human papillomavirus. The cancer stem cell (CSC) theory posits that CSCs show unique characteristics, including self-renewal and therapeutic resistance. Examining biomarkers and other features of CSCs is critical to better understanding their biology. To this end, the results show that cellular SOX2 immunostaining correlates with other CSC biomarkers in OSCC cell lines and marks the rare CSC population. To assess whether CSC division patterns are symmetrical, resulting in two CSC, or asymmetrical, leading to one CSC and one cancer cell, cell size and fluorescence intensity of mitotic cells stained with SOX2 were analyzed. Asymmetrical SOX2 distribution in ≈25% of the mitoses analyzed was detected. Chromosomal instability, some of which is caused by chromosome segregation defects (CSDs), is a feature of cancer cells that leads to altered gene copy numbers. We compare chromosomal instability (as measured by CSDs) between CSCs (SOX2+) and non-CSCs (SOX2-) from the same OSCC cell lines. CSDs were more common in non-CSCs (SOX2-) than CSCs (SOX2+) and in symmetrical CSC (SOX2+) mitotic pairs than asymmetrical CSC (SOX2+/SOX2-) mitotic pairs. CSCs showed fewer and different types of CSDs after ionizing radiation treatment than non-CSCs. Overall, these data are the first to demonstrate both symmetrical and asymmetrical cell divisions with CSDs in OSCC CSC. Further, the results suggest that CSCs may undergo altered behavior, including therapeutic resistance as a result of chromosomal instability due to chromosome segregation defects. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hatem O Kaseb
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA.,Department of Clinical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - William S Saunders
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
24
|
Lian S, Shi R, Huang X, Hu X, Song B, Bai Y, Yang B, Dong J, Du Z, Zhang Y, Jia J, Ma N, Guo G, Wang M. Artesunate attenuates glioma proliferation, migration and invasion by affecting cellular mechanical properties. Oncol Rep 2016; 36:984-90. [PMID: 27279152 DOI: 10.3892/or.2016.4847] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 11/05/2022] Open
Abstract
Glioma is one of the most common malignant brain tumors. Current chemotherapy is far from providing satisfactory clinical outcomes for patients with glioma. More efficient drugs are urgently needed. Artesunate (ART) is clinically used as an anti-malarial agent and exhibits potent antiproliferative activity as a traditional Chinese medicine. In addition, ART has been shown to exert a profound cytotoxic effect on various tumor cell lines, presenting a novel candidate for cancer chemotherapy. However, its anticancer effect on glioma by altering cell biomechanical properties remains unclear. The present study aimed to identify the anticancer effects of ART on human glioma SHG44 cells by assessing cell proliferation, migration/invasion, the expression of claudin-1 and the biomechanical properties of ART-treated SHG44 cells. The proliferation of the SHG44 cells was assessed by MTT assay. The cell apoptosis was detected by flow cytometry. For cell migration and invasion assays, the Transwell was used. The expression of the gene claudin-1 was detected by polymerase chain reaction. The cell membrane and biomechanical properties, as targets of ART action, were investigated by atomic force microscopy (AFM). ART significantly inhibited the proliferation of SHG44 cells in a dose- and time-dependent manner. After treatment with 30 mg/l ART, the level of cell apoptosis was significantly increased (from 6.88±0.062 to 23.7±4.16%). Furthermore, the cell migration and invasion abilities of the SHG44 cells were markedly inhibited after treatment with 30 mg/l ART. Compared with the control group (0 mg/l ART), the SHG44 cells treated with 30 mg/l ART exhibited upregulated expression of claudin-1, increased adhesive force (from 2,400±300 to 3,600±500 pN), increased high connection among SHG44 cells, increased cytomembrane roughness (from 0.118±0.011 to 0.269±0.015 µm) and reduced elasticity (from 23±8 to 3.5±1.1 MPa). The present study demonstrated that ART could alter the biomechanical properties of the glioma cells to inhibit cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Shizhong Lian
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ruyi Shi
- Key Laboratory of Cellular Physiology, Chinese Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xun Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoling Hu
- Key Laboratory of Cellular Physiology, Chinese Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Song
- Key Laboratory of Cellular Physiology, Chinese Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yinshan Bai
- Basic School of Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Bin Yang
- Key Laboratory of Cellular Physiology, Chinese Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinyao Dong
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhijie Du
- The Fourth People's Hospital of Linfen, Linfen, Shanxi 041000, P.R. China
| | - Yanyan Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ning Ma
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Geng Guo
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Mingyu Wang
- Department of Neurosurgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
25
|
de Oliveira-Júnior RJ, Ueira-Vieira C, Sena AAS, Reis CF, Mineo JR, Goulart LR, Morelli S. Chromosomal disruption and rearrangements during murine sarcoma development converge to stable karyotypic formation kept by telomerase overexpression. J Biomed Sci 2016; 23:22. [PMID: 26841871 PMCID: PMC4739385 DOI: 10.1186/s12929-016-0230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor initiation presents a complex and unstable genomic landscape; one of the earliest hallmark events of cancer, and its progression is probably based on selection mechanisms under specific environments that lead to functional tumor cell speciation. We hypothesized that viable tumor phenotypes possess common and highly stable karyotypes and their proliferation is facilitated by an attuned high telomerase activity. Very few investigations have focused on the evolution of common chromosomal rearrangements associated to molecular events that result in functional phenotypes during tumor development. RESULTS We have used cytogenetic, flow cytometry and cell culture tools to investigate chromosomal rearrangements and clonality during cancer development using the murine sarcoma TG180 model, and also molecular biology techniques to establish a correlation between chromosome instability and telomerase activity, since telomeres are highly affected during cancer evolution. Cytogenetic analysis showed a near-tetraploid karyotype originated by endoreduplication. Chromosomal rearrangements were random events in response to in vitro conditions, but a stable karyotypic equilibrium was achieved during tumor progression in different in vivo conditions, suggesting that a specific microenvironment may stabilize the chromosomal number and architecture. Specific chromosome aberrations (marker chromosomes) and activated regions (rDNAs) were ubiquitous in the karyotype, suggesting that the conservation of these patterns may be advantageous for tumor progression. High telomerase expression was also correlated with the chromosomal rearrangements stabilization. CONCLUSIONS Our data reinforce the notion that the sarcoma cell evolution converges from a highly unstable karyotype to relatively stable and functional chromosome rearrangements, which are further enabled by telomerase overexpression.
Collapse
Affiliation(s)
| | - Carlos Ueira-Vieira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Carolina Fernandes Reis
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil. .,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA.
| | - Sandra Morelli
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
26
|
Tan S, Guan X, Grün C, Zhou Z, Schepers U, Nick P. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells. Toxicol In Vitro 2015; 30:506-13. [PMID: 26368671 DOI: 10.1016/j.tiv.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023]
Abstract
Cancer cells divide rapidly, providing medical targets for anticancer agents. The polyphenolic gallic acid (GA) is known to be toxic for certain cancer cells. However, the cellular mode of action has not been elucidated. Therefore, the current study addressed a potential effect of GA on the mitosis of cancer cells. GA inhibited viability of HeLa cells in a dose-dependent and time-dependent manner. We could show, using fluorescence-activated cell sorting (FACS), that this inhibition was accompanied by elevated frequency of cells arrested at the G2/M transition. This cell-cycle arrest was accompanied by mitotic catastrophe, and formation of cells with multiple nuclei. These aberrations were preceded by impaired centrosomal clustering. We arrive at a model of action, where GA inhibits the progression of the cell cycle at the G2/M phase by impairing centrosomal clustering which will stimulate mitotic catastrophe. Thus, GA has potential as compound against cervical cancer.
Collapse
Affiliation(s)
- Si Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Xin Guan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Christoph Grün
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Ute Schepers
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
27
|
Geron L, Borges KS, Andrade AF, Suazo VK, Scrideli CA, Tone LG. Antitumour activity of AMG 900 alone or in combination with histone deacetylase inhibitor SaHa on medulloblastoma cell lines. Neurol Res 2015; 37:703-11. [PMID: 26000978 DOI: 10.1179/1743132815y.0000000048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Medulloblastoma (MB) is the most common malignant childhood brain tumour. Aurora kinases are essential for cell division and are primarily active during mitosis. Recently, the combination of aurora kinases inhibitors (iAURK) and histone deacetylase inhibitors (iHDAC) has shown potential antitumour effects and had significant biological effects in preclinical cancer models. In this study, we analysed the effects of the pan-aurora kinases inhibitor AMG 900 alone or in combination with the iHDAC SaHa (Vorinostat) on paediatric MB cell lines (UW402, UW473 and ONS-76). METHODS Cell proliferation was measured by XTT assay, apoptosis was determined by flow cytometry and clonogenic capacity was studied. qRT-PCR assays were used to determine the mRNA expression in MB cell lines after treatment. Drug combination analyses were made based on Chou-Talalay method. RESULTS AMG 900 caused the inhibition of cell proliferation, diminution of clonogenic capacity and increased the apoptosis rate in cell lines (P < 0.05). A synergistic effect in the AMG900-SaHa combination was evidenced on the inhibition of cell proliferation in all cell lines, especially in sequential drug treatment. Moreover, the combination of these drugs reached 100% of the inhibition in colony formation (synergistic effect). The treatment with AMG 900 increased the p21 and GDF15 expression, but did not alter the TP53 in one of the cell lines. CONCLUSIONS These results indicate that AMG 900 may be a promising drug for the adjuvant treatment of MB, mainly when combined with iHDAC.
Collapse
|
28
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
29
|
Teixeira JH, Silva P, Faria J, Ferreira I, Duarte P, Delgado ML, Queirós O, Moreira R, Barbosa J, Lopes CA, do Amaral JB, Monteiro LS, Bousbaa H. Clinicopathologic significance of BubR1 and Mad2 overexpression in oral cancer. Oral Dis 2015; 21:713-20. [PMID: 25754611 DOI: 10.1111/odi.12335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/01/2015] [Accepted: 03/01/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVES BubR1 and Mad2 are central components of the mitotic checkpoint complex that inhibits anaphase onset until all chromosomes are correctly aligned at the metaphase plate. We propose to analyse the combined expression of BubR1 and Mad2 and assess its significance to oral squamous cell carcinoma (OSCC) diagnosis and prognosis. MATERIALS AND METHODS BubR1 and Mad2 expression was assessed by real-time PCR in OSCC cell lines and in normal human oral keratinocytes, and by immunohistochemistry in 65 patients with OSCC. The results were compared regarding clinicopathological parameters, proliferative activity and survival. RESULTS BubR1 and Mad2 transcripts were overexpressed in OSCC cell lines which also exhibited attenuated spindle assembly checkpoint activity. BubR1 and Mad2 were also overexpressed in patients with OSCC. BubR1 expression was associated with advanced stages and larger tumour size in univariate analysis, and with shorter overall survival both in univariate and multivariate analysis. Mad2 overexpression was associated with that of BubR1 and, importantly, high expression of Mad2 and BubR1 was associated with increased cellular proliferation. CONCLUSION Our data propose a role for BubR1 and Mad2 in OSCC cellular proliferation, progression and prognosis.
Collapse
Affiliation(s)
- J H Teixeira
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - Pma Silva
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal.,Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve, Faro, Portugal
| | - J Faria
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - I Ferreira
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - P Duarte
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - M L Delgado
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - O Queirós
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal.,CBMA - Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - R Moreira
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal.,CBMA - Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - J Barbosa
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - C A Lopes
- Molecular Pathology and Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - J B do Amaral
- Stomatology Department, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal
| | - L S Monteiro
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal
| | - H Bousbaa
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU, Gandra PRD, Portugal.,Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Shi R, Cui H, Bi Y, Huang X, Song B, Cheng C, Zhang L, Liu J, He C, Wang F, Jia Z, Yang B, Wang J, Dong J, DU Z, Xiao S, Cui Y, Cheng X. Artesunate altered cellular mechanical properties leading to deregulation of cell proliferation and migration in esophageal squamous cell carcinoma. Oncol Lett 2015; 9:2249-2255. [PMID: 26137051 DOI: 10.3892/ol.2015.2982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/10/2015] [Indexed: 11/05/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer in China. Artesunate (ART) is used clinically as an anti-malarial agent and exhibits potent antiproliferative activity. In addition, ART has demonstrated remarkable antitumor activity, presenting a novel candidate for cancer chemotherapy. However, its effect on ESCC remains unknown. The present study analyzed the antitumor effects of ART in the KYSE-150 ESCC line by assessing cell proliferation, cell death, cell migration/invasion and the biomechanical properties of ART-treated KYSE-150 cells. ART treatment significantly suppressed the proliferation of KYSE-150 cells in a dose- and time-dependent manner, as assessed by MTT assay. Following treatment with 30 mg/l ART, the cell population in the G0/G1 phase and the level of cell apoptosis significantly increased from 54±1.5 to 68.1±0.3%, and from 4.53±0.58 to 12.45±0.62%, respectively. Furthermore, the cell migration and invasion of KYSE-150 cells treated with 30 mg/l ART was markedly inhibited. The cell membrane and biomechanical properties were investigated using atomic force microscopy, as targets of ART action. ESCC cells treated with 30 mg/l ART exhibited increased adhesive force, increased cytomembrane roughness and reduced elasticity compared with the control group (KYSE-150 cells without ART treatment). The biomechanical properties of KYSE-150 cells treated with 30 mg/l ART were similar to those of the SHEE normal human esophageal epithelial cell line. In conclusion, the present study demonstrated that ART may inhibit cell proliferation and migration in ESCC through changes in the biomechanical properties of the ESCC cells.
Collapse
Affiliation(s)
- Ruyi Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Heyang Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xun Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Song
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Oncology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Caixia Cheng
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Pathology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jing Liu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chanting He
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fang Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhiwu Jia
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bin Yang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Juan Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jinyao Dong
- Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhijie DU
- Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shuaishuai Xiao
- Department of General Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongping Cui
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China ; Institute of Dissection, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
31
|
Kalatova B, Jesenska R, Hlinka D, Dudas M. Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications. Acta Histochem 2015; 117:111-25. [PMID: 25554607 DOI: 10.1016/j.acthis.2014.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/08/2023]
Abstract
Tripolar mitosis is a specific case of cell division driven by typical molecular mechanisms of mitosis, but resulting in three daughter cells instead of the usual count of two. Other variants of multipolar mitosis show even more mitotic poles and are relatively rare. In nature, this phenomenon was frequently observed or suspected in multiple common cancers, infected cells, the placenta, and in early human embryos with impaired pregnancy-yielding potential. Artificial causes include radiation and various toxins. Here we combine several pieces of the most recent evidence for the existence of different types of multipolar mitosis in preimplantation embryos together with a detailed review of the literature. The related molecular and cellular mechanisms are discussed, including the regulation of centriole duplication, mitotic spindle biology, centromere functions, cell cycle checkpoints, mitotic autocorrection mechanisms, and the related complicating factors in healthy and affected cells, including post-mitotic cell-cell fusion often associated with multipolar cell division. Clinical relevance for oncology and embryo selection in assisted reproduction is also briefly discussed in this context.
Collapse
|
32
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
33
|
Putnam CD, Pallis K, Hayes TK, Kolodner RD. DNA repair pathway selection caused by defects in TEL1, SAE2, and de novo telomere addition generates specific chromosomal rearrangement signatures. PLoS Genet 2014; 10:e1004277. [PMID: 24699249 PMCID: PMC3974649 DOI: 10.1371/journal.pgen.1004277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
Whole genome sequencing of cancer genomes has revealed a diversity of recurrent gross chromosomal rearrangements (GCRs) that are likely signatures of specific defects in DNA damage response pathways. However, inferring the underlying defects has been difficult due to insufficient information relating defects in DNA metabolism to GCR signatures. By analyzing over 95 mutant strains of Saccharomyces cerevisiae, we found that the frequency of GCRs that deleted an internal CAN1/URA3 cassette on chrV L while retaining a chrV L telomeric hph marker was significantly higher in tel1Δ, sae2Δ, rad53Δ sml1Δ, and mrc1Δ tof1Δ mutants. The hph-retaining GCRs isolated from tel1Δ mutants contained either an interstitial deletion dependent on non-homologous end-joining or an inverted duplication that appeared to be initiated from a double strand break (DSB) on chrV L followed by hairpin formation, copying of chrV L from the DSB toward the centromere, and homologous recombination to capture the hph-containing end of chrV L. In contrast, hph-containing GCRs from other mutants were primarily interstitial deletions (mrc1Δ tof1Δ) or inverted duplications (sae2Δ and rad53Δ sml1Δ). Mutants with impaired de novo telomere addition had increased frequencies of hph-containing GCRs, whereas mutants with increased de novo telomere addition had decreased frequencies of hph-containing GCRs. Both types of hph-retaining GCRs occurred in wild-type strains, suggesting that the increased frequencies of hph retention were due to the relative efficiencies of competing DNA repair pathways. Interestingly, the inverted duplications observed here resemble common GCRs in metastatic pancreatic cancer. Recent advances in the sequencing of human cancer genomes have revealed that some types of genome rearrangements are more common in specific types of cancers. Thus, these cancers may share defects in DNA repair mechanisms, which may play roles in initiation or progression of the disease and may be useful therapeutically. Linking a common rearrangement signature to a specific genetic or epigenetic alteration is currently challenging, because we do not know which rearrangement signatures are linked to which DNA repair defects. Here we used a genetic assay in the model organism Saccharomyces cerevisiae to specifically link two classes of chromosomal rearrangements, interstitial deletions and inverted duplications, to specific genetic defects. These results begin to map out the links between observed chromosomal rearrangements and specific DNA repair defects and in the present case, may provide insights into the chromosomal rearrangements frequently observed in metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Katielee Pallis
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Tikvah K. Hayes
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| |
Collapse
|
34
|
Walen KH. Neoplastic-Like CELL Changes of Normal Fibroblast Cells Associated with Evolutionary Conserved Maternal and Paternal Genomic Autonomous Behavior (Gonomery). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.59094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Roschke AV, Rozenblum E. Multi-layered cancer chromosomal instability phenotype. Front Oncol 2013; 3:302. [PMID: 24377086 PMCID: PMC3858786 DOI: 10.3389/fonc.2013.00302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/27/2013] [Indexed: 01/13/2023] Open
Abstract
Whole-chromosomal instability (W-CIN) – unequal chromosome distribution during cell division – is a characteristic feature of a majority of cancer cells distinguishing them from their normal counterparts. The precise molecular mechanisms that may cause mis-segregation of chromosomes in tumor cells just recently became more evident. The consequences of W-CIN are numerous and play a critical role in carcinogenesis. W-CIN mediates evolution of cancer cell population under selective pressure and can facilitate the accumulation of genetic changes that promote malignancy. It has both tumor-promoting and tumor-suppressive effects, and their balance could be beneficial or detrimental for carcinogenesis. The characterization of W-CIN as a complex multi-layered adaptive phenotype highlights the intra- and extracellular adaptations to the consequences of genome reshuffling. It also provides a framework for targeting aggressive chromosomally unstable cancers.
Collapse
Affiliation(s)
- Anna V Roschke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| | - Ester Rozenblum
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
36
|
Sunil P, Ramachandran C, Gokul S, Jaisanghar N. Fluorescence in-situ hybridization technique as a diagnostic and prognostic tool in oral squamous cell carcinoma. J Oral Maxillofac Pathol 2013; 17:61-4. [PMID: 23798832 PMCID: PMC3687191 DOI: 10.4103/0973-029x.110731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background and Objectives: Early diagnosis and appropriate management are of prime importance for oral squamous cell carcinoma (OSCC) in the present scenario. Molecular changes in OSCC are well documented with the occurrence of a wide range of genetic damage. Identification of the genetic damage in OSCC using various diagnostic aids is mandatory, and one of the important advances in this field is cytogenetics using fluorescence in-situ hybridization (FISH). The aim of the present study is to analyze the genetic alteration in OSCC using FISH as a diagnostic aid. Materials and Methods: Peripheral blood was analyzed in 20 clinically and histopathologically proven OSCC cases and 10 healthy controls for chromosomal alteration under standardized conditions. Results: Of the 20 OSCC cases, 7 (35%) cases showed chromosomal alterations. No cases from the control group showed any chromosomal changes. Of the positive cases in OSCC, 30% cases showed increased copy number of cyclin D1 gene and 1 (5%) case showed positivity indicating extra copy of chromosome 11p11.11-q11 region. Interpretation and Conclusion: Increased genetic damage in OSCC which is a prominent feature can be identified by the use of FISH as seen from the present study. The findings suggest that FISH can be used as a diagnostic aid in the detection of genetic changes occurring in OSCC. The present study also suggests the importance of peripheral blood as a medium for assessing cytogenetic damage in OSCC.
Collapse
Affiliation(s)
- Pm Sunil
- Department of Oral and Maxillofacial Pathology, Rajah Mutiah Dental College, Chidambaram, Tamil Nadu, India
| | | | | | | |
Collapse
|
37
|
Ng SP, Mann IS, Zed C, Doudkine A, Matisic J. The use of quantitative cytology in identifying high-risk oral lesions in community practice. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 114:358-64. [PMID: 22862977 DOI: 10.1016/j.oooo.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/10/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE This study evaluated whether quantitative cytology (QC) can disclose abnormal DNA content (aneuploidy) and abnormal nuclear morphology of high-risk potentially malignant disorders (PMDs) of the oral mucosa found in the community in reference to clinicohistopathologic features. STUDY DESIGN A total of 171 patients at community-based clinic with suspicious oral lesions were evaluated with concurrent but independent histopathologic and QC assessments. RESULTS QC-positive results were associated with oral lesions with higher clinical risk factors: large size, nonhomogeneous surface texture, and located at high-risk anatomic sites. Only 3% of benign/reactive and 5% of low-risk PMDs were QC positive, while 92% of high-risk PMDs and 88% of squamous cell carcinomas (SCCs) were QC positive. The sensitivity and specificity of QC for detection of high-grade dysplasia/SCC were 89% and 97%. CONCLUSIONS QC could serve as an adjunctive tool for the detection of high-risk PMD/SCC requiring immediate clinical care.
Collapse
Affiliation(s)
- Samson P Ng
- Department of Dentistry, Vancouver General Hospital, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
38
|
Bouraoui S, Mougou S, Brahem A, Tabka F, Ben Khelifa H, Harrabi I, Mrizek N, Elghezal H, Saad A. A combination of micronucleus assay and fluorescence in situ hybridization analysis to evaluate the genotoxicity of formaldehyde. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:337-344. [PMID: 23132144 DOI: 10.1007/s00244-012-9828-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
A genotoxic effect of formaldehyde (FA), particularly micronucleus (MN) induction, has been shown in several previous studies. The aim of the present study was to assess the frequency of micronuclei and to identify the type of chromosomal damage in Tunisian staff members working in the Pathologic Anatomy Laboratory of Farhat Hached hospital (Sousse, Tunisia) who were exposed to FA. Assessment of chromosomal damage was performed in peripheral lymphocytes of 31 FA-exposed employees compared with 31 control employees working in the administrative department of the same hospital. The clastogenic/aneugenic effect of FA was evaluated using the standard MN assay in combination with fluorescence in situ hybridization (FISH) using pan-centromeric probes. The mean level of exposure to FA was 3.4 ppm. The results showed a significant increase of MN frequency in lymphocytes of exposed workers compared with the control group (25.35 ± 6.28 ‰ vs. 7.08 ± 4.62 ‰, p < 0.05). As assessed by FISH, the frequency of centromeric micronuclei (C+MN) was greater in exposed subjects than in controls (18.38 ± 5.94 ‰ vs. 5.03 ± 3.64 ‰). Among the C+MN, the frequency of MN containing one centromere (C1+MN) was significantly greater in pathologists and anatomists than in controls (15.35 ± 6.0 ‰ vs. 3.33 ± 2.74 ‰, p < 0.05). The results showed an effect of sex and time of FA exposure with significantly increased frequencies of all end points measuring aneuploidy (C+MN, C1+MN, and Cx+MN [more then one MN]). The increased frequency of C1+MN observed in the exposed group may suggest a slight aneugenic effect of FA exposure.
Collapse
Affiliation(s)
- Sana Bouraoui
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Teaching Hospital, Ibn EL JAZZAR Street, 4000 Sousse, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bhatia A, Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. APMIS 2012; 121:569-81. [PMID: 23278233 DOI: 10.1111/apm.12033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Micronucleus (MN) is the small nucleus that forms whenever a chromosome or its fragment is not incorporated into one of the daughter nuclei during cell division. Any form of genotoxic stress due to extraneous or internal factors leads to formation of a MN, which serves as an indicator of chromosomal instability. Chromosomal damage and formation of MN are believed to play a significant role in the pathogenesis of many malignancies. Studies have shown that MN assay can be used as a tool for risk prediction, screening, diagnosis, prognosis and as a treatment-response indicator in cancers. With the advancements in technology, greater details are becoming available regarding the molecular events in carcinogenesis. The micronuclei (MNi) in the cancer cells are now being used as tools to understand the pathogenetics of the malignancies. However, despite large number of studies on MNi in lymphocytes or exfoliated cells of cancer patients, the data regarding a cancer cell MN remain scarce. This review article tries to unleash some of the mysteries related to the formation of MN inside the cancer cell. Also, it discusses the possible effects and the events post MN formation in the cancer cell.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| | | |
Collapse
|
40
|
Zhu Y, Wang C, Lan J, Yu J, Jin C, Huang H. Phosphorylation of Tara by Plk1 is essential for faithful chromosome segregation in mitosis. Exp Cell Res 2012; 318:2344-52. [PMID: 22820163 DOI: 10.1016/j.yexcr.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
Abstract
Trio-associated repeat on actin (Tara) is an F-actin binding protein and regulates actin cytoskeletal organization. In our previous study, we have found that Tara associates with telomeric repeat binding factor 1 (TRF1) and mediates the function of TRF1 in mitotic regulation. We also found that overexpression HECTD3, a member of HECT E3 ubiquitin ligases, enhances the ubiquitination of Tara in vivo and promotes the degradation of Tara, and such degradation of Tara facilitates cell cycle progression. However, less is known about the post-translational modification of Tara in mitosis. Here we show that Tara is a novel Polo-like kinase 1 (Plk1) target protein. Plk1 interacts with and phosphorylates Tara in vivo and in vitro. Actually, the Thr-457 in Tara was a bona fide in vivo phosphorylation site for Plk1. Interestingly, we found that the centrosomal localization of Tara depended on the Thr-457 phosphorylation and the kinase activity of Plk1. Furthermore, overexpression of non-phosphorylatable mutant of Tara caused aberrant mitosis delay in HeLa cells. Our study demonstrated that Plk1-mediated phospho-dependent centrosomal localization of Tara is important for faithful chromosome segregation, and provided novel insights into understanding on the role of Plk1 in cooperation with Tara in mitotic progression.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
41
|
Silkworth WT, Cimini D. Transient defects of mitotic spindle geometry and chromosome segregation errors. Cell Div 2012; 7:19. [PMID: 22883214 PMCID: PMC3509025 DOI: 10.1186/1747-1028-7-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022] Open
Abstract
Assembly of a bipolar mitotic spindle is essential to ensure accurate chromosome segregation and prevent aneuploidy, and severe mitotic spindle defects are typically associated with cell death. Recent studies have shown that mitotic spindles with initial geometric defects can undergo specific rearrangements so the cell can complete mitosis with a bipolar spindle and undergo bipolar chromosome segregation, thus preventing the risk of cell death associated with abnormal spindle structure. Although this may appear as an advantageous strategy, transient defects in spindle geometry may be even more threatening to a cell population or organism than permanent spindle defects. Indeed, transient spindle geometry defects cause high rates of chromosome mis-segregation and aneuploidy. In this review, we summarize our current knowledge on two specific types of transient spindle geometry defects (transient multipolarity and incomplete spindle pole separation) and describe how these mechanisms cause chromosome mis-segregation and aneuploidy. Finally, we discuss how these transient spindle defects may specifically contribute to the chromosomal instability observed in cancer cells.
Collapse
Affiliation(s)
- William T Silkworth
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Dr, Blacksburg, VA, 24061, USA.
| | | |
Collapse
|
42
|
Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 2012; 142:543-551.e7. [PMID: 22108198 PMCID: PMC3371374 DOI: 10.1053/j.gastro.2011.11.020] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Enterococcus faecalis is a human intestinal commensal that produces extracellular superoxide and promotes chromosome instability via macrophage-induced bystander effects. We investigated the ability of 4-hydroxy-2-nonenal (4-HNE), a diffusible breakdown product of ω-6 polyunsaturated fatty acids, to mediate these effects. METHODS 4-HNE was purified from E faecalis-infected macrophages; its genotoxicity was assessed in human colon cancer (HCT116) and primary murine colon epithelial (YAMC) cell lines. RESULTS 4-HNE induced G(2)-M cell cycle arrest, led to formation γH2AX foci, and disrupted the mitotic spindle in both cell lines. Binucleate tetraploid cells that formed after incubation with 4-HNE were associated with the activation of stathmin and microtubule catastrophe. Silencing glutathione S-transferase α4, a scavenger of 4-HNE, increased the susceptibility of epithelial cells to 4-HNE-induced genotoxicity. Interleukin-10 knockout mice colonized with superoxide-producing E faecalis developed inflammation and colorectal cancer, whereas colonization with a superoxide-deficient strain resulted in inflammation but not cancer. 4-HNE-protein adducts were found in the lamina propria and macrophages in areas of colorectal inflammation. CONCLUSIONS 4-HNE can act as an autochthonous mitotic spindle poison in normal colonic epithelial and colon cancer cells. This finding links the macrophage-induced bystander effects to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xingmin Wang
- The Muchmore Laboratories for Infectious Diseases Research, Research Service, Oklahoma City, OK 73104,Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yonghong Yang
- The Muchmore Laboratories for Infectious Diseases Research, Research Service, Oklahoma City, OK 73104,Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Danny R. Moore
- The Muchmore Laboratories for Infectious Diseases Research, Research Service, Oklahoma City, OK 73104,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Susan L. Nimmo
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Stanley A. Lightfoot
- Pathology and Laboratory Service, Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Mark M. Huycke
- The Muchmore Laboratories for Infectious Diseases Research, Research Service, Oklahoma City, OK 73104,Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104,Corresponding author: Mark M. Huycke, M.D., Veterans Affairs Medical Center, 921 N.E. 13th Street, Oklahoma City, OK 73104,
| |
Collapse
|
43
|
Abstract
Aneuploidy is a common feature of cancer cells, and is believed to play a critical role in tumorigenesis and cancer progression. Most cancer cells also exhibit high rates of mitotic chromosome mis-segregation, a phenomenon known as chromosomal instability, which leads to high variability of the karyotype. Here, we describe the nature, nuances, and implications of cancer karyotypic diversity. Moreover, we summarize recent studies aimed at identifying the mitotic defects that may be responsible for inducing chromosome mis-segregation in cancer cells. These include kinetochore attachment errors, spindle assembly checkpoint dysfunction, mitotic spindle defects, and other cell division inaccuracies. Finally, we discuss how such mitotic errors generate karyotypic diversity in cancer cells.
Collapse
|
44
|
Efthimiou M, Stephanou G, Demopoulos NA, Nikolaropoulos SS. Aneugenic potential of the anticancer drugs melphalan and chlorambucil. The involvement of apoptosis and chromosome segregation regulating proteins. J Appl Toxicol 2011; 33:537-45. [PMID: 22025197 DOI: 10.1002/jat.1743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/20/2011] [Accepted: 08/20/2011] [Indexed: 12/31/2022]
Abstract
Previous findings showed that the anticancer drugs p-N,N-bis(2-chloroethyl) amino-l-phenylalanine (melphalan, MEL) and p-N,N-bis(2-chloroethyl)aminophenylbutyric acid (chlorambucil, CAB) belonging to the nitrogen mustard group, in addition to their clastogenic activity, also exert aneugenic potential, nondisjunction and chromosome delay. Their aneugenic potential is mainly mediated through centrosome defects. To further investigate their aneugenicity we (a) studied whether apoptosis is a mechanism responsible for the elimination of damaged cells generated by MEL and CAB and (b) investigated if proteins that regulate chromosome segregation are involved in the modulation of their aneugenic potential. Apoptosis was studied by Annexin-V/Propidium Iodide staining and fluorescence microscopy. The involvement of apoptosis on the exclusion of cells with genetic damage and centrosome disturbances was analyzed by DAPI staining and immunofluorescence of β- and γ-tubulin in the presence of pan-caspase inhibitor. The expressions of Aurora-A, Aurora-B, survivin and γ-tubulin were studied by western blot. We found that (a) apoptosis is not the mechanism of choice for selectively eliminating cells with supernumerary centrosomes, and (b) the proteins Aurora-A, Aurora-B and survivin are involved in the modulation of MEL and CAB aneugenicity. These findings are important for the understanding of the mechanism responsible for the aneugenic activity of the anticancer drugs melphalan and chlorambucil.
Collapse
Affiliation(s)
- Maria Efthimiou
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26 500, Patras, Greece
| | | | | | | |
Collapse
|
45
|
Mackinnon RN, Campbell LJ. The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. GENETICS RESEARCH INTERNATIONAL 2011; 2011:643628. [PMID: 22567363 PMCID: PMC3335544 DOI: 10.4061/2011/643628] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/20/2011] [Indexed: 01/16/2023]
Abstract
Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.
Collapse
Affiliation(s)
- Ruth N Mackinnon
- Victorian Cancer Cytogenetics Service, St Vincent's Hospital (Melbourne) Ltd., P.O. Box 2900, Fitzroy, VIC 3065, Australia
| | | |
Collapse
|
46
|
Palanikumar L, Panneerselvam N. Micronuclei assay: A potential biomonitoring protocol in occupational exposure studies. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411090146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Guenthoer J, Diede SJ, Tanaka H, Chai X, Hsu L, Tapscott SJ, Porter PL. Assessment of palindromes as platforms for DNA amplification in breast cancer. Genome Res 2011; 22:232-45. [PMID: 21752925 DOI: 10.1101/gr.117226.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA amplification, particularly of chromosomes 8 and 11, occurs frequently in breast cancer and is a key factor in tumorigenesis, often associated with poor prognosis. The mechanisms involved in the amplification of these regions are not fully understood. Studies from model systems have demonstrated that palindrome formation can be an early step in DNA amplification, most notably seen in the breakage-fusion-bridge (BFB) cycle. Therefore, palindromes might be associated with gene amplicons in breast cancer. To address this possibility, we coupled high-resolution palindrome profiling by the Genome-wide Analysis of Palindrome Formation (GAPF) assay with genome-wide copy-number analyses on a set of breast cancer cell lines and primary tumors to spatially associate palindromes and copy-number gains. We identified GAPF-positive regions distributed nonrandomly throughout cell line and tumor genomes, often in clusters, and associated with copy-number gains. Commonly amplified regions in breast cancer, chromosomes 8q and 11q, had GAPF-positive regions flanking and throughout the copy-number gains. We also identified amplification-associated GAPF-positive regions at similar locations in subsets of breast cancers with similar characteristics (e.g., ERBB2 amplification). These shared positive regions offer the potential to evaluate the utility of palindromes as prognostic markers, particularly in premalignant breast lesions. Our results implicate palindrome formation in the amplification of regions with key roles in breast tumorigenesis, particularly in subsets of breast cancers.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Xavier FCA, Rodini CO, Paiva KBS, Destro MFSS, Severino P, Moyses RA, Tajara EH, Nunes FD. ORAOV1 is amplified in oral squamous cell carcinoma. J Oral Pathol Med 2011; 41:54-60. [PMID: 21623924 DOI: 10.1111/j.1600-0714.2011.01053.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Oral cancer overexpressed 1 (ORAOV1) was found as a candidate oncogene in the 11q13 chromosomal region, based on its amplification and overexpression in oral cancer cell lines. Because gene amplification often leads to increased levels of gene expression, we aimed to verify the relationship between ORAOV1 gene status and mRNA expression primarily in oral squamous cell carcinoma (OSCC) by quantitative assay, correlating with clinical and pathological characteristics in patients. METHODS Levels of ORAOV1 amplification and expression were evaluated by qPCR and RT-qPCR in OSCC cell lines and in tumor and non-tumoral surgical margins from 33 patients with OSCC. All subjects were smokers and habitual alcohol drinkers, mostly men above 40 years of age and with a single primary tumor. RESULTS ORAOV1 exhibited increased gene expression levels as well as higher copy number in three OSCC cell lines with 11q13 amplified chromosomal region when compared with the OSCC cell line without the amplification (one-way ANOVA, P < 0.05). Weak correlation between ORAOV1 mRNA levels and DNA copy number was seen in tumor samples (Spearman, P = 0.07). Although ORAOV1 was amplified in tumor (Wilcoxon, P < 0.01), high levels of transcripts in margin did not reveal differences in comparison with tumor (Wilcoxon, P = 0.85). Aggressiveness and survival rate did not demonstrate statistical difference for both events in OSCC. CONCLUSION The overexpression of ORAOV1 in non-tumoral margin samples can occur in the absence of amplification. The weak correlation between ORAOV1 amplification and expression in OSSC suggests that ORAOV1 expression can be regulated by mechanisms other than gene amplification.
Collapse
Affiliation(s)
- Flávia Caló Aquino Xavier
- Departmento de Patologia Bucal, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ionescu M, Ciocirlan M, Ionescu C, Becheanu G, Gologan S, Teiusanu A, Arbanas T, Mircea D. Genetic biomarkers for neoplastic colorectal cancer in peripheral lymphocytes. MAEDICA 2011; 6:83-89. [PMID: 22205889 PMCID: PMC3239403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Loss of genomic stability appears as a key step in colorectal carcinogenesis. Micronucleus (MN) designates a chromosome fragment or an entire chromosme which lags behind mitosis. MN may be noticed as an additional nucleus within the cytoplasm cell during the intermediate mitosis phases. We tested the hypothesis that MN and its related anomalies may be associated with the presence of neoplastic colorectal lesions. METHOD Peripheral blood lymphocytes were cultured and microscopically examined. The frequency of micronuclei (FMN) and the presence of nucleoplasmic bridges (NPB) in binucleated cells were compared in patients with of without colorectal neoplastic lesions. RESULTS We included 45 patients undergoing colonoscopy, 23 males and 22 females, with a median age of 59. 17 patients had polyps, 11 colorectal cancer (CRC) and 17 had a normal colonoscopy. The FMN was significantly higher in women than in men (8.14 vs 4.17, p=0.008); NPB were significantly less frequent in patients with advanced adenomas (>10mm or vilous) or CRC (p=0.044) when compared with patients with normal colonoscopy, hiperplastic polyps or non-advanced adenomas. CONCLUSION Micronuclei are more frequent in women, but its frequency was not significantly different in patients with advanced adenomas or CRC. Null or low frequency values for nucleoplasmic bridges presence in peripheral lymphocyte may be predictive for advanced adenomas and colorectal cancer.
Collapse
|
50
|
Abstract
Although micronuclei (MNi) have been extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their formation was not completely addressed until recently, due to limitations of traditional experimental methods. The development of live-cell imaging, combined with genetically engineered chromosome labelling techniques makes it possible to investigate the origin of a micronucleus in a single cell in a real-time and high-throughput manner. Here, we review all the available studies on the origins of MNi in live cells and discuss novel findings based on this recently emerged methodology. Some unsolved questions on MNi formation and limitations of live-cell imaging in the investigation of MNi have also been discussed.
Collapse
Affiliation(s)
- Yun Huang
- Laboratory of Molecular and Cell Genetics, Department of Biochemistry and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | |
Collapse
|