1
|
Gemler BT, Mukherjee C, Howland CA, Huk D, Shank Z, Harbo LJ, Tabbaa OP, Bartling CM. Function-based classification of hazardous biological sequences: Demonstration of a new paradigm for biohazard assessments. Front Bioeng Biotechnol 2022; 10:979497. [PMID: 36277394 PMCID: PMC9585941 DOI: 10.3389/fbioe.2022.979497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Bioengineering applies analytical and engineering principles to identify functional biological building blocks for biotechnology applications. While these building blocks are leveraged to improve the human condition, the lack of simplistic, machine-readable definition of biohazards at the function level is creating a gap for biosafety practices. More specifically, traditional safety practices focus on the biohazards of known pathogens at the organism-level and may not accurately consider novel biodesigns with engineered functionalities at the genetic component-level. This gap is motivating the need for a paradigm shift from organism-centric procedures to function-centric biohazard identification and classification practices. To address this challenge, we present a novel methodology for classifying biohazards at the individual sequence level, which we then compiled to distinguish the biohazardous property of pathogenicity at the whole genome level. Our methodology is rooted in compilation of hazardous functions, defined as a set of sequences and associated metadata that describe coarse-level functions associated with pathogens (e.g., adherence, immune subversion). We demonstrate that the resulting database can be used to develop hazardous “fingerprints” based on the functional metadata categories. We verified that these hazardous functions are found at higher levels in pathogens compared to non-pathogens, and hierarchical clustering of the fingerprints can distinguish between these two groups. The methodology presented here defines the hazardous functions associated with bioengineering functional building blocks at the sequence level, which provide a foundational framework for classifying biological hazards at the organism level, thus leading to the improvement and standardization of current biosecurity and biosafety practices.
Collapse
|
2
|
Miller JJ, Weimer BC, Timme R, Lüdeke CHM, Pettengill JB, Bandoy DJD, Weis AM, Kaufman J, Huang BC, Payne J, Strain E, Jones JL. Phylogenetic and Biogeographic Patterns of Vibrio parahaemolyticus Strains from North America Inferred from Whole-Genome Sequence Data. Appl Environ Microbiol 2021; 87:e01403-20. [PMID: 33187991 PMCID: PMC7848924 DOI: 10.1128/aem.01403-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States. The draft genomes of 132 North American clinical and oyster V. parahaemolyticus isolates were sequenced to investigate their phylogenetic and biogeographic relationships. The majority of oyster isolate sequence types (STs) were from a single harvest location; however, four were identified from multiple locations. There was population structure along the Gulf and Atlantic Coasts of North America, with what seemed to be a hub of genetic variability along the Gulf Coast, with some of the same STs occurring along the Atlantic Coast and one shared between the coastal waters of the Gulf and those of Washington State. Phylogenetic analyses found nine well-supported clades. Two clades were composed of isolates from both clinical and oyster sources. Four were composed of isolates entirely from clinical sources, and three were entirely from oyster sources. Each single-source clade consisted of one ST. Some human isolates lack tdh, trh, and some type III secretion system (T3SS) genes, which are established virulence genes of V. parahaemolyticus Thus, these genes are not essential for pathogenicity. However, isolates in the monophyletic groups from clinical sources were enriched in several categories of genes compared to those from monophyletic groups of oyster isolates. These functional categories include cell signaling, transport, and metabolism. The identification of genes in these functional categories provides a basis for future in-depth pathogenicity investigations of V. parahaemolyticusIMPORTANCEVibrio parahaemolyticus is the most common cause of seafood-borne illness reported in the United States and is frequently associated with shellfish consumption. This study contributes to our knowledge of the biogeography and functional genomics of this species around North America. STs shared between the Gulf Coast and the Atlantic seaboard as well as Pacific waters suggest possible transport via oceanic currents or large shipping vessels. STs frequently isolated from humans but rarely, if ever, isolated from the environment are likely more competitive in the human gut than other STs. This could be due to additional functional capabilities in areas such as cell signaling, transport, and metabolism, which may give these isolates an advantage in novel nutrient-replete environments such as the human gut.
Collapse
Affiliation(s)
- John J Miller
- FDA, Biostatistics and Bioinformatics Staff, College Park, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Bart C Weimer
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | - Ruth Timme
- FDA, Division of Microbiology, College Park, Maryland, USA
| | - Catharina H M Lüdeke
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
- University of Hamburg, Hamburg School of Food Science, Hamburg, Germany
| | - James B Pettengill
- FDA, Biostatistics and Bioinformatics Staff, College Park, Maryland, USA
| | - DJ Darwin Bandoy
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | - Allison M Weis
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | | | - B Carol Huang
- University of California-Davis, Institute for Veterinary Medicine, Davis, California, USA
| | - Justin Payne
- FDA, Division of Microbiology, College Park, Maryland, USA
| | - Errol Strain
- FDA, Biostatistics and Bioinformatics Staff, College Park, Maryland, USA
| | - Jessica L Jones
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama, USA
| |
Collapse
|
3
|
Hosseini ES, Zeinoddini M, Saeedinia AR, Babaeipour V. Optimization and One-Step Purification of Recombinant V Antigen Production from Yersinia pestis. Mol Biotechnol 2020; 62:177-184. [PMID: 31894514 PMCID: PMC7222043 DOI: 10.1007/s12033-019-00234-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The purpose of this study was to develop an efficient and inexpensive method for the useful production of recombinant protein V antigen, an important virulence factor for Yersinia pestis. To this end, the synthetic gene encoding the V antigen was subcloned into the downstream of the intein (INT) and chitin-binding domain (CBD) from the pTXB1 vector using specific primers. In the following, the produced new plasmid, pTX-V, was transformed into E. coli ER2566 strain, and the expression accuracy was confirmed using electrophoresis and Western blotting. In addition, the effects of medium, inducer, and temperature on the enhancement of protein production were studied using the Taguchi method. Finally, the V antigen was purified by a chitin affinity column using INT and CBD tag. The expression was induced by 0.05 mM IPTG at 25 °C under optimal conditions including TB medium. It was observed that the expression of the V-INT–CBD fusion protein was successfully increased to more than 40% of the total protein. The purity of V antigen was as high as 90%. This result indicates that V antigen can be produced at low cost and subjected to one-step purification using a self-cleaving INT tag.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Zeinoddini
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran. .,Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Ali Reza Saeedinia
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Valiollah Babaeipour
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Dutta SK, Yao Y, Marassi FM. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. J Phys Chem B 2017; 121:7561-7570. [PMID: 28726410 DOI: 10.1021/acs.jpcb.7b03941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.
Collapse
Affiliation(s)
- Samit Kumar Dutta
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Marassi FM, Ding Y, Schwieters CD, Tian Y, Yao Y. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. JOURNAL OF BIOMOLECULAR NMR 2015; 63:59-65. [PMID: 26143069 PMCID: PMC4577439 DOI: 10.1007/s10858-015-9963-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential.
Collapse
Affiliation(s)
- Francesca M Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
| | - Ye Tian
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Rai R, Das B, Choudhary N, Talukdar A, Rao DN. MAP of F1 and V antigens from Yersinia pestis astride innate and adaptive immune response. Microb Pathog 2015; 87:13-20. [PMID: 26188288 DOI: 10.1016/j.micpath.2015.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 01/31/2023]
Abstract
Yersinia pestis, a causative agent of plague, has a plethora of armors to fight against major components of innate immunity and survive within host cells. Dendritic cells and macrophages are important antigen presenting cells for effective immune response. This report is focused on the changes in DC activation and TLR2 and TLR4 expression on macrophages induced by MAP of F1 and V antigens of Y. pestis. F1 and V MAPs bear potential synthetic T and B cell epitopes from F1 and V protein respectively. We evaluated these parameters in DC's isolated from spleen and lamina propria and macrophages isolated from peritoneal lavage of mice after intranasal immunization. F1 MAP and V MAP significantly increased the expression of CD80 and CD86 on CD11c(+) dendritic cells isolated from spleen and lamina propria as well as intracellular IL-12 levels. Similarly, in macrophages derived from peritoneal cavity, the above formulation enhanced TLR2 and TLR4 expression. Again after in vitro stimulation with F1 and V MAP these macrophages produced significantly high IL12 and TNFα. The study clearly indicates involvement of DC and macrophages for efficient antigen presentation to immune cells. From this study we conclude that F1MAP and VMAP ameliorate innate immune mechanism. These two synthetic constructs exert their effect via TLR2 and TLR4, leading to the production of proinflammatory cytokines by macrophages and are able to increase DC activation, that could be helpful in generation of adaptive immunity as well as is important strong immune response.
Collapse
Affiliation(s)
- Reeta Rai
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Baijnath Das
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Nageshwar Choudhary
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ayantika Talukdar
- Dept of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | |
Collapse
|
7
|
Lee WL, Grimes JM, Robinson RC. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization. Nat Struct Mol Biol 2015; 22:248-55. [PMID: 25664724 DOI: 10.1038/nsmb.2964] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/30/2014] [Indexed: 11/09/2022]
Abstract
Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.
Collapse
Affiliation(s)
- Wei Lin Lee
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. [2] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathan M Grimes
- 1] Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. [2] Diamond Light Source, Oxfordshire, UK
| | - Robert C Robinson
- 1] Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore. [2] Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
8
|
Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:712-20. [PMID: 25433311 DOI: 10.1016/j.bbamem.2014.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/24/2014] [Accepted: 11/19/2014] [Indexed: 11/20/2022]
Abstract
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.
Collapse
|
9
|
Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2014; 57:237-45. [PMID: 24198067 DOI: 10.1007/s12026-013-8454-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL, 33136, USA,
| | | |
Collapse
|
10
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
11
|
Abstract
The present review summarizes recently developed calixarene derivatives for protein surface recognition which are able to identify, inhibit, and separate specific proteins.
Collapse
Affiliation(s)
- Reza Zadmard
- Chemistry and Chemical Engineering
- Research Center of Iran
- , Iran
| | | |
Collapse
|
12
|
Kowal J, Chami M, Ringler P, Müller S, Kudryashev M, Castaño-Díez D, Amstutz M, Cornelis G, Stahlberg H, Engel A. Structure of the Dodecameric Yersinia enterocolitica Secretin YscC and Its Trypsin-Resistant Core. Structure 2013; 21:2152-61. [DOI: 10.1016/j.str.2013.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
13
|
Synthetic chalcones and sulfonamides as new classes of Yersinia enterocolitica YopH tyrosine phosphatase inhibitors. Eur J Med Chem 2013; 64:35-41. [PMID: 23639652 DOI: 10.1016/j.ejmech.2013.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
YopH plays a relevant role in three pathogenic species of Yersinia. Due to its importance in the prevention of the inflammatory response of the host, this enzyme has become a valid target for the identification and development of new inhibitors. In this work, an in-house library of 283 synthetic compounds was assayed against recombinant YopH from Yersinia enterocolitica. From these, four chalcone derivatives and one sulfonamide were identified for the first time as competitive inhibitors of YopH with binding affinity in the low micromolar range. Molecular modeling investigations indicated that the new inhibitors showed similar binding modes, establishing polar and hydrophobic contacts with key residues of the YopH binding site.
Collapse
|
14
|
Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013; 1285:115-32. [PMID: 23527566 DOI: 10.1111/nyas.12046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reverse vaccinology (RV), the first application of genomic technologies in vaccine research, represented a major revolution in the process of discovering novel vaccines. By determining their entire antigenic repertoire, researchers could identify protective targets and design efficacious vaccines for pathogens where conventional approaches had failed. Bexsero, the first vaccine developed using RV, has recently received positive opinion from the European Medicines Agency. The use of RV initiated a cascade of changes that affected the entire vaccine development process, shifting the focus from the identification of a list of vaccine candidates to the definition of a set of high throughput screens to reduce the need for costly and labor intensive tests in animal models. It is now clear that a deep understanding of the epidemiology of vaccine candidates, and their regulation and role in host-pathogen interactions, must become an integral component of the screening workflow. Far from being outdated by technological advancements, RV still represents a paradigm of how high-throughput technologies and scientific insight can be integrated into biotechnology research.
Collapse
|
15
|
Bi Y, Wang X, Han Y, Guo Z, Yang R. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Scand J Immunol 2013; 76:541-51. [PMID: 22882408 DOI: 10.1111/j.1365-3083.2012.02767.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Yersinia pestis, the causative agent of plague, is proved to be a recently emerged clone from Y. pseudotuberculosis. However, the diseases they cause and their patterns of transmission are very different. People always focus on the genetic changes between Y. pestis and Y. pseudotuberculosis to reveal their pathogenic differences, and little is known about host defence differences to these two Yersinia. In this study, the effects of Y. pestis and Y. pseudotuberculosis on macrophages were analysed. Cell apoptosis showed significant difference after the macrophages were infected by these two strains, and caspase-3 activity also demonstrated a similar tendency. Further, macrophage function activities were evaluated. We found during the early infection of Y. pestis, several basic functions of macrophages, including phagocytosis, secretion of cytokine tumour necrosis factor-α and nitric oxide, macrophage polarity and antigen presenting, were significantly interrupted. In comparison, Y. pseudotuberculosis infection showed lower inhibition on macrophages. Especially, Y. pestis infection might cause macrophage to polarize to M2 macrophages in the early phase, compared with Y. pseudotuberculosis infection, which was different from the common acute infection. These results clearly indicated even in the early stage of infection, different host macrophage defence patterns could help us to understand the obvious virulence differences between Y. pestis and Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Y Bi
- State Key Laboratory of Pathogen and Biosecurity, National Center for Biomedical Analysis, Army Center for Microbial Detection and Research, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Yao Y, Ding Y, Tian Y, Opella SJ, Marassi FM. Membrane protein structure determination: back to the membrane. Methods Mol Biol 2013; 1063:145-58. [PMID: 23975776 DOI: 10.1007/978-1-62703-583-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX and Ail, two bacterial outer membrane proteins that function in bacterial virulence.
Collapse
Affiliation(s)
- Yong Yao
- Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Cai K, Zhang Y, Yang B, Chen S. Yersinia enterocolitica ghost with msbB mutation provides protection and reduces proinflammatory cytokines in mice. Vaccine 2013; 31:334-40. [DOI: 10.1016/j.vaccine.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/21/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
|
19
|
Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 2012. [PMID: 22840842 DOI: 10.1016/j.immuni.2012.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1β, which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1β production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB. These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis.
Collapse
Affiliation(s)
- Gregory I Vladimer
- Division of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 2012; 37:96-107. [PMID: 22840842 DOI: 10.1016/j.immuni.2012.07.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 03/10/2012] [Accepted: 04/19/2012] [Indexed: 01/14/2023]
Abstract
Yersinia pestis, the causative agent of plague, is able to suppress production of inflammatory cytokines IL-18 and IL-1β, which are generated through caspase-1-activating nucleotide-binding domain and leucine-rich repeat (NLR)-containing inflammasomes. Here, we sought to elucidate the role of NLRs and IL-18 during plague. Lack of IL-18 signaling led to increased susceptibility to Y. pestis, producing tetra-acylated lipid A, and an attenuated strain producing a Y. pseudotuberculosis-like hexa-acylated lipid A. We found that the NLRP12 inflammasome was an important regulator controlling IL-18 and IL-1β production after Y. pestis infection, and NLRP12-deficient mice were more susceptible to bacterial challenge. NLRP12 also directed interferon-γ production via induction of IL-18, but had minimal effect on signaling to the transcription factor NF-κB. These studies reveal a role for NLRP12 in host resistance against pathogens. Minimizing NLRP12 inflammasome activation may have been a central factor in evolution of the high virulence of Y. pestis.
Collapse
Affiliation(s)
- Gregory I Vladimer
- Division of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
ZHAO TONG, ZHAO PING, DOYLE MICHAELP. Detection and Isolation of Yersinia pestis Without Fraction 1 Antigen by Monoclonal Antibody in Foods and Water. J Food Prot 2012; 75:1555-61. [DOI: 10.4315/0362-028x.jfp-11-514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most available immunoassays for Yersinia pestis are based on the detection of fraction 1 antigen (F1) when yersiniae are grown at 37°C. A monoclonal antibody (MAb) was developed based on the detection of surface antigens that are not F1. F1-deficient Y. pestis cells were induced and used to immunize BALB/c mice from which MAb (immunoglobulin G1), which specifically recognizes Y. pestis, with or without F1, was obtained. This MAb (6B5) did not cross-react with enteric bacteria, including Yersinia enterocolitica. Enzyme-linked immunosorbent assay results revealed that MAb 6B5 is specific for Y. pestis, with the exception of a minor cross-reaction with Yersinia pseudotuberculosis. Western immunoblot analysis revealed that MAb 6B5 recognizes a Y. pestis outer membrane protein of ca. 30 kDa. Magnetic beads that were coated with MAb 6B5 were compared with beads coated with polyclonal antibody (PAb; rabbit) against Y. pestis for the isolation of Y. pestis in food and water samples by using a PATHATRIX cell concentration apparatus. Enrichment cultures of Y. pestis in different foods by using two different times (6 and 24 h) in brain heart infusion broth at 37°C were evaluated. Results revealed MAb 6B5–coated magnetic beads were equivalent to magnetic beads coated with PAb against Y. pestis A1122 whole cells in concentrating Y. pestis for isolation, especially when samples were enriched for 6 h. However, the selectivity for Y. pestis of the magnetic beads coated with MAb 6B5 was greater than that coated with PAb.
Collapse
Affiliation(s)
- TONG ZHAO
- Center for Food Safety, University of Georgia, Griffin, Georgia 30223-1797, USA
| | - PING ZHAO
- Center for Food Safety, University of Georgia, Griffin, Georgia 30223-1797, USA
| | - MICHAEL P. DOYLE
- Center for Food Safety, University of Georgia, Griffin, Georgia 30223-1797, USA
| |
Collapse
|
22
|
Shreewastav RK, Ali R, Uppada JB, Rao DN. Cell-mediated immune response to epitopic MAP (multiple antigen peptide) construct of LcrV antigen of Yersinia pestis in murine model. Cell Immunol 2012; 278:55-62. [PMID: 23121976 DOI: 10.1016/j.cellimm.2012.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/20/2012] [Accepted: 07/07/2012] [Indexed: 12/14/2022]
Abstract
Yersinia pestis is the causative agent of plague. Cellular immunity seems to play an important role in defense against this disease. The subunit vaccine based on V (Lcr V) antigen has been proved to be immunogenic in animals and in humans. The multiple antigen peptide (MAP), incorporating all the relevant B and T cell epitopes is highly immunogenic in mice through intranasal route of immunization in PLGA particles containing CpG-ODN as an immunoadjuvant inducing humoral and mucosal immune response. In the present study, cell-mediated immune response using same MAP was studied in murine model. Primary and memory T cell responses were studied in outbred and inbred mice immunized intranasally with MAP in the presence of two immunoadjuvants (Murabutide and CpG-ODN). All the three compartments (Spleen, Lamina propria and Peyer's patches) of the lymphoid system showed increased lymphoproliferative response. Highest lymphoproliferative response was observed especially with CpG-ODN. Cytokine profile in the culture supernatant showed highest Th(1) and Th(17) levels. FACS analysis showed expansion of both CD4(+) and CD8(+) T cells producing gamma-interferon, perforin and granzyme-B with major contribution from CD4(+) T cells.
Collapse
|
23
|
Silva MT, Pestana NTS. The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis. Immunobiology 2012; 218:325-37. [PMID: 22795971 DOI: 10.1016/j.imbio.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 01/14/2023]
Abstract
Classically labeled facultative intracellular pathogens are characterized by the ability to have an intracellular phase in the host, which is required for pathogenicity, while capable of extracellular growth in vitro. The ability of these bacteria to replicate in cell-free conditions is usually assessed by culture in artificial bacteriological media. However, the extracellular growth ability of these pathogens may also be expressed by a phase of extracellular infection in the natural setting of the host with pathologic consequences, an ability that adds to the pathogenic potential of the infectious agent. This infective capability to grow in the extracellular sites of the host represents an additional virulence attribute of those pathogens which may lead to severe outcomes. Here we discuss examples of infectious diseases where the in vivo infective extracellular life is well documented, including infections by Francisella tularensis, Yersinia pestis, Burkholderia pseudomallei, Burkholderia cenocepacia, Salmonella enterica serovar Typhimurium and Edwardsiella tarda. The occurrence of a phase of systemic dissemination with extracellular multiplication during progressive infections by facultative intracellular bacterial pathogens has been underappreciated, with most studies exclusively centered on the intracellular phase of the infections. The investigation of the occurrence of a dual lifestyle in the host among bacterial pathogens in general should be extended and likely will reveal more cases of infectious diseases with a dual infective intracellular/extracellular pattern.
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | | |
Collapse
|
24
|
Fellows P, Lin W, Detrisac C, Hu SC, Rajendran N, Gingras B, Holland L, Price J, Bolanowski M, House RV. Establishment of a Swiss Webster mouse model of pneumonic plague to meet essential data elements under the animal rule. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:468-76. [PMID: 22336286 PMCID: PMC3318273 DOI: 10.1128/cvi.05591-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
A recombinant vaccine (rF1V) is being developed for protection against pneumonic plague. This study was performed to address essential data elements to establish a well-characterized Swiss Webster mouse model for licensing the rF1V vaccine using the FDA's Animal Rule. These elements include the documentation of challenge material characteristics, aerosol exposure parameters, details of the onset and severity of clinical signs, pathophysiological response to disease, and relevance to human disease. Prior to animal exposures, an evaluation of the aerosol system was performed to determine and understand the variability of the aerosol exposure system. Standardized procedures for the preparation of Yersinia pestis challenge material also were developed. The 50% lethal dose (LD(50)) was estimated to be 1,966 CFU using Probit analysis. Following the LD(50) determination, pathology was evaluated by exposing mice to a target LD(99) (42,890 CFU). Mice were euthanized at 12, 24, 36, 48, 60, and 72 h postexposure. At each time point, samples were collected for clinical pathology, detection of bacteria in blood and tissues, and pathology evaluations. A general increase in incidence and severity of microscopic findings was observed in the lung, lymph nodes, spleen, and liver from 36 to 72 h postchallenge. Similarly, the incidence and severity of pneumonia increased throughout the study; however, some mice died in the absence of pneumonia, suggesting that disease progression does not require the development of pneumonia. Disease pathology in the Swiss Webster mouse is similar to that observed in humans, demonstrating the utility of this pneumonic plague model that can be used by researchers investigating plague countermeasures.
Collapse
Affiliation(s)
- Patricia Fellows
- DynPort Vaccine Company LLC, A CSC Company, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peters KN, Anderson DM. Modulation of host cell death pathways by Yersinia species and the type III effector YopK. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:229-36. [PMID: 22782768 DOI: 10.1007/978-1-4614-3561-7_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kristen N Peters
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
26
|
Layton RC, Mega W, McDonald JD, Brasel TL, Barr EB, Gigliotti AP, Koster F. Levofloxacin cures experimental pneumonic plague in African green monkeys. PLoS Negl Trop Dis 2011; 5:e959. [PMID: 21347450 PMCID: PMC3035670 DOI: 10.1371/journal.pntd.0000959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yersinia pestis, the agent of plague, is considered a potential bioweapon due to rapid lethality when delivered as an aerosol. Levofloxacin was tested for primary pneumonic plague treatment in a nonhuman primate model mimicking human disease. METHODS AND RESULTS Twenty-four African Green monkeys (AGMs, Chlorocebus aethiops) were challenged via head-only aerosol inhalation with 3-145 (mean = 65) 50% lethal (LD(50)) doses of Y. pestis strain CO92. Telemetered body temperature >39 °C initiated intravenous infusions to seven 5% dextrose controls or 17 levofloxacin treated animals. Levofloxacin was administered as a "humanized" dose regimen of alternating 8 mg/kg and 2 mg/kg 30-min infusions every 24-h, continuing until animal death or 20 total infusions, followed by 14 days of observation. Fever appeared at 53-165 h and radiographs found multilobar pneumonia in all exposed animals. All control animals died of severe pneumonic plague within five days of aerosol exposure. All 16 animals infused with levofloxacin for 10 days survived. Levofloxacin treatment abolished bacteremia within 24 h in animals with confirmed pre-infusion bacteremia, and reduced tachypnea and leukocytosis but not fever during the first 2 days of infusions. CONCLUSION Levofloxacin cures established pneumonic plague when treatment is initiated after the onset of fever in the lethal aerosol-challenged AGM nonhuman primate model, and can be considered for treatment of other forms of plague. Levofloxacin may also be considered for primary presumptive-use, multi-agent antibiotic in bioterrorism events prior to identification of the pathogen.
Collapse
Affiliation(s)
- Robert Colby Layton
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Leone M, Barile E, Dahl R, Pellecchia M. Design and NMR studies of cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 2011; 77:12-9. [PMID: 21118379 PMCID: PMC3149900 DOI: 10.1111/j.1747-0285.2010.01058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM [DE(pY)DDPF (pY=phosphotyrosine)], and they all contain the motif DEZXDPfK (where Z is a phosphotyrosine or a non-hydrolyzable phosphotyrosine mimetic, X is an aspartic acid or a leucine and f is a d-phenylalanine). These peptides present a 'head to tail' architecture, enabling cyclization through formation of an amide bond in between the side chains of the first aspartic acid and the lysine residues. Chemical shift perturbation studies have been carried out to monitor the binding of these peptides to the N-terminal domain of YopH. Peptides containing a phosphotyrosine moiety exhibit binding affinities in the low micromolar range; substitution of the phosphotyrosine with one of its non-hydrolyzable derivatives dramatically reduces the binding affinities. These preliminary studies may pave the way for the discovery of more potent and selective peptide-based ligands of the YopH N-terminal domain which could be further investigated for their ability to inhibit Yersiniae infections.
Collapse
Affiliation(s)
- Marilisa Leone
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Elisa Barile
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Russell Dahl
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Maurizio Pellecchia
- Infectious and Inflammatory Disease Center and Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| |
Collapse
|
28
|
Functional analysis of VopF activity required for colonization in Vibrio cholerae. mBio 2010; 1. [PMID: 21151774 PMCID: PMC2999938 DOI: 10.1128/mbio.00289-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 01/01/2023] Open
Abstract
Vibrio cholerae, a Gram-negative facultative pathogen, is the etiologic agent for the diarrheal disease cholera. We previously characterized a clinical isolate, AM-19226, that translocates a type III secretion system (T3SS) effector protein with actin-nucleating activity, VopF, into the host cells. From comparative genomic studies, we identified a divergent T3SS island in additional isolates which possess a VopF homolog, VopN. Unlike the VopF-mediated protrusion formation, VopN localizes to stress fiber in host cells similarly to VopL, which is present in the pandemic strain of Vibrio parahaemolyticus. Chimera and yeast two-hybrid studies indicated that the amino-terminal regions of VopF and VopN proteins interact with distinct host cell factors. We determined that AM-19226-infected cells are arrested at S phase of the cell cycle and that VopF/VopN are antiapoptotic factors. To understand how VopF may contribute to the pathogenesis of AM-19226, we examined the effect of VopF in an in vitro polarized-epithelial model and an in vivo adult rabbit diarrheal model. Within the T3SS pathogenicity island is VopE, a homolog of YopE from Yersinia, which has been shown to loosen tight junctions. In polarized intestinal epithelia, VopF and VopE compromised the integrity of tight junctions by inducing cortical actin depolymerization and aberrant localization of the tight-junction protein ZO-1. An assay for pathogenicity in the adult rabbit diarrhea model suggested that these effectors are involved in eliciting the diarrheal response in infected rabbits. Vibrio cholerae is a bacterial pathogen that causes the diarrheal disease cholera, which remains a major public health problem in many developing countries. While the major virulence factors of the pandemic V. cholerae strains have been characterized, new clinical strains of V. cholerae have arisen, causing sporadic cholera-like diseases using unknown pathogenic mechanisms. Previously, we discovered the type III secretion system in a new clinical strain of V. cholerae and also identified an effector protein, VopF, which is injected into the host cells and induces changes in the actin cytoskeleton. In this work, we identified a homolog of VopF that causes a distinct cellular phenotype and interactions between the effectors and host proteins. We also discovered that both effectors prevent bacterium-induced cell death in infected cells. In our tissue culture and animal models, we showed that VopF contributes to the disruption of epithelial integrity and the diarrheal response.
Collapse
|
29
|
Wilson BA, Ho M. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins. Future Microbiol 2010; 5:1185-201. [PMID: 20722598 DOI: 10.2217/fmb.10.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, our understanding of the bacterial protein toxins that modulate G proteins has advanced tremendously through extensive biochemical and structural analyses. This article provides an updated survey of the various toxins that target G proteins, ending with a focus on recent mechanistic insights in our understanding of the deamidating toxin family. The dermonecrotic toxin from Pasteurella multocida (PMT) was recently added to the list of toxins that disrupt G-protein signal transduction through selective deamidation of their targets. The C3 deamidase domain of PMT has no sequence similarity to the deamidase domains of the dermonecrotic toxins from Escherichia coli (cytotoxic necrotizing factor [CNF]1-3), Yersinia (CNFY) and Bordetella (dermonecrotic toxin). The structure of PMT-C3 belongs to a family of transglutaminase-like proteins, with active site Cys-His-Asp catalytic triads distinct from E. coli CNF1.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, B128 CLSL, Urbana, IL 61801, USA.
| | | |
Collapse
|
30
|
Plesniak LA, Mahalakshmi R, Rypien C, Yang Y, Racic J, Marassi FM. Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:482-9. [PMID: 20883662 DOI: 10.1016/j.bbamem.2010.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 01/05/2023]
Abstract
Ail is an outer membrane protein and virulence factor of Yersinia pestis, an extremely pathogenic, category A biothreat agent, responsible for precipitating massive human plague pandemics throughout history. Due to its key role in bacterial adhesion to host cells and bacterial resistance to host defense, Ail is a key target for anti-plague therapy. However, little information is available about the molecular aspects of its function and interactions with the human host, and the structure of Ail is not known. Here we describe the recombinant expression, purification, refolding, and sample preparation of Ail for solution and solid-state NMR structural studies in lipid micelles and lipid bilayers. The initial NMR and CD spectra show that Ail adopts a well-defined transmembrane β-sheet conformation in lipids.
Collapse
Affiliation(s)
- Leigh A Plesniak
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
31
|
Soundararajan V, Patel N, Subramanian V, Sasisekharan V, Sasisekharan R. The many faces of the YopM effector from plague causative bacterium Yersinia pestis and its implications for host immune modulation. Innate Immun 2010; 17:548-57. [PMID: 20699282 DOI: 10.1177/1753425910377099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Yersinia outer protein (Yop) M effector from the Yersinia pestis bacterium is well-known for being a critical virulence determinant; however, structural insight vis-à-vis its role in Y. pestis pathogenesis has been elusive. Here, we investigate the intact sequence of the YopM protein through our recently developed fold identification and homology modeling tools, and analyze the immune modulatory potential of its constituent domains. We identify a putative novel E3 ligase (NEL) domain towards the C-terminal tail of YopM and characterize its active site, to show that YopM could function as an autoregulated bacterial type E3 ubiquitin ligase. We further identify unreported NEL domains in several other bacteria and note remarkable similarity in sequence, structure, surface, and electrostatics for the family of NEL-containing bacterial effectors that suggests conserved function and potentially similar host targets for these proteins. Based on these observations and recent empirical evidence for degradation of the human proteins HLA-DR, thioredoxin, and NEMO/IKKγ by other members of the NEL-containing bacterial family, we discuss the potential for YopM to modulate a wide spectrum of immune signal transduction pathways. The key immune modulatory effects highlighted are suppression of MHC class II antigen presentation, dampening of nuclear factor (NF)-κB mediated inflammatory response, and intonation of mitogen-activated protein kinase (MAPK) signaling. Additionally, our analysis of the modeled YopM LRR domain reveals structural features akin to the Toll-like receptor 4 (TLR4) LRR motif. We propose that YopM LRR could be a 'molecular mimic' of TLR4 LRR, permitting reduced immunogenicity and potentially mitigating bacterial lipopolysaccharide surveillance of the innate immune system. Our identification and characterization of the YopM NEL domain, taken together with our analysis of the YopM LRR domain, provides plausible insight into subversion of host immunity by Y. pestis YopM and perhaps could set the stage for design of new therapeutic opportunities.
Collapse
Affiliation(s)
- Venkataramanan Soundararajan
- Harvard-MIT Division of Health Sciences and Technology, Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
32
|
Repertoire of HLA-DR1-restricted CD4 T-cell responses to capsular Caf1 antigen of Yersinia pestis in human leukocyte antigen transgenic mice. Infect Immun 2010; 78:4356-62. [PMID: 20660611 DOI: 10.1128/iai.00195-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in "humanized" HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Collapse
|
33
|
Edelmann MJ, Kramer HB, Altun M, Kessler BM. Post-translational modification of the deubiquitinating enzyme otubain 1 modulates active RhoA levels and susceptibility to Yersinia invasion. FEBS J 2010; 277:2515-30. [PMID: 20553488 DOI: 10.1111/j.1742-4658.2010.07665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microbial pathogens exploit the ubiquitin system to facilitate infection and manipulate the immune responses of the host. In this study, susceptibility to Yersinia enterocolitica and Yersinia pseudotuberculosis invasion was found to be increased upon overexpression of the deubiquitinating enzyme otubain 1 (OTUB1), a member of the ovarian tumour domain-containing protein family. Conversely, OTUB1 knockdown interfered with Yersinia invasion in HEK293T cells as well as in primary monocytes. This effect was attributed to a modulation of bacterial uptake. We demonstrate that the Yersinia-encoded virulence factor YpkA (YopO) kinase interacts with a post-translationally modified form of OTUB1 that contains multiple phosphorylation sites. OTUB1, YpkA and the small GTPase ras homologue gene family member A (RhoA) were found to be part of the same protein complex, suggesting that RhoA levels are modulated by OTUB1. Our results show that OTUB1 is able to stabilize active RhoA prior to invasion, which is concomitant with an increase in bacterial uptake. This effect is modulated by post-translational modifications of OTUB1, suggesting a new entry point for manipulating Yersinia interactions with the host.
Collapse
|
34
|
Leone M, Barile E, Vazquez J, Mei A, Guiney D, Dahl R, Pellecchia M. NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 2010; 76:10-6. [PMID: 20456369 PMCID: PMC2905849 DOI: 10.1111/j.1747-0285.2010.00982.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe the use of a furanyl salicyl nitroxide derivative ('spin-labeled' compound), as a paramagnetic phosphotyrosine mimetic, to carry out a second-site screening by NMR against the PTPase YopH from Yersinia pestis. Using such a fragment-based screening approach we identified several small molecules targeting YopH that bind at sites adjacent to the spin-labeled compound. These second-site fragments were subsequently used to design and synthesize bidentate YopH inhibitors with submicromolar in vitro inhibition, selectivity against the human PTPase PTP1B, and cellular activity against Y. pseudotuberculosis. These initial compounds could result useful in elucidating the structural determinants necessary for YopH inhibition and may help in the design of even more active, selective and cell permeable compounds for the development of novel therapies against Yersiniae.
Collapse
Affiliation(s)
- Marilisa Leone
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Elisa Barile
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Jesus Vazquez
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Angel Mei
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Donald Guiney
- Department of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Russel Dahl
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| | - Maurizio Pellecchia
- Infectious and inflammatory Disease Center and Cancer Center, Sanford | Burnham Medical Research Institute, 10901 North Torrey Pines Rd, 92037 La Jolla, CA, USA
| |
Collapse
|
35
|
Silva MT. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J Leukoc Biol 2010; 88:885-96. [PMID: 20566623 DOI: 10.1189/jlb.0410205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, University of Porto, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|
36
|
Milestones in progression of primary pneumonic plague in cynomolgus macaques. Infect Immun 2010; 78:2946-55. [PMID: 20385751 DOI: 10.1128/iai.01296-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines against primary pneumonic plague, a potential bioweapon, must be tested for efficacy in well-characterized nonhuman primate models. Telemetered cynomolgus macaques (Macaca fascicularis) were challenged by the aerosol route with doses equivalent to approximately 100 50% effective doses of Yersinia pestis strain CO92 and necropsied at 24-h intervals postexposure (p.e.). Data for telemetered heart rates, respiratory rates, and increases in the temperature greater than the diurnal baseline values identified the onset of the systemic response at 55 to 60 h p.e. in all animals observed for at least 70 h p.e. Bacteremia was detected at 72 h p.e. by a Yersinia 16S rRNA-specific quantitative reverse transcription-PCR and was detected later by the culture method at the time of moribund necropsy. By 72 h p.e. multilobar pneumonia with diffuse septal inflammation consistent with early bacteremia was established, and all lung tissues had a high bacterial burden. The levels of cytokines or chemokines in serum were not significantly elevated at any time, and only the interleukin-1beta, CCL2, and CCL3 levels were elevated in lung tissue. Inhalational plague in the cynomolgus macaque inoculated by the aerosol route produces most clinical features of the human disease, and in addition the disease progression mimics the disease progression from the anti-inflammatory phase to the proinflammatory phase described for the murine model. Defined milestones of disease progression, particularly the onset of fever, tachypnea, and bacteremia, should be useful for evaluating the efficacy of candidate vaccines.
Collapse
|
37
|
Vovk AI, Kononets LA, Tanchuk VY, Cherenok SO, Drapailo AB, Kalchenko VI, Kukhar VP. Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorg Med Chem Lett 2010; 20:483-7. [DOI: 10.1016/j.bmcl.2009.11.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 01/22/2023]
|
38
|
Kloss E, Barrick D. C-terminal deletion of leucine-rich repeats from YopM reveals a heterogeneous distribution of stability in a cooperatively folded protein. Protein Sci 2009; 18:1948-60. [PMID: 19593816 DOI: 10.1002/pro.205] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Terminal deletions of units from alpha-helical repeat proteins have provided insight into the physical origins of their cooperativity. To test if the same principles governing cooperativity apply to beta-sheet-containing repeat proteins, we have created a series of C-terminal deletion constructs from a large leucine-rich repeat (LRR) protein, YopM. We have examined the structure and stability of the resulting deletion constructs by a combination of solution spectroscopy, equilibrium denaturation studies, and limited proteolysis. Surprisingly, a high degree of nonuniformity was found in the stability distribution of YopM. Unlike previously studied repeat proteins, we identified several key LRR that on deletion disrupt nearby structure, at distances as far away as up to three repeats, in YopM. This partial unfolding model is supported by limited proteolysis studies and by point substitution in repeats predicted to be disordered as a result of deletion of adjacent repeats. We show that key internal- and terminal-caps must be present to maintain the structural integrity in adjacent regions (roughly four LRRs long) of decreased stability. The finding that full-length YopM maintains a high level of cooperativity in equilibrium unfolding underscores the importance of interfacial interactions in stabilizing locally unstable regions of structure.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
39
|
Keasey SL, Schmid KE, Lee MS, Meegan J, Tomas P, Minto M, Tikhonov AP, Schweitzer B, Ulrich RG. Extensive antibody cross-reactivity among infectious gram-negative bacteria revealed by proteome microarray analysis. Mol Cell Proteomics 2009; 8:924-35. [PMID: 19112181 PMCID: PMC2689768 DOI: 10.1074/mcp.m800213-mcp200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/19/2008] [Indexed: 11/06/2022] Open
Abstract
Antibodies provide a sensitive indicator of proteins displayed by bacteria during sepsis. Because signals produced by infection are naturally amplified during the antibody response, host immunity can be used to identify biomarkers for proteins that are present at levels currently below detectable limits. We developed a microarray comprising approximately 70% of the 4066 proteins contained within the Yersinia pestis proteome to identify antibody biomarkers distinguishing plague from infections caused by other bacterial pathogens that may initially present similar clinical symptoms. We first examined rabbit antibodies produced against proteomes extracted from Y. pestis, Burkholderia mallei, Burkholderia cepecia, Burkholderia pseudomallei, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, and Escherichia coli, all pathogenic Gram-negative bacteria. These antibodies enabled detection of shared cross-reactive proteins, fingerprint proteins common for two or more bacteria, and signature proteins specific to each pathogen. Recognition by rabbit and non-human primate antibodies involved less than 100 of the thousands of proteins present within the Y. pestis proteome. Further antigen binding patterns were revealed that could distinguish plague from anthrax, caused by the Gram-positive bacterium Bacillus anthracis, using sera from acutely infected or convalescent primates. Thus, our results demonstrate potential biomarkers that are either specific to one strain or common to several species of pathogenic bacteria.
Collapse
Affiliation(s)
- Sarah L Keasey
- Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cerovic V, McDonald V, Nassar MA, Paulin SM, Macpherson GG, Milling SWF. New insights into the roles of dendritic cells in intestinal immunity and tolerance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 272:33-105. [PMID: 19121816 DOI: 10.1016/s1937-6448(08)01602-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a critical key role in the initiation of immune responses to pathogens. Paradoxically, they also prevent potentially damaging immune responses being directed against the multitude of harmless antigens, to which the body is exposed daily. These roles are particularly important in the intestine, where only a single layer of epithelial cells provides a barrier against billions of commensal microorganisms, pathogens, and food antigens, over a huge surface area. In the intestine, therefore, DCs are required to perform their dual roles very efficiently to protect the body from the dual threats of invading pathogens and unwanted inflammatory reactions. In this review, we first describe the biology of DCs and their interactions with other cells types, paying particular attention to intestinal DCs. We, then, examine the ways in which this biology may become misdirected, resulting in inflammatory bowel disease. Finally, we discuss how DCs potentiate immune responses against viral, bacterial, parasitic infections, and their importance in the pathogenesis of prion diseases. We, therefore, provide an overview of the complex cellular interactions that affect intestinal DCs and control the balance between immunity and tolerance.
Collapse
Affiliation(s)
- Vuk Cerovic
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
de la Puerta ML, Trinidad AG, Rodríguez MDC, Bogetz J, Sánchez Crespo M, Mustelin T, Alonso A, Bayón Y. Characterization of new substrates targeted by Yersinia tyrosine phosphatase YopH. PLoS One 2009; 4:e4431. [PMID: 19221593 PMCID: PMC2637541 DOI: 10.1371/journal.pone.0004431] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/17/2008] [Indexed: 12/24/2022] Open
Abstract
YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2, p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates.
Collapse
Affiliation(s)
| | - Antonio G. Trinidad
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | | | - Jori Bogetz
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Tomas Mustelin
- Program of Inflammation, Inflammatory and Infectious Disease Center, and Program of Signal Transduction, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Andrés Alonso
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Bayón
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
- * E-mail:
| |
Collapse
|
42
|
Abstract
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.
Collapse
|
43
|
Du Z, Tan Y, Yang H, Qiu J, Qin L, Wang T, Liu H, Bi Y, Song Y, Guo Z, Han Y, Zhou D, Wang X, Yang R. Gene expression profiling of Yersinia pestis with deletion of lcrG, a known negative regulator for Yop secretion of type III secretion system. Int J Med Microbiol 2008; 299:355-66. [PMID: 19109068 DOI: 10.1016/j.ijmm.2008.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/12/2008] [Accepted: 10/02/2008] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis injects a set of virulent proteins into the cytosol of eukaryotic cells by a type III secretion system (T3SS). LcrG is a known negative regulator for secretion of Yersinia outer-membrane proteins (Yops) by blocking the secretion apparatus (Ysc) from the inner membrane. To further understand the effect of lcrG deletion on Y. pestis T3SS regulation, transcriptional profiles from the DeltalcrG mutant and wild-type Y. pestis strains were compared. The results showed that although the DeltalcrG mutant was markedly attenuated (600-fold increase of LD(50) in s.c. challenged BALB/c mice), transcriptions of almost all the type III genes were upregulated significantly in the DeltalcrG mutant. The immunoblotting analysis of YopM and LcrV demonstrated that their expressions were also increased in the DeltalcrG mutant in comparison to the wild-type strain. We speculate that, in addition to the negative regulation of the Yop secretion, LcrG could possibly play a negative regulatory role in the transcription of T3SS genes through indirect mechanisms. Furthermore, this report also revealed significant transcriptional changes in the genes encoding cell-envelope-related proteins and a virulence-related transcription factor RovA in the DeltalcrG mutant.
Collapse
Affiliation(s)
- Zongmin Du
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Yersinia pestis, the causative agent of plague, utilizes a plasmid-encoded type III secretion system (T3SS) to aid it with its resistance to host defenses. This system injects a set of effector proteins known as Yops (Yersinia outer proteins) into the cytosol of host cells that come into contact with the bacteria. T3SS is absolutely required for the virulence of Y. pestis, making it a potential target for new therapeutics. Using a novel and simple high-throughput screening method, we examined a diverse collection of chemical libraries for small molecules that inhibit type III secretion in Y. pestis. The primary screening of 70,966 compounds and mixtures yielded 421 presumptive inhibitors. We selected eight of these for further analysis in secondary assays. Four of the eight compounds effectively inhibited Yop secretion at micromolar concentrations. Interestingly, we observed differential inhibition among Yop species with some compounds. The compounds did not inhibit bacterial growth at the concentrations used in the inhibition assays. Three compounds protected HeLa cells from type III secretion-dependent cytotoxicity. Of the eight compounds examined in secondary assays, four show good promise as leads for structure-activity relationship studies. They are a diverse group, with each having a chemical scaffold not only distinct from each other but also distinct from previously described candidate type III secretion inhibitors.
Collapse
|
45
|
Ko JH, Izadjoo M, Altman S. Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P. RNA (NEW YORK, N.Y.) 2008; 14:1656-1662. [PMID: 18567813 PMCID: PMC2491477 DOI: 10.1261/rna.1120508] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/01/2008] [Indexed: 05/26/2023]
Abstract
External guide sequences (EGSs) targeting virulence genes from Yersinia pestis were designed and tested in vitro and in vivo in Escherichia coli. Linear EGSs and M1 RNA-linked EGSs were designed for the yscN and yscS genes that are involved in type III secretion in Y. pestis. RNase P from E. coli cleaves the messages of yscN and yscS in vitro with the cognate EGSs, and the expression of the EGSs resulted in the reduction of the levels of these messages of the virulence genes when those genes were expressed in E. coli.
Collapse
Affiliation(s)
- Jae-hyeong Ko
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
46
|
Das R, Hammamieh R, Neill R, Ludwig GV, Eker S, Lincoln P, Ramamoorthy P, Dhokalia A, Mani S, Mendis C, Cummings C, Kearney B, Royaee A, Huang XZ, Paranavitana C, Smith L, Peel S, Kanesa-Thasan N, Hoover D, Lindler LE, Yang D, Henchal E, Jett M. Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells. BMC Infect Dis 2008; 8:104. [PMID: 18667072 PMCID: PMC2542375 DOI: 10.1186/1471-2334-8-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/30/2008] [Indexed: 12/03/2022] Open
Abstract
Background Effective prophylaxis and treatment for infections caused by biological threat agents (BTA) rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs. Methods To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays. Results We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the in vitro and in vivo findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized B. anthracis spores and 30 min post exposure to a bacterial toxin. Conclusion Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents.
Collapse
Affiliation(s)
- Rina Das
- Division of Pathology, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tollenaere C, Rahalison L, Ranjalahy M, Rahelinirina S, Duplantier JM, Brouat C. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar. INFECTION GENETICS AND EVOLUTION 2008; 8:891-7. [PMID: 18703167 DOI: 10.1016/j.meegid.2008.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/11/2008] [Accepted: 07/12/2008] [Indexed: 12/11/2022]
Abstract
Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.
Collapse
Affiliation(s)
- C Tollenaere
- IRD UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International Baillarguet, CS 30016, 34988 Montferrier sur Lez Cedex, France.
| | | | | | | | | | | |
Collapse
|
48
|
Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infect Immun 2008; 76:3911-23. [PMID: 18559430 DOI: 10.1128/iai.01695-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1beta (IL-1beta) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1beta was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1beta following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1beta were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.
Collapse
|
49
|
Mukherjee S, Orth K. In vitro signaling by MAPK and NFkappaB pathways inhibited by Yersinia YopJ. Methods Enzymol 2008; 438:343-53. [PMID: 18413260 DOI: 10.1016/s0076-6879(07)38024-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A procedure for an in vitro signaling assay is described for the MAPK and NFkappaB pathways. The method uses a membrane-cleared lysate that contains all the soluble components required for activating these signaling cascades. The pathways can be activated by variety of molecules, including kinases, G-proteins, and E3 ligases. We demonstrate that YopJ inhibits downstream of all these activators. The in vitro signaling assay is ideal for initial biochemical studies on activators and inhibitors of the MAPK and NFkappaB pathways.
Collapse
Affiliation(s)
- Sohini Mukherjee
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
50
|
Mejía E, Bliska JB, Viboud GI. Yersinia controls type III effector delivery into host cells by modulating Rho activity. PLoS Pathog 2008; 4:e3. [PMID: 18193942 PMCID: PMC2186360 DOI: 10.1371/journal.ppat.0040003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 11/27/2007] [Indexed: 11/30/2022] Open
Abstract
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.
Collapse
Affiliation(s)
- Edison Mejía
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - James B Bliska
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Gloria I Viboud
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|