1
|
Ye Q, Henrickson A, Demeler B, Balasco Serrão VH, Davies PL. Human calpain-3 and its structural plasticity: Dissociation of a homohexamer into dimers on binding titin. J Biol Chem 2025; 301:108133. [PMID: 39725035 PMCID: PMC11795594 DOI: 10.1016/j.jbc.2024.108133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Calpain-3 is an intracellular Ca2+-dependent cysteine protease abundant in skeletal muscle. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multidomain protein that includes three 40+-residue sequences (NS, IS1, and IS2). The latter sequences are unique to this calpain isoform and are hypersensitive to proteolysis. To investigate the whole enzyme structure and how mutations might affect its activity, we produced the proteolytically more stable 85-kDa calpain-3 ΔNS ΔIS1 form with a C129A inactivating mutation as a recombinant protein in Escherichia coli. During size-exclusion chromatography, this calpain-3 was consistently eluted as a much larger 0.5-MDa complex rather than the expected 170-kDa dimer. Its size, which was confirmed by SEC-MALS, Blue Native PAGE, and AUC, made the complex amenable to single-particle cryo-EM analysis. From two data sets, we obtained a 3.85-Å reconstruction map that shows the complex is a trimer of calpain-3 dimers with six penta-EF-hand domains at its core. Calpain-3 has been reported to bind the N2A region of the giant muscle protein titin. When this 37-kDa region of titin was co-expressed with calpain-3, the multimer was reduced to a 320-kDa particle, which appears to be the calpain dimer bound to several copies of the titin fragment. We suggest that newly synthesized calpain-3 is kept as an inactive hexamer until it binds the N2A region of titin in the sarcomere, whereupon it dissociates into functional dimers.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Amy Henrickson
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Vitor Hugo Balasco Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California - Santa Cruz, Santa Cruz, California, United States; Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, California, United States
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Zhai C, Wang Y, Qi S, Yang M, Wu S. Ca 2+-calpains axis regulates Yki stability and activity in Drosophila. J Genet Genomics 2024; 51:1020-1029. [PMID: 38663479 DOI: 10.1016/j.jgg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Yorkie (Yki) is a key effector of the Hippo pathway that activates the expression of targets by associating with the transcription factor Scalloped. Various upstream signals, such as cell polarity and mechanical cues, control transcriptional programs by regulating Yki activity. Searching for Yki regulatory factors has far-reaching significance for studying the Hippo pathway in development and human diseases. In this study, we identify Calpain-A (CalpA) and Calpain-B (CalpB), two calcium (Ca2+)-dependent modulatory proteases of the calpain family, as critical regulators of Yki in Drosophila that interact with Yki, respectively. Ca2+ induces Yki cleavage in a CalpA/CalpB-dependent manner, and the protease activity of CalpA/CalpB is pivotal for the cleavage. Furthermore, overexpression of CalpA or CalpB in Drosophila partially restores the large wing phenotype caused by Yki overexpression, and F98 of Yki is an important cleavage site by the Ca2+-calpains axis. Our study uncovers a unique mechanism whereby the Ca2+-calpain axis modulates Yki activity through protein cleavage.
Collapse
Affiliation(s)
- Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenao Qi
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muhan Yang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Ye Q, Henrickson A, Demeler B, Serrão VHB, Davies PL. Human calpain-3 and its structural plasticity: dissociation of a homohexamer into dimers on binding titin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582628. [PMID: 38464089 PMCID: PMC10925265 DOI: 10.1101/2024.02.28.582628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Calpain-3 is an intracellular Ca2+-dependent cysteine protease abundant in skeletal muscle. Its physiological role in the sarcomere is thought to include removing damaged muscle proteins after exercise. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2). The latter sequences are unique to this calpain isoform and are hypersensitive to proteolysis. To investigate the whole enzyme structure and how mutations might affect its activity, we produce the proteolytically more stable 85-kDa calpain-3 ΔNS ΔIS1 form with a C129A inactivating mutation as a recombinant protein in E. coli. During size-exclusion chromatography, this calpain-3 was consistently eluted as a much larger 0.5-MDa complex rather than the expected 170-kDa dimer. Its size, which was confirmed by SEC-MALS, Blue Native PAGE, and AUC, made the complex amenable to single-particle cryo-EM analysis. From two data sets, we obtained a 3.85-Å reconstruction map that shows the complex is a trimer of calpain-3 dimers with six penta-EF-hand domains at its core. Calpain-3 has been reported to bind the N2A region of the giant muscle protein titin. When this 37-kDa region of titin was co-expressed with calpain-3 the multimer was reduced to a 320-kDa particle, which appears to be the calpain dimer bound to several copies of the titin fragment. We suggest that newly synthesized calpain-3 is kept as an inactive hexamer until it binds the N2A region of titin in the sarcomere, whereupon it dissociates into functional dimers.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Amy Henrickson
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Vitor Hugo Balasco Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California - Santa Cruz, Santa Cruz, California, 95064, United States
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, California, 95064, United States
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
4
|
Müller T, Reichlmeir M, Hau AC, Wittig I, Schulte D. The neuronal transcription factor MEIS2 is a calpain-2 protease target. J Cell Sci 2024; 137:jcs261482. [PMID: 38305737 PMCID: PMC10941658 DOI: 10.1242/jcs.261482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.
Collapse
Affiliation(s)
- Tanja Müller
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg Centre of Neuropathology (LCNP), 1445 Luxembourg, Luxembourg
| | - Marina Reichlmeir
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Goethe University, University Hospital Frankfurt, Dr. Senckenberg Institute of Neurooncology and Institute of Neurology (Edinger Institute), Frankfurt Cancer Institute (FCI), University Cancer Center Frankfurt (UCT), MSNZ Junior Group Translational Neurooncology, 60528 Frankfurt, Germany
| | - Ilka Wittig
- Goethe University, Faculty of Medicine, Institute for Cardiovascular Physiology, Functional Proteomics, 60590, Frankfurt, Germany
| | - Dorothea Schulte
- Goethe University, Faculty of Medicine, University Hospital Frankfurt, Institute of Neurology (Edinger Institute), 60528 Frankfurt, Germany
| |
Collapse
|
5
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
6
|
Hartley B, Bassiouni W, Schulz R, Julien O. The roles of intracellular proteolysis in cardiac ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:38. [PMID: 37768438 DOI: 10.1007/s00395-023-01007-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Ischemic heart disease remains a leading cause of human mortality worldwide. One form of ischemic heart disease is ischemia-reperfusion injury caused by the reintroduction of blood supply to ischemic cardiac muscle. The short and long-term damage that occurs due to ischemia-reperfusion injury is partly due to the proteolysis of diverse protein substrates inside and outside of cardiomyocytes. Ischemia-reperfusion activates several diverse intracellular proteases, including, but not limited to, matrix metalloproteinases, calpains, cathepsins, and caspases. This review will focus on the biological roles, intracellular localization, proteolytic targets, and inhibitors of these proteases in cardiomyocytes following ischemia-reperfusion injury. Recognition of the intracellular function of each of these proteases includes defining their activation, proteolytic targets, and their inhibitors during myocardial ischemia-reperfusion injury. This review is a step toward a better understanding of protease activation and involvement in ischemic heart disease and developing new therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Metwally E, Al-Abbadi HA, Hussain T, Murtaza G, Abdellatif AM, Ahmed MF. Calpain signaling: from biology to therapeutic opportunities in neurodegenerative disorders. Front Vet Sci 2023; 10:1235163. [PMID: 37732142 PMCID: PMC10507866 DOI: 10.3389/fvets.2023.1235163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative disorders represent a major and growing healthcare challenge globally. Among the numerous molecular pathways implicated in their pathogenesis, calpain signaling has emerged as a crucial player in neuronal dysfunction and cell death. Calpain is a family of calcium-dependent cysteine proteases that is involved in many biological processes, such as signal transduction, cytoskeleton remodeling, and protein turnover. Dysregulation of calpain activation and activity has been associated with several neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Understanding the intricate structure of calpains is crucial for unraveling their roles in cellular physiology and their implications in pathology. In addition, the identification of diverse abnormalities in both humans and other animal models with deficiencies in calpain highlights the significant progress made in understanding calpain biology. In this comprehensive review, we delve into the recent roles attributed to calpains and provide an overview of the mechanisms that govern their activity during the progression of neurodegenerative diseases. The possibility of utilizing calpain inhibition as a potential therapeutic approach for treating neuronal dysfunctions in neurodegenerative disorders would be an area of interest in future calpain research.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatim A. Al-Abbadi
- Faculty of Medicine, University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Ahmed M. Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud F. Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Yoder MW, Wright NT, Borzok MA. Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk. Int J Mol Sci 2023; 24:11726. [PMID: 37511485 PMCID: PMC10380737 DOI: 10.3390/ijms241411726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.
Collapse
Affiliation(s)
- Micah W Yoder
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, USA
| | - Maegen A Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| |
Collapse
|
9
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Sharma J, Mulherkar S, Chen UI, Xiong Y, Bajaj L, Cho BK, Goo YA, Leung HCE, Tolias KF, Sardiello M. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov 2023; 9:32. [PMID: 36964131 PMCID: PMC10038992 DOI: 10.1038/s41421-023-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Calpains are a class of non-lysosomal cysteine proteases that exert their regulatory functions via limited proteolysis of their substrates. Similar to the lysosomal and proteasomal systems, calpain dysregulation is implicated in the pathogenesis of neurodegenerative disease and cancer. Despite intensive efforts placed on the identification of mechanisms that regulate calpains, however, calpain protein modifications that regulate calpain activity are incompletely understood. Here we show that calpains are regulated by KCTD7, a cytosolic protein of previously uncharacterized function whose pathogenic mutations result in epilepsy, progressive ataxia, and severe neurocognitive deterioration. We show that KCTD7 works in complex with Cullin-3 and Rbx1 to execute atypical, non-degradative ubiquitination of calpains at specific sites (K398 of calpain 1, and K280 and K674 of calpain 2). Experiments based on single-lysine mutants of ubiquitin determined that KCTD7 mediates ubiquitination of calpain 1 via K6-, K27-, K29-, and K63-linked chains, whereas it uses K6-mediated ubiquitination to modify calpain 2. Loss of KCTD7-mediated ubiquitination of calpains led to calpain hyperactivation, aberrant cleavage of downstream targets, and caspase-3 activation. CRISPR/Cas9-mediated knockout of Kctd7 in mice phenotypically recapitulated human KCTD7 deficiency and resulted in calpain hyperactivation, behavioral impairments, and neurodegeneration. These phenotypes were largely prevented by pharmacological inhibition of calpains, thus demonstrating a major role of calpain dysregulation in KCTD7-associated disease. Finally, we determined that Cullin-3-KCTD7 mediates ubiquitination of all ubiquitous calpains. These results unveil a novel mechanism and potential target to restrain calpain activity in human disease and shed light on the molecular pathogenesis of KCTD7-associated disease.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| | - Shalaka Mulherkar
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Uan-I Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xiong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| |
Collapse
|
11
|
Lebart MC, Trousse F, Valette G, Torrent J, Denus M, Mestre-Frances N, Marcilhac A. Reg-1α, a New Substrate of Calpain-2 Depending on Its Glycosylation Status. Int J Mol Sci 2022; 23:ijms23158591. [PMID: 35955718 PMCID: PMC9369050 DOI: 10.3390/ijms23158591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Reg-1α/lithostathine, a protein mainly associated with the digestive system, was previously shown to be overexpressed in the pre-clinical stages of Alzheimer’s disease. In vitro, the glycosylated protein was reported to form fibrils at physiological pH following the proteolytic action of trypsin. However, the nature of the protease able to act in the central nervous system is unknown. In the present study, we showed that Reg-1α can be cleaved in vitro by calpain-2, the calcium activated neutral protease, overexpressed in neurodegenerative diseases. Using chemical crosslinking experiments, we found that the two proteins can interact with each other. Identification of the cleavage site using mass spectrometry, between Gln4 and Thr5, was found in agreement with the in silico prediction of the calpain cleavage site, in a position different from the one reported for trypsin, i.e., Arg11-Ile12 peptide bond. We showed that the cleavage was impeded by the presence of the neighboring glycosylation of Thr5. Moreover, in vitro studies using electron microscopy showed that calpain-cleaved protein does not form fibrils as observed after trypsin cleavage. Collectively, our results show that calpain-2 cleaves Reg-1α in vitro, and that this action is not associated with fibril formation.
Collapse
Affiliation(s)
- Marie-Christine Lebart
- MMDN, Univ Montpellier, EPHE, INSERM, 34095 Montpellier, France; (F.T.); (J.T.); (M.D.); (N.M.-F.); (A.M.)
- EPHE, PSL Research University, 75014 Paris, France
- Correspondence: ; Tel.: +33-4-6714-3889
| | - Françoise Trousse
- MMDN, Univ Montpellier, EPHE, INSERM, 34095 Montpellier, France; (F.T.); (J.T.); (M.D.); (N.M.-F.); (A.M.)
- EPHE, PSL Research University, 75014 Paris, France
| | | | - Joan Torrent
- MMDN, Univ Montpellier, EPHE, INSERM, 34095 Montpellier, France; (F.T.); (J.T.); (M.D.); (N.M.-F.); (A.M.)
- INM, Univ Montpellier, INSERM, 34095 Montpellier, France
| | - Morgane Denus
- MMDN, Univ Montpellier, EPHE, INSERM, 34095 Montpellier, France; (F.T.); (J.T.); (M.D.); (N.M.-F.); (A.M.)
| | - Nadine Mestre-Frances
- MMDN, Univ Montpellier, EPHE, INSERM, 34095 Montpellier, France; (F.T.); (J.T.); (M.D.); (N.M.-F.); (A.M.)
- EPHE, PSL Research University, 75014 Paris, France
| | - Anne Marcilhac
- MMDN, Univ Montpellier, EPHE, INSERM, 34095 Montpellier, France; (F.T.); (J.T.); (M.D.); (N.M.-F.); (A.M.)
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
12
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
13
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
14
|
Metwally E, Zhao G, Zhang YQ. The calcium-dependent protease calpain in neuronal remodeling and neurodegeneration. Trends Neurosci 2021; 44:741-752. [PMID: 34417060 DOI: 10.1016/j.tins.2021.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Calpains are evolutionarily conserved and widely expressed Ca2+-activated cysteine proteases that act at neutral pH. The activity of calpains is tightly regulated, given that their abnormal activation can have deleterious effects leading to promiscuous cleavage of various targets. Genetic mutations in the genes encoding calpains are associated with human diseases, while abnormally elevated Ca2+ levels promote Ca2+-dependent calpain activation in pathologies associated with ischemic insults and neurodegeneration. In this review, we discuss recent findings on the regulation of calpain activity and activation as revealed through pharmacological, genetic, and optogenetic approaches. Furthermore, we highlight studies elucidating the role of calpains in dendrite pruning and axon degeneration in the context of Ca2+ homeostasis. Finally, we discuss future directions for the study of calpains and potential therapeutic strategies for inhibiting calpain activity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Elsayed Metwally
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Guoli Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
15
|
Kitagawa Y, Tanaka S, Kamiya M, Kuriki Y, Yamamoto K, Shimizu T, Nejo T, Hana T, Matsuura R, Koike T, Yamazawa E, Kushihara Y, Takahashi S, Nomura M, Takami H, Takayanagi S, Mukasa A, Urano Y, Saito N. A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clin Cancer Res 2021; 27:3936-3947. [PMID: 34031057 DOI: 10.1158/1078-0432.ccr-20-4518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Five-aminolevulinic acid (5-ALA) is widely used as an intraoperative fluorescent probe for radical resection of high-grade glioma, and thus aids in extending progression-free survival of patients. However, there exist some cases where 5-ALA fails to fluoresce. In some other cases, it may undergo fluorescence quenching but cannot be orally readministered during surgery. This study aimed to develop a novel hydroxymethyl rhodamine green (HMRG)-based fluorescence labeling system that can be repeatedly administered as a topical spray during surgery for the detection of glioblastoma. EXPERIMENTAL DESIGN We performed a three-stage probe screening using tumor lysates and fresh tumor tissues with our probe library consisting of a variety of HMRG probes with different dipeptides. We then performed proteome and transcript expression analyses to detect candidate enzymes responsible for cleaving the probe. Moreover, in vitro and ex vivo studies using U87 glioblastoma cell line were conducted to validate the findings. RESULTS The probe screening identified proline-arginine-HMRG (PR-HMRG) as the optimal probe that distinguished tumors from peritumoral tissues. Proteome analysis identified calpain-1 (CAPN1) to be responsible for cleaving the probe. CAPN1 was highly expressed in tumor tissues which reacted to the PR-HMRG probe. Knockdown of this enzyme suppressed fluorescence intensity in U87 glioblastoma cells. In situ assay using a mouse U87 xenograft model demonstrated marked contrast of fluorescence with the probe between the tumor and peritumoral tissues. CONCLUSIONS The novel fluorescent probe PR-HMRG is effective in detecting glioblastoma when applied topically. Further investigations are warranted to assess the efficacy and safety of its clinical use.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoko Yamamoto
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takenori Shimizu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Matsuura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Calpain-2 participates in the process of calpain-1 inactivation. Biosci Rep 2021; 40:226716. [PMID: 33078830 PMCID: PMC7610153 DOI: 10.1042/bsr20200552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2–specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.
Collapse
|
17
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
18
|
Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 2021; 96:961-975. [PMID: 33470511 DOI: 10.1111/brv.12686] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain-calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.
Collapse
Affiliation(s)
- Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
19
|
Ttm50 facilitates calpain activation by anchoring it to calcium stores and increasing its sensitivity to calcium. Cell Res 2020; 31:433-449. [PMID: 32848200 DOI: 10.1038/s41422-020-0388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.
Collapse
|
20
|
Kim DH, Beckett JD, Nagpal V, Seman-Senderos MA, Gould RA, Creamer TJ, MacFarlane EG, Chen Y, Bedja D, Butcher JT, Mitzner W, Rouf R, Hata S, Warren DS, Dietz HC. Calpain 9 as a therapeutic target in TGFβ-induced mesenchymal transition and fibrosis. Sci Transl Med 2020; 11:11/501/eaau2814. [PMID: 31316008 DOI: 10.1126/scitranslmed.aau2814] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Fibrosis is a common pathologic outcome of chronic disease resulting in the replacement of normal tissue parenchyma with a collagen-rich extracellular matrix produced by myofibroblasts. Although the progenitor cell types and cellular programs giving rise to myofibroblasts through mesenchymal transition can vary between tissues and diseases, their contribution to fibrosis initiation, maintenance, and progression is thought to be pervasive. Here, we showed that the ability of transforming growth factor-β (TGFβ) to efficiently induce myofibroblast differentiation of cultured epithelial cells, endothelial cells, or quiescent fibroblasts is dependent on the induced expression and activity of dimeric calpains, a family of non-lysosomal cysteine proteases that regulate a variety of cellular events through posttranslational modification of diverse substrates. siRNA-based gene silencing demonstrated that TGFβ-induced mesenchymal transition of a murine breast epithelial cell line was dependent on induction of expression of calpain 9 (CAPN9), an isoform previously thought to be restricted to the gastrointestinal tract. Mice lacking functional CAPN9 owing to biallelic targeting of Capn9 were viable and fertile but showed overt protection from bleomycin-induced lung fibrosis, carbon tetrachloride-induced liver fibrosis, and angiotensin II-induced cardiac fibrosis and dysfunction. A predicted loss-of-function allele of CAPN9 is common in Southeast Asia, with the frequency of homozygosity matching the prediction of Hardy-Weinberg equilibrium. Together with the highly spatially restricted pattern of CAPN9 expression under physiologic circumstances and the heartiness of the murine knockout, these data provide a strong signature for tolerance of therapeutic strategies for fibrosis aimed at CAPN9 antagonism.
Collapse
Affiliation(s)
- David H Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - James D Beckett
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Varun Nagpal
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manuel A Seman-Senderos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Program, School of Medicine, Baltimore, MD 21205, USA
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tyler J Creamer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichun Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan T Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rosanne Rouf
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shoji Hata
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Daniel S Warren
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
21
|
Novorolsky RJ, Nichols M, Kim JS, Pavlov EV, J Woods J, Wilson JJ, Robertson GS. The cell-permeable mitochondrial calcium uniporter inhibitor Ru265 preserves cortical neuron respiration after lethal oxygen glucose deprivation and reduces hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2020; 40:1172-1181. [PMID: 32126877 PMCID: PMC7238378 DOI: 10.1177/0271678x20908523] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/18/2019] [Accepted: 01/31/2020] [Indexed: 01/20/2023]
Abstract
The mitochondrial calcium (Ca2+) uniporter (MCU) mediates high-capacity mitochondrial Ca2+ uptake implicated in ischemic/reperfusion cell death. We have recently shown that inducible MCU ablation in Thy1-expressing neurons renders mice resistant to sensorimotor deficits and forebrain neuron loss in a model of hypoxic/ischemic (HI) brain injury. These findings encouraged us to compare the neuroprotective effects of Ru360 and the recently identified cell permeable MCU inhibitor Ru265. Unlike Ru360, Ru265 (2-10 µM) reached intracellular concentrations in cultured cortical neurons that preserved cell viability, blocked the protease activity of Ca2+-dependent calpains and maintained mitochondrial respiration and glycolysis after a lethal period of oxygen-glucose deprivation (OGD). Intraperitoneal (i.p.) injection of adult male C57Bl/6 mice with Ru265 (3 mg/kg) also suppressed HI-induced sensorimotor deficits and brain injury. However, higher doses of Ru265 (10 and 30 mg/kg, i.p.) produced dose-dependent increases in the frequency and duration of seizure-like behaviours. Ru265 is proposed to promote convulsions by reducing Ca2+ buffering and energy production in highly energetic interneurons that suppress brain seizure activity. These findings support the therapeutic potential of MCU inhibition in the treatment of ischemic stroke but also indicate that such clinical translation will require drug delivery strategies which mitigate the pro-convulsant effects of Ru265.
Collapse
Affiliation(s)
- Robyn J Novorolsky
- Department of Pharmacology, Faculty of Medicine,
Dalhousie University, Life Sciences Research Institute, Halifax,
Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie
University, Life Sciences Research Institute, Halifax, Canada
| | - Matthew Nichols
- Department of Pharmacology, Faculty of Medicine,
Dalhousie University, Life Sciences Research Institute, Halifax,
Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie
University, Life Sciences Research Institute, Halifax, Canada
| | - Jong S Kim
- Department of Community Health and Epidemiology,
Faculty of Medicine, Centre for Clinical Research, Dalhousie
University, Halifax, Nova Scotia, Canada
- Department of Microbiology, Faculty of Medicine,
Centre for Clinical Research, Dalhousie University, Nova Scotia,
Canada
| | - Evgeny V Pavlov
- Department of Basic Sciences, College of Dentistry,
New York University, NY, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell
University, Baker Laboratory, Ithaca, NY, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell
University, Baker Laboratory, Ithaca, NY, USA
| | - George S Robertson
- Department of Pharmacology, Faculty of Medicine,
Dalhousie University, Life Sciences Research Institute, Halifax,
Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie
University, Life Sciences Research Institute, Halifax, Canada
- Department of Psychiatry, Faculty of Medicine,
Dalhousie University, Life Sciences Research Institute, Halifax,
Canada
| |
Collapse
|
22
|
A muscle-specific calpain, CAPN3, forms a homotrimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140411. [PMID: 32200007 DOI: 10.1016/j.bbapap.2020.140411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/25/2022]
Abstract
Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.
Collapse
|
23
|
Cresser-Brown J, Rizkallah P, Jin Y, Roth C, Miller DJ, Allemann RK. An unexpected co-crystal structure of the calpain PEF(S) domain with Hfq reveals a potential chaperone function of Hfq. Acta Crystallogr F Struct Biol Commun 2020; 76:81-85. [PMID: 32039889 PMCID: PMC7010360 DOI: 10.1107/s2053230x20001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/28/2020] [Indexed: 11/10/2022] Open
Abstract
Calpain is a Ca2+-activated, heterodimeric cysteine protease consisting of a large catalytic subunit and a small regulatory subunit. Dysregulation of this enzyme is involved in a range of pathological conditions such as cancer, Alzheimer's disease and rheumatoid arthritis, and thus calpain I is a drug target with potential therapeutic applications. Difficulty in the production of this enzyme has hindered structural and functional investigations in the past, although heterodimeric calpain I can be generated by Escherichia coli expression in low yield. Here, an unexpected structure discovered during crystallization trials of heterodimeric calpain I (CAPN1C115S + CAPNS1ΔGR) is reported. A novel co-crystal structure of the PEF(S) domain from the dissociated regulatory small subunit of calpain I and the RNA-binding chaperone Hfq, which was likely to be overproduced as a stress response to the recombinant expression conditions, was obtained, providing unexpected insight in the chaperone function of Hfq.
Collapse
Affiliation(s)
- Joel Cresser-Brown
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Pierre Rizkallah
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Yi Jin
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Christian Roth
- Carbohydrates: Structure and Function, Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Arnimallee 22, 14195 Berlin, Germany
| | - David J. Miller
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
24
|
Maki M. Structures and functions of penta-EF-hand calcium-binding proteins and their interacting partners: enigmatic relationships between ALG-2 and calpain-7. Biosci Biotechnol Biochem 2019; 84:651-660. [PMID: 31814542 DOI: 10.1080/09168451.2019.1700099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The penta-EF-hand (PEF) protein family includes ALG-2 (gene name, PDCD6) and its paralogs as well as classical calpain family members. ALG-2 is a prototypic PEF protein that is widely distributed in eukaryotes and interacts with a variety of proteins in a Ca2+-dependent manner. Mammalian ALG-2 and its interacting partners have various modulatory roles including roles in cell death, signal transduction, membrane repair, ER-to-Golgi vesicular transport, and RNA processing. Some ALG-2-interacting proteins are key factors that function in the endosomal sorting complex required for transport (ESCRT) system. On the other hand, mammalian calpain-7 (CAPN7) lacks the PEF domain but contains two microtubule-interacting and trafficking (MIT) domains in tandem. CAPN7 interacts with a subset of ESCRT-III proteins through the MIT domains and regulates EGF receptor downregulation. Structures and functions of ALG-2 and those of its interacting partners as well as relationships with the calpain family are reviewed in this article.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
25
|
Wert KJ, Koch SF, Velez G, Hsu CW, Mahajan M, Bassuk AG, Tsang SH, Mahajan VB. CAPN5 genetic inactivation phenotype supports therapeutic inhibition trials. Hum Mutat 2019; 40:2377-2392. [PMID: 31403230 DOI: 10.1002/humu.23894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/20/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Small molecule pharmacological inhibition of dominant human genetic disease is a feasible treatment that does not rely on the development of individual, patient-specific gene therapy vectors. However, the consequences of protein inhibition as a clinical therapeutic are not well-studied. In advance of human therapeutic trials for CAPN5 vitreoretinopathy, genetic inactivation can be used to infer the effect of protein inhibition in vivo. We created a photoreceptor-specific knockout (KO) mouse for Capn5 and compared the retinal phenotype to both wild-type and an existing Capn5 KO mouse model. In humans, CAPN5 loss-of-function (LOF) gene variants were ascertained in large exome databases from 60,706 unrelated subjects without severe disease phenotypes. Ocular examination of the retina of Capn5 KO mice by histology and electroretinography showed no significant abnormalities. In humans, there were 22 LOF CAPN5 variants located throughout the gene and in all major protein domains. Structural modeling of coding variants showed these LOF variants were nearby known disease-causing variants within the proteolytic core and in regions of high homology between human CAPN5 and 150 homologs, yet the LOF of CAPN5 was tolerated as opposed to gain-of-function disease-causing variants. These results indicate that localized inhibition of CAPN5 is a viable strategy for hyperactivating disease alleles.
Collapse
Affiliation(s)
- Katherine J Wert
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Susanne F Koch
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximillian University, Munich, Germany
| | - Gabriel Velez
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California.,Department of Ophthalmology, Medical Scientist Training Program, University of Iowa, Iowa City, Iowa
| | - Chun-Wei Hsu
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York.,Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
| | - MaryAnn Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California
| | | | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, New York.,Departments of Ophthalmology, Pathology, and Cell Biology, Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia Stem Cell Initiative (CSCI), Columbia University, New York, New York
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California.,Department of Ophthalmology, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
26
|
Chaimon S, Limpanont Y, Reamtong O, Ampawong S, Phuphisut O, Chusongsang P, Ruangsittichai J, Boonyuen U, Watthanakulpanich D, O'Donoghue AJ, Caffrey CR, Adisakwattana P. Molecular characterization and functional analysis of the Schistosoma mekongi Ca 2+-dependent cysteine protease (calpain). Parasit Vectors 2019; 12:383. [PMID: 31362766 PMCID: PMC6668146 DOI: 10.1186/s13071-019-3639-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Background Schistosoma mekongi, which causes schistosomiasis in humans, is an important public health issue in Southeast Asia. Treatment with praziquantel is the primary method of control but emergence of praziquantel resistance requires the development of alternative drugs and vaccines. Calcium-dependent cysteine protease (calpain) is a novel vaccine candidate that has been studied in S. mansoni, S. japonicum, and protozoans including malaria, leishmania and trypanosomes. However, limited information is available on the properties and functions of calpain in other Schistosoma spp., including S. mekongi. In this study, we functionally characterized calpain 1 of S. mekongi (SmeCalp1). Results Calpain 1 of S. mekongi was obtained from transcriptomic analysis of S. mekongi; it had the highest expression level of all isoforms tested and was predominantly expressed in the adult male. SmeCalp1 cDNA is 2274 bp long and encodes 758 amino acids, with 85% to 90% homology with calpains in other Schistosoma species. Recombinant SmeCalp1 (rSmeCalp1), with a molecular weight of approximately 86.7 kDa, was expressed in bacteria and stimulated a marked antibody response in mice. Native SmeCalp1 was detected in crude worm extract and excretory-secretory product, and it was mainly localized in the tegument of the adult male; less signal was detected in the adult female worm. Thus, SmeCalp1 may play a role in surface membrane synthesis or host–parasite interaction. We assessed the protease activity of rSmeCalp1 and demonstrated that rSmeCalp1 could cleave the calpain substrate N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin, that was inhibited by calpain inhibitors (MDL28170 and E64c). Additionally, rSmeCalp1 could degrade the biological substrates fibronectin (blood clotting protein) and human complement C3, indicating important roles in the intravascular system and in host immune evasion. Conclusions SmeCalp1 is expressed on the tegumental surface of the parasite and can cleave host defense molecules; thus, it might participate in growth, development and survival during the entire life-cycle of S. mekongi. Information on the properties and functions of SmeCalp1 reported herein will be advantageous in the development of effective drugs and vaccines against S. mekongi and other schistosomes. Electronic supplementary material The online version of this article (10.1186/s13071-019-3639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California, USA
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
27
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
28
|
Guo S, Campbell R, Davies PL, Allingham JS. Phasing with calcium at home. Acta Crystallogr F Struct Biol Commun 2019; 75:377-384. [PMID: 31045567 PMCID: PMC6497102 DOI: 10.1107/s2053230x19004151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
With better tools for data processing and with synchrotron beamlines that are capable of collecting data at longer wavelengths, sulfur-based native single-wavelength anomalous dispersion (SAD) phasing has become the `first-choice' method for de novo protein structure determination. However, for many proteins native SAD phasing can be simplified by taking advantage of their interactions with natural metal cofactors that are stronger anomalous scatterers than sulfur. This is demonstrated here for four unique domains of a 1.5 MDa calcium-dependent adhesion protein using the anomalous diffraction of the chelated calcium ions. In all cases, low anomalous multiplicity X-ray data were collected on a home-source diffractometer equipped with a chromium rotating anode (λ = 2.2909 Å). In all but one case, calcium SAD phasing alone was sufficient to allow automated model building and refinement of the protein model after the calcium substructure had been determined. Given that Ca atoms will be present in a significant percentage of proteins that remain uncharacterized, many aspects of the data-collection and processing methods described here could be broadly applied for routine de novo structure elucidation.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Robert Campbell
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L. Davies
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - John S. Allingham
- Protein Function Discovery Group and The Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
29
|
Kawasaki H, Mizutome H, Kretsinger RH. Interaction sites of PEF proteins for recognition of their targets. Int J Biol Macromol 2019; 133:1035-1041. [PMID: 31028815 DOI: 10.1016/j.ijbiomac.2019.04.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022]
Abstract
The EF-hand is a helix-loop-helix motif observed mainly in intracellular calcium binding proteins. The EF-hand usually occurs as a pair, EF-lobe, which is a unit of evolution and structure. Penta EF-hand (PEF) proteins form a unique group including calpain, sorcin, grancalcin, ALG-2, and peflin. The fifth EF-hand of PEF proteins makes a pair with that of another PEF protein. The members of PEF family have diverse functions and their evolution is complex. The interaction of PEF proteins with target occurs at several sites. Here, we analyzed the ancestral sequences of each group of PEF proteins and determined the interfaces for the specific and selective interaction to the target among several PEF proteins. The shape of the groove for interaction at common site is different among PEF proteins. We found that the changes at limited sites induced the divergence of interaction sites that determines the selectivity of targets. The residues involved the changes at limited sites are important for the drug design selective to each PEF protein.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Life Science, Yokohama City University, Japan.
| | | | | |
Collapse
|
30
|
Calcium-Activated Calpain Specifically Cleaves Glutamate Receptor IIA But Not IIB at the Drosophila Neuromuscular Junction. J Neurosci 2019; 39:2776-2791. [PMID: 30705102 DOI: 10.1523/jneurosci.2213-17.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.
Collapse
|
31
|
Abstract
The production of recombinant proteins has been a cornerstone of the study of protein structure and function. As an example, the expression and purification of recombinant rat calpain-2 in bacteria was essential for solving the first crystal structures of the calpains in both calcium-free and calcium-bound forms. Here we describe the production and purification of recombinant rat calpain-2 from Escherichia coli using anion-exchange, affinity, and size-exclusion chromatographies. The heterodimeric enzyme is produced from a stable two-plasmid system. The order in which the protocol is carried out has been optimized to reduce unnecessary concentration and dialysis steps. The typical yield of this multi-domain enzyme from 4 L of E. coli culture is about 20 mg. The production of whole structures for the other calpain family members has been fraught with difficulty. To circumvent this roadblock, a certain amount of structure-function information can be gleaned about these other calpain isoforms by expressing just their protease core. These "mini-calpains" have been useful for X-ray co-crystallography with calpain inhibitors.Here we also present a variation of the whole enzyme production and purification protocol optimized for the expression and purification of the calpain-1 and calpain-3 protease cores (mini-calpains).
Collapse
Affiliation(s)
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
32
|
Translating genetic, biochemical and structural information to the calpain view of development. Mech Dev 2018; 154:240-250. [DOI: 10.1016/j.mod.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/30/2023]
|
33
|
Sepúlveda C, Hernández B, Burgos CF, Fuentes E, Palomo I, Alarcón M. The cAMP/PKA Pathway Inhibits Beta-amyloid Peptide Release from Human Platelets. Neuroscience 2018; 397:159-171. [PMID: 30496824 DOI: 10.1016/j.neuroscience.2018.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
Abstract
The main component of Alzheimer's disease (AD) is the amyloid-beta peptide (Aβ), the brain of these patients is characterized by deposits in the parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). On the other hand, the platelets are the major source of the Aβ peptide in circulation and once secreted can activate the platelets and endothelial cells producing the secretion of several inflammatory mediators that finally end up unchaining the CAA and later AD. In the present study we demonstrate that cAMP/PKA pathway plays key roles in the regulation of calpain activation and secretion of Aβ in human platelets. We confirmed that inhibition of platelet functionality occurred when platelets were incubated with forskolin (molecule that rapidly increased cAMP levels). In this sense we found that platelets pre-incubated with forskolin (20 μM) present a complete inhibition of calpain activity and this effect is reversed using an inhibitor of protein kinase A. Consequentially, when platelets were inhibited by forskolin a reduction in the processing of the APP with the consequent decrease in the Aβ peptide secretion was observed. Therefore our study provides novel insight in relation to the mechanism of processing and release of the Aβ peptide from human platelets.
Collapse
Affiliation(s)
- C Sepúlveda
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - B Hernández
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - E Fuentes
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - I Palomo
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - M Alarcón
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| |
Collapse
|
34
|
Domínguez-Fernández T, Rodríguez MA, Sánchez Monroy V, Gómez García C, Medel O, Pérez Ishiwara DG. A Calpain-Like Protein Is Involved in the Execution Phase of Programmed Cell Death of Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:339. [PMID: 30319995 PMCID: PMC6167430 DOI: 10.3389/fcimb.2018.00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/27/2023] Open
Abstract
Oxygen or nitrogen oxidative species and chemical stress induce the programmed cell death (PCD) of Entamoeba histolytica trophozoites. PCD caused by the aminoglycoside G418 is reduced by incubation with the cysteine protease inhibitor E-64; however, no typical caspases or metacaspases have been detected in this parasite. Calpain, a cysteine protease activated by calcium, has been suggested to be part of a specific PCD pathway in this parasite because the specific calpain inhibitor Z-Leu-Leu-Leu-al diminishes the PCD of trophozoites. Here, we predicted the hypothetical 3D structure of a calpain-like protein of E. histolytica and produced specific antibodies against it. We detected the protein in the cytoplasm and near the nucleus. Its expression gradually increased during incubation with G418, with the highest level after 9 h of treatment. In addition, a specific calpain-like siRNA sequence reduced the cell death rate by 65%. All these results support the hypothesis that the calpain-like protein is one of the proteases involved in the execution phase of PCD in E. histolytica. The hypothetical interactome of the calpain-like protein suggests that it may activate or regulate other proteins that probably participate in PCD, including those with EF-hand domains or other calcium-binding sites.
Collapse
Affiliation(s)
| | | | - Virginia Sánchez Monroy
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Consuelo Gómez García
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Olivia Medel
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - David Guillermo Pérez Ishiwara
- Programa de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
35
|
McCartney CSE, Ye Q, Campbell RL, Davies PL. Insertion sequence 1 from calpain-3 is functional in calpain-2 as an internal propeptide. J Biol Chem 2018; 293:17716-17730. [PMID: 30254072 DOI: 10.1074/jbc.ra118.004803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
Calpains are intracellular, calcium-activated cysteine proteases. Calpain-3 is abundant in skeletal muscle, where its mutation-induced loss of function causes limb-girdle muscular dystrophy type 2A. Unlike the small subunit-containing calpain-1 and -2, the calpain-3 isoform homodimerizes through pairing of its C-terminal penta-EF-hand domain. It also has two unique insertion sequences (ISs) not found in the other calpains: IS1 within calpain-3's protease core and IS2 just prior to the penta-EF-hand domain. Production of either native or recombinant full-length calpain-3 to characterize the function of these ISs is challenging. Therefore, here we used recombinant rat calpain-2 as a stable surrogate and inserted IS1 into its equivalent position in the protease core. As it does in calpain-3, IS1 occupied the catalytic cleft and restricted the enzyme's access to substrate and inhibitors. Following activation by Ca2+, IS1 was rapidly cleaved by intramolecular autolysis, permitting the enzyme to freely accept substrate and inhibitors. The surrogate remained functional until extensive intermolecular autoproteolysis inactivated the enzyme, as is typical of calpain-2. Although the small-molecule inhibitors E-64 and leupeptin limited intermolecular autolysis of the surrogate, they did not block the initial intramolecular cleavage of IS1, establishing its role as a propeptide. Surprisingly, the large-molecule calpain inhibitor, calpastatin, completely blocked enzyme activity, even with IS1 intact. We suggest that calpastatin is large enough to oust IS1 from the catalytic cleft and take its place. We propose an explanation for why calpastatin can inhibit calpain-2 bearing the IS1 insertion but cannot inhibit WT calpain-3.
Collapse
Affiliation(s)
- Christian-Scott E McCartney
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Qilu Ye
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L Campbell
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L Davies
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
36
|
Gutiérrez S, Morón M, Griera M, Sucunza D, Calleros L, García-Jérez A, Coderch C, Hermoso FJ, Burgos C, Rodríguez-Puyol M, de Pascual-Teresa B, Diez-Marques ML, Jimenez A, Toro-Londoño M, Rodríguez-Puyol D, Vaquero JJ. Discovery of potent calpain inhibitors based on the azolo-imidazolidenone scaffold. Eur J Med Chem 2018; 157:946-959. [DOI: 10.1016/j.ejmech.2018.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/12/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
|
37
|
Bhat Z, Morton JD, Mason SL, Bekhit AEDA. Role of calpain system in meat tenderness: A review. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Romo-Mancillas A, Lemus R, Pérez-Estrada R, Kuribreña-Romero de Terreros F, Domínguez-Ramírez L. Molecular dynamic simulations of the catalytic subunit of calpains 1, 2, 5, and 10: Structural analysis with an aim toward drug design. Chem Biol Drug Des 2018; 93:38-49. [PMID: 30107087 DOI: 10.1111/cbdd.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
Calpains are cysteine proteases involved in the development of several human chronic illnesses such as neurodegenerative diseases, cardiovascular ailments, diabetes, and obesity which constitutes them into possible therapeutic targets. Here, using molecular dynamic simulations and docking, we studied the binding of known inhibitors to representative members of classical and nonclassical calpains. Our aim is to gain better understanding on the inhibition mechanism of calpains and to develop better and more specific inhibitors. Our atomistic models confirmed the importance of calcium ions for the structure of calpains and, as a consequence, their functionality. With these models and their subsequent use in molecular docking, essential structural requirements were identified for the binding of ligands to the calpain catalytic site that provide useful information for the design of new selective calpain inhibitors.
Collapse
Affiliation(s)
- Antonio Romo-Mancillas
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.,Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | - Roselyn Lemus
- Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | - Raúl Pérez-Estrada
- Dirección de Nuevos Desarrollos, Landsteiner Scientific, Parque Industrial, Toluca, Mexico
| | | | - Lenin Domínguez-Ramírez
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Santa Catarina Mártir Cholula, Puebla, Mexico
| |
Collapse
|
39
|
Du M, Li X, Li Z, Shen Q, Wang Y, Li G, Zhang D. Phosphorylation regulated by protein kinase A and alkaline phosphatase play positive roles in μ-calpain activity. Food Chem 2018; 252:33-39. [DOI: 10.1016/j.foodchem.2018.01.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 11/28/2022]
|
40
|
Chang YS, Hsu MJ, Chou RGR. Postmortem role of calpain-11 in ostrich skeletal muscle. Meat Sci 2018; 143:147-152. [PMID: 29751221 DOI: 10.1016/j.meatsci.2018.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The postmortem calpain-11 role in ostrich muscle was investigated. Pairs of ostrich muscle (Iliotibialis cranialis) were excised from 32 ostrich carcasses in 3-h postmortem and randomly assigned into four treatments. The muscle was cut into 2.5-cm thick meat cores. The cores were incubated in 30 mM CaCl2, 30 mM EDTA, 90 mM NaCl, or control. The cores from the left-side carcasses were sampled after 0, 1, 2, and 3 days of incubation at 5 °C, while the right-side meat cores were taken at 1-day and 3-day incubation for shear force measurements. The results showed that the decrease in unautolyzed and total activities of calpain-11, desmin content and shear force was more rapid in CaCl2-incubated samples than in control, NaCl- and EDTA-incubated samples. Thus, present results suggest that in the absence of calpain-1, calpain-11 with an extensive activation by adding exogenous Ca2+ could enhance the postmortem proteolysis and tenderization of ostrich muscle.
Collapse
Affiliation(s)
- Ya-Shiou Chang
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Man-Jung Hsu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Rong-Ghi R Chou
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan.
| |
Collapse
|
41
|
Ye Q, Campbell RL, Davies PL. Structures of human calpain-3 protease core with and without bound inhibitor reveal mechanisms of calpain activation. J Biol Chem 2018; 293:4056-4070. [PMID: 29382717 PMCID: PMC5857979 DOI: 10.1074/jbc.ra117.001097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/16/2018] [Indexed: 11/06/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2a arises from mutations in the Ca2+-activated intracellular cysteine protease calpain-3. This calpain isoform is abundant in skeletal muscle and differs from the main isoforms, calpain-1 and -2, in being a homodimer and having two short insertion sequences. The first of these, IS1, interrupts the protease core and must be cleaved for activation and substrate binding. Here, to learn how calpain-3 can be regulated and inhibited, we determined the structures of the calpain-3 protease core with IS1 present or proteolytically excised. To prevent intramolecular IS1 autoproteolysis, we converted the active-site Cys to Ala. Small-angle X-ray scattering (SAXS) analysis of the C129A mutant suggested that IS1 is disordered and mobile enough to occupy several locations. Surprisingly, this was also true for the apo version of this mutant. We therefore concluded that IS1 might have a binding partner in the sarcomere and is unstructured in its absence. After autoproteolytic IS1 removal from the active Cys129 calpain-3 protease core, we could solve its crystal structures with and without the cysteine protease inhibitors E-64 and leupeptin covalently bound to the active-site cysteine. In each structure, the active state of the protease core was assembled by the cooperative binding of two Ca2+ ions to the equivalent sites used in calpain-1 and -2. These structures of the calpain-3 active site with residual IS1 and with bound E-64 and leupeptin may help guide the design of calpain-3-specific inhibitors.
Collapse
Affiliation(s)
- Qilu Ye
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L Campbell
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Peter L Davies
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
42
|
Bano D, Ankarcrona M. Beyond the critical point: An overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett 2018; 663:79-85. [DOI: 10.1016/j.neulet.2017.08.048] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023]
|
43
|
Zhang Y, Liu NM, Wang Y, Youn JY, Cai H. Endothelial cell calpain as a critical modulator of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1326-1335. [PMID: 28366876 DOI: 10.1016/j.bbadis.2017.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/04/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Calpains are a family of calcium-dependent non-lysosomal cysteine proteases. In particular, calpains residing in the endothelial cells play important roles in angiogenesis. It has been shown that calpain activity can be increased in endothelial cells by growth factors, primarily vascular endothelial growth factor (VEGF). VEGF/VEGFR2 induces calpain 2 dependent activation of PI3K/AMPK/Akt/eNOS pathway, and consequent nitric oxide production and physiological angiogenesis. Under pathological conditions such as tumor angiogenesis, endothelial calpains can be activated by hypoxia. This review focuses on the molecular regulatory mechanisms of calpain activation, and the newly identified mechanistic roles and downstream signaling events of calpains in physiological angiogenesis, and in the conditions of pathological tumor angiogenesis and diabetic wound healing, as well as retinopathy and atherosclerosis that are also associated with an increase in calpain activity. Further discussed include the differential strategies of modulating angiogenesis through manipulating calpain expression/activity in different pathological settings. Targeted limitation of angiogenesis in cancer and targeted promotion of angiogenesis in diabetic wound healing via modulations of calpains and calpain-dependent signaling mechanisms are of significant translational potential. Emerging strategies of tissue-specific targeting, environment-dependent targeting, and genome-targeted editing may turn out to be effective regimens for targeted manipulation of angiogenesis through calpain pathways, for differential treatments including both attenuation of tumor angiogenesis and potentiation of diabetic angiogenesis.
Collapse
Affiliation(s)
- Yixuan Zhang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Norika Mengchia Liu
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Yongchen Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Ji Youn Youn
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA; Division of Cardiology, Department Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles (UCLA), CA 90095, USA.
| |
Collapse
|
44
|
Nguyen HH, Varadi M, Tompa P, Pauwels K. Affinity purification of human m-calpain through an intrinsically disordered inhibitor, calpastatin. PLoS One 2017; 12:e0174125. [PMID: 28319173 PMCID: PMC5358782 DOI: 10.1371/journal.pone.0174125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calpains are calcium-activated proteases that have biomedical and biotechnological potential. Their activity is tightly regulated by their endogenous inhibitor, calpastatin that binds to the enzyme only in the presence of calcium. Conventional approaches to purify calpain comprise multiple chromatographic steps, and are labor-intensive, leading to low yields. Here we report a new purification procedure for the human m-calpain based on its reversible calcium-mediated interaction with the intrinsically disordered calpastatin. We exploit the specific binding properties of human calpastatin domain 1 (hCSD1) to physically capture human m-calpain from a complex biological mixture. The dissociation of the complex is mediated by chelating calcium, upon which heterodimeric calpain elutes while hCSD1 remains immobilized onto the stationary phase. This novel affinity-based purification was compared to the conventional multistep purification strategy and we find that it is robust, it yields a homogeneous preparation, it can be scaled up easily and it rests on a non-disruptive step that maintains close to physiological conditions that allow further biophysical and functional studies.
Collapse
Affiliation(s)
- Hung Huy Nguyen
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mihaly Varadi
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Tompa
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Kris Pauwels
- VIB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
45
|
Litosh VA, Rochman M, Rymer JK, Porollo A, Kottyan LC, Rothenberg ME. Calpain-14 and its association with eosinophilic esophagitis. J Allergy Clin Immunol 2017; 139:1762-1771.e7. [PMID: 28131390 DOI: 10.1016/j.jaci.2016.09.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/16/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022]
Abstract
Calpains are a family of intracellular, calcium-dependent cysteine proteases involved in a variety of regulatory processes, including cytoskeletal dynamics, cell-cycle progression, signal transduction, gene expression, and apoptosis. These enzymes have been implicated in a number of disease processes, notably for this review involving eosinophilic tissue inflammation, such as eosinophilic esophagitis (EoE), a chronic inflammatory disorder triggered by allergic hypersensitivity to food and associated with genetic variants in calpain 14 (CAPN14). Herein we review the genetic, structural, and biochemical properties of CAPN14 and its gene product CAPN14, and its emerging role in patients with EoE. The CAPN14 gene is localized at chromosome 2p23.1-p21 and is most homologous to CAPN13 (36% sequence identity), which is located 365 kb downstream of CAPN14. Structurally, CAPN14 has classical calpain motifs, including a cysteine protease core. In comparison with other human calpains, CAPN14 has a unique expression pattern, with the highest levels in the upper gastrointestinal tract, particularly in the squamous epithelium of the esophagus. The CAPN14 gene is positioned in an epigenetic hotspot regulated by IL-13, a TH2 cytokine with increased levels in patients with EoE that has been shown to be a mediator of the disease. CAPN14 induces disruptive effects on the esophageal epithelium by impairing epithelial barrier function in association with loss of desmoglein-1 expression and has a regulatory role in repairing epithelial changes induced by IL-13. Thus CAPN14 is a unique protease with distinct tissue-specific expression and function in patients with EoE and is a potential therapeutic target for EoE and related eosinophilic and allergic diseases.
Collapse
Affiliation(s)
- Vladislav A Litosh
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey K Rymer
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
46
|
Hata S, Kitamura F, Yamaguchi M, Shitara H, Murakami M, Sorimachi H. A Gastrointestinal Calpain Complex, G-calpain, Is a Heterodimer of CAPN8 and CAPN9 Calpain Isoforms, Which Play Catalytic and Regulatory Roles, Respectively. J Biol Chem 2016; 291:27313-27322. [PMID: 27881674 DOI: 10.1074/jbc.m116.763912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
Calpains (CAPN) are a family of Ca2+-dependent cysteine proteases that regulate various cellular functions by cleaving diverse substrates. Of the 15 mammalian calpains, CAPN8 and CAPN9 are two that are expressed predominantly in the gastrointestinal tract, where they interact to form a protease complex, termed G-calpain. However, because native G-calpain exhibits a highly restricted expression pattern, it has never been purified, and the interactions between CAPN8 and CAPN9 have not been characterized. Here, we clarified the molecular nature of G-calpain by using recombinant proteins and transgenic mice expressing FLAG-tagged CAPN8 (CAPN8-FLAG). Recombinant mouse CAPN8 and CAPN9 co-expressed in eukaryotic expression systems exhibited the same mobility as native mouse G-calpain in Blue Native-PAGE gels, and CAPN8-FLAG immunoprecipitation from stomach homogenates of the transgenic mice showed that CAPN9 was the only protein that associated with CAPN8-FLAG. These results indicated that G-calpain is a heterodimer of CAPN8 and CAPN9. In addition, active recombinant G-calpain was expressed and purified using an in vitro translation system, and the purified protease exhibited enzymatic properties that were comparable with that of calpain-2. We found that an active-site mutant of CAPN8, but not CAPN9, compromised G-calpain's substrate cleavage activity, and that the N-terminal helix region of CAPN8 and the C-terminal EF-hands of CAPN8 and CAPN9 were involved in CAPN8/9 dimerization. Furthermore, CAPN8 protein in Capn9-/- mice was almost completely lost, whereas CAPN9 was only partially lost in Capn8-/- mice. Collectively, these results demonstrated that CAPN8 and CAPN9 function as catalytic and chaperone-like subunits, respectively, in G-calpain.
Collapse
Affiliation(s)
| | | | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Department of Advanced Science for Biomolecules, and
| | | |
Collapse
|
47
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
48
|
Johansen W, Ako AE, Demko V, Perroud PF, Rensing SA, Mekhlif AK, Olsen OA. The DEK1 Calpain Linker Functions in Three-Dimensional Body Patterning in Physcomitrella patens. PLANT PHYSIOLOGY 2016; 172:1089-1104. [PMID: 27506240 PMCID: PMC5047102 DOI: 10.1104/pp.16.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/04/2016] [Indexed: 05/02/2023]
Abstract
The DEFECTIVE KERNEL1 (DEK1) calpain is a conserved 240-kD key regulator of three-dimensional body patterning in land plants acting via mitotic cell plane positioning. The activity of the cytosolic C-terminal calpain protease is regulated by the membrane-anchored DEK1 MEM, which is connected to the calpain via the 600-amino acid residue Linker. Similar to the calpain and MEM domains, the Linker is highly conserved in the land plant lineage, the similarity dropping sharply compared with orthologous charophyte sequences. Using site-directed mutagenesis, we studied the effect on Physcomitrella patens development by deleting the Linker and two conserved Linker motifs. The results show that removal of the Linker has nearly the same effect as removal of the entire DEK1 gene. In contrast, deletion of the conserved Laminin_G3 (LG3) domain had a milder effect, perturbing leafy gametophore patterning and archegonia development. The LG3 domain from Marchantia polymorpha is fully functional in P. patens, whereas angiosperm sequences are not functional. Deletion of a C-terminal Linker subsegment containing a potential calpain autolytic site severely disturbs gametophore development. Finally, changing one of the three calpain active-site amino acid residues results in the same phenotype as deleting the entire DEK1 gene. Based on the conserved nature of animal and DEK1 calpains, we propose that the DEK1 MEM-Linker complex inactivates the calpain by forcing apart the two calpain subunits carrying the three amino acids of the active site.
Collapse
Affiliation(s)
- Wenche Johansen
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| | - Ako Eugene Ako
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| | - Viktor Demko
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| | - Pierre-François Perroud
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| | - Stephan A Rensing
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| | - Ahmed Khaleel Mekhlif
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| | - Odd-Arne Olsen
- Hedmark University of Applied Sciences, N-2418 Elverum, Norway (W.J., A.E.A., A.K.M.);Norwegian University of Life Sciences, N-1432 Aas, Norway (V.D., O.-A.O.); andPhilipps University Marburg, Plant Cell Biology, 35043 Marburg, Germany (P.-F.P., S.A.R.)
| |
Collapse
|
49
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
50
|
An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122:169-87. [DOI: 10.1016/j.biochi.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 01/09/2023]
|