1
|
Peng H, Wang L, Gao Y, Liu H, Lin G, Kong Y, Xu P, Liu H, Yuan Q, Liu H, Song L, Yang T, Wu H. DMXL2 Is Required for Endocytosis and Recycling of Synaptic Vesicles in Auditory Hair Cells. J Neurosci 2024; 44:e1405232024. [PMID: 39147590 PMCID: PMC11411588 DOI: 10.1523/jneurosci.1405-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Ribbon synapses of inner hair cells (IHCs) are uniquely designed for ultrafast and indefatigable neurotransmission of the sound. The molecular machinery ensuring the efficient, compensatory recycling of the synaptic vesicles (SVs), however, remains elusive. This study showed that hair cell knock-out of murine Dmxl2, whose human homolog is responsible for nonsyndromic sensorineural hearing loss DFNA71, resulted in auditory synaptopathy by impairing synaptic endocytosis and recycling. The mutant mice in the C57BL/6J background of either sex had mild hearing loss with severely diminished wave I amplitude of the auditory brainstem response. Membrane capacitance measurements of the IHCs revealed deficiency in sustained synaptic exocytosis and endocytic membrane retrieval. Consistent with the electrophysiological findings, 3D electron microscopy reconstruction showed reduced reserve pool of SVs and endocytic compartments, while the membrane-proximal and ribbon-associated vesicles remain intact. Our results propose an important role of DMXL2 in hair cell endocytosis and recycling of the SVs.
Collapse
Affiliation(s)
- Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Yunge Gao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Guotong Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Yu Kong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Qingyue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Huanhai Liu
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200125, China
| |
Collapse
|
2
|
Tsukano H, Garcia MM, Dandu PR, Kato HK. Predictive filtering of sensory response via orbitofrontal top-down input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613562. [PMID: 39345607 PMCID: PMC11429993 DOI: 10.1101/2024.09.17.613562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Habituation is a crucial sensory filtering mechanism whose dysregulation can lead to a continuously intense world in disorders with sensory overload. While habituation is considered to require top-down predictive signaling to suppress irrelevant inputs, the exact brain loci storing the internal predictive model and the circuit mechanisms of sensory filtering remain unclear. We found that daily neural habituation in the primary auditory cortex (A1) was reversed by inactivation of the orbitofrontal cortex (OFC). Top-down projections from the ventrolateral OFC, but not other frontal areas, carried predictive signals that grew with daily sound experience and suppressed A1 via somatostatin-expressing inhibitory neurons. Thus, prediction signals from the OFC cancel out behaviorally irrelevant anticipated stimuli by generating their "negative images" in sensory cortices.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Michellee M. Garcia
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Pranathi R. Dandu
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
| | - Hiroyuki K. Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill; Chapel Hill, 27599, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear; Boston, 02114, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School; Boston, 02114, USA
| |
Collapse
|
3
|
Dulon D, de Monvel JB, Plion B, Mallet A, Petit C, Condamine S, Bouleau Y, Safieddine S. A free intravesicular C-terminal of otoferlin is essential for synaptic vesicle docking and fusion at auditory inner hair cell ribbon synapses. Prog Neurobiol 2024; 240:102658. [PMID: 39103114 DOI: 10.1016/j.pneurobio.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Our understanding of how otoferlin, the major calcium sensor in inner hair cells (IHCs) synaptic transmission, contributes to the overall dynamics of synaptic vesicle (SV) trafficking remains limited. To address this question, we generated a knock-in mouse model expressing an otoferlin-GFP protein, where GFP was fused to its C-terminal transmembrane domain. Similar to the wild type protein, the GFP-tagged otoferlin showed normal expression and was associated with IHC SV. Surprisingly, while the heterozygote Otof+/GFP mice exhibited a normal hearing function, homozygote OtofGFP/GFP mice were profoundly deaf attributed to severe reduction in SV exocytosis. Fluorescence recovery after photobleaching revealed a markedly increased mobile fraction of the otof-GFP-associated SV in Otof GFP/GFP IHCs. Correspondingly, 3D-electron tomographic of the ribbon synapses indicated a reduced density of SV attached to the ribbon active zone. Collectively, these results indicate that otoferlin requires a free intravesicular C-terminal end for normal SV docking and fusion.
Collapse
Affiliation(s)
- Didier Dulon
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Bordeaux Neurocampus, Université de Bordeaux, Bordeaux 33076, France.
| | | | - Baptiste Plion
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France
| | - Adeline Mallet
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France
| | - Steven Condamine
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Bordeaux Neurocampus, Université de Bordeaux, Bordeaux 33076, France
| | - Yohan Bouleau
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Bordeaux Neurocampus, Université de Bordeaux, Bordeaux 33076, France
| | - Saaid Safieddine
- Institut Pasteur, Université Paris Cité, Inserm U06, Institut de l'Audition, Paris, France; Centre National de la Recherche Scientifique, Paris, France.
| |
Collapse
|
4
|
Lu M, Xian F, Jin X, Hong G, Fu X, Wang S, Li X, Yang H, Li H, Zhang H, Yang Y, Xiao J, Dong H, Liu Y, Shen H, Lv P. Upregulation of the Ca v1.3 channel in inner hair cells by interleukin 6-dependent inflammaging contributes to age-related hearing loss. Aging Cell 2024:e14305. [PMID: 39148148 DOI: 10.1111/acel.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Age-related hearing loss (AHL) is the most common sensory disorder amongst the older population. Inflammaging is a ≈chronic low-grade inflammation that worsens with age and is an early sign of AHL; however, the underlying mechanisms remain unclear. We used electrophysiological and genetic approaches to establish the importance of interleukin 6 (IL-6)-dependent inflammation in AHL. Elevated IL-6 in the cochlea enhanced Cav1.3 calcium channel function in the inner hair cell (IHC) synapse in mice with AHL. IL-6 upregulated the Cav1.3 channel via the Janus kinase-mitogen activated kinase pathway, causing neurotransmitter excitotoxicity and synapse impairment; IL-6 deficiency or the administration of a Cav1.3 channel blocker attenuated this age-related damage, and rescued hearing loss. Thus, IL-6-dependent inflammaging upregulated the Cav1.3 channel in IHCs, contributing to AHL. Our findings could help the comprehensive understanding of inflammaging's effects on AHL, aiding in early intervention to protect against hearing decline.
Collapse
Affiliation(s)
- Mingshun Lu
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fuyu Xian
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xishuo Jin
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaolong Fu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, College of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shengnan Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinyu Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haichao Yang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongchen Li
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haiwei Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuxin Yang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jundan Xiao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, The Key Laboratory of Neurology, Ministry of Education, Hebei Medical University, Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, The Key Laboratory of Neurology, Ministry of Education, Hebei Medical University, Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Haitao Shen
- Lab of Pathology, Hebei Medical University,, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ping Lv
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Schirmer J, Wolpert S, Dapper K, Rühle M, Wertz J, Wouters M, Eldh T, Bader K, Singer W, Gaudrain E, Başkent D, Verhulst S, Braun C, Rüttiger L, Munk MHJ, Dalhoff E, Knipper M. Neural Adaptation at Stimulus Onset and Speed of Neural Processing as Critical Contributors to Speech Comprehension Independent of Hearing Threshold or Age. J Clin Med 2024; 13:2725. [PMID: 38731254 PMCID: PMC11084258 DOI: 10.3390/jcm13092725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Background: It is assumed that speech comprehension deficits in background noise are caused by age-related or acquired hearing loss. Methods: We examined young, middle-aged, and older individuals with and without hearing threshold loss using pure-tone (PT) audiometry, short-pulsed distortion-product otoacoustic emissions (pDPOAEs), auditory brainstem responses (ABRs), auditory steady-state responses (ASSRs), speech comprehension (OLSA), and syllable discrimination in quiet and noise. Results: A noticeable decline of hearing sensitivity in extended high-frequency regions and its influence on low-frequency-induced ABRs was striking. When testing for differences in OLSA thresholds normalized for PT thresholds (PTTs), marked differences in speech comprehension ability exist not only in noise, but also in quiet, and they exist throughout the whole age range investigated. Listeners with poor speech comprehension in quiet exhibited a relatively lower pDPOAE and, thus, cochlear amplifier performance independent of PTT, smaller and delayed ABRs, and lower performance in vowel-phoneme discrimination below phase-locking limits (/o/-/u/). When OLSA was tested in noise, listeners with poor speech comprehension independent of PTT had larger pDPOAEs and, thus, cochlear amplifier performance, larger ASSR amplitudes, and higher uncomfortable loudness levels, all linked with lower performance of vowel-phoneme discrimination above the phase-locking limit (/i/-/y/). Conslusions: This study indicates that listening in noise in humans has a sizable disadvantage in envelope coding when basilar-membrane compression is compromised. Clearly, and in contrast to previous assumptions, both good and poor speech comprehension can exist independently of differences in PTTs and age, a phenomenon that urgently requires improved techniques to diagnose sound processing at stimulus onset in the clinical routine.
Collapse
Affiliation(s)
- Jakob Schirmer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Konrad Dapper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Moritz Rühle
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marjoleen Wouters
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Therese Eldh
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Katharina Bader
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Etienne Gaudrain
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR5292, Inserm U1028, Université Lyon 1, Centre Hospitalier Le Vinatier-Bâtiment 462–Neurocampus, 95 Boulevard Pinel, 69675 Bron CEDEX, France;
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Deniz Başkent
- Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), Hanzeplein 1, BB21, 9700 RB Groningen, The Netherlands;
| | - Sarah Verhulst
- Department of Information Technology, Ghent University, Technologiepark 126, 9052 Zwijnaarde, Belgium; (M.W.); (S.V.)
| | - Christoph Braun
- Magnetoencephalography-Centre and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
- Center for Mind and Brain Research, University of Trento, Palazzo Fedrigotti-corso Bettini 31, 38068 Rovereto, Italy
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Matthias H. J. Munk
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
- Department of Psychiatry & Psychotherapy, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany
| | - Ernst Dalhoff
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Str. 5, 72076 Tübingen, Germany; (J.S.); (S.W.); (K.D.); (M.R.); (J.W.); (T.E.); (K.B.); (W.S.); (L.R.)
| |
Collapse
|
6
|
Cepeda AP, Ninov M, Neef J, Parfentev I, Kusch K, Reisinger E, Jahn R, Moser T, Urlaub H. Proteomic Analysis Reveals the Composition of Glutamatergic Organelles of Auditory Inner Hair Cells. Mol Cell Proteomics 2024; 23:100704. [PMID: 38128648 PMCID: PMC10832297 DOI: 10.1016/j.mcpro.2023.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
In the ear, inner hair cells (IHCs) employ sophisticated glutamatergic ribbon synapses with afferent neurons to transmit auditory information to the brain. The presynaptic machinery responsible for neurotransmitter release in IHC synapses includes proteins such as the multi-C2-domain protein otoferlin and the vesicular glutamate transporter 3 (VGluT3). Yet, much of this likely unique molecular machinery remains to be deciphered. The scarcity of material has so far hampered biochemical studies which require large amounts of purified samples. We developed a subcellular fractionation workflow combined with immunoisolation of VGluT3-containing membrane vesicles, allowing for the enrichment of glutamatergic organelles that are likely dominated by synaptic vesicles (SVs) of IHCs. We have characterized their protein composition in mice before and after hearing onset using mass spectrometry and confocal imaging and provide a fully annotated proteome with hitherto unidentified proteins. Despite the prevalence of IHC marker proteins across IHC maturation, the profiles of trafficking proteins differed markedly before and after hearing onset. Among the proteins enriched after hearing onset were VAMP-7, syntaxin-7, syntaxin-8, syntaxin-12/13, SCAMP1, V-ATPase, SV2, and PKCα. Our study provides an inventory of the machinery associated with synaptic vesicle-mediated trafficking and presynaptic activity at IHC ribbon synapses and serves as a foundation for future functional studies.
Collapse
Affiliation(s)
- Andreia P Cepeda
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kathrin Kusch
- Functional Auditory Genomics Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment and Deafness, Department for Otolaryngology, Head & Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience & Synaptic Nanophysiology Group Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Chen H, Fang Q, Benseler F, Brose N, Moser T. Probing the role of the C 2F domain of otoferlin. Front Mol Neurosci 2023; 16:1299509. [PMID: 38152587 PMCID: PMC10751786 DOI: 10.3389/fnmol.2023.1299509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Afferent synapses of cochlear inner hair cells (IHCs) employ a unique molecular machinery. Otoferlin is a key player in this machinery, and its genetic defects cause human auditory synaptopathy. We employed site-directed mutagenesis in mice to investigate the role of Ca2+ binding to the C2F domain of otoferlin. Substituting two aspartate residues of the C2F top loops, which are thought to coordinate Ca2+-ions, by alanines (OtofD1841/1842A) abolished Ca2+-influx-triggered IHC exocytosis and synchronous signaling in the auditory pathway despite substantial expression (~60%) of the mutant otoferlin in the basolateral IHC pole. Ca2+ influx of IHCs and their resting membrane capacitance, reflecting IHC size, as well as the number of IHC synapses were maintained. The mutant otoferlin showed a strong apex-to-base abundance gradient in IHCs, suggesting impaired protein targeting. Our results indicate a role of the C2F domain in otoferlin targeting and of Ca2+ binding by the C2F domain for IHC exocytosis and hearing.
Collapse
Affiliation(s)
- Han Chen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Qinghua Fang
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Jaime Tobón LM, Moser T. Ca 2+ regulation of glutamate release from inner hair cells of hearing mice. Proc Natl Acad Sci U S A 2023; 120:e2311539120. [PMID: 38019860 DOI: 10.1073/pnas.2311539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca2+ in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca2+-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca2+-influx (power, m: 4.3) when manipulating the [Ca2+] available for SV release by Zn2+-flicker-blocking of the single Ca2+-channel current. In contrast, a near linear Ca2+ dependence (m: 1.2 to 1.5) was observed when varying the number of open Ca2+-channels during deactivating Ca2+-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca2+-channels over the range of physiological depolarizations revealed m: 1.8. These findings indicate that SV release requires ~4 Ca2+-ions to bind to their Ca2+-sensor of fusion. We interpret the near linear Ca2+-dependence of release during manipulations that change the number of open Ca2+-channels to reflect control of SV release by the high [Ca2+] in the Ca2+-nanodomain of one or few nearby Ca2+-channels. We propose that a combination of Ca2+ nanodomain control and supralinear intrinsic Ca2+-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca2+-signals unrelated to afferent synaptic transmission.
Collapse
Affiliation(s)
- Lina María Jaime Tobón
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| | - Tobias Moser
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen 37075, Germany
- Multiscale Bioimaging of Excitable Cells, Cluster of Excellence, Göttingen 37075, Germany
| |
Collapse
|
9
|
Moser T, Karagulyan N, Neef J, Jaime Tobón LM. Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses. EMBO J 2023; 42:e114587. [PMID: 37800695 PMCID: PMC10690447 DOI: 10.15252/embj.2023114587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging of Excitable Cells”GöttingenGermany
| | - Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
10
|
Liu Y, Zhang H, Fan C, Liu F, Li S, Li J, Zhao H, Zeng X. Potential role of Bcl2 in lipid metabolism and synaptic dysfunction of age-related hearing loss. Neurobiol Dis 2023; 187:106320. [PMID: 37813166 DOI: 10.1016/j.nbd.2023.106320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a prevalent condition affecting millions of individuals globally. This study investigated the role of the cell survival regulator Bcl2 in ARHL through in vitro and in vivo experiments and metabolomics analysis. The results showed that the lack of Bcl2 in the auditory cortex affects lipid metabolism, resulting in reduced synaptic function and neurodegeneration. Immunohistochemical analysis demonstrated enrichment of Bcl2 in specific areas of the auditory cortex, including the secondary auditory cortex, dorsal and ventral areas, and primary somatosensory cortex. In ARHL rats, a significant decrease in Bcl2 expression was observed in these areas. RNAseq analysis showed that the downregulation of Bcl2 altered lipid metabolism pathways within the auditory pathway, which was further confirmed by metabolomics analysis. These results suggest that Bcl2 plays a crucial role in regulating lipid metabolism, synaptic function, and neurodegeneration in ARHL; thereby, it could be a potential therapeutic target. We also revealed that Bcl2 probably has a close connection with lipid peroxidation and reactive oxygen species (ROS) production occurring in cochlear hair cells and cortical neurons in ARHL. The study also identified changes in hair cells, spiral ganglion cells, and nerve fiber density as consequences of Bcl2 deficiency, which could potentially contribute to the inner ear nerve blockage and subsequent hearing loss. Therefore, targeting Bcl2 may be a promising potential therapeutic intervention for ARHL. These findings provide valuable insights into the molecular mechanisms underlying ARHL and may pave the way for novel treatment approaches for this prevalent age-related disorder.
Collapse
Affiliation(s)
- Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, China; Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China.
| | - Huasong Zhang
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China; Department of Otolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China; Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China.
| | - Cong Fan
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Feiyi Liu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Shaoying Li
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Juanjuan Li
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, China; Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China.
| |
Collapse
|
11
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Michanski S, Kapoor R, Steyer AM, Möbius W, Früholz I, Ackermann F, Gültas M, Garner CC, Hamra FK, Neef J, Strenzke N, Moser T, Wichmann C. Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing. EMBO Rep 2023; 24:e56702. [PMID: 37477166 PMCID: PMC10481675 DOI: 10.15252/embr.202256702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.
Collapse
Affiliation(s)
- Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| | - Rohan Kapoor
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Wiebke Möbius
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Electron Microscopy Core Unit, Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Iris Früholz
- Developmental, Neural, and Behavioral Biology Master ProgramUniversity of GöttingenGöttingenGermany
| | | | - Mehmet Gültas
- Faculty of AgricultureSouth Westphalia University of Applied SciencesSoestGermany
| | - Craig C Garner
- German Center for Neurodegenerative DiseasesBerlinGermany
- NeuroCureCluster of ExcellenceCharité – UniversitätsmedizinBerlinGermany
| | - F Kent Hamra
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jakob Neef
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Nicola Strenzke
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Auditory Systems Physiology Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Center for Biostructural Imaging of NeurodegenerationUniversity Medical Center GöttingenGöttingenGermany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”GöttingenGermany
- Multiscale Bioimaging of Excitable Cells, Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
13
|
Hamza Y, Farhadi A, Schwarz DM, McDonough JM, Carney LH. Representations of fricatives in subcortical model responses: Comparisons with human consonant perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:602-618. [PMID: 37535429 PMCID: PMC10550336 DOI: 10.1121/10.0020536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Fricatives are obstruent sound contrasts made by airflow constrictions in the vocal tract that produce turbulence across the constriction or at a site downstream from the constriction. Fricatives exhibit significant intra/intersubject and contextual variability. Yet, fricatives are perceived with high accuracy. The current study investigated modeled neural responses to fricatives in the auditory nerve (AN) and inferior colliculus (IC) with the hypothesis that response profiles across populations of neurons provide robust correlates to consonant perception. Stimuli were 270 intervocalic fricatives (10 speakers × 9 fricatives × 3 utterances). Computational model response profiles had characteristic frequencies that were log-spaced from 125 Hz to 8 or 20 kHz to explore the impact of high-frequency responses. Confusion matrices generated by k-nearest-neighbor subspace classifiers were based on the profiles of average rates across characteristic frequencies as feature vectors. Model confusion matrices were compared with published behavioral data. The modeled AN and IC neural responses provided better predictions of behavioral accuracy than the stimulus spectra, and IC showed better accuracy than AN. Behavioral fricative accuracy was explained by modeled neural response profiles, whereas confusions were only partially explained. Extended frequencies improved accuracy based on the model IC, corroborating the importance of extended high frequencies in speech perception.
Collapse
Affiliation(s)
- Yasmeen Hamza
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Afagh Farhadi
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Douglas M Schwarz
- Depts. of Neuroscience and Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Joyce M McDonough
- Department of Linguistics, University of Rochester, Rochester, New York 14627, USA
| | - Laurel H Carney
- Depts. of Biomedical Engineering, Neuroscience, and Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
14
|
Yin N, Zhao J, Zhang P, Yu B, Chai R, Li GL. Functional and developmental changes in the inner hair cell ribbon synapses caused by Myosin VI knockout and deafness-inducing point mutation. Cell Death Discov 2023; 9:177. [PMID: 37258513 DOI: 10.1038/s41420-023-01473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Hearing loss is one of the most common neurosensory disorders in humans, and above half of hearing loss is caused by gene mutations. Among more than 100 genes that cause non-syndromic hearing loss, myosin VI (MYO6) is typical in terms of the complexity of underlying mechanisms, which are not well understood. In this study, we used both knock-out (Myo6-/-) and point mutation (Myo6C442Y) mice as animal models, performed whole-cell patch-clamp recording and capacitance measurement in the inner hair cells (IHCs) in the cochlea, and sought to reveal potential functional and developmental changes in their ribbon synapses. In Myo6-/- cochleae of both before (P8-10) and after hearing onset (P18-20), exocytosis from IHCs, measured in whole-cell capacitance change (ΔCm), was significantly reduced, Ca2+ current amplitude (ICa) was unchanged, but Ca2+ voltage dependency was differently altered, causing significant increase in Ca2+ influx in mature IHCs but not in immature IHCs. In immature IHCs of Myo6C442Y/C442Y cochleae, neither ΔCm nor ICa was altered, but both were reduced in mature IHCs of the same animal model. Furthermore, while the reduction of exocytosis was caused by a combination of the slower rate of depleting readily releasable (RRP) pool of synaptic vesicles and slower sustained release rate (SRR) in Myo6-/- immature IHCs, it was likely due to smaller RRP and slower SRR in mature IHCs of both animal models. These results expand our understanding of the mechanisms of deafness caused by MYO6 mutations, and provide a solid theoretical and scientific basis for the diagnosis and treatment of deafness.
Collapse
Affiliation(s)
- Ning Yin
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Jingjing Zhao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
| | - Panpan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
15
|
Willmore BDB, King AJ. Adaptation in auditory processing. Physiol Rev 2023; 103:1025-1058. [PMID: 36049112 PMCID: PMC9829473 DOI: 10.1152/physrev.00011.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Adaptation is an essential feature of auditory neurons, which reduces their responses to unchanging and recurring sounds and allows their response properties to be matched to the constantly changing statistics of sounds that reach the ears. As a consequence, processing in the auditory system highlights novel or unpredictable sounds and produces an efficient representation of the vast range of sounds that animals can perceive by continually adjusting the sensitivity and, to a lesser extent, the tuning properties of neurons to the most commonly encountered stimulus values. Together with attentional modulation, adaptation to sound statistics also helps to generate neural representations of sound that are tolerant to background noise and therefore plays a vital role in auditory scene analysis. In this review, we consider the diverse forms of adaptation that are found in the auditory system in terms of the processing levels at which they arise, the underlying neural mechanisms, and their impact on neural coding and perception. We also ask what the dynamics of adaptation, which can occur over multiple timescales, reveal about the statistical properties of the environment. Finally, we examine how adaptation to sound statistics is influenced by learning and experience and changes as a result of aging and hearing loss.
Collapse
Affiliation(s)
- Ben D. B. Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Zhao J, Yin N, Li GL. Comparative study of ionic currents and exocytosis in hair cells of the basilar and amphibian papilla in bullfrogs. Front Cell Neurosci 2023; 16:1064886. [PMID: 36700157 PMCID: PMC9868640 DOI: 10.3389/fncel.2022.1064886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Hearing organs in the peripheral of different vertebrate species are extremely diverse in shape and function. In particular, while the basilar papilla (BP) is elongated and covers the sounds of both low and high frequencies in turtles and birds, it is round and responds to high frequencies only in frogs, leaving the low frequencies to the amphibian papilla (AP). In this study, we performed patch-clamp recordings in hair cells of both hearing organs in bullfrogs and conducted a comparative study of their ionic currents and exocytosis. Compared to hair cells in AP with a large tetraethylammonium (TEA)-sensitive slow-activating K+ current (I K), those in BP exhibited a small 4-aminopyridine (4-AP)-sensitive fast-inactivating K+ current (I A). Furthermore, hair cells in BP exhibited a significantly smaller Ca2+ current with a more positive half-activation voltage (Vhalf) and a slower slope of voltage dependency (k). In response to step depolarization, exocytosis (ΔCm) in BP hair cells was also significantly smaller, but the Ca2+ efficiency, assessed with the ratio between ΔCm and Ca2+ charge (QCa), was comparable to that of AP hair cells. Finally, we applied a paired-step depolarization and varied the interval in between, and we found that the replenishment of synaptic vesicles was significantly slower in BP hair cells. Together, our findings suggest that hair cells tuned to high frequencies in bullfrogs release less synaptic vesicles and recycle synaptic vesicles more slowly, allowing them to cope well with the large DC component found in their receptor potentials in vivo.
Collapse
Affiliation(s)
- Jingjing Zhao
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ning Yin
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China,*Correspondence: Geng-Lin Li,
| |
Collapse
|
17
|
Saettele AL, Wong HTC, Kindt KS, Warchol ME, Sheets L. Prolonged Dexamethasone Exposure Enhances Zebrafish Lateral-Line Regeneration But Disrupts Mitochondrial Homeostasis and Hair Cell Function. J Assoc Res Otolaryngol 2022; 23:683-700. [PMID: 36261670 PMCID: PMC9789251 DOI: 10.1007/s10162-022-00875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
The synthetic glucocorticoid dexamethasone is commonly used to treat inner ear disorders. Previous work in larval zebrafish has shown that dexamethasone treatment enhances hair cell regeneration, yet dexamethasone has also been shown to inhibit regeneration of peripheral nerves after lesion. We therefore used the zebrafish model to determine the impact of dexamethasone treatment on lateral-line hair cells and primary afferents. To explore dexamethasone in the context of regeneration, we used copper sulfate (CuSO4) to induce hair cell loss and retraction of nerve terminals, and then allowed animals to recover in dexamethasone for 48 h. Consistent with previous work, we observed significantly more regenerated hair cells in dexamethasone-treated larvae. Importantly, we found that the afferent processes beneath neuromasts also regenerated in the presence of dexamethasone and formed an appropriate number of synapses, indicating that innervation of hair cells was not inhibited by dexamethasone. In addition to regeneration, we also explored the effects of prolonged dexamethasone exposure on lateral-line homeostasis and function. Following dexamethasone treatment, we observed hyperpolarized mitochondrial membrane potentials (ΔΨm) in neuromast hair cells and supporting cells. Hair cells exposed to dexamethasone were also more vulnerable to neomycin-induced cell death. In response to a fluid-jet delivered saturating stimulus, calcium influx through hair cell mechanotransduction channels was significantly reduced, yet presynaptic calcium influx was unchanged. Cumulatively, these observations indicate that dexamethasone enhances hair cell regeneration in lateral-line neuromasts, yet also disrupts mitochondrial homeostasis, making hair cells more vulnerable to ototoxic insults and possibly impacting hair cell function.
Collapse
Affiliation(s)
- Allison L Saettele
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hiu-Tung C Wong
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Grange J, Zhang M, Culling J. The Role of Efferent Reflexes in the Efficient Encoding of Speech by the Auditory Nerve. J Neurosci 2022; 42:6907-6916. [PMID: 35882559 PMCID: PMC9463981 DOI: 10.1523/jneurosci.2220-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
To avoid information loss, the auditory system must adapt the broad dynamic range of natural sounds to the restricted dynamic range of auditory nerve fibers. How it solves this dynamic range problem is not fully understood. Recent electrophysiological studies showed that dynamic-range adaptation occurs at the auditory nerve level, but the amount of adaptation found was insufficient to prevent information loss. We used the physiological MATLAB Auditory Periphery model to study the contribution of efferent reflexes to dynamic range adaptation. Simulating the healthy human auditory periphery provided adaptation predictions that suggest that the acoustic reflex shifts rate-level functions toward a given context level and the medial olivocochlear reflex sharpens the response of nerve fibers around that context level. A simulator of hearing was created to decode model-predicted firing of the auditory nerve back into an acoustic signal, for use in psychophysical tasks. Speech reception thresholds in noise obtained with a normal-hearing implementation of the simulator were just 1 dB above those measured with unprocessed stimuli. This result validates the simulator for speech stimuli. Disabling efferent reflexes elevated thresholds by 4 dB, reaching thresholds found in mild-to-moderately hearing-impaired individuals. Overall, our studies suggest that efferent reflexes may contribute to overcoming the dynamic range problem. Because specific sensorineural pathologies can be inserted in the model, the simulator can be used to obtain the psychophysical signatures of each pathology, thereby laying a path to differential diagnosis.SIGNIFICANCE STATEMENT The saturation of auditory nerve fibers at moderate sound levels seen in rate-level functions challenges our understanding of how sounds of wide dynamic range are encoded. Our physiologically inspired simulations suggest that efferent reflexes may play a major role in dynamic range adaptation, with the acoustic reflex moving auditory nerve rate-level function toward a given context level and the medial olivocochlear reflex increasing fiber sensitivity around that context level. A psychophysical task using advanced simulations showed how the existence of the efferent system could prevent unrecoverable information loss and severe impairment of speech-in-noise intelligibility. These findings illustrate how important the precise modeling of peripheral compression is to both simulations and the understanding of normal and impaired hearing.
Collapse
Affiliation(s)
- Jacques Grange
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom and Audiology Department, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Mengchao Zhang
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom and Audiology Department, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - John Culling
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom and Audiology Department, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| |
Collapse
|
19
|
Spaiardi P, Marcotti W, Masetto S, Johnson SL. Signal transmission in mature mammalian vestibular hair cells. Front Cell Neurosci 2022; 16:806913. [PMID: 35936492 PMCID: PMC9353129 DOI: 10.3389/fncel.2022.806913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of balance and gaze relies on the faithful and rapid signaling of head movements to the brain. In mammals, vestibular organs contain two types of sensory hair cells, type-I and type-II, which convert the head motion-induced movement of their hair bundles into a graded receptor potential that drives action potential activity in their afferent fibers. While signal transmission in both hair cell types involves Ca2+-dependent quantal release of glutamate at ribbon synapses, type-I cells appear to also exhibit a non-quantal mechanism that is believed to increase transmission speed. However, the reliance of mature type-I hair cells on non-quantal transmission remains unknown. Here we investigated synaptic transmission in mammalian utricular hair cells using patch-clamp recording of Ca2+ currents and changes in membrane capacitance (ΔCm). We found that mature type-II hair cells showed robust exocytosis with a high-order dependence on Ca2+ entry. By contrast, exocytosis was approximately 10 times smaller in type-I hair cells. Synaptic vesicle exocytosis was largely absent in mature vestibular hair cells of CaV1.3 (CaV1.3−/−) and otoferlin (Otof−/−) knockout mice. Even though Ca2+-dependent exocytosis was small in type-I hair cells of wild-type mice, or absent in CaV1.3−/− and Otof−/−mice, these cells were able to drive action potential activity in the postsynaptic calyces. This supports a functional role for non-quantal synaptic transmission in type-I cells. The large vesicle pools in type-II cells would facilitate sustained transmission of tonic or low-frequency signals. In type-I cells, the restricted vesicle pool size, together with a rapid non-quantal mechanism, could allow them to sustain high-frequency phasic signal transmission at their specialized large calyceal synapses.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sergio Masetto
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stuart L. Johnson
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Stuart L. Johnson
| |
Collapse
|
20
|
Li Y, Yu H, Zhou X, Jin L, Li W, Li GL, Shen X. Multiple Sevoflurane Exposures During the Neonatal Period Cause Hearing Impairment and Loss of Hair Cell Ribbon Synapses in Adult Mice. Front Neurosci 2022; 16:945277. [PMID: 35911996 PMCID: PMC9329801 DOI: 10.3389/fnins.2022.945277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aims to investigate the effects of multiple sevoflurane exposures in neonatal mice on hearing function in the later life and explores the underlying mechanisms and protective strategies. Materials and Methods Neonatal Kunming mice were exposed to sevoflurane for 3 days. Auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests, immunofluorescence, patch-clamp recording, and quantitative real-time PCR were performed to observe hearing function, hair cells, ribbon synapses, nerve fibers, spiral ganglion neurons, and oxidative stress. Results Compared to control group, multiple sevoflurane exposures during the neonatal time significantly elevated ABR thresholds at 8 kHz (35.42 ± 1.57 vs. 41.76 ± 1.97 dB, P = 0.0256), 16 kHz (23.33 ± 1.28 vs. 33.53 ± 2.523 dB, P = 0.0012), 24 kHz (30.00 ± 2.04 vs. 46.76 ± 3.93 dB, P = 0.0024), and 32 kHz (41.25 ± 2.31 vs. 54.41 ± 2.94 dB, P = 0.0028) on P30, caused ribbon synapse loss on P15 (13.10 ± 0.43 vs. 10.78 ± 0.52, P = 0.0039) and P30 (11.24 ± 0.56 vs. 8.50 ± 0.84, P = 0.0141), and degenerated spiral ganglion neuron (SGN) nerve fibers on P30 (110.40 ± 16.23 vs. 55.04 ± 8.13, P = 0.0073). In addition, the Vhalf of calcium current become more negative (−21.99 ± 0.70 vs. −27.17 ± 0.60 mV, P < 0.0001), exocytosis was reduced (105.40 ± 19.97 vs. 59.79 ± 10.60 fF, P < 0.0001), and Lpo was upregulated (P = 0.0219) in sevoflurane group than those in control group. N-acetylcysteine (NAC) reversed hearing impairment induced by sevoflurane. Conclusion The findings suggest that multiple sevoflurane exposures during neonatal time may cause hearing impairment in adult mice. The study also demonstrated that elevated oxidative stress led to ribbon synapses impairment and SGN nerve fibers degeneration, and the interventions of antioxidants alleviated the sevoflurane-induced hearing impairment.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huiqian Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xuehua Zhou
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Wen Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Geng-Lin Li,
| | - Xia Shen
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Xia Shen,
| |
Collapse
|
21
|
Guo R, Xu Y, Xiong W, Wei W, Qi Y, Du Z, Gong S, Tao Z, Liu K. Autophagy-Mediated Synaptic Refinement and Auditory Neural Pruning Contribute to Ribbon Synaptic Maturity in the Developing Cochlea. Front Mol Neurosci 2022; 15:850035. [PMID: 35310883 PMCID: PMC8931412 DOI: 10.3389/fnmol.2022.850035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
In rodents, massive initial synapses are formed in the auditory peripheral nervous system at the early postnatal stage, and one of the major phenomena is that the number of afferent synapses in the cochlea is significantly reduced in the duration of development. This raises the hypothesis that the number of cochlear ribbon synapses are dramatically changed with hearing development and maturation. In this study, several tracers identifying activities of autophagy were applied to estimate the level of autophagy activity in the process of ribbon synapse development in mice; further, changes in the synaptic number and spiral ganglion nerve (SGN) fibers were quantitatively measured. We found robust expression of LC3B and lysosomal-associated membrane protein 1 as well as LysoTracker in or near inner hair cells and cochlear ribbon synapses in the early stage of postnatal development. Moreover, we found a significant loss in the intensity of SGN fibers at ribbon synaptic development and hearing onset. Thus, this study demonstrates that ribbon synaptic refinement and SGN fibers pruning are closely associated with the morphological and functional maturation of ribbon synapses and that synaptic refinement and SGN fiber pruning are regulated by the robust activities of autophagy in the earlier stages of auditory development.
Collapse
Affiliation(s)
- Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yice Xu
- Department of Otolaryngology Head and Neck Surgery, Xiaogan Central Hospital, Wuhan University of Science and Technology, Xiaogan, China
| | - Wei Xiong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Shusheng Gong,
| | - Zezhang Tao
- Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Ke Liu,
| |
Collapse
|
22
|
Chakrabarti R, Jaime Tobón LM, Slitin L, Redondo Canales M, Hoch G, Slashcheva M, Fritsch E, Bodensiek K, Özçete ÖD, Gültas M, Michanski S, Opazo F, Neef J, Pangrsic T, Moser T, Wichmann C. Optogenetics and electron tomography for structure-function analysis of cochlear ribbon synapses. eLife 2022; 11:79494. [PMID: 36562477 PMCID: PMC9908081 DOI: 10.7554/elife.79494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and neurotransmitter release. Ultrastructurally, the number of docked SVs increased upon short (17-25 ms) and long (48-76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Lina María Jaime Tobón
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Loujin Slitin
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Magdalena Redondo Canales
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Gerhard Hoch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Marina Slashcheva
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of GöttingenGöttingenGermany
| | - Elisabeth Fritsch
- Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of GöttingenGöttingenGermany
| | - Kai Bodensiek
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany
| | - Özge Demet Özçete
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied SciencesSoestGermany
| | - Susann Michanski
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,NanoTag Biotechnologies GmbHGöttingenGermany,Institute of Neuro- and Sensory Physiology, University Medical Center GöttingenGöttingenGermany
| | - Jakob Neef
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Tina Pangrsic
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany,Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany
| | - Tobias Moser
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center GöttingenGöttingenGermany,Center for Biostructural Imaging of Neurodegeneration, University Medical Center GöttingenGöttingenGermany,Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing"GöttingenGermany,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable CellsGöttingenGermany
| |
Collapse
|
23
|
Suthakar K, Liberman MC. Auditory-nerve responses in mice with noise-induced cochlear synaptopathy. J Neurophysiol 2021; 126:2027-2038. [PMID: 34788179 DOI: 10.1152/jn.00342.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cochlear synaptopathy is the noise-induced or age-related loss of ribbon synapses between inner hair cells (IHCs) and auditory-nerve fibers (ANFs), first reported in CBA/CaJ mice. Recordings from single ANFs in anesthetized, noise-exposed guinea pigs suggested that neurons with low spontaneous rates (SRs) and high thresholds are more vulnerable than low-threshold, high-SR fibers. However, there is extensive postexposure regeneration of ANFs in guinea pigs but not in mice. Here, we exposed CBA/CaJ mice to octave-band noise and recorded sound-evoked and spontaneous activity from single ANFs at least 2 wk later. Confocal analysis of cochleae immunostained for pre- and postsynaptic markers confirmed the expected loss of 40%-50% of ANF synapses in the basal half of the cochlea; however, our data were not consistent with a selective loss of low-SR fibers. Rather they suggested a loss of both SR groups in synaptopathic regions. Single-fiber thresholds and frequency tuning recovered to pre-exposure levels; however, response to tone bursts showed increased peak and steady-state firing rates, as well as decreased jitter in first-spike latencies. This apparent gain-of-function increased the robustness of tone-burst responses in the presence of continuous masking noise. This study suggests that the nature of noise-induced synaptic damage varies between different species and that, in mouse, the noise-induced hyperexcitability seen in central auditory circuits is also observed at the level of the auditory nerve.NEW & NOTEWORTHY Noise-induced damage to synapses between inner hair cells and auditory-nerve fibers (ANFs) can occur without permanent hair cell damage, resulting in pathophysiology that "hides" behind normal thresholds. Prior single-fiber neurophysiology in guinea pig suggested that noise selectively targets high-threshold ANFs. Here, we show that the lingering pathophysiology differs in mouse, with both ANF groups affected and a paradoxical gain-of-function in surviving low-threshold fibers, including increased onset rate, decreased onset jitter, and reduced maskability.
Collapse
Affiliation(s)
- Kirupa Suthakar
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Joshi Y, Petit CP, Miot S, Guillet M, Sendin G, Bourien J, Wang J, Pujol R, El Mestikawy S, Puel JL, Nouvian R. VGLUT3-p.A211V variant fuses stereocilia bundles and elongates synaptic ribbons. J Physiol 2021; 599:5397-5416. [PMID: 34783032 PMCID: PMC9299590 DOI: 10.1113/jp282181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Abstract DFNA25 is an autosomal‐dominant and progressive form of human deafness caused by mutations in the SLC17A8 gene, which encodes the vesicular glutamate transporter type 3 (VGLUT3). To resolve the mechanisms underlying DFNA25, we studied phenotypes of mice harbouring the p.A221V mutation in humans (corresponding to p.A224V in mice). Using auditory brainstem response and distortion product otoacoustic emissions, we showed progressive hearing loss with intact cochlear amplification in the VGLUT3A224V/A224V mouse. The summating potential was reduced, indicating the alteration of inner hair cell (IHC) receptor potential. Scanning electron microscopy examinations demonstrated the collapse of stereocilia bundles in IHCs, leaving those from outer hair cells unaffected. In addition, IHC ribbon synapses underwent structural and functional modifications at later stages. Using super‐resolution microscopy, we observed oversized synaptic ribbons and patch‐clamp membrane capacitance measurements showed an increase in the rate of the sustained releasable pool exocytosis. These results suggest that DFNA25 stems from a failure in the mechano‐transduction followed by a change in synaptic transfer. The VGLUT3A224V/A224V mouse model opens the way to a deeper understanding and to a potential treatment for DFNA25. Key points The vesicular glutamate transporter type 3 (VGLUT3) loads glutamate into the synaptic vesicles of auditory sensory cells, the inner hair cells (IHCs). The VGLUT3‐p.A211V variant is associated with human deafness DFNA25. Mutant mice carrying the VGLUT3‐p.A211V variant show progressive hearing loss. IHCs from mutant mice harbour distorted stereocilary bundles, which detect incoming sound stimulation, followed by oversized synaptic ribbons, which release glutamate onto the afferent nerve fibres. These results suggest that DFNA25 stems from the failure of auditory sensory cells to faithfully transduce acoustic cues into neural messages.
Collapse
Affiliation(s)
- Yuvraj Joshi
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Stéphanie Miot
- INM, Univ Montpellier, INSERM, Montpellier, France.,Sorbonne Universités, Université Pierre et Marie Curie UM 119, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | | | | | | | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Rémy Pujol
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Salah El Mestikawy
- Sorbonne Universités, Université Pierre et Marie Curie UM 119, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | | | - Régis Nouvian
- INM, Univ Montpellier, INSERM, Montpellier, France.,INM, Univ Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
25
|
Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R. Estradiol Protects against Noise-Induced Hearing Loss and Modulates Auditory Physiology in Female Mice. Int J Mol Sci 2021; 22:12208. [PMID: 34830090 PMCID: PMC8620009 DOI: 10.3390/ijms222212208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Benjamin Shuster
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Ryan Casserly
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Erika Lipford
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | - Béatrice Milon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Shaun Viechweg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Kanisa Davidson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Jennifer Enoch
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Mark McMurray
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | | | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Ronna Hertzano
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
27
|
Boero LE, Payne S, Gómez-Casati ME, Rutherford MA, Goutman JD. Noise Exposure Potentiates Exocytosis From Cochlear Inner Hair Cells. Front Synaptic Neurosci 2021; 13:740368. [PMID: 34658832 PMCID: PMC8511412 DOI: 10.3389/fnsyn.2021.740368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Noise-induced hearing loss has gained relevance as one of the most common forms of hearing impairment. The anatomical correlates of hearing loss, principally cell damage and/or death, are relatively well-understood histologically. However, much less is known about the physiological aspects of damaged, surviving cells. Here we addressed the functional consequences of noise exposure on the capacity of inner hair cells (IHCs) to release synaptic vesicles at synapses with spiral ganglion neurons (SGNs). Mice of either sex at postnatal day (P) 15–16 were exposed to 1–12 kHz noise at 120 dB sound pressure level (SPL), for 1 h. Exocytosis was measured by tracking changes in membrane capacitance (ΔCm) from IHCs of the apical cochlea. Upon IHC depolarization to different membrane potentials, ΔCm showed the typical bell-shaped curve that mirrors the voltage dependence of Ca2+ influx, in both exposed and unexposed cells. Surprisingly, from IHCs at 1-day after exposure (d.a.e.), we found potentiation of exocytosis at the peak of the bell-shaped curve. The increase in exocytosis was not accompanied by changes in whole-cell Ca2+ influx, suggesting a modification in coupling between Ca2+ channels and synaptic vesicles. Consistent with this notion, noise exposure also changed the Ca2+-dependence of exocytosis from linear to supralinear. Noise exposure did not cause loss of IHCs, but did result in a small reduction in the number of IHC-SGN synapses at 1-d.a.e. which recovered by 14-d.a.e. In contrast, a strong reduction in auditory brainstem response wave-I amplitude (representing synchronous firing of SGNs) and distortion product otoacoustic emissions (reflecting outer hair cell function) indicated a profound hearing loss at 1- and 14-d.a.e. To determine the role of glutamate release in the noise-induced potentiation of exocytosis, we evaluated vesicular glutamate transporter-3 (Vglut3) knock-out (KO) mice. Unlike WT, IHCs from Vglut3KO mice showed a noise-induced reduction in ΔCm and Ca2+ influx with no change in the Ca2+-dependence of exocytosis. Together, these results indicate that traumatic noise exposure triggers changes of IHC synaptic function including a Vglut3-dependent potentiation of exocytosis.
Collapse
Affiliation(s)
- Luis E Boero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shelby Payne
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Mark A Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| |
Collapse
|
28
|
Grabner CP, Moser T. The mammalian rod synaptic ribbon is essential for Ca v channel facilitation and ultrafast synaptic vesicle fusion. eLife 2021; 10:63844. [PMID: 34617508 PMCID: PMC8594941 DOI: 10.7554/elife.63844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Rod photoreceptors (PRs) use ribbon synapses to transmit visual information. To signal ‘no light detected’ they release glutamate continually to activate post-synaptic receptors. When light is detected glutamate release pauses. How a rod’s individual ribbon enables this process was studied here by recording evoked changes in whole-cell membrane capacitance from wild-type and ribbonless (Ribeye-ko) mice. Wild-type rods filled with high (10 mM) or low (0.5 mM) concentrations of the Ca2+-buffer EGTA created a readily releasable pool (RRP) of 87 synaptic vesicles (SVs) that emptied as a single kinetic phase with a τ<0.4 ms. The lower concentration of EGTA accelerated Cav channel opening and facilitated release kinetics. In contrast, ribbonless rods created a much smaller RRP of 22 SVs, and they lacked Cav channel facilitation; however, Ca2+ channel-release coupling remained tight. These release deficits caused a sharp attenuation of rod-driven scotopic light responses. We conclude that the synaptic ribbon facilitates Ca2+-influx and establishes a large RRP of SVs.
Collapse
Affiliation(s)
- Chad Paul Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Collaborative Research Center 1286 'Quantitative Synaptology', University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Oestreicher D, Picher MM, Rankovic V, Moser T, Pangrsic T. Cabp2-Gene Therapy Restores Inner Hair Cell Calcium Currents and Improves Hearing in a DFNB93 Mouse Model. Front Mol Neurosci 2021; 14:689415. [PMID: 34489639 PMCID: PMC8417311 DOI: 10.3389/fnmol.2021.689415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Clinical management of auditory synaptopathies like other genetic hearing disorders is currently limited to the use of hearing aids or cochlear implants. However, future gene therapy promises restoration of hearing in selected forms of monogenic hearing impairment, in which cochlear morphology is preserved over a time window that enables intervention. This includes non-syndromic autosomal recessive hearing impairment DFNB93, caused by defects in the CABP2 gene. Calcium-binding protein 2 (CaBP2) is a potent modulator of inner hair cell (IHC) voltage-gated calcium channels CaV1.3. Based on disease modeling in Cabp2–/– mice, DFNB93 hearing impairment has been ascribed to enhanced steady-state inactivation of IHC CaV1.3 channels, effectively limiting their availability to trigger synaptic transmission. This, however, does not seem to interfere with cochlear development and does not cause early degeneration of hair cells or their synapses. Here, we studied the potential of a gene therapeutic approach for the treatment of DFNB93. We used AAV2/1 and AAV-PHP.eB viral vectors to deliver the Cabp2 coding sequence into IHCs of early postnatal Cabp2–/– mice and assessed the level of restoration of hair cell function and hearing. Combining in vitro and in vivo approaches, we observed high transduction efficiency, and restoration of IHC CaV1.3 function resulting in improved hearing of Cabp2–/– mice. These preclinical results prove the feasibility of DFNB93 gene therapy.
Collapse
Affiliation(s)
- David Oestreicher
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maria Magdalena Picher
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Moser
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
30
|
Jeffers PWC, Bourien J, Diuba A, Puel JL, Kujawa SG. Noise-Induced Hearing Loss in Gerbil: Round Window Assays of Synapse Loss. Front Cell Neurosci 2021; 15:699978. [PMID: 34385909 PMCID: PMC8354318 DOI: 10.3389/fncel.2021.699978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 01/31/2023] Open
Abstract
Previous work in animals with recovered hearing thresholds but permanent inner hair cell synapse loss after noise have suggested initial vulnerability of low spontaneous rate (SR) auditory nerve fibers (ANF). As these fibers have properties of response that facilitate robust sound coding in continuous noise backgrounds, their targeted loss would have important implications for function. To address the issue of relative ANF vulnerabilities after noise, we assessed cochlear physiologic and histologic consequences of temporary threshold shift-producing sound over-exposure in the gerbil, a species with well-characterized distributions of auditory neurons by SR category. The noise exposure targeted a cochlear region with distributed innervation (low-, medium- and high-SR neurons). It produced moderate elevations in outer hair cell-based distortion-product otoacoustic emission and whole nerve compound action potential thresholds in this region, with accompanying reductions in suprathreshold response amplitudes, quantified at 24 h. These parameters of response recovered well with post-exposure time. Chronic synapse loss was maximum in the frequency region initially targeted by the noise. Cochlear round window recorded mass potentials (spontaneous neural noise and sound-driven peri-stimulus time responses, PSTR) reflected parameters of the loss not detected by the conventional assays. Spontaneous activity was acutely reduced. Steady-state (PSTR plateau) activity was correlated with synapse loss in frequency regions with high concentrations of low-SR neurons, whereas the PSTR onset peak and spontaneous round window noise, both dominated by high-SR fiber activity, were relatively unaltered across frequency in chronic ears. Together, results suggest that acute targets of noise were of mixed SR subtypes, but chronic targets were predominantly low-SR neurons. PSTRs captured key properties of the auditory nerve response and vulnerability to injury that should yield important diagnostic information in hearing loss etiologies producing cochlear synaptic and neural loss.
Collapse
Affiliation(s)
- Penelope W C Jeffers
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Jérôme Bourien
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Artem Diuba
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sharon G Kujawa
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
De Faveri F, Marcotti W, Ceriani F. Sensory adaptation at ribbon synapses in the zebrafish lateral line. J Physiol 2021; 599:3677-3696. [PMID: 34047358 PMCID: PMC7612133 DOI: 10.1113/jp281646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Adaptation is used by sensory systems to adjust continuously their sensitivity to match changes in environmental stimuli. In the auditory and vestibular systems, the release properties of glutamate-containing vesicles at the hair-cell ribbon synapses play a crucial role in sensory adaptation, thus shaping the neural response to sustained stimulation. How ribbon synapses regulate the release of glutamate and how they modulate afferent responses in vivo is still largely unknown. Here, we have used two-photon imaging and electrophysiology to investigate the synaptic transfer characteristics of the hair cells in the context of sensory adaptation in live zebrafish. Prolonged and repeated water-jet stimulation of the hair-cell stereociliary bundles caused adaptation of the action potential firing rate elicited in the afferent neurons. By monitoring glutamate at ribbon synapses using time-lapse imaging, we identified two kinetically distinct release components: a rapid response that was exhausted within 50-100 ms and a slower and sustained response lasting the entire stimulation. After repeated stimulations, the recovery of the fast component followed a biphasic time course. Depression of glutamate release was largely responsible for the rapid firing rate adaptation recorded in the afferent neurons. However, postsynaptic Ca2+ responses had a slower recovery time course than that of glutamate release, indicating that they are also likely to contribute to the afferent firing adaptation. Hair cells also exhibited a form of adaptation during inhibitory bundle stimulations. We conclude that hair cells have optimised their synaptic machinery to encode prolonged stimuli and to maintain their sensitivity to new incoming stimuli.
Collapse
Affiliation(s)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
33
|
Auditory Brainstem Models: Adapting Cochlear Nuclei Improve Spatial Encoding by the Medial Superior Olive in Reverberation. J Assoc Res Otolaryngol 2021; 22:289-318. [PMID: 33861395 DOI: 10.1007/s10162-021-00797-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022] Open
Abstract
Listeners typically perceive a sound as originating from the direction of its source, even as direct sound is followed milliseconds later by reflected sound from multiple different directions. Early-arriving sound is emphasised in the ascending auditory pathway, including the medial superior olive (MSO) where binaural neurons encode the interaural-time-difference (ITD) cue for spatial location. Perceptually, weighting of ITD conveyed during rising sound energy is stronger at 600 Hz than at 200 Hz, consistent with the minimum stimulus rate for binaural adaptation, and with the longer reverberation times at 600 Hz, compared with 200 Hz, in many natural outdoor environments. Here, we computationally explore the combined efficacy of adaptation prior to the binaural encoding of ITD cues, and excitatory binaural coincidence detection within MSO neurons, in emphasising ITDs conveyed in early-arriving sound. With excitatory inputs from adapting, nonlinear model spherical bushy cells (SBCs) of the bilateral cochlear nuclei, a nonlinear model MSO neuron with low-threshold potassium channels reproduces the rate-dependent emphasis of rising vs. peak sound energy in ITD encoding; adaptation is equally effective in the model MSO. Maintaining adaptation in model SBCs, and adjusting membrane speed in model MSO neurons, 'left' and 'right' populations of computationally efficient, linear model SBCs and MSO neurons reproduce this stronger weighting of ITD conveyed during rising sound energy at 600 Hz compared to 200 Hz. This hemispheric population model demonstrates a link between strong weighting of spatial information during rising sound energy, and correct unambiguous lateralisation of a speech source in reverberation.
Collapse
|
34
|
Krinner S, Predoehl F, Burfeind D, Vogl C, Moser T. RIM-Binding Proteins Are Required for Normal Sound-Encoding at Afferent Inner Hair Cell Synapses. Front Mol Neurosci 2021; 14:651935. [PMID: 33867935 PMCID: PMC8044855 DOI: 10.3389/fnmol.2021.651935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
The afferent synapses between inner hair cells (IHC) and spiral ganglion neurons are specialized to faithfully encode sound with sub-millisecond precision over prolonged periods of time. Here, we studied the role of Rab3 interacting molecule-binding proteins (RIM-BP) 1 and 2 – multidomain proteins of the active zone known to directly interact with RIMs, Bassoon and CaV1.3 – in IHC presynaptic function and hearing. Recordings of auditory brainstem responses and otoacoustic emissions revealed that genetic disruption of RIM-BPs 1 and 2 in mice (RIM-BP1/2–/–) causes a synaptopathic hearing impairment exceeding that found in mice lacking RIM-BP2 (RIM-BP2–/–). Patch-clamp recordings from RIM-BP1/2–/– IHCs indicated a subtle impairment of exocytosis from the readily releasable pool of synaptic vesicles that had not been observed in RIM-BP2–/– IHCs. In contrast, the reduction of Ca2+-influx and sustained exocytosis was similar to that in RIMBP2–/– IHCs. We conclude that both RIM-BPs are required for normal sound encoding at the IHC synapse, whereby RIM-BP2 seems to take the leading role.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Friederike Predoehl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Dinah Burfeind
- Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Vogl
- Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Presynaptogenesis and Intracellular Transport in Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 1286, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence, University of Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, Rajan G, Ladak H, Agrawal S, Rask-Andersen H. Spike Generators and Cell Signaling in the Human Auditory Nerve: An Ultrastructural, Super-Resolution, and Gene Hybridization Study. Front Cell Neurosci 2021; 15:642211. [PMID: 33796009 PMCID: PMC8008129 DOI: 10.3389/fncel.2021.642211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Luque
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao Li
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Tylstedt
- Department of Olaryngology, Västerviks Hospital, Västervik, Sweden
| | - Gunesh Rajan
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
- Department of Otolaryngology, Head & Neck Surgery, Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Hanif Ladak
- Department of Otolaryngology-Head and Neck Surgery, Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
36
|
Özçete ÖD, Moser T. A sensory cell diversifies its output by varying Ca 2+ influx-release coupling among active zones. EMBO J 2020; 40:e106010. [PMID: 33346936 PMCID: PMC7917556 DOI: 10.15252/embj.2020106010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses.
Collapse
Affiliation(s)
- Özge D Özçete
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany.,Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line. J Neurosci 2020; 41:47-60. [PMID: 33203744 DOI: 10.1523/jneurosci.1772-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.
Collapse
|
38
|
Jeng JY, Ceriani F, Olt J, Brown SDM, Holley MC, Bowl MR, Johnson SL, Marcotti W. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea. J Physiol 2020; 598:4339-4355. [PMID: 32710572 DOI: 10.1113/jp280018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
39
|
Spaiardi P, Marcotti W, Masetto S, Johnson SL. Exocytosis in mouse vestibular Type II hair cells shows a high-order Ca 2+ dependence that is independent of synaptotagmin-4. Physiol Rep 2020; 8:e14509. [PMID: 32691536 PMCID: PMC7371649 DOI: 10.14814/phy2.14509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
Mature hair cells transduce information over a wide range of stimulus intensities and frequencies for prolonged periods of time. The efficiency of such a demanding task is reflected in the characteristics of exocytosis at their specialized presynaptic ribbons. Ribbons are electron-dense structures able to tether a large number of releasable vesicles allowing them to maintain high rates of vesicle release. Calcium entry through rapidly activating, non-inactivating CaV 1.3 (L-type) Ca2+ channels in response to cell depolarization causes a local increase in Ca2+ at the ribbon synapses, which is detected by the exocytotic Ca2+ sensors. The Ca2+ dependence of vesicle exocytosis at mammalian vestibular hair cell (VHC) ribbon synapses is believed to be linear, similar to that observed in mature cochlear inner hair cells (IHCs). The linear relation has been shown to correlate with the presence of the Ca2+ sensor synaptotagmin-4 (Syt-4). Therefore, we studied the exocytotic Ca2+ dependence, and the release kinetics of different vesicle pool populations, in Type II VHCs of control and Syt-4 knockout mice using patch-clamp capacitance measurements, under physiological recording conditions. We found that exocytosis in mature control and knockout Type II VHCs displayed a high-order dependence on Ca2+ entry, rather than the linear relation previously observed. Consistent with this finding, the Ca2+ dependence and release kinetics of the ready releasable pool (RRP) of vesicles were not affected by an absence of Syt-4. However, we did find that Syt-4 could play a role in regulating the release of the secondary releasable pool (SRP) in these cells. Our findings show that the coupling between Ca2+ influx and neurotransmitter release at mature Type II VHC ribbon synapses is faithfully described by a nonlinear relation that is likely to be more appropriate for the accurate encoding of low-frequency vestibular information, consistent with that observed at low-frequency mammalian auditory receptors.
Collapse
Affiliation(s)
- Paolo Spaiardi
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Sergio Masetto
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | | |
Collapse
|
40
|
Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2020; 99:332-348. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022]
Abstract
Voltage-gated Ca2+ (CaV ) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density-95, Drosophila discs-large, and zona occludens)-domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel-mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Neurology, Duke University, Durham, NC, USA
| | - Constanza J Cortes
- Department of Neurology, Duke University, Durham, NC, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, USA
| |
Collapse
|
41
|
Xiong W, Wei W, Qi Y, Du Z, Qu T, Liu K, Gong S. Autophagy is Required for Remodeling in Postnatal Developing Ribbon Synapses of Cochlear Inner Hair Cells. Neuroscience 2020; 431:1-16. [PMID: 32032574 DOI: 10.1016/j.neuroscience.2020.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 11/16/2022]
Abstract
Cochlear ribbon synapses formed between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are immature at birth and they require dramatic morphological and functional developments to achieve auditory maturation in postnatal mice. However, the mechanism underlying this remodeling process of cochlear ribbon synapse remains elusive. Here, we report that autophagy is necessary for the development and maturation of cochlear ribbon synapses in mice. In this study, significantly high levels of LC3B (a widespread marker of autophagy) were found in the cochlea from postnatal day 1 (P1) to P15, which then decreased at P28 to P30. Treatment of mice at P7 with rapamycin or 3-methyladenine (activator and inhibitor of autophagy, respectively) for 7 days led to the significant elevations of hearing threshold across frequencies from P15 to P30. Moreover, abnormal morphology of cochlear ribbon synapses and reduced IHC exocytosis function were detected from P15 to P30, which were likely associated to hearing impairment. Thus, our study demonstrated that autophagy was required for remodeling of cochlear ribbon synapses and provided a new insight into autophagy-related hearing disorder during auditory development. Furthermore, we implicated a novel therapeutic target for sensorineural hearing loss.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Wei
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Tengfei Qu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
42
|
Pisciottano F, Cinalli AR, Stopiello JM, Castagna VC, Elgoyhen AB, Rubinstein M, Gómez-Casati ME, Franchini LF. Inner Ear Genes Underwent Positive Selection and Adaptation in the Mammalian Lineage. Mol Biol Evol 2020; 36:1653-1670. [PMID: 31137036 DOI: 10.1093/molbev/msz077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.
Collapse
Affiliation(s)
- Francisco Pisciottano
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro R Cinalli
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Matías Stopiello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria C Castagna
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires,Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires,Argentina
| | - María Eugenia Gómez-Casati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires,Argentina
| | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
43
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
44
|
Vincent PFY, Cho S, Tertrais M, Bouleau Y, von Gersdorff H, Dulon D. Clustered Ca 2+ Channels Are Blocked by Synaptic Vesicle Proton Release at Mammalian Auditory Ribbon Synapses. Cell Rep 2019; 25:3451-3464.e3. [PMID: 30566869 DOI: 10.1016/j.celrep.2018.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/31/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
A Ca2+ current transient block (ICaTB) by protons occurs at some ribbon-type synapses after exocytosis, but this has not been observed at mammalian hair cells. Here we show that a robust ICaTB occurs at post-hearing mouse and gerbil inner hair cell (IHC) synapses, but not in immature IHC synapses, which contain non-compact active zones, where Ca2+ channels are loosely coupled to the release sites. Unlike ICaTB at other ribbon synapses, ICaTB in mammalian IHCs displays a surprising multi-peak structure that mirrors the EPSCs seen in paired recordings. Desynchronizing vesicular release with intracellular BAPTA or by deleting otoferlin, the Ca2+ sensor for exocytosis, greatly reduces ICaTB, whereas enhancing release synchronization by raising Ca2+ influx or temperature increases ICaTB. This suggests that ICaTB is produced by fast multivesicular proton-release events. We propose that ICaTB may function as a submillisecond feedback mechanism contributing to the auditory nerve's fast spike adaptation during sound stimulation.
Collapse
Affiliation(s)
- Philippe F Y Vincent
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Soyoun Cho
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE 68131, USA; The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Margot Tertrais
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | - Yohan Bouleau
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France
| | | | - Didier Dulon
- Université de Bordeaux, Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Inserm U1120, 33076 Bordeaux, France.
| |
Collapse
|
45
|
Lu J, Wang W, Liu H, Liu H, Wu H. Cisplatin induces calcium ion accumulation and hearing loss by causing functional alterations in calcium channels and exocytosis. Am J Transl Res 2019; 11:6877-6889. [PMID: 31814894 PMCID: PMC6895503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In recent years, molecular biology and biochemistry have been a focus of studies on the ototoxic side effects of cisplatin. In this paper, the application of cisplatin for 4 h and 72 h was studied from the perspective of electrophysiological function. Patch clamp experiments and immunofluorescence staining were performed on inner hair cells of the cochlea. The patch-clamp results showed that the calcium current amplitude decreased significantly at 4 h and 72 h after cisplatin treatment, the reversal potential was negatively polarized, and the activation time decreased. We suspected that intracellular calcium accumulation was responsible for this result and confirmed this hypothesis by using calpain to measure intracellular calcium concentrations. We tested membrane capacitive function, whose levels after cisplatin application were significantly lower than those in the control group, thus indicating dysfunctional cytoplasmic effervescent function. CtBP2 staining was used to verify this result and indicated a decrease in ribbon synapses. Simultaneously, we observed dysfunction of vesicle circulation after cisplatin application. We found that cisplatin induces the accumulation of calcium ions in inner hair cells by calpain staining and fluoresce intensity calculation, thus decreasing calcium current and synaptic vesicle release, and impairing vesicles cycling, all of which are important mechanisms of cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Wenxiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghai, China
| |
Collapse
|
46
|
Nakamura Y. EGTA Can Inhibit Vesicular Release in the Nanodomain of Single Ca 2+ Channels. Front Synaptic Neurosci 2019; 11:26. [PMID: 31632263 PMCID: PMC6779814 DOI: 10.3389/fnsyn.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
The exogenous Ca2+ chelator EGTA (ethylene glycol tetraacetic acid) has been widely used to probe the coupling distance between Ca2+ channels and vesicular Ca2+ sensors for neurotransmitter release. Because of its slow forward rate for binding, EGTA is thought to not capture calcium ions in very proximity to a channel, whereas it does capture calcium ions at the remote distance. However, in this study, our reaction diffusion simulations (RDSs) of Ca2+ combined with a release calculation using vesicular sensor models indicate that a high concentration of EGTA decreases Ca2+ and vesicular release in the nanodomain of single channels. We found that a key determinant of the effect of EGTA on neurotransmitter release is the saturation of the vesicular sensor. When the sensor is saturated, the reduction in the Ca2+ concentration by EGTA is masked. By contrast, when the sensor is in a linear range, even a small reduction in Ca2+ by EGTA can decrease vesicular release. In proximity to a channel, the vesicular sensor is often saturated for a long voltage step, but not for a brief Ca2+ influx typically evoked by an action potential. Therefore, when EGTA is used as a diagnostic tool to probe the coupling distance, care must be taken regarding the presynaptic Ca2+ entry duration as well as the property of the vesicular Ca2+ sensor.
Collapse
Affiliation(s)
- Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Protein Kinase C and Calmodulin Serve As Calcium Sensors for Calcium-Stimulated Endocytosis at Synapses. J Neurosci 2019; 39:9478-9490. [PMID: 31628181 DOI: 10.1523/jneurosci.0182-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/27/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023] Open
Abstract
Calcium influx triggers and facilitates endocytosis, which recycles vesicles and thus sustains synaptic transmission. Despite decades of studies, the underlying calcium sensor remained not well understood. Here, we examined two calcium binding proteins, protein kinase C (PKC) and calmodulin. Whether PKC is involved in endocytosis was unclear; whether calmodulin acts as a calcium sensor for endocytosis was neither clear, although calmodulin involvement in endocytosis had been suggested. We generated PKC (α or β-isoform) and calmodulin (calmodulin 2 gene) knock-out mice of either sex and measured endocytosis with capacitance measurements, pHluorin imaging and electron microscopy. We found that these knock-outs inhibited slow (∼10-30 s) and rapid (<∼3 s) endocytosis at large calyx-type calyces, and inhibited slow endocytosis and bulk endocytosis (forming large endosome-like structures) at small conventional hippocampal synapses, suggesting the involvement of PKC and calmodulin in three most common forms of endocytosis-the slow, rapid and bulk endocytosis. Inhibition of slow endocytosis in PKC or calmodulin 2 knock-out hippocampal synapses was rescued by overexpressing wild-type PKC or calmodulin, but not calcium-binding-deficient PKC or calmodulin mutant, respectively, suggesting that calcium stimulates endocytosis by binding with its calcium sensor PKC and calmodulin. PKC and calmodulin 2 knock-out inhibited calcium-dependent vesicle mobilization to the readily releasable pool, suggesting that PKC and calmodulin may mediate calcium-dependent facilitation of vesicle mobilization. These findings shed light on the molecular signaling link among calcium, endocytosis and vesicle mobilization that are crucial in maintaining synaptic transmission and neuronal network activity.SIGNIFICANCE STATEMENT Vesicle fusion releases neurotransmitters to mediate synaptic transmission. To sustain synaptic transmission, fused vesicles must be retrieved via endocytosis. Accumulating evidence suggests that calcium influx triggers synaptic vesicle endocytosis. However, how calcium triggers endocytosis is not well understood. Using genetic tools together with capacitance measurements, optical imaging and electron microscopy, we identified two calcium sensors, including protein kinase C (α and β isoforms) and calmodulin, for the most commonly observed forms of endocytosis: slow, rapid, and bulk. We also found that these two proteins are involved in calcium-dependent vesicle mobilization to the readily releasable pool. These results provide the molecular signaling link among calcium, endocytosis, and vesicle mobilization that are essential in sustaining synaptic transmission and neuronal network activity.
Collapse
|
48
|
Lundt A, Soós J, Seidel R, Henseler C, Müller R, Raj Ginde V, Imran Arshaad M, Ehninger D, Hescheler J, Sachinidis A, Broich K, Wormuth C, Papazoglou A, Weiergräber M. Functional implications of Ca v 2.3 R-type voltage-gated calcium channels in the murine auditory system - novel vistas from brainstem-evoked response audiometry. Eur J Neurosci 2019; 51:1583-1604. [PMID: 31603587 DOI: 10.1111/ejn.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Voltage-gated Ca2+ channels (VGCCs) are considered to play a key role in auditory perception and information processing within the murine inner ear and brainstem. In the past, Cav 1.3 L-type VGCCs gathered most attention as their ablation causes congenital deafness. However, isolated patch-clamp investigation and localization studies repetitively suggested that Cav 2.3 R-type VGCCs are also expressed in the cochlea and further components of the ascending auditory tract, pointing to a potential functional role of Cav 2.3 in hearing physiology. Thus, we performed auditory profiling of Cav 2.3+/+ controls, heterozygous Cav 2.3+/- mice and Cav 2.3 null mutants (Cav 2.3-/- ) using brainstem-evoked response audiometry. Interestingly, click-evoked auditory brainstem responses (ABRs) revealed increased hearing thresholds in Cav 2.3+/- mice from both genders, whereas no alterations were observed in Cav 2.3-/- mice. Similar observations were made for tone burst-related ABRs in both genders. However, Cav 2.3 ablation seemed to prevent mutant mice from total hearing loss particularly in the higher frequency range (36-42 kHz). Amplitude growth function analysis revealed, i.a., significant reduction in ABR wave WI and WIII amplitude in mutant animals. In addition, alterations in WI -WIV interwave interval were observed in female Cav 2.3+/- mice whereas absolute latencies remained unchanged. In summary, our results demonstrate that Cav 2.3 VGCCs are mandatory for physiological auditory information processing in the ascending auditory tract.
Collapse
Affiliation(s)
- Andreas Lundt
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Julien Soós
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Robin Seidel
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Ralf Müller
- Cognitive Neurophysiology, Department of Psychiatry and Psychotherapy and University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Varun Raj Ginde
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Dan Ehninger
- Molecular and Cellular Cognition, German Center for Neurodegenerative Diseases, (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Bonn, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Carola Wormuth
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Bonn, Germany
| |
Collapse
|
49
|
Li S, Yu S, Ding T, Yan A, Qi Y, Gong S, Tang S, Liu K. Different patterns of endocytosis in cochlear inner and outer hair cells of mice. Physiol Res 2019; 68:659-665. [PMID: 31177790 DOI: 10.33549/physiolres.934009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Precise and efficient endocytosis is critical for sustained neurotransmission during continuous neuronal activity. Endocytosis is a prerequisite for maintaining the auditory function. However, the differences between the patterns of endocytosis in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) remain unclear. Both IHCs and OHCs were obtained from adult C57 mice. Patterns of endocytosis in cells were estimated by analyzing the uptake of FM1-43, a fluorescent. The observations were made using live confocal imaging, fluorescence intensities were calculated statistically. Results revealed the details about following phenomenon, i) sites of entry: the FM1-43 dye was found to enter IHC at the apical area initially, the additional sites of entry were then found at basolateral membrane of the cells, The entry of the dye into OHCs initially appeared to be occurring around whole apical membranes area, which then diffused towards the other membrane surface of the cells, ii) capacity of endocytosis: fluorescence intensity in IHCs showed significantly higher than that of OHCs (P<0.01). We have found different patterns of endocytosis between IHCs and OHCs, this indicated functional distinctions between them. Moreover, FM1-43 dye can be potentially used as an indicator of the functional loss or repair of cochlear hair cells.
Collapse
Affiliation(s)
- Sijun Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Al-Moyed H, Cepeda AP, Jung S, Moser T, Kügler S, Reisinger E. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol Med 2019; 11:emmm.201809396. [PMID: 30509897 PMCID: PMC6328916 DOI: 10.15252/emmm.201809396] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Normal hearing and synaptic transmission at afferent auditory inner hair cell (IHC) synapses require otoferlin. Deafness DFNB9, caused by mutations in the OTOF gene encoding otoferlin, might be treated by transferring wild‐type otoferlin cDNA into IHCs, which is difficult due to the large size of this transgene. In this study, we generated two adeno‐associated viruses (AAVs), each containing half of the otoferlin cDNA. Co‐injecting these dual‐AAV2/6 half‐vectors into the cochleae of 6‐ to 7‐day‐old otoferlin knock‐out (Otof−/−) mice led to the expression of full‐length otoferlin in up to 50% of IHCs. In the cochlea, otoferlin was selectively expressed in auditory hair cells. Dual‐AAV transduction of Otof−/−IHCs fully restored fast exocytosis, while otoferlin‐dependent vesicle replenishment reached 35–50% of wild‐type levels. The loss of 40% of synaptic ribbons in these IHCs could not be prevented, indicating a role of otoferlin in early synapse maturation. Acoustic clicks evoked auditory brainstem responses with thresholds of 40–60 dB. Therefore, we propose that gene delivery mediated by dual‐AAV vectors might be suitable to treat deafness forms caused by mutations in large genes such as OTOF.
Collapse
Affiliation(s)
- Hanan Al-Moyed
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Andreia P Cepeda
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neurosciences and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tobias Moser
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Institute for Auditory Neurosciences and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Sebastian Kügler
- Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Reisinger
- Molecular Biology of Cochlear Neurotransmission Group, Department of Otorhinolaryngology, University Medical Center Göttingen, and Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| |
Collapse
|