1
|
Expression and purification of active human kinases using Pichia pastoris as a general-purpose host. Protein Expr Purif 2020; 179:105780. [PMID: 33115654 DOI: 10.1016/j.pep.2020.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/14/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The heterologous expression of human kinases in good purity and in a monomeric, soluble and active form can be challenging. Most of the reported successful attempts are carried out in insect cells as a host. The use of E. coli for expression is limited to a few kinases and usually is facilitated by large solubility tags that can limit biophysical studies and affect protein-protein interactions. In this report, we evaluate the methylotrophic yeast Pichia pastoris (P. pastoris) as a general-purpose host for expression of human kinases. METHODS Six diverse kinases were chosen due to their therapeutic importance in human cancers. Tested proteins include serine/threonine kinases cyclin-dependent kinases 4 and 6 (CDK4 and 6) and aurora kinase A (AurKA), receptor tyrosine kinase erbB-2 (HER2), and dual specificity kinase mitogen-activated protein kinase kinase 3 (MKK3b). Noting that positively charged kinases expressed with higher yield, we sought to improve expression of two challenging targets, CDK6 and HER2, by fusing the highly basic, N-terminal domain of the secreted tyrosine-protein kinase VLK. The standard expression procedure for P. pastoris was adopted, followed by purification using affinity chromatography. Purity and activity of the proteins were confirmed and compared to published values. RESULTS Some kinases were purified with good yield and purity and with comparable activity to commercially available versions. Addition of the VLK domain improved expression and decreased aggregation of CDK6 and HER2.
Collapse
|
2
|
Guan C, Niu Y, Chen SC, Kang Y, Wu JX, Nishi K, Chang CCY, Chang TY, Luo T, Chen L. Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nat Commun 2020; 11:2478. [PMID: 32424158 PMCID: PMC7234994 DOI: 10.1038/s41467-020-16288-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
Sterol O-acyltransferase 1 (SOAT1) is an endoplasmic reticulum (ER) resident, multi-transmembrane enzyme that belongs to the membrane-bound O-acyltransferase (MBOAT) family. It catalyzes the esterification of cholesterol to generate cholesteryl esters for cholesterol storage. SOAT1 is a target to treat several human diseases. However, its structure and mechanism remain elusive since its discovery. Here, we report the structure of human SOAT1 (hSOAT1) determined by cryo-EM. hSOAT1 is a tetramer consisted of a dimer of dimer. The structure of hSOAT1 dimer at 3.5 Å resolution reveals that a small molecule inhibitor CI-976 binds inside the catalytic chamber and blocks the accessibility of the active site residues H460, N421 and W420. Our results pave the way for future mechanistic study and rational drug design targeting hSOAT1 and other mammalian MBOAT family members.
Collapse
Affiliation(s)
- Chengcheng Guan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Yange Niu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yunlu Kang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Jing-Xiang Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China
| | - Koji Nishi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Catherine C Y Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Ta-Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
Díaz Galicia ME, Aldehaiman A, Hong S, Arold ST, Grünberg R. Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls. Methods Enzymol 2019; 621:131-152. [DOI: 10.1016/bs.mie.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Dammalli M, Murthy KR, Pinto SM, Murthy KB, Nirujogi RS, Madugundu AK, Dey G, Nair B, Gowda H, Keshava Prasad TS. Toward Postgenomics Ophthalmology: A Proteomic Map of the Human Choroid–Retinal Pigment Epithelium Tissue. ACTA ACUST UNITED AC 2017; 21:114-122. [DOI: 10.1089/omi.2016.0170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Manjunath Dammalli
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, India
| | - Krishna R. Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita VishwaVidyapeetham, Kollam, India
- Vittala International Institute of Ophthalmology, Bangalore, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | | | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Anil K. Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Department of Biotechnology, Manipal University, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita VishwaVidyapeetham, Kollam, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
- NIMHANS-IOB Bioinformatics and Proteomics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
5
|
Jones Brunette AM, Sinha A, David L, Farrens DL. Evidence that the Rhodopsin Kinase (GRK1) N-Terminus and the Transducin Gα C-Terminus Interact with the Same "Hydrophobic Patch" on Rhodopsin TM5. Biochemistry 2016; 55:3123-35. [PMID: 27078130 DOI: 10.1021/acs.biochem.6b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation of G protein-coupled receptors (GPCRs) terminates their ability to couple with and activate G proteins by increasing their affinity for arrestins. Unfortunately, detailed information regarding how GPCRs interact with the kinases responsible for their phosphorylation is still limited. Here, we purified fully functional GPCR kinase 1 (GRK1) using a rapid method and used it to gain insights into how this important kinase interacts with the GPCR rhodopsin. Specifically, we find that GRK1 uses the same site on rhodopsin as the transducin (Gt) Gtα C-terminal tail and the arrestin "finger loop", a cleft formed in the cytoplasmic face of the receptor upon activation. Our studies also show GRK1 requires two conserved residues located in this cleft (L226 and V230) that have been shown to be required for Gt activation due to their direct interactions with hydrophobic residues on the Gα C-terminal tail. Our data and modeling studies are consistent with the idea that all three proteins (Gt, GRK1, and visual arrestin) bind, at least in part, in the same site on rhodopsin and interact with the receptor through a similar hydrophobic contact-driven mechanism.
Collapse
Affiliation(s)
- Amber M Jones Brunette
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239-3098, United States
| | - Abhinav Sinha
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239-3098, United States
| | - Larry David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239-3098, United States
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University , Portland, Oregon 97239-3098, United States
| |
Collapse
|
6
|
Abstract
Light isomerizes 11-cis-retinal in a retinal rod and produces an active form of rhodopsin (Rh*) that binds to the G-protein transducin and activates the phototransduction cascade. Rh* is turned off by phosphorylation by rhodopsin kinase [G-protein-coupled receptor kinase 1 (GRK1)] and subsequent binding of arrestin. To evaluate the role of GRK1 in rod light response decay, we have generated the transgenic mouse RKS561L in which GRK1, which is normally present at only 2-3% of rhodopsin, is overexpressed by ∼12-fold. Overexpression of GRK1 increases the rate of Rh* phosphorylation and reduces the exponential decay constant of the response (τ(REC)) and the limiting time constant (τ(D)) both by ∼30%; these decreases are highly significant. Similar decreases are produced in Rv(-/-) rods, in which the GRK1-binding protein recoverin has been genetically deleted. These changes in response decay are produced by acceleration of light-activated phosphodiesterase (PDE*) decay rather than Rh* decay, because light-activated PDE* decay remains rate limiting for response decay in both RKS561L and Rv(-/-) rods. A model incorporating an effect of GRK1 on light-activated PDE* decay rate can satisfactorily account for the changes in response amplitude and waveform. Modulation of response decay in background light is nearly eliminated by deletion of recoverin. Our experiments indicate that rhodopsin kinase and recoverin, in addition to their well-known role in regulating the turning off of Rh*, can also modulate the decay of light-activated PDE*, and the effects of these proteins on light-activated PDE* decay may be responsible for the quickening of response recovery in background light.
Collapse
|
7
|
Manjasetty BA, Turnbull AP, Panjikar S. The impact of Structural Proteomics on Biotechnology. Biotechnol Genet Eng Rev 2009; 26:353-70. [DOI: 10.5661/bger-26-353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Senin II, Koch KW, Akhtar M, Philippov PP. Ca2+-dependent control of rhodopsin phosphorylation: recoverin and rhodopsin kinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:69-99. [PMID: 12596916 DOI: 10.1007/978-1-4615-0121-3_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Over many years until the middle of the 1980s, the main problem in vision research had been the mechanism of transducing the visual signal from photobleached rhodopsin to the cationic channels in the plasma membrane of a photoreceptor to trigger the electrophysiological response of the cell. After cGMP was proven to be the secondary messenger, the main intriguing question has become the mechanisms of negative feedback in photoreceptors to modulate their response to varying conditions of illumination. Although the mechanisms of light-adaptation are not completely understood, it is obvious that Ca2+ plays a crucial role in these mechanisms and that the effects of Ca2+ can be mediated by several Ca2+-binding proteins. One of them is recoverin. The leading candidate for the role of an intracellular target for recoverin is believed to be rhodopsin kinase, a member of a family of G-protein-coupled receptor kinases. The present review considers recoverin, rhodopsin kinase and their interrelationships in the in vitro as well as in vivo contexts.
Collapse
Affiliation(s)
- Ivan I Senin
- Department of Cell Signalling, A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia
| | | | | | | |
Collapse
|
9
|
Reeves PJ, Kim JM, Khorana HG. Structure and function in rhodopsin: a tetracycline-inducible system in stable mammalian cell lines for high-level expression of opsin mutants. Proc Natl Acad Sci U S A 2002; 99:13413-8. [PMID: 12370422 PMCID: PMC129687 DOI: 10.1073/pnas.212519199] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetracycline-inducible HEK293S stable cell lines have been prepared that express high levels (up to 10 mg/liter) of WT opsin and its mutants only in response to the addition of tetracycline and sodium butyrate. The cell lines were prepared by stable transfection of HEK293S-TetR cells with expression plasmids that contained the opsin gene downstream of a cytomegalovirus promoter containing tetO sequences as well as the neomycin resistance gene under control of the weak H(2)L(d) promoter. The inducible system is particularly suited for overcoming problems with toxicity either due to the addition of toxic compounds, for example, tunicamycin, to the growth medium or due to the expressed protein products. By optimization of cell growth conditions in a bioreactor, WT opsin, a constitutively active opsin mutant, E113Q/E134Q/M257Y, presumed to be toxic to the cells, and nonglycosylated WT opsin obtained by growth in the presence of tunicamycin have been prepared in amounts of several milligrams per liter of culture medium.
Collapse
Affiliation(s)
- Philip J Reeves
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
10
|
Boettner M, Prinz B, Holz C, Stahl U, Lang C. High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 2002; 99:51-62. [PMID: 12204557 DOI: 10.1016/s0168-1656(02)00157-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The methylotrophic yeast Pichia pastoris has become a powerful host for the heterologous expression of proteins. In order to provide proteins for the 'protein structure factory', a structural genomics initiative, we are working on the high-throughput expression of human proteins. Therefore, cDNAs are cloned for intracellular expression. The resulting fusion proteins carry affinity tags (6*HIS and StrepII, respectively) at the N- and C-terminus for the immunological detection and chromatographic purification of full-length proteins. Expression is controlled by the tightly regulated and highly inducible alcoholoxidase 1 (AOX1) promoter. We have developed a cultivation and induction protocol amendable to automation to increase the number of clones screened for protein expression. The screening procedure is based on a culture volume of 2 ml in a 24-well format. Lysis of the cells occurs via a chemical lysis without mechanical disruption. Using the optimized feeding and induction protocol, we are now able to screen for and identify expression clones which produce heterologous protein with a yield of 5 mg l(-1) culture volume or higher.
Collapse
Affiliation(s)
- Mewes Boettner
- Proteinstrukturfabrik, Heubnerweg 6, D-14059 Berlin, Germany
| | | | | | | | | |
Collapse
|
11
|
Bruel C, Cha K, Niu L, Reeves PJ, Khorana HG. Rhodopsin kinase: two mAbs binding near the carboxyl terminus cause time-dependent inactivation. Proc Natl Acad Sci U S A 2000; 97:3010-5. [PMID: 10737782 PMCID: PMC16183 DOI: 10.1073/pnas.97.7.3010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two mAbs generated against rhodopsin kinase (RK) were characterized for their epitopes. Both antibodies recognize short peptide sequences, overlapping but distinct, close to the carboxyl terminus. Binding of RK to the antibodies is slow. Attempts were made to use the antibodies immobilized on protein A-Sepharose beads to bind and purify the enzyme. Time-dependent inactivation of the enzyme occurred after its binding to the antibodies. Studies using different conditions to maintain the enzyme in the active form during binding or to reactivate the purified inactivated enzyme were unsuccessful.
Collapse
Affiliation(s)
- C Bruel
- Departments of Biology and Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|